JPS60224728A - Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head - Google Patents

Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head

Info

Publication number
JPS60224728A
JPS60224728A JP59079101A JP7910184A JPS60224728A JP S60224728 A JPS60224728 A JP S60224728A JP 59079101 A JP59079101 A JP 59079101A JP 7910184 A JP7910184 A JP 7910184A JP S60224728 A JPS60224728 A JP S60224728A
Authority
JP
Japan
Prior art keywords
less
alloy
flux density
wear
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59079101A
Other languages
Japanese (ja)
Other versions
JPH0310699B2 (en
Inventor
Ryo Masumoto
量 増本
Yuetsu Murakami
雄悦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Electromagnetic Materials filed Critical Research Institute for Electromagnetic Materials
Priority to JP59079101A priority Critical patent/JPS60224728A/en
Publication of JPS60224728A publication Critical patent/JPS60224728A/en
Publication of JPH0310699B2 publication Critical patent/JPH0310699B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a high magnetic permeability alloy easy in forging working, having large effective magnetic permeability, saturation flux density and superior in wear resistance, and a magnetic recording and reproducing head made thereof by cold working and heat treating Ni base alloy contg. Nb, P, Fe under specified condition. CONSTITUTION:Ingot contg. alloy composed of 60-90% Ni, 0.5-14% Nb, 0.01- 1% P and the balance Fe, or further many kind elements as auxiliary component is hot forged or hot rolled to rod shape, etc., then annealed at >=600 deg.C temp. Next, said material is cold worked to the aimed shape by >=30% working ratio, heated to temp. of 800 deg.C-m.p., and cooled from temp. of order and disorder lattice transformation point or more by the rate of 100 deg.C/sec-1 deg.C/hr according to compsn. of the alloy. The wear resistant, high magnetic permeability alloy for magnetic recording and reproducing head having >3,000 effective magnetic permeability at 1Hz, >4,000G saturation flux density and recrystallization texture of (110)<112> is manufactured.

Description

【発明の詳細な説明】 耗性高透磁率合金およびNi 、 Nb 、 Pおよび
li’eを主成分とし、副成分として(ir 、 No
 、 Ge3 、 Au。
[Detailed description of the invention] Abradable high permeability alloy and Ni, Nb, P and li'e as main components, and subcomponents (ir, No.
, Ge3, Au.

Co I V I W 、 Ou 、 Ta 、 Kn
 、 At, Si 、 Ti 。
Co IV I W, Ou, Ta, Kn
, At, Si, Ti.

、Zr 、 Hf 、 Sn 、 Sb 、 Ga 、
 In 、 Tl 、希土類元素、白金族元115. 
Be 、 A9.Sr y lea 、 B f) 1
棟または2種以上を含有する耐摩耗性高透磁率合金およ
びその製造法に関するもので、その目的とするところは
、鍛造加工が容易で、実効透磁率が大きく、飽和磁束密
度が4000G以上で、(110)<112>の再結晶
集合組織を有して耐摩耗性が良好な磁性合金を得るにあ
る。更に本発明はこれら耐摩耗性高透磁率合金よりなる
磁気記録再生ヘッドに関するものである。
, Zr, Hf, Sn, Sb, Ga,
In, Tl, rare earth elements, platinum group elements 115.
Be, A9. Sry lea, B f) 1
This relates to a wear-resistant high magnetic permeability alloy containing a ridge or two or more types, and a method for producing the same, and its purpose is to be easy to forge, have a large effective magnetic permeability, have a saturation magnetic flux density of 4000G or more, The object of the present invention is to obtain a magnetic alloy having a recrystallized texture of (110)<112> and having good wear resistance. Furthermore, the present invention relates to a magnetic recording/reproducing head made of these wear-resistant high permeability alloys.

テープレコーダーなどの磁気記録再生ヘッドは交流磁界
において作動するものであるから、これに用いられる磁
性合金は高周波磁界における実効透磁率が大きいことが
必要とされ、また磁気テープが接触して摺動するため耐
摩耗性が良好であることが望まれている。現在、耐摩耗
性にすぐれた磁気ヘッド用磁性合金としてはセンダスト
(Fe −3i −Al系合金)およびフェライト(M
nO−ZnO−Fe、O,)があるが、これらは非常に
硬く脆いため、鍛造、圧延加工が不可能で、ヘッドコア
の製造に6は研削、研磨の方法が用いられており、従っ
てその成品は高価である。またセンダストは飽和磁束密
度は大きいが薄板にできないので高周波磁界における実
効透磁率が比較的小さい。またフェライトは実効透磁率
は大きいが、飽和磁束密度が約4000Gで小さいのが
欠点である。他方パーマロイ(Ni−Fe系合金)は飽
和磁束密度は大きいが、実効透磁率は小さく、また鍛造
、圧延加工および打抜きは容易で量産性にすぐれている
が、摩耗しやすいのが大きな欠点であり、これを改善す
ることが強く望まれている。
Since magnetic recording/reproducing heads such as tape recorders operate in alternating magnetic fields, the magnetic alloys used therein must have high effective magnetic permeability in high-frequency magnetic fields, and magnetic tapes must slide in contact with each other. Therefore, it is desired that the wear resistance be good. Currently, as magnetic alloys for magnetic heads with excellent wear resistance, sendust (Fe-3i-Al alloy) and ferrite (M
nO-ZnO-Fe, O,), but these are very hard and brittle and cannot be forged or rolled.6 Grinding and polishing methods are used to manufacture the head core, and therefore the finished product is expensive. Sendust has a high saturation magnetic flux density, but cannot be made into a thin plate, so its effective permeability in a high-frequency magnetic field is relatively low. Further, although ferrite has a high effective magnetic permeability, its disadvantage is that its saturation magnetic flux density is low at about 4000G. On the other hand, permalloy (Ni-Fe alloy) has a high saturation magnetic flux density but a low effective permeability, and is easy to forge, roll, and punch, making it suitable for mass production, but its major drawback is that it wears easily. , it is strongly desired to improve this.

本発明者らは、先にNi −Fe −Nb系合金は鍛造
加工が容易ですぐれた高透磁率合金であることから、磁
気記録再生ヘッド用磁性合金として好適であることを見
い出し、これを特許出願した(特公昭47−29690
号)。その後本発明者らは、一般に摩耗現象は合金結晶
の方位によって差異があり、結晶異方性が存在すること
が知られて−ることから、Ni−Fe−Nb系合金の結
晶方位と摩耗現象の関係について研究した結果、Ni−
Fe−Nb系合金、においては、(100)<001>
再結晶集合組織は摩耗し易しく 、(110)<112
>再結晶集合組織が耐摩耗性にすぐれていることを見い
出し、これを特許用Jilt(特公昭58−57499
号、特開昭58−26994号)した。 。
The present inventors have previously discovered that Ni-Fe-Nb alloys are suitable as magnetic alloys for magnetic recording/reproducing heads because they are easy to forge and have excellent high magnetic permeability, and have patented this alloy. Filed (Special Publication No. 47-29690)
issue). Subsequently, the present inventors discovered that the wear phenomenon generally differs depending on the orientation of the alloy crystal, and it is known that crystal anisotropy exists. As a result of research on the relationship between Ni-
In Fe-Nb alloy, (100)<001>
Recrystallized texture is easy to wear, (110)<112
> It was discovered that the recrystallized texture has excellent wear resistance, and this was developed into the patented Jilt (Japanese Patent Publication No. 58-57499
No., Japanese Patent Publication No. 58-26994). .

本発明者らはこの知見に基づいて、さらに進んでOu等
の面心立方晶金属の(100)< 001 >再結晶集
合組織の形成を抑制する効果があるとされる元素の一つ
であるPを同じ面心立方晶のNi−Fe −Nb系合金
に添加し、再結晶集合組織の形成について研究した。す
なわちNi−Fe2元系合金は冷間圧延加工すると(1
10)<112> + (112)<111>の加工集
合組織が生じるが、これを高温加熱すると(100)<
001>再結晶集合組織が発達することが知られている
Based on this knowledge, the present inventors went further and found that it is one of the elements that is said to have the effect of suppressing the formation of (100)<001> recrystallization texture in face-centered cubic metals such as O. P was added to the same face-centered cubic Ni-Fe-Nb alloy, and the formation of recrystallization texture was studied. In other words, when the Ni-Fe binary alloy is cold-rolled, it becomes (1
10) A processing texture of <112> + (112)<111> is produced, but when this is heated at high temperature, it becomes (100)<
001> It is known that a recrystallized texture develops.

しかし、これにNbを添加すると積層欠陥エネルギーは
低下し、(110)<112>再結晶集合組織が生成す
るようになるが、これにさらに微蓋のPを添加すること
によって(100)<001>再結晶集合組織の成長は
抑制され、(110)<112>再結晶集合組織の成長
が優先的に促進し、(iio)<112>再結晶集合組
織が形成されて、耐摩耗性が著しく向上することを見い
出したのである。またNi −Fe3− Nb系合金に
Pを添加するとN1−p 、 F19−PおよびNb−
P糸の硬いリン化物がマトリックス中に析出し、硬度を
高め、耐摩耗性の向上に嵜与するとともに、これらの弱
強磁性および非強磁性の微細なリン化物の分散析出によ
って磁区が分割されて、交流磁界におる渦電流損失が減
少し、このために実効透磁率が増大することも見い出し
た。要するに囮とPの相乗的効果により、(110)<
112>再結晶集合組織が発達するとともに実効透磁率
が増大し、耐摩耗性のすぐれた高透磁率合金が得られる
のである。
However, when Nb is added to this, the stacking fault energy decreases and a (110) <112> recrystallization texture is generated, but by further adding fine P to this, the (100) <001 >The growth of the recrystallized texture is suppressed, the growth of the (110) <112> recrystallized texture is promoted preferentially, and the (iio) <112> recrystallized texture is formed, resulting in significantly improved wear resistance. I found that it can be improved. Furthermore, when P is added to Ni-Fe3-Nb alloy, N1-p, F19-P and Nb-
The hard phosphides of the P yarn are precipitated in the matrix, increasing the hardness and contributing to the improvement of wear resistance. At the same time, the magnetic domains are divided by the dispersed precipitation of these weakly ferromagnetic and non-ferromagnetic fine phosphides. We also found that the eddy current loss in an alternating magnetic field is reduced, which increases the effective magnetic permeability. In short, due to the synergistic effect of decoy and P, (110) <
112> As the recrystallization texture develops, the effective magnetic permeability increases, resulting in a high magnetic permeability alloy with excellent wear resistance.

本発明の合金を造るには、Ni60〜90%、Nb O
,5〜14%、Po、001〜1%および残部FBの適
当量を空気中、好ましくは非酸化性雰囲気(水素、アル
ゴン、窒素など)中あるいは真空中において適当な溶解
炉を用いて溶解した後、マンガン、珪素、アルミニウム
、チタン、カルシウム合金、マグネシウム合金、ベリリ
ウム合金その他、の脱酸脱硫剤を少量添加してできるだ
け不純物を取り除く。或は又、上記合金に軸成分として
Qr。
To make the alloy of the present invention, 60-90% Ni, NbO
, 5-14%, Po, 001-1% and the balance FB were melted in air, preferably in a non-oxidizing atmosphere (hydrogen, argon, nitrogen, etc.) or in vacuum using a suitable melting furnace. After that, a small amount of deoxidizing and desulfurizing agents such as manganese, silicon, aluminum, titanium, calcium alloy, magnesium alloy, beryllium alloy, etc. is added to remove as much impurity as possible. Alternatively, Qr may be added to the above alloy as an axial component.

Mo 、 Ce、 Allの7%以下、Co 、 Vの
10%以下、Wの15%以下、Ou、Ta、Mnの25
%以下、Sr 、 Baの8%以下、31%以下の1種
あるいは2M以上の合計0.01〜80%の所定量を更
に添加する。かくして得た混合物を充分に攪拌して組成
的に均一な溶融合金を造る。
7% or less of Mo, Ce, All, 10% or less of Co, V, 15% or less of W, 25% of Ou, Ta, Mn
% or less, Sr, Ba, 8% or less, 31% or less, or 2M or more in a predetermined amount of a total of 0.01 to 80%. The mixture thus obtained is thoroughly stirred to produce a compositionally uniform molten alloy.

次にこれを適当な形および大きさの鋳型に注入して健全
な鋳塊を得、さらにこれに高温において鍛造あるいは熱
間加工を施して適当な形状のもの、例えば俸あるいは板
となし、必要ならば600°C以上の温度で焼鈍する。
Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is then forged or hot-worked at high temperatures to form an appropriate shape, such as a bar or a plate, and is then shaped into a metal ingot as required. If so, annealing is performed at a temperature of 600°C or higher.

次いでこれに冷間圧延などの方法によって加工率80%
以上の冷間加工を施し、目的の形状のもの、例えば厚さ
0.1#IIの薄板を造る。次にその薄板から例えば外
径45關、内径88騨の環状板を打抜き、これを水素中
その他の適当な非酸化性雰囲気(水素、アルゴン、窒素
、など)中あるいは真空中で800°C以上融点以下の
温度で適当時間加熱し、ついで規則−不規則格子変態点
(約600℃)以上の温度から100”C/秒〜1°C
/時の組成に対応した適当な速度で冷却するかあるいは
これをさらに規則−不規則格子変態点(約600°C)
以下の温度で適当時間再加熱し、冷却する。このように
して実効透磁率8000以上、飽和磁束密度4000G
以上を有し、且つ(110)<112>の再結晶集合組
織を有した耐摩耗性高透磁率合金が得られる。
This is then subjected to a processing rate of 80% by methods such as cold rolling.
The above cold working is performed to produce a thin plate of the desired shape, for example, a thin plate with a thickness of 0.1 #II. Next, an annular plate with an outer diameter of 45 mm and an inner diameter of 88 mm is punched out from the thin plate, and this is heated at 800°C or higher in hydrogen or other suitable non-oxidizing atmosphere (hydrogen, argon, nitrogen, etc.) or in vacuum. Heating at a temperature below the melting point for an appropriate time, then heating at a temperature above the regular-irregular lattice transformation point (approximately 600°C) at 100"C/sec to 1°C
cooling at an appropriate rate corresponding to the composition of
Reheat at the following temperature for an appropriate time and cool. In this way, the effective magnetic permeability is 8000 or more and the saturation magnetic flux density is 4000G.
A wear-resistant high permeability alloy having the above properties and a recrystallization texture of (110)<112> can be obtained.

次に本発明を図面につき説明する。The invention will now be explained with reference to the drawings.

第1図は80%Ni−Fe −5%Nb −P系合金に
ついて加工率85%の冷間圧延し、1050°Cで加熱
した後1000°C/時の速度で冷却した場合の再結晶
集合組織および緒特性とP量との関係を示したものであ
る。Ni−ye −Nb系合金は冷間圧延加工すると(
110)<112>+ (112)<111>の加工集
合組織が生じるが、これを高温加熱すると(110)<
112>+(100)<001>の再結晶集合組織が生
成する。しかし、これにPを添加すると(100)<0
01>再結、晶集合組織の生成が抑制され、(110)
<11!>の再結晶集合組織が発達し、それとともに購
耗量は減少する。また実効透磁率はPの添加によって増
大する。第2図は80%mi−ye −5%Nb −0
,05%P合金について、1050℃で加熱した場合の
再結晶集合組織および緒特性と冷間加工率との関係を示
したもので、冷間加工率の増加は(110)<112>
の再結晶集合組織の発達をもたらし、耐摩耗性を向上さ
せ、実効透磁率を高める。第8図は80%Ni −Fe
 −5%Nb −0,05%P合金を冷間加工率85%
で圧延した後の加熱温度と再結晶集合組織および゛緒特
性との関係を示したもので、加熱温度の上昇とともに(
112)<111>成分が減少し、(llo)<112
>が発達し、耐摩耗性が向上し、また実効透磁率は増大
する。第4図は合金番号8(80%Ni −Fe −5
%Nb−0,05%P合金)、合金番号41 (79,
5%xi−ye −s%Nb −0,086%P−2%
MO合金)、合金番号89(82%Ni−ye −z%
Nb −0,085%P−8%Si合金)について実効
透磁率と冷却速度との関係およびこれをさらに再加熱処
理を施した場合の、実効透磁率(X印)を示したもので
ある。合金の組成に対応した最適冷却速度、最適再加熱
温度および再加熱時間が存在することが判る。
Figure 1 shows the recrystallization aggregation of an 80%Ni-Fe-5%Nb-P alloy when it is cold rolled at a processing rate of 85%, heated at 1050°C, and then cooled at a rate of 1000°C/hour. This figure shows the relationship between tissue and bone characteristics and P content. When Ni-ye-Nb alloy is cold rolled (
A processing texture of 110)<112>+ (112)<111> is produced, but when this is heated at high temperature, (110)<
A recrystallized texture of 112>+(100)<001> is generated. However, when P is added to this, (100)<0
01>Recrystallization, generation of crystal texture is suppressed, (110)
<11! > recrystallization texture develops, and the amount of purchase decreases accordingly. Moreover, the effective magnetic permeability increases by adding P. Figure 2 shows 80%mi-ye -5%Nb-0
,05%P alloy, the relationship between the recrystallization texture and texture properties and cold working rate when heated at 1050°C, and the increase in cold working rate is (110)<112>
leads to the development of recrystallized texture, improves wear resistance, and increases effective magnetic permeability. Figure 8 shows 80%Ni-Fe
-5%Nb -0.05%P alloy cold working rate 85%
This figure shows the relationship between the heating temperature after rolling with the recrystallized texture and the original properties.
112) <111> component decreases, (llo) <112
> develops, wear resistance improves, and effective magnetic permeability increases. Figure 4 shows alloy number 8 (80%Ni-Fe-5
%Nb-0,05%P alloy), alloy number 41 (79,
5%xi-ye -s%Nb -0,086%P-2%
MO alloy), alloy number 89 (82%Ni-ye-z%
The relationship between the effective magnetic permeability and the cooling rate for the Nb-0,085%P-8%Si alloy) and the effective magnetic permeability (marked with X) when this is further subjected to reheating treatment are shown. It can be seen that there is an optimal cooling rate, optimal reheating temperature, and optimal reheating time that correspond to the composition of the alloy.

第6図は80%ai−ha−5%Nb−0,Q5%P合
金にOrr MOr Ge e Auあるいはcoを添
加した場合の磁気ヘッドの耐摩耗量の特性図でS Or
I MOIGe 、 AuあるいはCOを添加すると、
何れも実効透磁率は高くなり、摩耗量は減少するが、O
r 。
Figure 6 is a characteristic diagram of the wear resistance of a magnetic head when Orr MOr Ge e Au or co is added to an 80% ai-ha-5% Nb-0, Q5% P alloy.
When IMOIGe, Au or CO is added,
In both cases, the effective permeability increases and the amount of wear decreases, but O
r.

MO、GeあるいはAuの7%以上では飽和磁束密度が
4000G以下となり好ましくない。またC010%以
上では実効透磁率が8000以下となり好ましくない。
If MO, Ge, or Au is 7% or more, the saturation magnetic flux density becomes 4000G or less, which is not preferable. Moreover, if CO is 10% or more, the effective magnetic permeability becomes 8000 or less, which is not preferable.

第6図は同じく80%Ni −Fe −5%Nb −0
,05%P合金にvr W + Cu 、 Taあるい
はMnを添加した場合の磁気ヘッドの摩耗量及び実効透
磁率の特性図で、V 、 W 、 Ou 、 Taある
いはMnを添加すると、何れも実効透磁率は高くなり、
摩耗量は減少するが、■を10%以上、Wを15%以上
、Qu。
Figure 6 shows the same 80%Ni -Fe -5%Nb -0
, 05% P alloy vr W + Cu, Ta or Mn is added to the magnetic head wear amount and effective magnetic permeability characteristic diagram. The magnetic rate increases,
The amount of wear decreases, but when ■ is 10% or more, W is 15% or more, and Qu.

Taあるいは)4nを25%以上添加すると飽和磁束密
度が4000G以下となり好ましくない。
If 25% or more of Ta or 4n is added, the saturation magnetic flux density becomes 4000 G or less, which is not preferable.

第7図は同じく80%Ni−F1a −5%Hb−o、
o5%P 。
Figure 7 also shows 80% Ni-F1a -5% Hb-o,
o5%P.

合金に−At、Si、Ti、Zr、Hf、Sn、Sbア
ルイはGaを添加した場合の特性図で、jU、Si、T
i。
-At, Si, Ti, Zr, Hf, Sn, Sb alloy is a characteristic diagram when Ga is added to the alloy, and jU, Si, T
i.

Zr 、 Hf 、 Sn 、 SbあるいはGaを5
%以上添加すると、何れも実効透磁率は高くなり、摩耗
量は減少するが、Si 、 Ti 、 Zr 、 Hf
あルイはGaが5%以上では飽和磁束密度は4000G
以下となり、i 、Snあるいはsbが5%以上では鍛
造加工が困難となり好ましくない。
5 Zr, Hf, Sn, Sb or Ga
% or more, the effective magnetic permeability increases and the amount of wear decreases, but Si, Ti, Zr, Hf
Alui has a saturation magnetic flux density of 4000G when Ga is 5% or more.
If i, Sn or sb is 5% or more, forging becomes difficult, which is not preferable.

第8図は同じく80%Ni−re −5%)Jb −0
,05%P合金にIn 、 Tl 、 La l Ru
 l Be l Ag、 Sr 、 BaあるいはBを
添加した場合の特性図で、In 、 Tl。
Figure 8 shows the same 80% Ni-re -5%) Jb -0
,05%P alloy with In, Tl, La l Ru
l Be l This is a characteristic diagram when Ag, Sr, Ba or B is added, and In, Tl.

La 、 Ru 、 Be l Ag、 Sr 、 B
aあるいはBを添加すると、何れも実効透磁率は高くな
り、摩耗量は減少するが、:[n 、 Tl 、 La
 、 Ruを5%以上、Be。
La, Ru, Bel Ag, Sr, B
When a or B is added, the effective permeability increases and the amount of wear decreases, but: [n, Tl, La
, Ru at 5% or more, Be.

Sr 、 Baを8%以上添加すると飽和磁束密度が4
000G以下となり、A、を8%以上あるいはBを1%
以上添加すると鍛造加工が困難となり好ましくない。
When 8% or more of Sr or Ba is added, the saturation magnetic flux density increases to 4
000G or less, A is 8% or more or B is 1%
Adding more than this amount makes forging difficult, which is not preferable.

本発明において、冷間加工は(110)< 112 )
 +(112)<111>の集合組織を形成し、これを
基とし1て(110)<112>の再結晶集合組織を発
達させるために必要で、第1図および第2図に見られる
ようにP O,001%以上において、特に加工率80
%以上の冷間加工を施した場合に(110)<112>
の再結晶集合組織の発達が顕著で、耐摩耗性は著るしく
向上し、その実効透磁率も高い。また上記の冷間加工に
次いで行われる加熱は、組織の均一化、加工歪の除去と
ともに、(110)<112>の再結晶集合組織を発達
させ、高い実効透磁率とすぐれた耐摩耗性を得るために
必要であるが、第8図に見られるように特に800°C
以上の加熱によって実効透磁率および耐摩耗性は顕著に
向上する。
In the present invention, cold working is (110)<112)
It is necessary to form a + (112) <111> texture and, based on this, to develop a (110) <112> recrystallization texture, as shown in Figures 1 and 2. At P O,001% or more, especially when the processing rate is 80
(110) <112> when subjected to cold working of % or more
The development of the recrystallized texture is remarkable, the wear resistance is significantly improved, and the effective magnetic permeability is also high. In addition, the heating performed after the cold working described above not only homogenizes the structure and removes processing strain, but also develops a (110)<112> recrystallized texture, resulting in high effective magnetic permeability and excellent wear resistance. 800°C as shown in Figure 8.
The effective magnetic permeability and wear resistance are significantly improved by the above heating.

尚、上記の冷間加工と、次いで行われる800°C以上
融点以下の加熱を繰り返し行うことは、(110)<1
12>の再結晶集合組織の集積度を高め、耐摩耗性を向
上させるために有効である。この場合は最終冷間加工の
加工率が30%以下でも(110) < i12 >再
結晶集合組織が得られるが、本発明の技術的思想に包含
されるものである。
Note that repeating the above cold working and the subsequent heating above 800°C and below the melting point is (110)<1.
12> is effective for increasing the degree of accumulation of the recrystallized texture and improving wear resistance. In this case, the (110)<i12> recrystallized texture can be obtained even if the final cold working rate is 30% or less, but this is included in the technical idea of the present invention.

上記の800°C以上融点以下のm[から規則−不規則
格子変態点(約600℃)以上の温度までの冷却は、急
冷しても徐冷しても得られる磁性には大した変りはない
が、第4図に見られるようにこの変態点以下の冷却速度
は磁性に大きな彫物を及ぼす。すなわちこの変態点以上
の温良より100℃/秒〜l″C/時の組成に対応した
適当な速度で常温迄冷却することにより、地の規則度が
適度に調整され、すぐれた磁性が得られる。そして上記
の冷却速度の内100°C/秒に近い速度で急冷すると
、規則度が小さくなり、これ以上速く冷却すると規則化
が進まず、規則度はさらに小さくなり磁性は劣化する。
When cooling from the temperature above 800°C or higher (m) below the melting point to a temperature above the regular-irregular lattice transformation point (approximately 600°C), there is no significant difference in the magnetic properties obtained whether the cooling is rapid or gradual. However, as shown in Figure 4, a cooling rate below this transformation point has a large effect on magnetism. In other words, by cooling from a temperature above this transformation point to room temperature at an appropriate rate corresponding to the composition of 100°C/sec to 1"C/hour, the regularity of the ground can be adjusted appropriately and excellent magnetism can be obtained. When rapidly cooled at a rate close to 100°C/sec among the above cooling rates, the degree of order decreases, and if the cooling rate is faster than this, the degree of order does not progress, the degree of order decreases further, and the magnetism deteriorates.

しかし、その規則度の小さい合金をその変態点以下の2
00℃〜600°Cに組成に対応して、1分間以上10
0時間以下再加熱し冷却すると、規則化が進んで適度な
規則度となり磁性は向上する。他方、上記の変態点以上
の温度から、例えばl″C/時以下の速度で徐冷すると
、規則化は進みすぎ、磁性は低下する。
However, if the alloy with low order is 2 below its transformation point,
00°C to 600°C for 1 minute or more depending on the composition.
When reheated for 0 hours or less and then cooled, ordering progresses to a suitable degree of order and improves magnetism. On the other hand, if the material is slowly cooled from a temperature above the above-mentioned transformation point at a rate of, for example, 1"C/hour or less, ordering progresses too much and the magnetism decreases.

尚、上記の熱処理を水素が存在する雰囲気中で施すこと
は、実効透磁率を高めるのに特に効果があるので好まし
い。
Note that it is preferable to perform the above heat treatment in an atmosphere where hydrogen is present, since this is particularly effective in increasing the effective magnetic permeability.

次に本発明を実施例につき説明する。Next, the invention will be explained with reference to examples.

実施例 1 合金番号8(組成N1−5O%、Nb−5%、P−0.
05%。
Example 1 Alloy number 8 (composition N1-5O%, Nb-5%, P-0.
05%.

原料として99.8%純度の電解ニッケル、99.9%
純度の電解鉄、99.8%純度のニオブおよびリン20
%のニッケルーリン母合金を用いた。試料を造るには、
原料を全重量800gでアルミナ坩堝に入れ、真空中で
高周波誘導電気炉によって溶かした後、よく攪拌して均
質な溶融合金とした。次にこれを直径25馴、高さ17
01sfiの孔をもっ妨型に注入し、得られた鋳塊を約
1000″Cで鍛造して厚さ約7鴎の板とした。さらに
約900″C〜1000°Cの間で適当な厚さまで熱間
圧延し、ついで常温で種々な加工率で冷間圧延を施して
0.111131の薄板とし、それから外径45#II
I、内径88#ll11の環状板を打ち抜いた。
99.8% pure electrolytic nickel as raw material, 99.9%
Purity electrolytic iron, 99.8% purity niobium and phosphorus 20
% nickel-phosphorous master alloy was used. To make a sample,
The raw materials were placed in an alumina crucible with a total weight of 800 g, melted in a high frequency induction electric furnace in a vacuum, and then thoroughly stirred to obtain a homogeneous molten alloy. Next, make this with a diameter of 25 mm and a height of 17 mm.
01sfi holes were injected into the mold, and the obtained ingot was forged at about 1000"C to form a plate with a thickness of about 7 mm. Further, it was forged at an appropriate thickness between about 900"C and 1000C. The sheet was hot-rolled at room temperature and then cold-rolled at various processing rates at room temperature to form a thin sheet with a diameter of 0.111131.
I. An annular plate with an inner diameter of 88#ll11 was punched out.

つぎにこれに棚々な熱処理を施して、磁気特性および磁
気ヘッドのコアとして使用した場合m1V80%、40
°CにおいてOrb、磁気テープによる200時間時間
後の摩耗以をタリサー7表面粗さ計で測定を行い、第1
表のような特性を得た。
Next, this was subjected to various heat treatments to improve its magnetic properties and when used as the core of a magnetic head, m1V80%, 40%.
The wear of Orb and magnetic tape after 200 hours at °C was measured using a Taliser 7 surface roughness meter.
We obtained the characteristics shown in the table.

実施例 2 合金番号41(組成Mi−79,5%、Wb−8%、 
P −0,085%、No−2%、Fe−残部)の合金
の製造原料は実施例1と同じ純度のニッケル、鉄および
99.8%純度のニオブ、モリブデンとリン10%の鉄
−リン母合金を用いた。試料の製造法は実施例1と同じ
である。試料に種々の熱処理を施して磁気特性および磁
気ヘッドのコアとして使用した場合湿度80%、温度+
40°Cにおいてcro、磁気テープによる200時間
時間後の摩耗量の測定を行い、第2表に示すような特性
が得られた。
Example 2 Alloy number 41 (composition Mi-79.5%, Wb-8%,
The raw materials for producing the alloy (P - 0,085%, No - 2%, Fe - balance) are nickel and iron of the same purity as in Example 1, niobium of 99.8% purity, molybdenum and iron-phosphorus of 10% phosphorus. A mother alloy was used. The method of manufacturing the sample was the same as in Example 1. When the sample is subjected to various heat treatments to improve its magnetic properties and is used as the core of a magnetic head, the humidity is 80% and the temperature is +
The amount of wear after 200 hours was measured using crocodile and magnetic tape at 40°C, and the characteristics shown in Table 2 were obtained.

なお代表的な合金の特性は第8表に示すとおりである。The characteristics of typical alloys are shown in Table 8.

上記各実施例、第8表および図面に掲げた合金には比較
的純度の高い金属Nb 、 Or 、 Mo 、 W 
The alloys listed in each of the above Examples, Table 8 and the drawings include relatively pure metals Nb, Or, Mo, and W.
.

Mn 、 V 、 Ti 、 Al 、 Siおよび希
土類元素等ヲ南いたが、これらの代りに経済的に有利な
一般市販17)7工ロ合金、母合金およびミッシュメタ
ルヲ用いても溶解の際、脱酸、脱硫を充分に行えば、こ
れら金属を単独、で用いる場合とほぼ同様な磁気特性、
耐摩性および加工性が得られる。
Mn, V, Ti, Al, Si, and rare earth elements have been used in the past, but even if economically advantageous commercially available 17)7 alloys, master alloys, and misch metals are used in their place, desorption occurs during melting. If acid and desulfurization are performed sufficiently, the magnetic properties are almost the same as when these metals are used alone.
Provides wear resistance and processability.

上記のように本発明合金は加工が容易で、耐摩耗性にす
ぐれ、4000G以上の飽和磁束密度、高い透磁率、低
保磁力を有しているので、磁気記録再生ヘッドのコアお
よびケース用磁性合金として好適であるばかりでなく、
耐摩耗性および高透磁率を必要とする一般の電磁器機の
磁性材料としても好適である。
As mentioned above, the alloy of the present invention is easy to process, has excellent wear resistance, has a saturation magnetic flux density of 4000 G or more, high magnetic permeability, and low coercive force, so it can be used as a magnetic material for cores and cases of magnetic recording/reproducing heads. Not only is it suitable as an alloy, but
It is also suitable as a magnetic material for general electromagnetic equipment that requires wear resistance and high magnetic permeability.

次に本発明において合金の組成をN16o〜90%、N
b0.5〜14%、Po、001〜1%および残部Fe
3と限定し、これに副成分として添加する元素をOr 
+ MO+ Ge 、 Auを7%以下、CO、Vを1
0%以下、Wを15%以下、Ou 、 Ta 、 Mn
を25%以下、ht 、 si 、 Ti 、 Zr 
、 Hf 、 Sn 、 Sb 、 Ga 。
Next, in the present invention, the composition of the alloy is N16o~90%, N
b0.5-14%, Po, 001-1% and balance Fe
3, and the element added as a subcomponent to this is Or
+MO+Ge, Au 7% or less, CO, V 1
0% or less, W 15% or less, Ou, Ta, Mn
25% or less, ht, si, Ti, Zr
, Hf, Sn, Sb, Ga.

In 、 Tt、希土類元素、白金族元素を5%以下、
Be 、 Ag、 Sr l Baを8%以下、Bを1
%以下の1種または2種以上の合計で0.01へ・30
%と限定した理由は各実施例、第8表および図面で明ら
かなように、この組成範囲の実効透磁率は8000以上
、飽和磁束密度4000G以上で、且つ(110)41
2>の再結晶集合組織を有し、耐摩耗性がすぐれている
が、この組成範囲をはずれると磁気特性あるいは耐摩耗
性が劣化するからである。
5% or less of In, Tt, rare earth elements, platinum group elements,
Be, Ag, Sr l Ba 8% or less, B 1
Total of one or more types below % to 0.01・30
%, as is clear from each example, Table 8, and drawings, the effective magnetic permeability in this composition range is 8000 or more, the saturation magnetic flux density is 4000G or more, and (110)41
This is because although it has a recrystallized texture of 2> and has excellent wear resistance, if it deviates from this composition range, the magnetic properties or wear resistance will deteriorate.

すなわち、Nb O,5%以下およびP O,001%
以下では(110)< 112 >の再結晶集合組織が
充分発達しないので耐摩耗性が悪(、Nb14%以上お
よび21%以上では鍛造加工が困難となり、また実効透
磁率8000以下、飽和磁束密度4000G以下になる
からである。
i.e. Nb O, 5% or less and PO, 001%
Below, the recrystallized texture of (110)<112> is not sufficiently developed, resulting in poor wear resistance (Nb of 14% or more and 21% or more makes forging difficult, and the effective magnetic permeability is less than 8000 and the saturation magnetic flux density is 4000G). This is because the following is true.

そしてNi 60〜90%、Wb O,5〜14%、P
耐摩耗性がすぐれ、且つ加工性が良好であるが、=般に
これにさらにOr、MO,Ge、Au、W、V、。
and Ni 60-90%, Wb O, 5-14%, P
It has excellent wear resistance and good workability, but it is generally made of Or, MO, Ge, Au, W, V, etc.

Ou 、Ta 、 Mn 、kl 、Zr 、Si 、
Ti 、 Hf 、Ga 。
Ou, Ta, Mn, kl, Zr, Si,
Ti, Hf, Ga.

希土類元素、 Be 、 Ag、 B等を添加すると特
に実効透磁率を高める効果があり、COを添加すると特
に飽和磁束密度を高める効果があり、Gel AuIV
 、 Ta 、 W 、 Ti 、 Zr 、 Hf 
、 At 、 Si 、 Sn 。
Adding rare earth elements, Be, Ag, B, etc. has the effect of particularly increasing the effective magnetic permeability, and adding CO has the effect of particularly increasing the saturation magnetic flux density.
, Ta, W, Ti, Zr, Hf
, At, Si, Sn.

sb 、 Ga 、 In 、 Tl、希土類元素、白
金族元素。
sb, Ga, In, Tl, rare earth elements, platinum group elements.

Be 、 kg 、 Sr l Ba r B等を添加
すると特に耐摩耗性を向上する効果があり、Au 、 
Mn 、 Ti 、 Co 。
Adding Be, kg, Sr l Bar B, etc. has the effect of particularly improving wear resistance, and adding Au,
Mn, Ti, Co.

希土類元素、 Be 、 Sr 、 Ba 、 Bを添
加すると鍛造、加工を良好にする効果がある。
Addition of rare earth elements, Be, Sr, Ba, and B has the effect of improving forging and processing.

尚、用途に応じて本発明合金の切削加工性を向上させた
い場合には、磁気特性、耐摩耗性を損わない程度に船、
テルル、硫黄、カルシウム、ビスマスおよびセレンの少
量を添加しても差支えない。
In addition, if it is desired to improve the machinability of the alloy of the present invention depending on the application, it may be necessary to
Small amounts of tellurium, sulfur, calcium, bismuth and selenium may be added.

また炭素、酸素、窒素は耐摩耗性を改善するので加工性
を損わない程度ならば少量含有されても差支えない。
Furthermore, since carbon, oxygen, and nitrogen improve wear resistance, they may be contained in small amounts as long as they do not impair workability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は80%Ni−Fe −5%Nb −P系合金の
緒特性とP量との関係を示す特性図、 第2図は80%xi−Fe −5%Nb−0,05%P
合金の緒特性と冷間加工率との関係を示す特性図、第8
図は80%Ni −Fe −5%Nb −0,05%P
合金の緒特性と加熱温度との関係を示す特性図、第4図
は80%N1−Fe−6%Nb−0,05%P合金(合
金番号8 )、79.5%Ni−ye −s%Nb −
0,Oa5%P−2%MO合金(41)、および82%
Ni−ye −2%)ib −0,085%P−13%
Si合金(89)の実効透磁率と冷却速度、再加熱温度
および再加熱時間との関係を示す特性図、 第6図は80%Ni −Fe −5%Nb −0,05
%P合金にQr 、 MO、Qe 、 AuあるいはG
Oを添加した場合の緒特性と各元素の添加量との関係を
示す特性図、第6図は80%Ni−Fe−5%Nb−0
,05%P合金にV 、 W 、 Ou 、 Taある
いはMnを添加した場合の緒特性と各元素の添加量との
関係を示す特性図、第7図は80%xi−ye −5%
Nb −0,05%P合金にkl 、 Si 、 Ti
 、 Zr 、 Hf 、 Sn 、 Sbあるいは釦
を添加した場合の緒特性と各元素の添加量との関係を示
す特性図、 第8図はIn 、 Tl 、 L+a 、 Ru r 
Be + kg y Sr 。 BaあるいはBを添加した場合の緒特性と各元素の、添
加量との関係を示す特性図である。 特許出願人 財団法人電気磁気材料研究所烏魂イなq動
域−く入 第5図 Cr、Morζre、Aa or Co (%)第6図 Vr Wz C11rT12 07 /’プh (%)
第7図 メυ己54″71orZr (X) Hf、、f;n、
Sbor8a(gジ第8図
Figure 1 is a characteristic diagram showing the relationship between the initial properties and the amount of P for the 80%Ni-Fe-5%Nb-P alloy. Figure 2 is 80%Xi-Fe-5%Nb-0.05%P.
Characteristic diagram showing the relationship between alloy properties and cold working rate, No. 8
The figure shows 80%Ni -Fe -5%Nb -0.05%P
A characteristic diagram showing the relationship between alloy properties and heating temperature, Figure 4 shows 80%N1-Fe-6%Nb-0.05%P alloy (alloy number 8), 79.5%Ni-ye-s %Nb −
0, Oa5%P-2%MO alloy (41), and 82%
Ni-ye -2%)ib -0,085%P-13%
Characteristic diagram showing the relationship between effective magnetic permeability, cooling rate, reheating temperature and reheating time of Si alloy (89), Figure 6 is 80%Ni -Fe -5%Nb -0,05
%P alloy with Qr, MO, Qe, Au or G
A characteristic diagram showing the relationship between the characteristics when O is added and the amount of each element added, Figure 6 is 80%Ni-Fe-5%Nb-0
, 05%P alloy, when V, W, Ou, Ta or Mn is added, the characteristic diagram showing the relationship between the characteristics and the amount of addition of each element, Figure 7 is 80%xi-ye-5%
Nb-0,05%P alloy with kl, Si, Ti
, Zr, Hf, Sn, Sb or Button is added. Figure 8 is a characteristic diagram showing the relationship between the initial characteristics and the amount of each element added.
Be + kg y Sr. FIG. 2 is a characteristic diagram showing the relationship between the characteristics when Ba or B is added and the amount of each element added. Patent Applicant: Institute of Electric and Magnetic Materials Foundation Karaskon Inaq Motion Range Figure 5 Cr, Morζre, Aa or Co (%) Figure 6 Vr Wz C11rT12 07 /'Ph (%)
Figure 7 Me υ 54″71orZr (X) Hf,,f;n,
Sbor8a (gji figure 8

Claims (1)

【特許請求の範囲】 1 重量比にてN160〜90%、Nb O,5〜14
%、P O,001〜1%および残部Feと少量の不純
物とからなり、I KHzにおける実効透磁率8000
以上、飽和磁束密度4000G以上で、且つ(110)
<112>の再結晶集合組織を有することを特徴とする
耐摩耗性高透磁率合金。 ?、 重量比にてNi60〜90%、Nb 0.5〜1
4%、Po、001〜1%および残部Feを主成分とし
、副成分としてQr * MOr Ger Auをそれ
ぞれ7%以下、Co 、 Vをそれぞれ10%以下、W
を15%以下、Ou 、 Ta 、 Mn ヲそれぞれ
25%以下、A4 、 Si 、 Ti 、 Zr 。 Hf 、 Sn 、 Sb 、 Ga 、 In 、 
Tl l希土類元素。 白金族元素をそれぞれ5%以下、Be 、 A、 。 Sr 、 Baをそれぞれ8%以下、Bを1%以下の1
種または2′N1以上の合計0.01〜30%、少量の
不純物とからなり、I KH2における実効透磁率80
00以上、飽和磁束密度4000G以上で、且つ(11
0)<112>の再結晶集合組織を有することを特徴と
する耐摩耗性高透磁率合金。 & 重量比にてNi60〜90%、Nb O,5〜14
%、P O,001〜1%および残部F6と少量の不純
物とからなる合金に加工率80%以上の冷間加工を施し
た後、800″C以上融点以下の温度で加熱し、ついで
規則−不規則格子変態点以上の温度から100 ”C/
秒〜1’C/時の組成に対応した適当な速度で常温まで
冷却することにより、lKH2における実効透磁率80
00以上、飽和磁束密度4000G以上で、且つ(11
0)<112>の再結晶集合組織を形成せしめる口とを
特徴とする耐摩耗性高透磁率合金の製造法。 4 重量比にてN160〜90%、Nb O,5〜14
%、P O,001〜1%および残部Feと少量の不純
物とからなる合金に加工率80%以上の冷間加工を施し
た後、soo”c以上融点以下の温度で加熱し、ついで
規則−不規則格子変態点以上の温度から100”C/秒
〜1°C/時の組成に対応した適当な速度で冷却し、こ
れをさらに規則−不規則格子変態点以下の温度で1分間
以上100時間以下の組成に対応した適当時間加熱し冷
却することにより、lKH7における実効透磁率800
0以上、飽和磁束密度4000G以上で、且つ(110
)<112>の再結晶集合組織を形成せしめることを特
徴とする耐摩耗性高透磁率合金の製造法。 賑 重量比にてN160〜90%、Nb O,5〜14
%、P O,001〜1%および残部Feを主成分トシ
、副成分としてOr 、 MO、Ge 、 Auをそれ
ぞれ7%以下、CO1■をそれぞれ10%以下、Wを1
5%以下、Qu、 Ta 、 Mnをそれぞれ2b%以
下、A!、 Si 、 Ti 、 Zr 、 Hf +
sn 、 sb 、 Ga 、 In r Tl +希
土類元類、白金族元素をそれぞれ5%以下、Be 、 
A9y Sr*Baをそれぞれ3 s u、v 、Bを
1%以下の1橿または21a以上の合計0.01〜80
%、少量の不純物とからなる合金に加工率30%以上の
冷間加工を施した後、800℃以E融点以下の温度で加
熱し、ついで規則−不規則格子変態点以上の温度から1
00°C7/秒〜1°C/時の組成に対応した適当な速
度で常温まで冷却することにより、I KHzにおける
実効透磁率8000以上、飽和磁束密度4000G以上
で、且つ(110)<112>の再結晶集合組織を形成
せしめることを特徴とする耐摩耗性高透磁率合金の製造
法。 a 重量比にてn1ao 〜90%、l’lb O,6
〜14%、P O,001〜1%および残部F6を主成
分トシ、副成分トシてOr 、 MO、Ge 、 Au
をそれぞれ7%以下、CO、Vをそれぞれ10%以下、
Wを16%以下、Qu 、 Ta 、 Mnをそれぞれ
25%以下、l 、 Si 、 Ti 、 Zr 、 
Hf 。 Sn 、 Sb 、 Ga 、 In 、 Tl 、希
土類元素、白金族元素をそれぞれ6%以下、Be e 
A9 v 5ryB&をそれぞれ8%以下、Bを1%以
下のlalまたは2棟以上の合計0.01〜80%、少
量の不純物とからなる合金に加工率80%以上の冷間加
工を施した後、800°C以上融点以下の温度で加熱し
、ついで規則−不規則格子変態点以上の温度から100
°C/秒〜1°C/時の組成に対応した適当な速度で冷
却し、これをさらに規則−不規則格子変態点以下の温度
で1分間以上100時間以下の組成に対応した適当時間
加熱し冷却することにより、I KH2における実効透
磁率8000以上、飽和磁束密度4000G以上で、且
つ(110)< 112 >の再結晶集合組織を形成せ
しめることを特徴とする耐摩耗性高透磁率合金の製造法
。 7 重量比にてnio o〜90%、Nb O,6〜1
4%、P 0.001〜1%および残部Feと少量の不
純物とからなり、I KHzにおける実効透磁率800
0以上、飽和磁束密度4000G以上で、且つ(110
)<112>の再結晶集合組織を有する耐摩耗性高透磁
率合金よりなる磁気記録再生ヘッド。 & ・重量比にてNi 60〜90%、Nb O,5〜
14% 、p 0.001〜1%および残部Feを主成
分トシ、副成分としてOr 、 Mo 、 Ge 、 
Auをそれぞれ7%以下、Co 、 Vをそれぞれ10
倦以下、Wを15%以下、Cu 、 Ta 、 Mnを
それぞれ2I11%以下、kl 、 Si 、 Ti 
、 Zr 。 Hf 、 Sn 、 Sb 、 Ga 、 In 、 
Tj 、希土類元素。 白金族元素をそれぞれ5%以下、Be、A、。 Sr 、 Baをそれぞれ8%以下、B t−1%以下
の1種または2種以上の合計0.01〜80%、少量の
不純物とからなり、lKH2における実効透磁率800
0以上、飽和磁束密度4000G以上で、且つ(110
)<112>の再結晶集合組織を有する耐摩耗性高透磁
率合金よりなる磁気記録再生ヘッド。
[Claims] 1. N160-90%, Nb O, 5-14% by weight
%, P O,001~1% and the balance is Fe and a small amount of impurities, and the effective permeability at I KHz is 8000.
above, the saturation magnetic flux density is 4000G or above, and (110)
A wear-resistant high permeability alloy characterized by having a <112> recrystallization texture. ? , Ni60-90%, Nb 0.5-1 by weight ratio
The main components are 4%, Po, 001-1% and the balance Fe, and the secondary components are Qr * MOr Ger Au 7% or less, Co and V 10% or less each, W
15% or less, Ou, Ta, Mn each 25% or less, A4, Si, Ti, Zr. Hf, Sn, Sb, Ga, In,
Tl l Rare earth element. 5% or less of each of platinum group elements, Be, A, and . Sr and Ba are each 8% or less, and B is 1% or less.
The effective magnetic permeability at IKH2 is 80
00 or more, saturation magnetic flux density 4000G or more, and (11
0) A wear-resistant high permeability alloy characterized by having a <112> recrystallization texture. & Weight ratio: Ni 60-90%, Nb O, 5-14
%, PO,001~1% and the balance F6 and a small amount of impurities is subjected to cold working at a processing rate of 80% or more, then heated at a temperature of 800"C or more and below the melting point, and then processed according to the rule - 100”C/from temperature above irregular lattice transformation point
By cooling to room temperature at an appropriate rate corresponding to the composition of seconds to 1'C/hour, the effective magnetic permeability in lKH2 is 80.
00 or more, saturation magnetic flux density 4000G or more, and (11
0) A method for producing a wear-resistant high permeability alloy characterized by a <112> recrystallization texture. 4 N160-90% by weight, Nb O, 5-14
%, PO,001~1%, the balance Fe and a small amount of impurities are subjected to cold working at a processing rate of 80% or more, then heated at a temperature of soo'c or more and less than the melting point, and then processed according to the rule - Cool from a temperature above the disordered lattice transformation point at an appropriate rate corresponding to the composition of 100"C/sec to 1°C/hour, and then cool for 1 minute or more at a temperature below the ordered-disordered lattice transformation point. By heating and cooling for an appropriate time corresponding to the composition of
0 or more, the saturation magnetic flux density is 4000G or more, and (110
) A method for producing a wear-resistant high permeability alloy, which is characterized by forming a recrystallized texture of <112>. Lively N160-90% by weight, Nb O, 5-14
%, PO, 001~1% and the balance Fe as the main components, Or, MO, Ge, Au as subcomponents of 7% or less, CO1■ of 10% or less each, W as 1
5% or less, Qu, Ta, Mn each 2b% or less, A! , Si, Ti, Zr, Hf +
sn, sb, Ga, InrTl + rare earth elements, platinum group elements each at 5% or less, Be,
A9y Sr*Ba each 3 su, v, B 1% or less or 21a or more total 0.01 to 80
%, and a small amount of impurities, is subjected to cold working at a processing rate of 30% or more, heated at a temperature of 800°C to below the E melting point, and then heated from a temperature above the regular-disorder lattice transformation point to 1
By cooling to room temperature at an appropriate rate corresponding to the composition of 00°C7/sec to 1°C/hour, the effective magnetic permeability at I KHz is 8000 or more, the saturation magnetic flux density is 4000G or more, and (110)<112> A method for producing a wear-resistant high permeability alloy characterized by forming a recrystallized texture. a weight ratio n1ao ~90%, l'lb O,6
~14%, PO, 001~1% and the remainder F6 as the main component and subcomponents as Or, MO, Ge, Au
7% or less each, CO and V 10% or less each,
W 16% or less, Qu, Ta, Mn each 25% or less, L, Si, Ti, Zr,
Hf. Sn, Sb, Ga, In, Tl, rare earth elements, platinum group elements each at 6% or less, Be e
After cold working at a processing rate of 80% or more on an alloy consisting of 8% or less of A9 v 5ryB&, 1% or less of B, or a total of 0.01 to 80% of two or more, and a small amount of impurities. , heated at a temperature of 800°C or higher and lower than the melting point, and then heated at a temperature of 100°C or higher than the regular-irregular lattice transformation point.
Cool at an appropriate rate corresponding to the composition from °C/sec to 1 °C/hour, and then heat at a temperature below the ordered-disorder lattice transformation point for an appropriate time corresponding to the composition for 1 minute to 100 hours. A wear-resistant high permeability alloy characterized by having an effective magnetic permeability in IKH2 of 8000 or more, a saturation magnetic flux density of 4000G or more, and forming a recrystallized texture of (110) < 112 > by cooling. Manufacturing method. 7 In terms of weight ratio, nio~90%, NbO, 6~1
4%, P 0.001-1%, balance Fe and a small amount of impurities, effective permeability at I KHz 800
0 or more, the saturation magnetic flux density is 4000G or more, and (110
) A magnetic recording/reproducing head made of a wear-resistant high permeability alloy having a <112> recrystallization texture. & ・Ni 60-90%, Nb O, 5-90% by weight
14%, p 0.001-1% and the balance Fe as the main components, Or, Mo, Ge as minor components.
Au 7% or less each, Co and V 10% each
Below, W is 15% or less, Cu, Ta, Mn are each 2I11% or less, kl, Si, Ti
, Zr. Hf, Sn, Sb, Ga, In,
Tj, rare earth element; 5% or less of platinum group elements, Be, A, each. Consists of 8% or less of each of Sr and Ba, 0.01 to 80% in total of one or more types of Bt-1% or less, and a small amount of impurities, and has an effective magnetic permeability of 800 at lKH2.
0 or more, the saturation magnetic flux density is 4000G or more, and (110
) A magnetic recording/reproducing head made of a wear-resistant high permeability alloy having a <112> recrystallization texture.
JP59079101A 1984-04-19 1984-04-19 Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head Granted JPS60224728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59079101A JPS60224728A (en) 1984-04-19 1984-04-19 Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59079101A JPS60224728A (en) 1984-04-19 1984-04-19 Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP1262697A Division JPH02186605A (en) 1989-10-07 1989-10-07 Wear-resistant high permeability magnetic recording and reproducing head
JP1262696A Division JPH0645847B2 (en) 1989-10-07 1989-10-07 Manufacturing method of wear resistant high permeability alloy.

Publications (2)

Publication Number Publication Date
JPS60224728A true JPS60224728A (en) 1985-11-09
JPH0310699B2 JPH0310699B2 (en) 1991-02-14

Family

ID=13680487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59079101A Granted JPS60224728A (en) 1984-04-19 1984-04-19 Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head

Country Status (1)

Country Link
JP (1) JPS60224728A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191340A (en) * 1984-10-11 1986-05-09 Res Inst Electric Magnetic Alloys Wear-resistant high permeability alloy and its production and magnetic recording and reproducing head
JPS61174349A (en) * 1985-01-30 1986-08-06 Res Inst Electric Magnetic Alloys Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/playback head
KR100405929B1 (en) * 1994-11-16 2004-02-14 자이단 호진 덴끼 지끼자이료겐꾸쇼 Abrasion resistant high transmittance alloy, its manufacturing method and magnetic recording playback head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121120A (en) * 1974-03-12 1975-09-22
JPS58123848A (en) * 1982-01-20 1983-07-23 Res Inst Electric Magnetic Alloys Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
JPS6024348A (en) * 1983-07-21 1985-02-07 Res Inst Electric Magnetic Alloys Wear-resistant alloy with high magnetic permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121120A (en) * 1974-03-12 1975-09-22
JPS58123848A (en) * 1982-01-20 1983-07-23 Res Inst Electric Magnetic Alloys Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
JPS6024348A (en) * 1983-07-21 1985-02-07 Res Inst Electric Magnetic Alloys Wear-resistant alloy with high magnetic permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191340A (en) * 1984-10-11 1986-05-09 Res Inst Electric Magnetic Alloys Wear-resistant high permeability alloy and its production and magnetic recording and reproducing head
JPH0310700B2 (en) * 1984-10-11 1991-02-14 Denki Jiki Zairyo Kenkyusho
JPS61174349A (en) * 1985-01-30 1986-08-06 Res Inst Electric Magnetic Alloys Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/playback head
JPH0545658B2 (en) * 1985-01-30 1993-07-09 Denki Jiki Zairyo Kenkyusho
KR100405929B1 (en) * 1994-11-16 2004-02-14 자이단 호진 덴끼 지끼자이료겐꾸쇼 Abrasion resistant high transmittance alloy, its manufacturing method and magnetic recording playback head

Also Published As

Publication number Publication date
JPH0310699B2 (en) 1991-02-14

Similar Documents

Publication Publication Date Title
US4830685A (en) Wear-resistant alloy of high permeability and method of producing the same
US5547520A (en) Wear-resistant high permeability magnetic alloy and method of manufacturing the same
JPS625972B2 (en)
KR100405929B1 (en) Abrasion resistant high transmittance alloy, its manufacturing method and magnetic recording playback head
JPS6212296B2 (en)
JPS60224728A (en) Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head
JP3251899B2 (en) Wear-resistant high permeability alloy and magnetic recording / reproducing head
JPH02194154A (en) Manufacture of water-resistant high permeability alloy
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JPH0310700B2 (en)
JPH0645849B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0377644B2 (en)
JPH02138448A (en) Manufacture of wear resistant high permeability alloy
JPS6134160A (en) Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head
JPS6218619B2 (en)
JPH02146704A (en) Magnetic recording and reproducing head having wear resistance and high permeability
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JPH0377645B2 (en)
JPH0645848B2 (en) Manufacturing method of wear resistant high permeability alloy for magnetic recording / reproducing head and magnetic recording / reproducing head
JPS6024348A (en) Wear-resistant alloy with high magnetic permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
JPS6130405B2 (en)
JPS58217667A (en) Preparation of ni-fe-nb type abrasion resistant high permeability alloy
JPS5857499B2 (en) Ni-Fe-Nb wear-resistant high permeability alloy and magnetic recording/reproducing head