JPH02153052A - Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head - Google Patents

Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head

Info

Publication number
JPH02153052A
JPH02153052A JP1262698A JP26269889A JPH02153052A JP H02153052 A JPH02153052 A JP H02153052A JP 1262698 A JP1262698 A JP 1262698A JP 26269889 A JP26269889 A JP 26269889A JP H02153052 A JPH02153052 A JP H02153052A
Authority
JP
Japan
Prior art keywords
alloy
less
magnetic recording
temperature
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1262698A
Other languages
Japanese (ja)
Other versions
JPH0645848B2 (en
Inventor
Ryo Masumoto
量 増本
Yuetsu Murakami
雄悦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Electromagnetic Materials filed Critical Research Institute for Electromagnetic Materials
Priority to JP1262698A priority Critical patent/JPH0645848B2/en
Publication of JPH02153052A publication Critical patent/JPH02153052A/en
Publication of JPH0645848B2 publication Critical patent/JPH0645848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni

Abstract

PURPOSE:To obtain a high permeability alloy for magnetic recording/reproducing head excellent in magnetic properties in A.C. magnetic fields and wear resistance and easy to forging by subjecting a rolled sheet of an alloy prepared by adding specific elements as accessory components to an Fe-Ni alloy with a specific composition to heat treatment under specific conditions. CONSTITUTION:A ferrous alloy having a composition containing, by weight, 30-90% Ni and 0.001-5%, in total, of Sr and/or Ba is melted in a nonoxidizing atmosphere, to which 0.01-30%, in total, of one or more kinds among <=30% Cu, <=15% each of W, Nb, Ta, and Mn, <=10% each of Mo and Co, <=5% each of Cr, V, Ti, Si, etc., <=3% each of Al, Zr, Hf, etc., and <=2% each of Be, Sn, Sb, B, and P are added as accessory components. An ingot of the above alloy is rolled into sheet-like state, and this sheet is heated in a nonoxidizing atmosphere up to a temp. between 600 deg.C and the melting point for 1min-10hr and cooled from >=600 deg.C down to ordinary temp. at a cooling rate in a wide range between 100 deg.C/sec and 1 deg.C/hr and, further, heated in a nonoxidizing atmosphere at <=600 deg.C for 1min-100hr, if necessary, and cooled.

Description

【発明の詳細な説明】 本発明は交流磁界における磁気特性および耐摩耗性がす
ぐれ、鍛造加工が容易で磁気記録再生ヘッドに好適な高
透磁率合金の製造法ならびに磁気記録再生ヘッドに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high magnetic permeability alloy that has excellent magnetic properties and wear resistance in an alternating magnetic field, is easy to forge, and is suitable for magnetic recording/reproducing heads, and a magnetic recording/reproducing head. .

テープレコーダーなどの磁気記録再生ヘッドは交流磁界
において作動するものであるから、これに用いられる磁
性合金は高周波磁界における実効透磁率が高いことが必
要とされ、また磁気テープが接触して摺動するため耐摩
耗性が良好であることが望まれている。現在、耐摩耗性
にすぐれた磁気ヘッド用磁性合金としてはセンダスト(
Fe−5i−Al系合金)およびフェライト(MnO−
ZnOFezO1)があが、これらは非常に硬く脆いた
め、鍛造、圧延加工が不可能で、ヘッドコアの製造には
研削、研磨の方法が用いられており、従ってその成品は
高価である。またセンダストは飽和磁束密度は大きいが
薄板にできないので高周波磁界における実効透磁率が比
較的小さい。またフェライトは実効透磁率は大きいが、
飽和磁束密度が5000 C以上で小さいのが欠点であ
る。他方パーマロイ(Ni−Fe系合金)は鍛造、圧延
加工および打抜きは容易で量産性にすぐれているが、軟
く摩耗しやすいのが大きな欠点である。
Since magnetic recording/reproducing heads such as tape recorders operate in alternating magnetic fields, the magnetic alloys used therein must have high effective magnetic permeability in high-frequency magnetic fields, and the magnetic tapes must slide in contact with each other. Therefore, it is desired that the wear resistance be good. Currently, Sendust (
Fe-5i-Al alloy) and ferrite (MnO-
However, since ZnOFezO1) is extremely hard and brittle, it is impossible to forge or roll it, and grinding and polishing methods are used to manufacture the head core, and the finished product is therefore expensive. Sendust has a high saturation magnetic flux density, but cannot be made into a thin plate, so its effective permeability in a high-frequency magnetic field is relatively low. Also, although ferrite has a high effective magnetic permeability,
The disadvantage is that the saturation magnetic flux density is small at 5000 C or higher. On the other hand, permalloy (Ni--Fe alloy) is easy to forge, roll, and punch and has excellent mass productivity, but its major drawback is that it is soft and easily abraded.

本発明者らはNi−Fe系合金の磁気特性および耐摩耗
性の改善について幾多研究を行った結果、Ni−Fe系
合金にUa族元素ストロンチウムおよびバリウムの1種
または2種の合計0.001〜5%および副成分を添加
することにより目的を達成したのである。
The present inventors have conducted numerous studies on improving the magnetic properties and wear resistance of Ni-Fe alloys, and have found that the total amount of one or two of the Ua group elements strontium and barium in Ni-Fe alloys is 0.001. The objective was achieved by adding ~5% and secondary ingredients.

本発明の特徴とする所は下記の点にある。The features of the present invention are as follows.

第1発明 重量比にてニッケル30〜90%、ストロンチウムおよ
びバリウムの1種または2種の合計o、ooi〜5%、
少量の不純物と残部鉄からなる合金を主成分とし、副成
分として銅30%以下、タングステン。
The first invention weight ratio is 30 to 90% nickel, a total of one or two of strontium and barium o, ooi to 5%,
The main component is an alloy consisting of a small amount of impurities and the balance iron, and the secondary components are less than 30% copper and tungsten.

ニオブ、タンタル、マンガンのそれぞれ15%以下、モ
リブデン、コバルトのそれぞれ10%以下、クロム、バ
ナジウム、チタン、ケイ素、ゲルマニウム。
15% or less each of niobium, tantalum, and manganese; 10% or less each of molybdenum and cobalt; chromium, vanadium, titanium, silicon, and germanium.

ガリウム、インジウム、タリウムのそれぞれ5%以下、
アルミニウム、ジルコニウム、ハフニウム。
5% or less of each of gallium, indium, and thallium,
Aluminum, zirconium, hafnium.

希土類元素、白金族元素のそれぞれ3%以下、ベリリウ
ム、錫、アンチモン、ホウ素、リンのそれぞれ2%以下
の1種または2種以上の合計0.01〜30%を含有し
てなる合金を600℃以上融点以下の温度で非酸化性雰
囲気あるいは真空中において、少くとも1分間以上10
0時間以下の組成に対応した適当時間加熱した後、60
0℃以上の温度から100℃/秒〜1℃/時の組成に対
応した適当な速度で常温まで冷却することを特徴とする
磁気記録再生ヘッド用耐摩耗性高透磁率合金の製造法。
An alloy containing a total of 0.01 to 30% of one or more of 3% or less of rare earth elements and platinum group elements, and 2% or less of each of beryllium, tin, antimony, boron, and phosphorus at 600°C. 10 minutes in a non-oxidizing atmosphere or vacuum at a temperature below the melting point for at least 1 minute.
After heating for an appropriate time corresponding to the composition of 0 hours or less,
A method for producing a wear-resistant high permeability alloy for a magnetic recording/reproducing head, which comprises cooling from a temperature of 0°C or higher to room temperature at an appropriate rate corresponding to the composition of 100°C/sec to 1°C/hour.

第2発明 重量比にてニッケル30〜90%、ストロンチウムおよ
びバリウムの1種または2種の合計o、oot〜5%、
少量の不純物と残部鉄からなる合金を土成分とし、副成
分として銅30%以下、タングステン。
Second invention weight ratio: nickel 30 to 90%, total of one or two of strontium and barium o, oot to 5%,
The soil component is an alloy consisting of a small amount of impurities and the balance iron, and the subcomponents are less than 30% copper and tungsten.

ニオブ、タンタル、マンガンのそれぞれ15%以下、モ
リブデン、コバルトのそれぞれ10%以下、クロム、バ
ナジウム、チタン、ケイ素、ゲルマニウムガリウム、イ
ンジウム、タリウムのそれぞれ5%以下、アルミニウム
、ジルコニウム、ハフニウム。
15% or less each of niobium, tantalum, and manganese; 10% or less each of molybdenum and cobalt; 5% or less each of chromium, vanadium, titanium, silicon, germanium, gallium, indium, and thallium; aluminum, zirconium, and hafnium.

希土類元素、白金族元素のそれぞれ3%以下、ベリリウ
ム、錫、アンチモン、ホウ素、リンのそれぞれ2%以下
の1種または2種以上の合計0.01〜30%を含有し
てなる合金を600℃以上融点以下の温度で非酸化性雰
囲気あるいは真空中において少くとも1分間以上100
時間以下の組成に対応した適当時間加熱した後、600
℃以上の温度から100”C/秒〜1℃/時の組成に対
応した適当な速度で常温まで冷却し、これをさらに60
0℃以下の温度で非酸化性雰囲気中あるいは真空中にお
いて1分間以上、100時間以下加熱し、冷却すること
を特徴とする磁気記録再生ヘッド用耐摩耗性高透磁率合
金の製造法。
An alloy containing a total of 0.01 to 30% of one or more of 3% or less of rare earth elements and platinum group elements, and 2% or less of each of beryllium, tin, antimony, boron, and phosphorus at 600°C. 100°C for at least 1 minute in a non-oxidizing atmosphere or in vacuum at a temperature below the melting point.
After heating for an appropriate time corresponding to the composition of 600 hrs.
℃ or higher at an appropriate rate corresponding to the composition of 100"C/sec to 1℃/hour, and then further cooled to room temperature for 60"C/sec to 1℃/hour.
A method for producing a wear-resistant high permeability alloy for a magnetic recording/reproducing head, which comprises heating at a temperature of 0° C. or lower in a non-oxidizing atmosphere or in a vacuum for 1 minute or more and 100 hours or less, and cooling.

第3発明 重量比にてニッケル30〜90%、ストロンチウムおよ
びバリウムの1種または2種の合計0.001〜5%、
少量の不純物と残部鉄からなる合金を主成分とし、副成
分として銅30%以下、タングステン。
The third invention weight ratio is 30 to 90% nickel, a total of 0.001 to 5% of one or two of strontium and barium,
The main component is an alloy consisting of a small amount of impurities and the balance iron, and the secondary components are less than 30% copper and tungsten.

ニオブ、タンタル、マンガンのそれぞれ15%以下、モ
リブデン、コバルトのそれぞれ10%以下、クロム、バ
ナジウム、チタン、ケイ素、ゲルマニウム。
15% or less each of niobium, tantalum, and manganese; 10% or less each of molybdenum and cobalt; chromium, vanadium, titanium, silicon, and germanium.

ガリウム、インジウム、タリウムのそれぞれ5%以下、
アルミニウム、ジルコニウム、ハフニウム。
5% or less of each of gallium, indium, and thallium,
Aluminum, zirconium, hafnium.

希土類元素、白金族元素のそれぞれ3%以下、ベリリウ
ム、錫、アンチモン、ホウ素、リンのそれぞれ2%以下
の1種または2種以上の合計0.01〜30%を含有し
てなる合金を用いた磁気記録再生へ・ラド。
An alloy containing a total of 0.01 to 30% of one or more of 3% or less of rare earth elements and platinum group elements, and 2% or less of each of beryllium, tin, antimony, boron, and phosphorus was used. Rad for magnetic recording and playback.

本発明の合金を造るには、まず主成分のニッケル30〜
90%、ストロンチウムおよびバリウムの1種または2
種以上の合計o、oot〜5%および残部鉄の適当量を
非酸化性雰囲気中あるいは真空中において適当な溶解炉
を用いて溶解した後、適当な脱酸剤、脱硫剤を少量添加
してできるだけ不純物を取り除き、これに副成分として
銅30%以下、タングステン、ニオブ、タンタル、マン
ガンのそれぞれ15%以下、モリブデン、コバルトのそ
れぞれ10%以下、クロム、バナジウム、チタン、ケイ
素。
To make the alloy of the present invention, first the main component nickel 30~
90%, one or two of strontium and barium
After melting a suitable amount of O, oot ~ 5% of the total amount of iron and the remaining iron in a non-oxidizing atmosphere or in a vacuum using an appropriate melting furnace, a small amount of an appropriate deoxidizing agent and desulfurizing agent is added. Remove impurities as much as possible, and add 30% or less copper, 15% or less each of tungsten, niobium, tantalum, and manganese, 10% or less each of molybdenum, cobalt, chromium, vanadium, titanium, and silicon.

ゲルマニウム、ガリウム、インジウム、タリウムのそれ
ぞれ5%以下、アルミニウム、ジルコニウム、ハフニウ
ム、希土類元素、白金族元素のそれぞれ3%以下、ベリ
リウム、錫、アンチモン、ホウ素、リンのそれぞれ2%
以下の1種または2種以上の合計0.01〜30%の定
量を添加して充分に撹拌し、組成的に均一な溶融合金を
遣る。次にこれを適当な形および大きさの鋳型に注入し
て健全な鋳塊を得、さらにこれを高温に加熱し熱間鍛造
熱間圧延および冷間圧延などの成形加工を施して目的の
形状のもの、例えば厚さ0.1mmの薄板を造る。
5% or less each of germanium, gallium, indium, and thallium; 3% or less each of aluminum, zirconium, hafnium, rare earth elements, and platinum group elements; 2% each of beryllium, tin, antimony, boron, and phosphorus.
Add one or more of the following in a total amount of 0.01 to 30% and stir thoroughly to obtain a compositionally uniform molten alloy. Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is further heated to a high temperature and subjected to forming processes such as hot forging, hot rolling, and cold rolling to achieve the desired shape. For example, make a thin plate with a thickness of 0.1 mm.

次にその薄板から目的の形状、寸法のものを打抜き、こ
れを適当な非酸化性雰囲気中あるいは真空中で再結晶温
度以上、すなわち約600℃以上、特に800℃以上融
点以下の温度に1分間以上100時間以下加熱し、つい
で組成に対応した適当な速度、例えば100”C/秒〜
1℃/時で冷却する。合金の組成によってはこれをさら
に約600 ℃以下の温度(規則格子−不規則格子変態
点以下の温度)、特に200〜600 ℃に1分間以上
100時間以下加熱し、冷却することにより飽和磁束密
度50000以上を有し、耐摩耗性にすぐれた高透磁率
磁性合金を得ることができる。
Next, a piece of the desired shape and size is punched out from the thin plate and heated in an appropriate non-oxidizing atmosphere or vacuum to a temperature above the recrystallization temperature, that is, about 600°C or above, especially above 800°C below the melting point, for 1 minute. Heating is performed for at least 100 hours, and then at an appropriate rate depending on the composition, e.g. 100"C/sec~
Cool at 1°C/hour. Depending on the composition of the alloy, this may be further heated to a temperature of about 600 °C or below (temperature below the ordered lattice-irregular lattice transformation point), particularly 200 to 600 °C for 1 minute or more and 100 hours or less, and then cooled to increase the saturation magnetic flux density. 50,000 or more, it is possible to obtain a high permeability magnetic alloy with excellent wear resistance.

上記の溶体化温度から規則−不規則格子変態点(約60
0℃)以上の温度までの冷却は、急冷しても徐冷しても
得られる磁性には大した変りはないが、この変態点以下
の冷却速度は磁性に大きな影響を及ぼす。すなわちこの
変態点以上の温度より100’c/秒〜1℃/時の組成
に対応した適当な速度で常温迄冷却することにより、地
の規則度が適度に調整され、すぐれた磁性が得られる。
From the above solution temperature to the regular-disordered lattice transformation point (approximately 60
When cooling to a temperature of 0° C. or higher, there is no significant difference in the magnetism obtained whether the material is rapidly cooled or slowly cooled, but the cooling rate below this transformation point has a large effect on the magnetism. In other words, by cooling from a temperature above this transformation point to room temperature at an appropriate rate corresponding to the composition of 100'c/sec to 1°C/hour, the regularity of the ground can be adjusted appropriately and excellent magnetism can be obtained. .

そして上記の冷却速度の内100“67秒に近い速度で
急冷すると、規則度が小さくなり、これ以上速く冷却す
ると規則化が進まず、規則度はさらに小さくなり磁性は
劣化する。しかしその規則度の小さい合金をその変態点
以下の200℃〜600℃に再加熱し冷却すると、規則
化が進んで適度な規則度となり磁性は向上する。他方、
上記の変態点以上の温度から、例えば1℃/時以下の速
度で徐冷すると、規則化は進みすぎ、磁性は低下する。
If the cooling rate is rapidly cooled at a rate close to 100"67 seconds, the degree of order will decrease, and if the cooling rate is faster than this, order will not progress, and the degree of order will further decrease and the magnetism will deteriorate.However, the degree of order will decrease. When an alloy with a small temperature is reheated to 200°C to 600°C below its transformation point and cooled, ordering progresses to a suitable degree of order and improves magnetism.On the other hand,
If it is slowly cooled from a temperature above the above-mentioned transformation point at a rate of, for example, 1° C./hour or less, ordering will proceed too much and the magnetism will decrease.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

尖籐開土 合金番号42(組成Ni−79,0%、Zn−0,7%
Tip rattan open earth alloy number 42 (composition Ni-79.0%, Zn-0.7%
.

5r−1,5%、Ba−1,0%、残部Fe)試料を造
るには上記組成の合金材料の全重量800gをアルミナ
坩堝に入れ、真空中で高周波誘導電気炉によって溶かし
た後よく撹拌して溶融合金とした。
5r-1.5%, Ba-1.0%, balance Fe) To make a sample, put a total weight of 800 g of the alloy material with the above composition into an alumina crucible, melt it in a high-frequency induction electric furnace in a vacuum, and then stir well. It was made into a molten alloy.

ついでこれを直径25mm、高さ170 tatnの孔
をもつ鋳型に注入し、得られた鋳塊を約1000℃で鍛
造して厚さ約711I111の板とした。さらに約60
0〜900“Cの間で厚さ1mmまで熱間圧延し、つい
で常温で冷間圧延を施して0.1mmの薄板とし、それ
から外径45mm、内径33mrnの環状板および磁気
ヘッドのコアを打ち抜いた。つぎにこれらに第1表に示
す種々な熱処理を施し、環状板で磁気特性を、またコア
を用いて磁気ヘッドを製造し、表面粗さ計で磁気テープ
(Cr Ot )による200時間時間後の摩耗量を測
定して第1表のような結果を得た。
This was then poured into a mold with a hole of 25 mm in diameter and 170 tatn in height, and the resulting ingot was forged at about 1000°C to form a plate with a thickness of about 711I111. Approximately 60 more
Hot rolled at 0 to 900"C to a thickness of 1 mm, then cold rolled at room temperature to form a thin plate of 0.1 mm. Then, an annular plate with an outer diameter of 45 mm and an inner diameter of 33 mrn and a magnetic head core were punched out. Next, these were subjected to various heat treatments shown in Table 1, the annular plate was used to test the magnetic properties, the core was used to manufacture a magnetic head, and a surface roughness meter was used to test the magnetic tape (CrOt) for 200 hours. The amount of wear afterwards was measured and the results shown in Table 1 were obtained.

つぎに第2表には1150℃の真空中で2時間加熱した
後、600℃から種々な速度で常温まで冷却するか、あ
るいはこれをさらに600℃以下の温度で再加熱して、
常温で測定された代表的な合金の緒特性が示しである。
Next, Table 2 shows that after heating in a vacuum at 1150°C for 2 hours, cooling from 600°C to room temperature at various rates, or further heating at a temperature below 600°C,
The properties of typical alloys measured at room temperature are shown.

つぎに本発明合金のSrおよびBaの添加効果について
図面によって詳細に述べる。第1図には78.5%Ni
−Fe−Ba合金についてBa添加量と実効透磁率、飽
和磁束密度および摩耗量との関係を示し、第2図には7
9%Ni−Fe7%Nb−Ba合金についてBa添加量
と実効透磁率、飽和磁束密度および摩耗量との関係を示
した。
Next, the effect of adding Sr and Ba to the alloy of the present invention will be described in detail with reference to the drawings. Figure 1 shows 78.5%Ni
-The relationship between the amount of Ba added, effective magnetic permeability, saturation magnetic flux density, and wear amount for Fe-Ba alloy is shown in Figure 2.
The relationship between the amount of Ba added and the effective magnetic permeability, saturation magnetic flux density, and wear amount for a 9% Ni-Fe7% Nb-Ba alloy is shown.

第3図には78.5%Ni−Fe−Sr合金についてS
r添加量と実効透磁率、飽和磁束密度および摩耗量との
関係を示し、第4図には79%Ni−Fe−7%Nb−
Sr合金についてSr添加量と実効透磁率、飽和磁束密
度および摩耗量との関係を示した。
Figure 3 shows S for 78.5%Ni-Fe-Sr alloy.
The relationship between the r addition amount, effective magnetic permeability, saturation magnetic flux density, and wear amount is shown in Figure 4.
The relationship between the Sr addition amount, effective magnetic permeability, saturation magnetic flux density, and wear amount for Sr alloys is shown.

第5図は78.5%Ni−Fe−1,0%5r−1,2
%Ba合金にCu 、W、Nb 、TaあるいはMnを
添加した場合の各元素の添加量と実効透磁率、飽和磁束
密度および摩耗量との関係を示す。
Figure 5 shows 78.5%Ni-Fe-1,0%5r-1,2
The relationship between the amount of each element added and effective magnetic permeability, saturation magnetic flux density, and wear amount when Cu, W, Nb, Ta, or Mn is added to a %Ba alloy is shown.

第6図は78.5%Ni−Fe−1,0%5r−12%
Ba合金にMo、Co、 Cr、VあるいはTiを添加
した場合の各元素の添加量と実効透磁率、飽和磁束密度
および摩耗量との関係を示す。
Figure 6 shows 78.5%Ni-Fe-1,0%5r-12%
The relationship between the amount of each element added and effective magnetic permeability, saturation magnetic flux density, and wear amount when Mo, Co, Cr, V, or Ti is added to a Ba alloy is shown.

第7図は78.5%Ni−Fe  1.0%5r−1,
2%Ba合金にSi 、Ge、Ga、In、又はTf。
Figure 7 shows 78.5%Ni-Fe 1.0%5r-1,
2% Ba alloy with Si, Ge, Ga, In, or Tf.

を添加した場合の各元素の添加量と実効透磁率、飽和磁
束密度および摩耗量との関係を示す。
The relationship between the amount of each element added and the effective magnetic permeability, saturation magnetic flux density, and amount of wear is shown below.

第8図は78.5%Ni−Fe−1,0%5r−1,2
%Ba合金にA/2.Zr、Hf 、Ce、Pt又はB
e、Sn、Sb、BあるいはPをそれぞれ添加した場合
の各元素の添加量と実効透磁率、飽和磁束密度および摩
耗量との関係を示す。
Figure 8 shows 78.5%Ni-Fe-1,0%5r-1,2
%Ba alloy A/2. Zr, Hf, Ce, Pt or B
The relationship between the amount of each element added, effective magnetic permeability, saturation magnetic flux density, and wear amount when e, Sn, Sb, B, or P is added is shown.

一般にストロンチウム又はバリウムの添加量の増加とと
もに実効透磁率は著しく増大し、摩耗量は減少する。し
かしストロンチウムおよびバリウムが5%以上では加工
が困難になり好ましくない。
Generally, as the amount of strontium or barium added increases, the effective magnetic permeability increases significantly and the amount of wear decreases. However, if the content of strontium and barium exceeds 5%, processing becomes difficult, which is not preferable.

本発明のこのような磁気特性の向上は溶解時におけるス
トロンチウムおよびバリウムの脱硫効果によって不純物
が除去され、合金組織を清浄にするとともに、ストロン
チウムおよびバリウムの結晶型がニッケルおよび鉄と同
様に対称性のよい立方晶を形成するので、結晶磁気異方
性エネルギーが小さ(なり、磁化し易い状態に成るもの
と考えられる。さらにNi−3r系、Fe−3r系、N
i−Ba系およびFe−Ba系金属間化合物が微細に析
出して磁区を分割し磁壁を増加させるので、交流磁界に
おける磁壁の移動速度を相対的に減少させ、そのため渦
電流損失が小さくなり、大きな実効透磁率が得られるも
のと考えられる。また本発明合金の耐摩耗性の向上は、
大きな原子間距離を有するストロンチウム又はバリウム
を添加すると、N i −F e合金の地が固溶体硬化
するとともに、強固な金属間化合物が地に微細に析出す
ることによるものと考えられる。
This improvement in the magnetic properties of the present invention is due to the desulfurization effect of strontium and barium during melting, which removes impurities and cleans the alloy structure. Since it forms a good cubic crystal, it is thought that the magnetocrystalline anisotropy energy is small (which makes it easy to magnetize. Furthermore, Ni-3r system, Fe-3r system, N
Since i-Ba and Fe-Ba intermetallic compounds are finely precipitated, dividing the magnetic domain and increasing the domain walls, the moving speed of the domain walls in an alternating magnetic field is relatively reduced, and therefore eddy current loss is reduced. It is thought that a large effective magnetic permeability can be obtained. Furthermore, the improvement in wear resistance of the alloy of the present invention is due to
This is thought to be due to the fact that when strontium or barium, which has a large interatomic distance, is added, the base of the N i -Fe alloy is solid solution hardened and a strong intermetallic compound is finely precipitated on the base.

さらに副成分として添加するCu 、W、Nb 。Furthermore, Cu, W, and Nb are added as subcomponents.

Ta、Mn、Mo、Co、Cr、V、Ti、Ce。Ta, Mn, Mo, Co, Cr, V, Ti, Ce.

Ga、In、Ti!、Affi、Si 、Zr、Hf希
土類元素、白金族元素、Be、Sn、Sb、BおよびP
等は本発明合金の実効透磁率を高める効果があり、また
COは飽和磁束密度を高めるのに有効である。さらにC
u 、 W、 Nb 、 V、 Ti 、 Ge 。
Ga, In, Ti! , Affi, Si, Zr, Hf rare earth elements, platinum group elements, Be, Sn, Sb, B and P
etc. are effective in increasing the effective magnetic permeability of the alloy of the present invention, and CO is effective in increasing the saturation magnetic flux density. Further C
u, W, Nb, V, Ti, Ge.

In 、 Tffi、 Affi、  Si 、  Z
r 、  Hf希土類元素。
In, Tffi, Affi, Si, Z
r, Hf rare earth element;

白金族元素、Be、Sn、Sb、BおよびP等は本発明
合金の耐摩耗性を改善する効果が大きく、さらにNb、
Ta、Mn、Ti、Si、希土類元素は鍛造加工性を改
善する効果が大きい。
Platinum group elements such as Be, Sn, Sb, B and P have a great effect on improving the wear resistance of the alloy of the present invention, and Nb,
Ta, Mn, Ti, Si, and rare earth elements are highly effective in improving forging workability.

要するに本発明合金は飽和磁束密度が50000以上で
実効透磁率が高く、耐摩耗性がすぐれ、且つ加工性が良
好なので磁気録音再生ヘッド用磁性合金として好適であ
るばかりでなく、VTRおよび電子計算機の磁気録音再
生ヘッドならびに普通の電気機器などに用いる磁性材料
としても非常に好適である。
In short, the alloy of the present invention has a saturation magnetic flux density of 50,000 or more, high effective permeability, excellent wear resistance, and good workability, so it is not only suitable as a magnetic alloy for magnetic recording/playback heads, but also for use in VTRs and electronic computers. It is also very suitable as a magnetic material for use in magnetic recording/reproducing heads and ordinary electrical equipment.

次に本発明において合金の組織をニッケル30〜90%
、ストロンチウム又はバリウムの1種または2種の合計
0.001〜5%および残部鉄と限定した理由およびこ
れに添加する元素をw430%以下、タングステン、ニ
オブ、タンタル、マンガンのそれぞれ15%以下、モリ
ブデン、コバルトのそれぞれ10%以下、クロム、バナ
ジウム、チタン、ケイ素。
Next, in the present invention, the structure of the alloy is 30 to 90% nickel.
, strontium or barium in total of 0.001 to 5% and the balance iron, and the elements to be added are w430% or less, tungsten, niobium, tantalum, manganese each 15% or less, molybdenum , less than 10% each of cobalt, chromium, vanadium, titanium, and silicon.

ゲルマニウム、ガリウム、インジウム、タリウムのそれ
ぞれ5%以下、アルミニウム、ジルコニウム、ハフニウ
ム、希土類元素、白金族元素のそれぞれ3%以下、ベリ
リウム、錫、アンチモン、ホウ素、リンのそれぞれ2%
以下の1種または2種以上の合計0.01〜30%と限
定した理由は、実施例、第2表および図面第1図ないし
第8図から明らかなように、その組成範囲の飽和磁束密
度は5000 G以下で、実効透磁率および耐摩耗性に
すぐれ、且つ加工性も良好であるが、組成がこの範囲を
はずれると飽和磁束密度が5000 G以下となり、実
効透磁率が低下し、摩耗が大きくなり、且つ加工が困難
となり、磁気記録再生ヘッドの材料として不適当となる
からである。すなわち、ストロンチウムおよびバリウム
が0.001%未満では添加効果が小さく、5%を越え
ると鍛造加工が困難となる。そしてこれに副成分として
銅30%以下、タングステン15%、ニオブ15%、タ
ンタル15%、マンガン15%、モリブデン10%、ク
ロム5%、バナジウム5%、チタン5%、ゲルマニウム
5%、ガリウム5%、インジウム5%、タリウム5%、
アルミニウム3%、ケイ素5%、ハフニウム3%、希土
類元素3%、白金族元素3%のそれぞれの範囲を越えて
添加すると飽和磁束密度が5000 G以下となるから
であり、ベリリウム2%、錫2%、アンチモン2%、ホ
ウ素2%、リン2%のそれぞれの範囲を越えて添加する
と鍛造あるいは加工が困難となるからであり、Coを1
0%を越え添加すると実効透磁率が小さくなるからであ
る。
5% or less each of germanium, gallium, indium, and thallium; 3% or less each of aluminum, zirconium, hafnium, rare earth elements, and platinum group elements; 2% each of beryllium, tin, antimony, boron, and phosphorus.
The reason for limiting the total amount of one or more of the following to 0.01 to 30% is that the saturation magnetic flux density in the composition range is clear from Examples, Table 2, and Figures 1 to 8 of the drawings. is 5000 G or less, it has excellent effective magnetic permeability and wear resistance, and has good workability, but if the composition is outside this range, the saturation magnetic flux density will be 5000 G or less, the effective magnetic permeability will decrease, and wear will be reduced. This is because it becomes large and difficult to process, making it unsuitable as a material for magnetic recording/reproducing heads. That is, if the content of strontium and barium is less than 0.001%, the effect of addition is small, and if it exceeds 5%, forging becomes difficult. In addition, the subcomponents include less than 30% copper, 15% tungsten, 15% niobium, 15% tantalum, 15% manganese, 10% molybdenum, 5% chromium, 5% vanadium, 5% titanium, 5% germanium, and 5% gallium. , indium 5%, thallium 5%,
This is because adding more than 3% aluminum, 5% silicon, 3% hafnium, 3% rare earth elements, and 3% platinum group elements will result in a saturation magnetic flux density of 5000 G or less; %, antimony 2%, boron 2%, and phosphorus 2%, it becomes difficult to forge or process.
This is because if more than 0% is added, the effective magnetic permeability decreases.

なお、第2表より明らかなように、Ni−Fe系合金に
副成分の何れかを入れると実効透磁率は更に大きくなり
、また、硬度も高くなり、耐摩耗性が改善されるのでこ
れらの副成分の添加は同一効果であり、同効成分と見做
し得る。また、希土類元素はスカンジウム、イツトリウ
ムおよびランタン系元素からなるものであるが、その副
成分添加効果は全く同一であり、白金族元素は白金、イ
リジウム、ルテニウム、ロジウム、パラジウム。
As is clear from Table 2, if any of the subcomponents is added to the Ni-Fe alloy, the effective magnetic permeability will further increase, the hardness will also increase, and the wear resistance will be improved. Addition of sub-ingredients has the same effect and can be regarded as the same effective ingredient. In addition, rare earth elements consist of scandium, yttrium, and lanthanum-based elements, but the effects of adding these subcomponents are exactly the same, and platinum group elements include platinum, iridium, ruthenium, rhodium, and palladium.

オスミウムからなるが、その効果も全く同一である。Although it is made of osmium, its effects are exactly the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は78.5%Nt−Fe−Ba合金のバリウム量
と実効透磁率、飽和磁束密度および摩耗量との関係を示
す特性図、 第2図は79%Ni−Fe−7%Nb−Ba合金のバリ
ウム量と実効透磁率、飽和磁束密度および摩耗量との関
係を示す特性図、 第3図は78.5%Ni−Fe−3r合金のストロンチ
ウム量と実効透磁率、飽和磁束密度および摩耗量との関
係を示す特性図、 第4図は79%Ni−Fe−7%Nb−3r合金のスト
ロンチウム量と実効透磁率、飽和磁束密度および17耗
■との関係を示す特性図、 第5図はは78.5%Ni−Fe−1,0%5r−1,
2%Ba合金にCu 、W、Nb 、TaあるいはMn
を添加した場合の各元素の添加量と実効透磁率、飽和磁
束密度および摩耗量との関係を示す。 第6図は78.5%Ni−Fe−1,0%5r−1,2
%Ba合金にMo 、Co 、Cr 、’VあるいはT
iを添加した場合の各元素の添加量と実効透磁率、飽和
磁束密度および摩耗量との関係を示す。 第7図は78.5%Ni−Fe−1,0%5r−1,2
%Ba合金にSi、Ge、Ga、In、又はTffi。 を添加した場合の各元素の添加量と実効透磁率、飽和磁
束密度および摩耗量との関係を示す。 第8図は78.5%Ni−Fe−1,0%5r−1,2
%Ba合金にAj!、Zr 、Hf 、Ce 、PL又
はBe、Sn、Sb、BあるいはPをそれぞれ添加した
場合の各元素の添加量と実効透磁率、飽和磁束密度およ
び摩耗量との関係を示す。 X fO’ 第1図 第3図 S、(%) xfO’ 第2図 第4図 Sr(%ン 第5図 第7図 Si、Ge、Ga、InorTl (%)第6図 Mo、 Co、 Cr、 V or Ti (%)第8
Figure 1 is a characteristic diagram showing the relationship between barium content, effective magnetic permeability, saturation magnetic flux density, and wear amount of 78.5%Nt-Fe-Ba alloy. A characteristic diagram showing the relationship between barium content and effective magnetic permeability, saturation magnetic flux density and wear amount of Ba alloy. Figure 3 shows the relationship between strontium content and effective magnetic permeability, saturation magnetic flux density and Figure 4 is a characteristic diagram showing the relationship between the amount of wear and the amount of strontium in the 79%Ni-Fe-7%Nb-3r alloy, effective magnetic permeability, saturation magnetic flux density, and wear. Figure 5 shows 78.5%Ni-Fe-1,0%5r-1,
2% Ba alloy with Cu, W, Nb, Ta or Mn
The relationship between the amount of each element added and the effective magnetic permeability, saturation magnetic flux density, and amount of wear is shown below. Figure 6 shows 78.5%Ni-Fe-1,0%5r-1,2
%Ba alloy with Mo, Co, Cr, 'V or T
The relationship between the amount of each element added and effective magnetic permeability, saturation magnetic flux density, and wear amount when i is added is shown. Figure 7 shows 78.5%Ni-Fe-1,0%5r-1,2
%Ba alloy with Si, Ge, Ga, In, or Tffi. The relationship between the amount of each element added and the effective magnetic permeability, saturation magnetic flux density, and amount of wear is shown below. Figure 8 shows 78.5%Ni-Fe-1,0%5r-1,2
%Ba alloy to Aj! , Zr 2 , Hf 2 , Ce 2 , PL, Be, Sn, Sb, B, or P are added, and the relationship between the amount of each element added and the effective magnetic permeability, saturation magnetic flux density, and amount of wear is shown. X fO' Figure 1 Figure 3 S, (%) xfO' Figure 2 Figure 4 Sr (%) Figure 5 Figure 7 Si, Ge, Ga, InorTl (%) Figure 6 Mo, Co, Cr , V or Ti (%) 8th
figure

Claims (3)

【特許請求の範囲】[Claims] 1.重量比にてニッケル30〜90%、ストロンチウム
およびバリウムの1種または2種の合計0.001〜5
%、少量の不純物と残部鉄からなる合金を主成分とし、
副成分として銅30%以下、タングステン,ニオブ,タ
ンタル,マンガンのそれぞれ15%以下、モリブデン,
コバルトのそれぞれ10%以下、クロム,バナジウム,
チタン,ケイ素,ゲルマニウム,ガリウム,インジウム
,タリウムのそれぞれ5%以下、アルミニウム,ジルコ
ニウム,ハフニウム,希土類元素,白金族元素のそれぞ
れ3%以下、ベリリウム,錫,アンチモン,ホウ素,リ
ンのそれぞれ2%以下の1種または2種以上の合計0.
01〜30%を含有してなる合金を600℃以上融点以
下の温度で非酸化性雰囲気あるいは真空中において、少
くとも1分間以上100時間以下の組成に対応した適当
時間加熱した後、600℃以上の温度から100℃/秒
〜1℃/時の組成に対応した適当な速度で常温まで冷却
することを特徴とする磁気記録再生ヘッド用耐摩耗性高
透磁率合金の製造法。
1. Total weight ratio of 30 to 90% nickel, one or two of strontium and barium 0.001 to 5
%, the main component is an alloy consisting of a small amount of impurities and the balance iron,
Copper 30% or less, tungsten, niobium, tantalum, manganese each 15% or less, molybdenum,
Less than 10% each of cobalt, chromium, vanadium,
Up to 5% each of titanium, silicon, germanium, gallium, indium, and thallium; up to 3% each of aluminum, zirconium, hafnium, rare earth elements, and platinum group elements; up to 2% each of beryllium, tin, antimony, boron, and phosphorous; Total of 1 type or 2 or more types: 0.
After heating an alloy containing 01 to 30% in a non-oxidizing atmosphere or in vacuum at a temperature of 600°C or higher and below the melting point for an appropriate time corresponding to the composition of at least 1 minute or more and 100 hours or less, A method for producing a wear-resistant high permeability alloy for a magnetic recording/reproducing head, characterized in that the alloy is cooled from a temperature of 100° C./sec to 1° C./hour to room temperature at an appropriate rate corresponding to the composition.
2.重量比にてニッケル30〜90%、ストロンチウム
およびバリウムの1種または2種の合計0.001〜5
%、少量の不純物と残部鉄からなる合金を主成分とし、
副成分として銅30%以下、タングステン,ニオブ,タ
ンタル,マンガンのそれぞれ15%以下、モリブデン,
コバルトのそれぞれ10%以下、クロム,バナジウム,
チタン,ケイ素,ゲルマニウム,ガリウム,インジウム
,タリウムのそれぞれ5%以下、アルミニウム,ジルコ
ニウム,ハフニウム,希土類元素,白金族元素のそれぞ
れ3%以下、ベリリウム,錫,アンチモン,ホウ素,リ
ンのそれぞれ2%以下の1種または2種以上の合計0.
01〜30%を含有してなる合金を600℃以上融点以
下の温度で非酸化性雰囲気あるいは真空中において少く
とも1分間以上100時間以下の組成に対応した適当時
間加熱した後、600℃以上の温度から100℃/秒〜
1℃/時の組成に対応した適当な速度で常温まで冷却し
、これをさらに600℃以下の温度で非酸化性雰囲気中
あるいは真空中において1分間以上、100時間以下加
熱し、冷却することを特徴とする磁気記録再生ヘッド用
耐摩耗性高透磁率合金の製造法。
2. Total weight ratio of 30 to 90% nickel, one or two of strontium and barium 0.001 to 5
%, the main component is an alloy consisting of a small amount of impurities and the balance iron,
Copper 30% or less, tungsten, niobium, tantalum, manganese each 15% or less, molybdenum,
Less than 10% each of cobalt, chromium, vanadium,
Up to 5% each of titanium, silicon, germanium, gallium, indium, and thallium; up to 3% each of aluminum, zirconium, hafnium, rare earth elements, and platinum group elements; up to 2% each of beryllium, tin, antimony, boron, and phosphorous; Total of 1 type or 2 or more types: 0.
After heating an alloy containing 01 to 30% in a non-oxidizing atmosphere or in vacuum at a temperature of 600°C or higher and lower than the melting point for at least 1 minute to 100 hours, the alloy is heated at a temperature of 600°C or higher and From temperature to 100℃/sec
Cool to room temperature at an appropriate rate corresponding to the composition at 1°C/hour, then further heat at a temperature of 600°C or less in a non-oxidizing atmosphere or in a vacuum for 1 minute or more and 100 hours or less, and then cool. A method for manufacturing a wear-resistant high permeability alloy for magnetic recording/reproducing heads.
3.重量比にてニッケル30〜90%、ストロンチウム
およびバリウムの1種または2種の合計0.001〜5
%、少量の不純物と残部鉄からなる合金を主成分とし、
副成分として銅30%以下、タングステン,ニオブ,タ
ンタル,マンガンのそれぞれ15%以下、モリブデン,
コバルトのそれぞれ10%以下、クロム,バナジウム,
チタン,ケイ素,ゲルマニウム,ガリウム,インジウム
,タリウムのそれぞれ5%以下、アルミニウム,ジルコ
ニウム,ハフニウム,希土類元素,白金族元素のそれぞ
れ3%以下、ベリリウム,錫,アンチモン,ホウ素,リ
ンのそれぞれ2%以下の1種または2種以上の合計0.
01〜30%を含有してなる合金を用いた磁気記録再生
ヘッド。
3. Total weight ratio of 30 to 90% nickel, one or two of strontium and barium 0.001 to 5
%, the main component is an alloy consisting of a small amount of impurities and the balance iron,
Copper 30% or less, tungsten, niobium, tantalum, manganese each 15% or less, molybdenum,
Less than 10% each of cobalt, chromium, vanadium,
Up to 5% each of titanium, silicon, germanium, gallium, indium, and thallium; up to 3% each of aluminum, zirconium, hafnium, rare earth elements, and platinum group elements; up to 2% each of beryllium, tin, antimony, boron, and phosphorous; Total of 1 type or 2 or more types: 0.
A magnetic recording/reproducing head using an alloy containing 0.01 to 30%.
JP1262698A 1989-10-07 1989-10-07 Manufacturing method of wear resistant high permeability alloy for magnetic recording / reproducing head and magnetic recording / reproducing head Expired - Lifetime JPH0645848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1262698A JPH0645848B2 (en) 1989-10-07 1989-10-07 Manufacturing method of wear resistant high permeability alloy for magnetic recording / reproducing head and magnetic recording / reproducing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1262698A JPH0645848B2 (en) 1989-10-07 1989-10-07 Manufacturing method of wear resistant high permeability alloy for magnetic recording / reproducing head and magnetic recording / reproducing head

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58131817A Division JPS6024348A (en) 1983-07-21 1983-07-21 Wear-resistant alloy with high magnetic permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Publications (2)

Publication Number Publication Date
JPH02153052A true JPH02153052A (en) 1990-06-12
JPH0645848B2 JPH0645848B2 (en) 1994-06-15

Family

ID=17379355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1262698A Expired - Lifetime JPH0645848B2 (en) 1989-10-07 1989-10-07 Manufacturing method of wear resistant high permeability alloy for magnetic recording / reproducing head and magnetic recording / reproducing head

Country Status (1)

Country Link
JP (1) JPH0645848B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107641774A (en) * 2017-08-21 2018-01-30 宁国慧宏耐磨材料有限公司 A kind of high-chromium rare earth steel ball and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19803598C1 (en) * 1998-01-30 1999-04-29 Krupp Vdm Gmbh Soft magnetic iron-nickel alloy for relay armatures and yokes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107641774A (en) * 2017-08-21 2018-01-30 宁国慧宏耐磨材料有限公司 A kind of high-chromium rare earth steel ball and preparation method thereof

Also Published As

Publication number Publication date
JPH0645848B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
JP2777319B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
KR910002868B1 (en) Wear-resistant alloy of high permeability and method of producing the same
JPS6133900B2 (en)
JPS625972B2 (en)
KR100405929B1 (en) Abrasion resistant high transmittance alloy, its manufacturing method and magnetic recording playback head
JPS6212296B2 (en)
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPH02153052A (en) Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
KR900007666B1 (en) Amorphous alloy for use in magnetic heads
JP3251899B2 (en) Wear-resistant high permeability alloy and magnetic recording / reproducing head
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JPS6134160A (en) Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head
JPH032216B2 (en)
JPH02194154A (en) Manufacture of water-resistant high permeability alloy
JPH0310699B2 (en)
JPH0310700B2 (en)
JPH0377644B2 (en)
JPH0645849B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0525947B2 (en)
JPH0645846B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH02146704A (en) Magnetic recording and reproducing head having wear resistance and high permeability
JPS6155583B2 (en)
JPH0377645B2 (en)