JPS58150119A - Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head - Google Patents

Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head

Info

Publication number
JPS58150119A
JPS58150119A JP57031663A JP3166382A JPS58150119A JP S58150119 A JPS58150119 A JP S58150119A JP 57031663 A JP57031663 A JP 57031663A JP 3166382 A JP3166382 A JP 3166382A JP S58150119 A JPS58150119 A JP S58150119A
Authority
JP
Japan
Prior art keywords
less
alloy
magnetic
magnetic recording
subcomponents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57031663A
Other languages
Japanese (ja)
Inventor
Ryo Masumoto
量 増本
Yuetsu Murakami
雄悦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Electromagnetic Materials filed Critical Research Institute for Electromagnetic Materials
Priority to JP57031663A priority Critical patent/JPS58150119A/en
Priority to DE19833306327 priority patent/DE3306327A1/en
Publication of JPS58150119A publication Critical patent/JPS58150119A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/147Structure or manufacture of heads, e.g. inductive with cores being composed of metal sheets, i.e. laminated cores with cores composed of isolated magnetic layers, e.g. sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/002Alloys based on nickel or cobalt with copper as the next major constituent
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/10Structure or manufacture of housings or shields for heads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys

Abstract

PURPOSE:To obtain a magnetic alloy for magnetic heads which is easy to forge, has high magnetic permeability and high resistance to abrasion by adding specific elements to an Ni-Fe-Cu alloy. CONSTITUTION:The alloy contains, by weight, the auxiliary components of the following compsn. in the essential components contg. 37-75% Ni and 35% Cu and consisting of the balance Fe: The auxiliary components are composed of 0.01-30% the auxiliary components in total of 1 or >=2 kinds among <=20% Ta, <=15% each Cr, Mo, W, <=10% each Nb, V, Mn, Co, Ge, <=5% each rare earth elements, Ti, Ga, In, Tl, Al, Si, Zr, Hf, Pt group elements, <=3% each Be, Sn, Sb, and <=1% each B, P, and a small amt. of impurities. The alloy of such compsn. has 4,000G satd. magnetic flux density, have high magnetic permeability and resistance to abrasion, and is usable for magnetic heads, etc.

Description

【発明の詳細な説明】 本発明は透磁率が高く耐摩耗性がすぐれ鍛造加工が容易
で磁気記録再生ヘッドに好適な磁性合金に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic alloy that has high magnetic permeability, excellent wear resistance, and is easy to forge, and is suitable for magnetic recording/reproducing heads.

磁気録音、 VTRなどの磁気ヘッドのコアおよびナー
ス等に用いられる磁性合金は透磁率が高いことが必要と
され、また磁気テープが接触して摺動するため耐摩耗性
が良好であることが望まれてい゛る。
Magnetic alloys used in the cores and nurses of magnetic heads for magnetic recording, VTRs, etc. are required to have high magnetic permeability, and because magnetic tapes slide in contact with each other, they are expected to have good wear resistance. It's getting worse.

従来磁気ヘッド用磁性合金として加工の容品なN1約8
0%を含むN1−Fa系合金が主として用いられてきた
。しかし、高価なNiを多量に含むため製品は比較的高
価となるので、N1含有量が少く、高い透磁率を有する
安価なNi−lFe系合金が望まれる。一方Ni−Fe
−0u合会では、その透磁率はOu量の増加とともにN
i量の少い合金で大きくなることが知られているが、初
透磁率は最高値でたかだかl!100Gと小さく、また
耐摩耗性はビッカース硬度110で、摩耗し易いのが大
tな欠点である。本発明者はN1−IF6−Ou金合金
種々な元素を添加して幾多、研究を行い、ついに[11
加工が容易で高い透磁率を有し耐摩耗性にすぐれた磁気
ヘッド用磁性合金を見い出した。
Conventionally, N1 approximately 8 is easy to process as a magnetic alloy for magnetic heads.
N1-Fa based alloys containing 0% have been mainly used. However, since the product is relatively expensive because it contains a large amount of expensive Ni, an inexpensive Ni-lFe alloy with a low N1 content and high magnetic permeability is desired. On the other hand, Ni-Fe
-0u association, its permeability increases with the increase of Ou amount
It is known that alloys with a small amount of i increase in size, but the initial magnetic permeability reaches its maximum value and is at most l! It is small at 100G, and has a Vickers hardness of 110, so its major drawback is that it is easily worn. The present inventor conducted numerous studies by adding various elements to the N1-IF6-Ou gold alloy, and finally [11
We have discovered a magnetic alloy for magnetic heads that is easy to process, has high magnetic permeability, and has excellent wear resistance.

本発明は重量比にてニッケ・ルaS〜マ5%、鋼6〜8
5%と鉄残部を主成分とし、副成分としてタンタル20
%以下、クロム、モリブデン、タングステンのそれぞれ
l!1%以下、ニオブ、バナジウム、マンガン、コバル
ト、ゲルマニウムのツレでれ10%以下、希土類元素、
チタン、ガリウム。
The present invention has a weight ratio of nickel aS to ma 5% and steel 6 to 8.
The main components are 5% and iron balance, and tantalum 20 as a subcomponent.
% or less, each of chromium, molybdenum, and tungsten! 1% or less, niobium, vanadium, manganese, cobalt, germanium cracking 10% or less, rare earth elements,
titanium, gallium.

インジニウム。タリウム、アルミニウム、ナイ素。Ingenium. Thallium, aluminum, nitric acid.

ジルコニウム、ハフニウム、白金族元素のそれぞれi%
以下、ベリリウム、錫、アンチモンのそれぞれ8鴨以下
、ボロン、リンのそれぞれ15&以下のIIIまたは3
種以上の合計0.01〜80襲及び少量の不純物とから
なり、飽和磁束密度4000Qt1irシ、透磁率が高
く耐摩耗性にすぐれ、磁気ヘッド等に使用し得る高透磁
率合金に係る。さらに本発明は上記の高透磁率合金をケ
ースおよびコア啼に用いてIl!造した磁気記録再生ヘ
ッドに係る。
i% of each of zirconium, hafnium, and platinum group elements
Below, beryllium, tin, antimony each with 8 or less, boron, phosphorus with 15 or less each III or 3
The present invention relates to a high magnetic permeability alloy which has a saturation magnetic flux density of 4000 Qt1ir, has a high magnetic permeability and excellent wear resistance, and can be used for magnetic heads etc. Furthermore, the present invention uses the above-mentioned high magnetic permeability alloy for the case and core. This relates to a magnetic recording/reproducing head manufactured by the company.

本発明の合金を造るには、まずニッケル適当量を非酸化
性雰H気中あるいは真空中において適当な溶解炉を用い
て溶解した後、適当な脱酸剤、脱il@を少量添加して
できるだけ不純物を取り除き、これにタンタル10%以
下、クロム、モリブデン。
To produce the alloy of the present invention, first, an appropriate amount of nickel is melted in a non-oxidizing H atmosphere or vacuum using an appropriate melting furnace, and then a small amount of an appropriate deoxidizing agent, deil@ is added. Remove impurities as much as possible, including less than 10% tantalum, chromium, and molybdenum.

タングステンのそれぞれ16%以下、ニオブ、バナジウ
ム、マンガン、コバルト、ゲルマニウムのそれぞれ10
%以下、希土類元素、チタン、ガリ′ウム、インジウム
、タリウム、アルミニウム、ケ(イ素、ジルコニウム、
ハフニウム、白金族元素)それぞれ6%以下、ベリリウ
ム、錫、アンチモンのそれぞれ8%以下、ボ■ン、リン
のそれヤれl襲以下の1種またはS種以上の合計0.0
1〜畠O%の定量を添加して充分に攪拌し、組成的に均
一な溶融合金を造る。次にこれを適当な形および大きさ
の鋳型に注入して健全な鋳塊を得、さらにこれを高温に
おいて鍛造、熱間および冷間圧延などの成形加工を施し
て目的の形状のもの、例えば厚さ0.1鴎の薄板を造る
。次にその薄板から目的の形状、寸法のものを打抜き、
これを運車な非酸化性零H気中あるいは真空中で再結晶
温度以上、すなわち約600℃以上、好ましくはSOO
℃以上融点以下の温度に1分間以上加熱し、ついで組成
に対応した適当な速度、例えば10 G’C/i妙〜1
’C/時で冷却する。合金の組成によってこれをさらに
約600℃以下の温度(規則格子−不規則格子変態点以
下の温度)、時に100〜600℃に1分間以上加熱し
、冷却することにより、飽和磁束密度4000G以上を
有し、耐摩耗性にすぐれた高透磁率磁性合金を得ること
ができる。
16% or less each of tungsten, 10% each of niobium, vanadium, manganese, cobalt, germanium
% or less, rare earth elements, titanium, gallium, indium, thallium, aluminum, silicon, zirconium,
hafnium, platinum group elements) 6% or less each; beryllium, tin, antimony 8% or less each;
A fixed amount of 1 to 0% is added and thoroughly stirred to produce a compositionally uniform molten alloy. Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is then subjected to forming processes such as forging at high temperatures and hot and cold rolling to obtain the desired shape, e.g. Make a thin plate with a thickness of 0.1. Next, punch out the desired shape and size from the thin plate,
This is carried out in a non-oxidizing zero H atmosphere or in vacuum at a temperature higher than the recrystallization temperature, that is, approximately 600°C or higher, preferably SOO.
℃ or above and below the melting point for 1 minute or more, and then at an appropriate rate depending on the composition, for example, 10 G'C/i ~ 1
Cool at 'C/h. Depending on the composition of the alloy, this can be further heated to a temperature of about 600°C or below (temperature below the ordered lattice-irregular lattice transformation point), sometimes 100 to 600°C for more than 1 minute, and then cooled to achieve a saturation magnetic flux density of 4000G or more. A high permeability magnetic alloy with excellent wear resistance can be obtained.

上記の溶体化温度から規則−不規則格子変態点(約s 
o o’c >以上の温度までの冷却は、急冷しても徐
冷しても得られる磁性には大した変りはないが、この変
態点以下の冷却速度は磁性に大きな影響を及ぼす。即ち
この変態点以上の温度より100℃/秒〜1 ”C7時
の組成に対応した適当な速度で常温迄冷却°することに
より、規則度が適度に調整され、すぐれた磁性が得られ
る。そして上記の冷却速度の内100°C/秒に近い速
度で急冷すると、規則度が小さくなり、これ以上速く冷
却すると規則化が進まず、規則度はさらに小さぐなり磁
性は劣化する。しかしその規則度の小さい合金をその変
一点以下の300°C〜600℃に書加熱し冷却すると
、規則化が進んで適度な規則度となり磁性は向上する。
From the above solution temperature to the regular-disordered lattice transformation point (approximately s
When cooling to a temperature above o o'c , there is no significant difference in the magnetism obtained whether the material is rapidly cooled or slowly cooled, but the cooling rate below this transformation point has a large effect on the magnetism. In other words, by cooling from a temperature above this transformation point to room temperature at an appropriate rate of 100°C/sec to 1" corresponding to the composition at C7, the degree of order can be appropriately adjusted and excellent magnetism can be obtained. When rapidly cooled at a rate close to 100°C/sec among the above cooling rates, the degree of order decreases, and if the cooling rate is faster than this, the degree of order does not progress, the degree of order decreases further, and the magnetism deteriorates.However, the degree of order decreases. When an alloy with a small degree of magnetization is heated to 300° C. to 600° C., which is below its inflection point, and then cooled, ordering progresses to a moderate degree of ordering, and the magnetism improves.

他方、上記の変態点以上の温度から、例えば1 ’C7
時以下の速度で徐冷すると、規則化は進みすぎ、磁性は
低下する。
On the other hand, from the temperature above the above transformation point, for example 1'C7
If it is slowly cooled at a speed lower than 100 hr, the ordering will progress too much and the magnetism will decrease.

次に本発明の実施例について述べる。Next, embodiments of the present invention will be described.

・実施例 合金番@s8(組成Ni −61,Ii 0u−11,
011。
・Example alloy number @s8 (composition Ni-61, Ii 0u-11,
011.

Nb s、0%、 8部F6) 試料を造るには全量5oot eアルミナ坩堝に入れ、
真空中で高周波誘導電気炉によって溶かした後、脱酸剤
としてMn10.8%m加し、よく攪拌して均質な溶融
合金とした。次にこれ【直lime■、高さ17Qsm
の孔なもつ鋳蓋に注入し、得られた鋳塊を約1100°
Cで鍛造して厚さ約〒−の板とした。さらに約soo’
c〜900℃の間で厚さl■まで熱間圧延し、ついで常
温で冷間圧延を施して0.1−の薄板とし、それから外
径45謡1.内径8δ−の環状板および磁気ヘッドのコ
アを打ち抜いた。つぎにこれ、らな水素雰日気中で10
10℃で8時間熱処理を施し、環状板で磁気特性および
硬度を、またコアを用いて磁気ヘッドを製造し、表面粗
さ針で磁気テープによる100時間時間後の摩耗量を測
定して1111!に示した。
Nbs, 0%, 8 parts F6) To make a sample, put the entire amount into a 5-foot alumina crucible,
After melting in vacuum in a high-frequency induction electric furnace, 10.8% Mn was added as a deoxidizing agent, and the mixture was thoroughly stirred to obtain a homogeneous molten alloy. Next, this [direct lime■, height 17Qsm
The ingot is poured into a lid with holes, and the resulting ingot is heated to approximately 1100°.
C forged into a plate with a thickness of about 〒-. Further about soo'
It was hot-rolled at a temperature between c and 900°C to a thickness of 1, and then cold-rolled at room temperature to form a thin plate with a thickness of 0.1. An annular plate with an inner diameter of 8.delta. and the core of a magnetic head were punched out. Next, this is 10 days in a hydrogen atmosphere.
After heat treatment at 10°C for 8 hours, the annular plate was used to measure the magnetic properties and hardness, and the core was used to manufacture a magnetic head, and a surface roughness needle was used to measure the amount of wear on the magnetic tape after 100 hours. It was shown to.

また第8表には陶様にして製造した代表的合金の特性に
ついても示した。
Table 8 also shows the properties of representative alloys produced in ceramic form.

aSSに見られるように、Ni−Fe−0u合金はその
初透磁率111000、最大透磁率80000およびビ
ッカース硬度11Gで磁気特性および耐摩耗性は劣って
いるが、合金番号88は初透磁率?l5OOO,最大透
磁率117oooおよびビッカース硬度171で磁気特
性および耐摩耗性ともすぐれており、磁気ヘッド用磁性
合金として好適である。
As seen in aSS, the Ni-Fe-0u alloy has an initial magnetic permeability of 111,000, a maximum magnetic permeability of 80,000, and a Vickers hardness of 11G, which are poor in magnetic properties and wear resistance, but alloy number 88 has an initial magnetic permeability of 1500, maximum magnetic permeability of 117ooo, and Vickers hardness of 171, it has excellent magnetic properties and wear resistance, and is suitable as a magnetic alloy for magnetic heads.

要するに、本発明合金は鍛造、加工が容易で磁気特性お
よび耐摩耗性がすぐれており、磁気ヘッド用磁性合金と
して好適であるばかりでなく、普通の電気機器などに用
いる磁性材料としても非常に好適である。
In short, the alloy of the present invention is easy to forge and process, has excellent magnetic properties and wear resistance, and is not only suitable as a magnetic alloy for magnetic heads, but also very suitable as a magnetic material for ordinary electrical equipment. It is.

次に本発明合金の限定理由について述べる。Next, the reasons for limiting the alloy of the present invention will be described.

ニッケルI!i〜?!i%、銅!i〜81%、残部1e
にタンタル、クロム、モリブデン、タングステン。
Nickel I! i~? ! i%, copper! i~81%, remainder 1e
tantalum, chromium, molybdenum, and tungsten.

ニオブ、バナジウム、マンガン、ゲルマニウム。Niobium, vanadium, manganese, germanium.

希土類元素、チタン、アルミニウム、ケイ素、白金族元
素などを添加すると特に透磁率を高める効果が大きく、
タンタル、ニオブ、バtジウム、ゲル!ニウム、チタン
、ガリウム、インジウム、タリウム、アルミニウム、ナ
イ素、ジルコニウム、′ハフニウム、ベリリウム、錫、
アンチキン。ポーン、リンなどを添加すると特に硬度を
高める効果が大きく、コバルトを添加すると飽和磁束密
度を高める効果が大きく、マンガン、チタン、などな添
加すると鍛造加工性を良好にする効果が大書いが、タン
タルを10%以上、タロム、モリブデン。
Adding rare earth elements, titanium, aluminum, silicon, platinum group elements, etc. has a particularly large effect on increasing magnetic permeability.
Tantalum, niobium, batium, gel! Ni, Titanium, Gallium, Indium, Thallium, Aluminum, Ni, Zirconium, Hafnium, Beryllium, Tin,
Unchicken. Adding materials such as Pone and phosphorus has a particularly large effect on increasing hardness, adding cobalt has a large effect on increasing saturation magnetic flux density, and adding manganese, titanium, etc. has a large effect on improving forging workability, but tantalum has a large effect on improving forging workability. 10% or more, tarom, molybdenum.

タングステンのそれぞれ11%以上、ニオブ、バナジウ
ム、ゲルマニウムのそれぞれ10%以上を添加すると飽
和磁束密度が4000G以下になるの□。
When 11% or more of each of tungsten and 10% or more of each of niobium, vanadium, and germanium are added, the saturation magnetic flux density becomes 4000G or less□.

で好ましくない。またXンガン、コバルトのそれぞれ1
04以上、希土類元素、チタン、ガリウム。
So it's not desirable. Also, 1 each of X Ngan and Cobalt.
04 or higher, rare earth elements, titanium, gallium.

インジウム、タリウム、白金族元素のそれfれ6悌以上
添加すると透磁率が小さくなるので好ましくない。アル
しニウム、ナイ素、ジhコニウム、′ハフニウムのそれ
ぞれi襲以上、ベリリウム、錫。
Adding more than 6% of indium, thallium, and platinum group elements is not preferable because the magnetic permeability decreases. Aluminum, nitric acid, zirconium, hafnium, beryllium, tin.

アンチモンのそれぞれaS以上、ポリン。リンのそれぞ
れl襲以上添加すると鍛f[、Io工が不可能になるか
ら、それぞれの添加元素について上述のように限定した
のである。さらにこれらのs1g元嵩元素の合計が0.
01%以下では添加効果がなく、8011以上では飽和
磁束密度が4000G以下となり、磁気ヘッドに使用で
きなくなるので好ましくない。
Each of antimony aS and above, porin. If phosphorus is added in an amount of 1 or more, forging becomes impossible, so each additive element is limited as described above. Furthermore, the sum of these s1g bulk elements is 0.
If it is less than 0.01%, there is no effect of addition, and if it is more than 8011%, the saturation magnetic flux density will be less than 4000G, which is not preferable because it cannot be used in a magnetic head.

なお第1II!および第2表から明らかなように、1j
i−Fe−Ou金合金添加元素の何れかを入れると、透
磁率は大なくなり、また硬度も高くなり、耐摩耗性が改
善されるので、これらの添加元素は同一効果であり、同
効成分と見做し得る。また希土類元素はスカンジウム、
イツトリウムおよびランタン系元素からなるものである
が、その効果は全く同一テあり、白金族元素は白金、イ
リジウム、ルテニウム、ロジウム、パラジウム、オスミ
ウムからなるが、その効果も全く同一である。
Furthermore, Part 1 II! And as is clear from Table 2, 1j
If any of the i-Fe-Ou gold alloy additive elements is added, the magnetic permeability will increase, the hardness will also increase, and the wear resistance will be improved, so these additive elements have the same effect and are the same effective components. It can be regarded as. Rare earth elements include scandium,
Although it is composed of yttrium and lanthanum-based elements, its effects are exactly the same. Platinum group elements are composed of platinum, iridium, ruthenium, rhodium, palladium, and osmium, and their effects are exactly the same.

また、不純物としては炭素、酸素、窒素、硫黄などがあ
り、これらは一般に多量混入すると加工性を損うが硬度
を高め耐摩耗性を改善し、さらに金属間化合物として析
出し実効透磁率を高める効果も繍められるので、それぞ
れ0.1%まで含有しても差支えない。
In addition, impurities include carbon, oxygen, nitrogen, and sulfur, which generally impair workability when mixed in large amounts, but increase hardness and improve wear resistance. Furthermore, they precipitate as intermetallic compounds and increase effective magnetic permeability. Since the effect is also embroidered, there is no problem in containing up to 0.1% of each.

Claims (1)

【特許請求の範囲】 L 重量比にてニッケル86〜76%、#16〜aS−
鉄残部を主成分とし、副成分としてタンタル1G囁以下
、クロム、モリブデン。 タングステンのそれぞれ16%以下、ニオブ。 バナジウム、マンガン、コバルト、ゲルマニウムのそれ
ぞれ10%以下、希土鎮元素、チタン、ガリウム、イン
ジウム、タリウム、アルミニウム、ナイ素、ジルコニウ
ム、ハ7ニウム、白金族元素のそれぞれ5%以下、ベリ
リウム、錫、アンチモンのそれぞれ8%以下、ボロン、
リンのそれぞれ1%以下の1種または8種以上の副成分
合計0.O1〜80襲及び少量の不純物とからなり、飽
和磁束密度4000G以上を有することを特徴とする磁
気記録再生ヘッド用高透磁率合金。 l 重量比にてニッケル8i〜マSS、鋼10〜8i襲
、ニオブ0・6〜lO%鉄alSを主成分とし、副成分
としてタンタル1G囁以下、りpふ、モリブデン、タン
グステンのそれでれ16%以下、バナジウム、マンガン
、コバルト、ゲルマニウムのそれぞれ1051以下、希
土類元素、チタン、ガリウム、インジウム。 タリウム、アルミニウム、ケイ素、ジルコ苓つム、ハフ
ニウム、白金族元素のそれfれl−以下、ベリリウム、
錫、アンチモンのそれぞれ8%以下、ボpン、リンのそ
れでれ111以下の1種または8種以上のlI成分合計
0.01〜80%及び少量の不純物とからなり、飽和磁
束密度4004)G以上を有することを特徴とする磁気
記録箒生ヘッド用高透磁率合金。 龜 重量比にてニッケル8i〜1暴謡、鋼墨〜85−鉄
残部を主成分とし、副成分としてタンタル1G囁以下、
クロム、モリブデン、タングステンのそれぞれli嚢以
下、ニオブ。 バナジウム、マンガン、コバルト、ゲル!工ラムのそれ
ぞれ101以下、希土類元素、チタン、ガリウム、イン
ジウム、タリウム、アルミニウム、ケイ素、ジルコニウ
ム、ハ7二つム、白金族元素のそれぞれIs%、ベリリ
ウム、錫、アンチモンのそれぞれ8%以下、ボロン、リ
ンのそれぞれ1%以下の1種または1種以上の副成分の
合計0.01〜80襲及び少量の不純物とからなる合金
を600℃以上融点以下の温度で非酸化性雰囲気あるい
は真空中において、少くとも1分間以上100時間以下
の組成に対応した適当時間加熱した後、規則−不規則格
子変態点以上の温度から100°C/秒〜1℃/時の組
成に対応した適当な速度で常温まで冷却することを特徴
とする磁気記録再生ヘッド用高透磁率合金の一造法。 重量比にてニッケル85〜16%、銅器〜81S憾鉄残
部を主成分とし、副成分としてタンタル10%以下、ク
ロム、モリブデン#タングステンのそれぞれ15%以下
、ニオブ。 バナジウム、マンガン、コバルト、ゲルマニウムのそれ
ぞれ10%以下、希土債元嵩、チタン、ガリウム、イン
ジウム、タリウム、アルミニウム、ケイ素、ジルコニウ
ム、ハフニウム、白金族元素のそれfれI襲以下、ベリ
リウム、錫、アンチモンのそれぞれ&鴨以下、ボロン、
リンのそれぞれ1%以下の1口たは8種以上の副成分合
計0.0l−801G及び少量の不純物とからなる合金
をaoo’c以上融点以下の温度で非酸化性雰囲気ある
いは真空中において少くとも1分間以上100時間以下
の組成に対応した適当時間加熱した後、規則−不規則格
子変塾点以上の温度からlO’c、4妙〜1 ’C7時
の組成に対応した適当な速度で常温まで冷却し、これを
さらに規則−不規則格子変態点以下の温度で非酸化性雰
囲気中あるいは真空中において1分間以上組成に対応し
た適当時間加熱し、冷却することを特徴とする磁気記録
再生ヘッド用高透磁率合金の製造−法。 1 重量比にてニッケルーS〜1墨囁、鋼纂〜85鴨鉄
残部を主成分とし、副成分としてタンタル20嘱、クロ
ム、モリブデン、タングステンのそれぞれ16%以下、
ニオブ、バナジウム、マンガン、コバルト、ゲルマニウ
ムのそれぞれ10%以下、希土類元素、チタン。 ガリウム、インジウム、タリウム、アルミニウム、ケイ
素、ジルコニウム、ハフニウム。 白金族元素のそれぞれ5%以下、ベリリウム。 錫、アンチモンのそれぞれ8%以下、ボ賢ン。 リンのそれぞれ1%以下の1槙または2種以上の副成分
合計0,01〜80%及び少量の不純物とからなり、飽
和磁束密度4000G以上を有する合金より成ることを
特徴とする磁気記録再生ヘッド。
[Claims] L 86-76% nickel by weight, #16-aS-
The main component is residual iron, and the secondary components are less than 1G of tantalum, chromium, and molybdenum. Less than 16% of tungsten and niobium, respectively. 10% or less of each of vanadium, manganese, cobalt, germanium, 5% or less of each of rare earth elements, titanium, gallium, indium, thallium, aluminum, nickel, zirconium, ha7nium, platinum group elements, beryllium, tin, Less than 8% of each of antimony, boron,
One or eight or more subcomponents each containing 1% or less of phosphorus, totaling 0. A high permeability alloy for a magnetic recording/reproducing head, comprising O1 to O80 and a small amount of impurities, and having a saturation magnetic flux density of 4000G or more. l The main components are nickel 8i to ma SS, steel 10 to 8i, niobium 0.6 to 10% iron alS, and the subcomponents are tantalum less than 1G, phosphorus, molybdenum, and tungsten.16 % or less, each of vanadium, manganese, cobalt, germanium 1051 or less, rare earth elements, titanium, gallium, indium. Thallium, aluminum, silicon, zirconium, hafnium, platinum group elements, beryllium,
It consists of 8% or less each of tin and antimony, 111 or less of boron and phosphorus, a total of 0.01 to 80% of lI components of 8 or more types, and a small amount of impurities, and has a saturation magnetic flux density of 4004)G A high magnetic permeability alloy for a magnetic recording head, characterized by having the above characteristics. The main components are nickel 8i to 1%, steel ink to 85% iron, and tantalum 1G or less as a secondary component, based on the weight ratio.
Chromium, molybdenum, tungsten, each below the li sac, and niobium. Vanadium, manganese, cobalt, gel! Rare earth elements, titanium, gallium, indium, thallium, aluminum, silicon, zirconium, hydrogen, platinum group elements each have an Is% of 101 or less, beryllium, tin, antimony each have 8% or less, boron , an alloy consisting of 1% or less of phosphorus, a total of 0.01 to 80 of one or more subcomponents, and a small amount of impurities, in a non-oxidizing atmosphere or in vacuum at a temperature of 600°C or more and less than the melting point. , after heating for an appropriate time corresponding to the composition for at least 1 minute to 100 hours, from a temperature above the ordered-disorder lattice transformation point at an appropriate rate corresponding to the composition from 100 ° C / sec to 1 ° C / hour. A method for manufacturing a high permeability alloy for magnetic recording/reproducing heads that is cooled to room temperature. The main components are 85 to 16% nickel and the remainder of copperware to 81S iron by weight, with subcomponents of up to 10% tantalum, up to 15% each of chromium and molybdenum/tungsten, and niobium. 10% or less of each of vanadium, manganese, cobalt, germanium, rare earth bonds, titanium, gallium, indium, thallium, aluminum, silicon, zirconium, hafnium, that of platinum group elements, beryllium, tin, each of antimony & duck, boron,
An alloy consisting of 1% or less of phosphorus each or a total of 0.0L-801G of 8 or more subcomponents and a small amount of impurities is prepared in a non-oxidizing atmosphere or in a vacuum at a temperature above AOO'C and below the melting point. After heating for an appropriate time corresponding to the composition from 1 minute to 100 hours, heat from a temperature above the regular-irregular lattice deformation point at an appropriate rate corresponding to the composition of 10'C, 4 to 1'C7. Magnetic recording and reproducing characterized by cooling to room temperature, further heating at a temperature below the regular-disorder lattice transformation point in a non-oxidizing atmosphere or in vacuum for an appropriate time corresponding to the composition for 1 minute or more, and cooling. Manufacturing method of high magnetic permeability alloy for heads. 1 The main components are nickel S ~ 1 ink, the balance of steel wire ~ 85 duck iron, and the subcomponents are tantalum 20 kg, chromium, molybdenum, and tungsten each 16% or less,
Less than 10% each of niobium, vanadium, manganese, cobalt, and germanium, rare earth elements, and titanium. Gallium, indium, thallium, aluminum, silicon, zirconium, hafnium. Less than 5% of each of the platinum group elements, beryllium. Less than 8% of each of tin and antimony. A magnetic recording/reproducing head comprising an alloy comprising one or more subcomponents of 1% or less of phosphorus, a total of 0.01 to 80% of each subcomponent, and a small amount of impurities, and having a saturation magnetic flux density of 4000G or more. .
JP57031663A 1982-03-02 1982-03-02 Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head Pending JPS58150119A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57031663A JPS58150119A (en) 1982-03-02 1982-03-02 Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
DE19833306327 DE3306327A1 (en) 1982-03-02 1983-02-23 Alloy of high permeability for magnetic heads and method for the manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57031663A JPS58150119A (en) 1982-03-02 1982-03-02 Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head

Publications (1)

Publication Number Publication Date
JPS58150119A true JPS58150119A (en) 1983-09-06

Family

ID=12337374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57031663A Pending JPS58150119A (en) 1982-03-02 1982-03-02 Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head

Country Status (2)

Country Link
JP (1) JPS58150119A (en)
DE (1) DE3306327A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174546A (en) * 1982-04-07 1983-10-13 Hitachi Metals Ltd Wear-resisting high permeability magnetic alloy

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572750A (en) * 1983-07-21 1986-02-25 The Foundation: The Research Institute Of Electric And Magnetic Alloys Magnetic alloy for magnetic recording-reproducing head
JPS61174349A (en) * 1985-01-30 1986-08-06 Res Inst Electric Magnetic Alloys Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/playback head
JPH0777008B2 (en) * 1985-06-21 1995-08-16 株式会社日立製作所 Magnetic head using amorphous alloy film
DE10327522B4 (en) * 2003-06-17 2008-12-11 Vacuumschmelze Gmbh & Co. Kg Soft magnetic alloy, stepper motor for an electric clock with a stator made of this soft magnetic alloy and quartz clock

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230216A (en) * 1975-09-03 1977-03-07 Res Inst Electric Magnetic Alloys Wear resistant ni-fe alloy of high permeability
JPS537527A (en) * 1976-07-09 1978-01-24 Toshiba Corp Corrosion-resisting magnetic material
JPS55145141A (en) * 1979-04-26 1980-11-12 Toshiba Corp Magnetic alloy with superior wear resistance

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE678161C (en) * 1933-10-25 1939-07-10 Siemens & Halske Akt Ges Use of an iron-nickel-copper alloy for magnetic purposes
DE618989C (en) * 1934-02-03 1935-09-20 Siemens & Halske Akt Ges Electromagnetic device for transmitters, pupin coils, relays, electroacoustic devices, etc. like
DE747001C (en) * 1935-08-13 1944-08-08 Aeg Alloys for permanent magnets
DE755029C (en) * 1937-01-08 1954-03-29 Siemens & Halske A G Alloy for permanent magnets
DE711152C (en) * 1938-09-02 1941-09-26 Siemens & Halske Akt Ges Process for the simultaneous improvement of the initial permeability and its constancy in hardenable alloys based on iron-nickel
DE730388C (en) * 1939-05-03 1943-01-11 Heraeus Vacuumschmelze Ag Process for generating a magnetization curve, which still has a high permeability in the case of inductions close to the saturation, in magnetizable alloys
DE862371C (en) * 1949-09-03 1953-01-12 Vacuumschmelze Ag Process for improving the magnetic properties of copper-containing nickel-iron alloys
DE867006C (en) * 1950-07-06 1953-02-12 Vacuumschmelze Ag Process for improving the magnetic properties of copper-containing nickel-iron alloys
DE867007C (en) * 1950-10-13 1953-02-12 Vacuumschmelze Ag Process for improving the magnetic properties of nickel-iron alloys
DE946230C (en) * 1951-08-07 1956-07-26 Deutsche Edelstahlwerke Ag Sintered, hardenable iron-nickel-aluminum alloys for permanent magnets
DE973960C (en) * 1952-02-12 1960-08-04 Deutsche Edelstahlwerke Ag Use of cerium-containing sintered magnet alloys as material for permanent magnets
US3837933A (en) * 1971-03-13 1974-09-24 Foundation Res Inst Electric A Heat treated magnetic material
DE2146755C3 (en) * 1971-09-18 1980-11-13 Fried. Krupp Gmbh, 4300 Essen Use of an iron-nickel-based alloy for the production of soft magnetic objects
JPS5134369B2 (en) * 1971-10-13 1976-09-25

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230216A (en) * 1975-09-03 1977-03-07 Res Inst Electric Magnetic Alloys Wear resistant ni-fe alloy of high permeability
JPS537527A (en) * 1976-07-09 1978-01-24 Toshiba Corp Corrosion-resisting magnetic material
JPS55145141A (en) * 1979-04-26 1980-11-12 Toshiba Corp Magnetic alloy with superior wear resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174546A (en) * 1982-04-07 1983-10-13 Hitachi Metals Ltd Wear-resisting high permeability magnetic alloy
JPS6128008B2 (en) * 1982-04-07 1986-06-28 Hitachi Metals Ltd

Also Published As

Publication number Publication date
DE3306327A1 (en) 1983-09-22

Similar Documents

Publication Publication Date Title
JP2777319B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
JPS61174349A (en) Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/playback head
US4572750A (en) Magnetic alloy for magnetic recording-reproducing head
US3794530A (en) High-permeability ni-fe-ta alloy for magnetic recording-reproducing heads
JPS625972B2 (en)
JPH0158261B2 (en)
KR100405929B1 (en) Abrasion resistant high transmittance alloy, its manufacturing method and magnetic recording playback head
JPS6212296B2 (en)
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS6218619B2 (en)
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPS6134160A (en) Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head
JPS60224728A (en) Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head
JPS62188756A (en) Grain-oriented foil of high saturation magnetic flux density and its production
JPH02194154A (en) Manufacture of water-resistant high permeability alloy
JPH07166281A (en) Wear resistant magnetic alloy
JPH10259439A (en) Wear resistant high permeability alloy and magnetic recording and reproducing head
JPH02153052A (en) Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head
JPS5814499B2 (en) Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou
JPH032216B2 (en)
JPS6130405B2 (en)