JPS59582B2 - Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method - Google Patents

Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method

Info

Publication number
JPS59582B2
JPS59582B2 JP51030805A JP3080576A JPS59582B2 JP S59582 B2 JPS59582 B2 JP S59582B2 JP 51030805 A JP51030805 A JP 51030805A JP 3080576 A JP3080576 A JP 3080576A JP S59582 B2 JPS59582 B2 JP S59582B2
Authority
JP
Japan
Prior art keywords
less
atomic ratio
alloy
wear resistance
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51030805A
Other languages
Japanese (ja)
Other versions
JPS52114421A (en
Inventor
健 増本
啓安 藤森
紀雄 菊地
栄一 広田
肇 川又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO
Original Assignee
TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO filed Critical TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO
Priority to JP51030805A priority Critical patent/JPS59582B2/en
Publication of JPS52114421A publication Critical patent/JPS52114421A/en
Publication of JPS59582B2 publication Critical patent/JPS59582B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、磁気ヘツド用合金とその製造方法に関し、特
に本発明は、COを主成分とする磁歪が少なく耐摩耗性
の大きい磁気ヘツド用非晶質合金とその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alloy for a magnetic head and a method for manufacturing the same, and particularly the present invention relates to an amorphous alloy for a magnetic head that has CO as a main component and has low magnetostriction and high wear resistance, and a manufacturing method thereof. It is about the method.

従来磁気ヘツドとしては、MOパーマロイヤミユメタル
が主として用いられているが、これら合金は長時間使用
すると磁気テープによる摩耗のために録音特性が著しく
劣化する点に問題があり、特にビデオ装置、電算機ある
いはカードリーダーの磁気テープ装置は高い信頼性が要
求されるため、電気的特性の優れていることと共に耐摩
耗性のある磁気ヘツド用材料が要望されていた。
Conventionally, MO permalloy metals have been mainly used for magnetic heads, but these alloys have a problem in that when used for long periods of time, the recording characteristics deteriorate significantly due to wear caused by the magnetic tape, especially in video equipment and computer equipment. Since magnetic tape devices for machines and card readers are required to have high reliability, there has been a demand for materials for magnetic heads that have excellent electrical properties and wear resistance.

磁気ヘツド用磁性合金としては、前述のパーマロイ系の
ほかにフエライト、アルパームあるいはセンタストのよ
うな高硬度の材料も用いられている。
In addition to the above-mentioned permalloy, high-hardness materials such as ferrite, alperm, and centast are also used as magnetic alloys for magnetic heads.

これらのうちフエライトは高周波において優れた電磁気
特性を示し、かつ硬度は大きく、また摩耗及び変形は小
さいが、一方飽和磁化が低く、記録歪みの問題などがあ
り、また雑音が多く、信号対雑音比(S/N比)を大き
くすることができないことが本質的欠陥となつている。
またアルパームやセンタストは磁気特性の点では優れて
いるが硬度、摩耗性はともに余り高くないという欠点が
ある。一般に高周波記録用金属磁気ヘツドは渦電流損失
による磁性の劣化を防止するため薄板状にすることが必
要であるが、これらの材料は展延性に乏しいため、所要
厚みの薄板とすることが困難で、機械加工性も非常に悪
いという欠点を有している。
Of these, ferrite exhibits excellent electromagnetic properties at high frequencies, has high hardness, and has low wear and deformation, but has low saturation magnetization, problems with recording distortion, and high noise, resulting in a signal-to-noise ratio. The inability to increase the S/N ratio is an essential defect.
Furthermore, although Alperm and Centast are excellent in terms of magnetic properties, they have the disadvantage that both hardness and abrasion resistance are not very high. Metal magnetic heads for high-frequency recording generally need to be made into thin plates to prevent deterioration of magnetism due to eddy current loss, but these materials have poor malleability, so it is difficult to make them into thin plates of the required thickness. However, it also has the disadvantage of very poor machinability.

以上述べたように従来高密度記録用磁気・\ツドに適す
る磁性材料は未だ得られていない。最近非晶質金属磁性
材料の研究が多くなり、この材料は従来の金属磁性材料
にみられた磁気特性に加えて電気抵抗が高く、さらに製
法上から本質的に薄板状で得られるため高周波磁心とし
て有望なことが報告されている。
As mentioned above, a magnetic material suitable for high-density recording magnetism has not yet been obtained. Recently, there has been a lot of research into amorphous metal magnetic materials, and in addition to the magnetic properties seen in conventional metal magnetic materials, this material has high electrical resistance, and because it can be obtained essentially in the form of a thin plate due to the manufacturing method, it can be used as a high-frequency magnetic core. It has been reported that it is promising.

すなわちFe,CO,Niとその他にP,C,B,Si
などの硝子化原子を約20原子%含む成分組成の非晶質
金属磁性材料は通常の結晶質磁性材料と異なつて結晶磁
気異方性がないため保磁力が小さく、透磁率が大きい。
また電気抵抗が結晶質に比べて大きく、硬度も高い。こ
のことから非晶質金属磁性材料は磁気ヘツド材として理
想的な材料であると思われる。しかしながら第1表に示
すように非晶質と結晶質合金およびフエライトの硬度と
摩耗率を比較すると従来の非晶質金属磁性材料は比較的
大きな硬度を有するにも拘らず、磁気ヘツドとしての耐
摩耗性は不十分であり、この点の改良が必要であつた。
本発明は、磁歪および保磁力が小さく、良好な角形ヒス
テリシス特性を有し、非晶質化が容易で、結晶化および
磁気変態温度が高く、硬度が高く、耐摩耗性に富み、か
つ成形加工が容易な高密度磁気記録に適する磁気ヘツド
用非晶質合金とその製造方法を提供することを目的とす
るものである。上記の目的を達成するための発明の要旨
とするところは、原子比でFe3〜7%、Si2.5%
以下、B7〜30%を含み残部実質的にCOよりなる非
晶質合金、あるいは前記合金においてCOの1部を下記
(イ)〜(卜)でそれぞれ置換してなる非晶質合金とそ
の製造方法に関するものである。(イ)Ni,Pd,P
tのうちから選ばれる何れか少なくとも1種を原子比率
で20%以下。
That is, Fe, CO, Ni and others P, C, B, Si
Unlike ordinary crystalline magnetic materials, an amorphous metallic magnetic material having a component composition containing about 20 at.
It also has higher electrical resistance and higher hardness than crystalline materials. From this, it appears that amorphous metallic magnetic materials are ideal materials for magnetic head materials. However, as shown in Table 1, when comparing the hardness and wear rate of amorphous, crystalline alloys, and ferrite, conventional amorphous metal magnetic materials have relatively high hardness, but do not have sufficient durability as magnetic heads. Abrasion resistance was insufficient, and improvement in this respect was necessary.
The present invention has low magnetostriction and coercive force, good square hysteresis characteristics, is easy to become amorphous, has high crystallization and magnetic transformation temperatures, is high in hardness, has high wear resistance, and is moldable. The object of the present invention is to provide an amorphous alloy for a magnetic head that is suitable for high-density magnetic recording, and a method for manufacturing the same. The gist of the invention to achieve the above object is that Fe3-7% and Si2.5% in atomic ratio
Hereinafter, an amorphous alloy containing 7 to 30% B and the remainder substantially CO, or an amorphous alloy obtained by replacing a part of CO with the following (A) to (B), respectively, and the production thereof. It is about the method. (a) Ni, Pd, P
The atomic ratio of at least one selected from t is 20% or less.

(ロ) P,Cの何れか少なくとも1種を原子比率で1
5%以下。
(b) At least one of P or C in an atomic ratio of 1
Less than 5%.

(ハ)Cr,V,MO,W,Ti,Zr,Nbのうちか
ら選ばれる何れか少なくとも1種を原子比率で10%以
下。
(c) At least one selected from Cr, V, MO, W, Ti, Zr, and Nb in an atomic ratio of 10% or less.

(ニ)Ru,Rhの何れか少なくとも1種を原子比率で
7%以下。
(d) At least one of Ru and Rh is contained in an atomic ratio of 7% or less.

(ホ)Mnを原子比率で5%以下。(e) Mn in atomic ratio of 5% or less.

(へ)Cuを原子比率で5%以下。(f) Cu content in atomic ratio of 5% or less.

(卜)前記(イ)〜(へ)の群のうちから選ばれる何れ
か少なくとも2群を原子比率で20%以下。
(卜) At least two groups selected from the groups (a) to (f) above are present in an atomic ratio of 20% or less.

次に本発明を詳細に説明する。Next, the present invention will be explained in detail.

本発明者らは、先に発明して特許出願した高透磁率アモ
ルフアス合金(特願昭50−1510号)および高透磁
率アモルフアス合金の磁気特性改質方法(特願昭50−
1509号)につき、磁気特性をさらに向上させると共
に、耐摩耗性を向上させて磁気ヘツドに適する合金とす
るため種々研究を行なつた結果、本発明の成分組成を有
する合金溶湯を超急冷して、非晶質化することにより、
あるいはその後さらに所定の熱処理を施すことにより、
あるいは前記所定の熱処理を磁場中で施すことにより極
めて優れた磁気特性を付与することができると共に、こ
の非晶質合金は磁気テープとの高速接触時の摩耗が極め
て少ないこと、すなわち本発明の成分組成を有する非晶
質磁性材料を用いた磁気ヘツドは優れた磁気特性と共に
、従来の非晶質磁性材料では知られていなかつた優れた
耐摩耗性を示し、これを用いた磁気ヘツドは特に高密度
記録用として優れたものであることを新規に知つた。
The present inventors have previously invented and applied for a patent on a high permeability amorphous amorphous alloy (Japanese Patent Application No. 1510-1982) and a method for modifying the magnetic properties of a high-permeability amorphous alloy (Japanese Patent Application No. 1510-1989).
No. 1509), we conducted various studies to further improve the magnetic properties and wear resistance to make the alloy suitable for magnetic heads.As a result, we developed a molten alloy having the composition of the present invention by ultra-quenching. , by becoming amorphous,
Or by further applying a prescribed heat treatment,
Alternatively, by performing the prescribed heat treatment in a magnetic field, it is possible to impart extremely excellent magnetic properties, and this amorphous alloy has extremely low wear during high-speed contact with a magnetic tape. Magnetic heads using amorphous magnetic materials with this composition exhibit excellent magnetic properties as well as excellent wear resistance, which was not known with conventional amorphous magnetic materials. I newly learned that it is excellent for density recording.

本発明の磁気ヘツド用合金は前記特長の他に次のような
特長をも有する。
In addition to the above features, the magnetic head alloy of the present invention also has the following features.

機械加工によつてその磁性が殆んど劣化しない。例えば
透磁率、保磁力残留磁束密度などは合金に張力を加えて
も殆んど一定で変らず、外部応力に対して不感である。
したがつて本発明の合金が、切断、打ち抜きなどの機械
加工によつて磁性が殆んど劣化しないことは磁気ヘツド
製造上非常に有利である。さらに本発明の合金の他の特
長は、合金の電気抵抗が140μΩ−?以上と高く、し
かも20〜40μm程度の薄板状で製造できるので、高
周波特性の良い磁気ヘツドすなわち高密度記録用磁気ヘ
ツド用として非常に適した合金である点にある。次に本
発明の合金の成分組成範囲を限定する理由を述べる。
Its magnetic properties are hardly degraded by machining. For example, magnetic permeability, coercive force, residual magnetic flux density, etc. remain almost constant even when tension is applied to the alloy, and are insensitive to external stress.
Therefore, the fact that the magnetic properties of the alloy of the present invention hardly deteriorate when subjected to machining such as cutting or punching is very advantageous in manufacturing magnetic heads. Furthermore, another feature of the alloy of the present invention is that the electrical resistance of the alloy is 140 μΩ-? Moreover, since it can be manufactured in the form of a thin plate with a thickness of about 20 to 40 .mu.m, it is an alloy that is very suitable for use in magnetic heads with good high frequency characteristics, that is, magnetic heads for high-density recording. Next, the reason for limiting the composition range of the alloy of the present invention will be described.

Feは3%より少ないとき、および701)より多いと
きは、磁歪が増し、透磁率が減少し、磁気ヘツド用とし
て十分な特性が得られないので、3〜7%の範囲内にす
る必要がある。
When Fe is less than 3% and when it is more than 701), magnetostriction increases and magnetic permeability decreases, making it impossible to obtain sufficient characteristics for magnetic heads, so it is necessary to keep it within the range of 3 to 7%. be.

Slは合金組織の非晶質化を助成し、かつ耐摩耗性の増
大に寄与する元素であるが25%より多いときには非晶
質合金とすることが困難でかつ合金を脆化するので、2
5%以下にする必要がある。
Sl is an element that helps make the alloy structure amorphous and contributes to increased wear resistance, but if it exceeds 25%, it is difficult to form an amorphous alloy and the alloy becomes brittle.
It is necessary to keep it below 5%.

なおSiを含有しない合金も本発明の磁気ヘツド用非晶
質合金として使用することができる。BはSiと同様合
金組織の非晶質化を助成する元素であり、7%より少な
いとき、あるいは30%より多いときには非晶質合金と
することが困難で、かつ合金を脆化するので、7〜30
%の範囲内とする必要がある。なおSi6〜25%、B
8〜10%の成分範囲内において、磁気テープとの摩耗
がさらに少なく、特にSll5〜25%、B8〜10%
の範囲内において、最も耐摩耗性の優れたしかも飽和磁
束密度が高く保磁力が小さい非晶質合金が得られる。
Note that alloys that do not contain Si can also be used as the amorphous alloy for the magnetic head of the present invention. Like Si, B is an element that helps make the alloy structure amorphous, and when it is less than 7% or more than 30%, it is difficult to form an amorphous alloy and the alloy becomes brittle. 7-30
It must be within the range of %. Note that Si6-25%, B
Within the component range of 8 to 10%, there is even less wear with the magnetic tape, especially Sll 5 to 25% and B 8 to 10%.
Within this range, an amorphous alloy with the best wear resistance, high saturation magnetic flux density, and low coercive force can be obtained.

Nl,Pd,Ptは共に第8族に属する金属であり、透
磁率を高くするが、これらのうちから選ばれる少なくと
も1種が20(Ff)を超える場合には飽和磁束密度を
低下させるので20%以下にする必要がある。P,Cは
合金組織の非晶質化を助成し、かつ多いほど透磁率が高
くなるが、P,Cの何れ力沙なくとも1種が15(f)
より多いと飽和磁束密度を低下させるので、1501)
以下にする必要がある。
Nl, Pd, and Pt are all metals belonging to Group 8 and increase magnetic permeability, but if at least one selected from these exceeds 20 (Ff), the saturation magnetic flux density decreases. % or less. P and C help make the alloy structure amorphous, and the higher the amount, the higher the magnetic permeability, but at least one of P and C is 15(f).
1501) since the higher the content, the lower the saturation magnetic flux density.
It is necessary to do the following.

Cr,V,MO,W,Ti,Zr,Nbのうちから選ば
れる少なくとも1種を10%より多くすると、硬度およ
び電気抵抗は増すが保磁力ガタ増大し、透磁率が低下す
るため高周波特性が著しく悪くなるから、10(:Ff
)以下にする必要がある。Ru,Rhの何れか少なくと
も1種を7(fl)より多くすると、透磁率は高くなる
が硬度が下るので、701)以下にする必要がある。M
nは電気抵抗を高め、保磁力を減少させる効果がある元
素であるが、5(:F6より多くすると飽和磁束密度を
著しく低下させるので、5(f)以下にする必要がある
If the content of at least one selected from Cr, V, MO, W, Ti, Zr, and Nb is increased by more than 10%, the hardness and electrical resistance will increase, but the coercive force will also increase, and the magnetic permeability will decrease, resulting in poor high frequency characteristics. It gets significantly worse, so 10(:Ff
) must be as follows. If the amount of at least one of Ru and Rh is more than 7 (fl), the magnetic permeability will increase but the hardness will decrease, so it is necessary to make it 701) or less. M
n is an element that has the effect of increasing electrical resistance and decreasing coercive force, but if it is greater than 5(:F6), the saturation magnetic flux density will be significantly lowered, so it needs to be 5(f) or less.

Cuは透磁率、保磁力を害せず、耐摩耗性を向上させる
元素であるが、5%より多くすると飽和磁束密度が著し
く低下するので5%以下にする必要がある。
Cu is an element that does not impair magnetic permeability and coercive force and improves wear resistance, but if it exceeds 5%, the saturation magnetic flux density will drop significantly, so it must be kept at 5% or less.

本発明の特許請求の範囲第10項記載の磁気ヘツド用非
晶質合金において(イ)、(口)、(ハ)、(ニ)、(
ホ)、(へ)群のうちから選ばれる何れか少なくとも2
群を20%より多くすると飽和磁束密度が著しく低下す
るので、20%以下にする必要がある。
In the amorphous alloy for a magnetic head according to claim 10 of the present invention, (a), (h), (c), (d), (
At least two selected from the group e) and (f)
If the number of groups is more than 20%, the saturation magnetic flux density will be significantly lowered, so it is necessary to make it 20% or less.

本発明の磁気ヘツド用非晶質合金の製造方法について説
明する。
A method for producing an amorphous alloy for magnetic heads according to the present invention will be explained.

本発明の成分組成を有する合金溶湯を溶融状態より少な
くとも104℃/秒の冷却速度で超急冷して非晶化する
ことにより、薄板状の本発明の磁歪が小さく耐摩耗性の
大きい磁気ヘツド用非晶質合金を製造することができる
By ultra-quenching the molten alloy having the composition of the present invention from the molten state at a cooling rate of at least 104°C/sec to amorphize it, the thin plate-shaped magnetic head of the present invention with low magnetostriction and high wear resistance can be manufactured. Amorphous alloys can be produced.

前記超急冷は104℃/秒未満では完全に非晶質化する
ことができないので、104゜Q/秒以上の冷却速度で
行なう必要がある。
Since the ultra-quenching cannot be completely amorphized at a cooling rate of less than 104°C/sec, it is necessary to carry out the cooling at a cooling rate of 104°Q/sec or more.

前記溶融状態より超急冷して非晶質化するには例えば第
1図に概略を示す如き装置を用いることができる。
For example, an apparatus as schematically shown in FIG. 1 can be used to ultra-quickly cool the molten state to make it amorphous.

図において、1は下方先端に水平方向に噴出するノズル
2を有する石英管で、その中には原料合金3が装入され
、溶解される。4は原料合金3を加熱するための加熱炉
であり、5はモーター6により高速度、例えば5000
r.p.mで回転される回転ドラムで、これは、ドラム
の回転による遠心力負荷をできるだけ小さくするため、
軽量で熱伝導性の良い金属、例えばアルミニウム合金よ
りなり、内面には更に熱伝導性の良い金属、例えば銅板
7で内張りされている。
In the figure, reference numeral 1 denotes a quartz tube having a nozzle 2 at its lower end that ejects water in a horizontal direction, into which a raw material alloy 3 is charged and melted. 4 is a heating furnace for heating the raw material alloy 3, and 5 is a heating furnace for heating the raw material alloy 3;
r. p. This is a rotating drum that is rotated at m, in order to minimize the centrifugal force load due to the rotation of the drum.
It is made of a lightweight metal with good heat conductivity, such as an aluminum alloy, and the inner surface is further lined with a metal with good heat conductivity, such as a copper plate 7.

8は石英管1を支持して上下に移動するためのエアピス
トンである。
8 is an air piston for supporting the quartz tube 1 and moving it up and down.

原料合金は、先ず石英管1の送入口1aより流体搬送等
により装入され加熱炉4の位置で加熱溶解され、次いで
エアピストン8により、ノズル2が回転ドラム5の内面
に対向する如く、石英管1が図に示す位置に下降され、
次いで上昇を開始するとほマ同時に溶融合金3にガス圧
が加えられて、合金が回転ドラムの内面に向かつて噴流
される。石英管内部へは合金3の酸化を防ぐため絶えず
不活性ガス、例えばアルゴンガス9を送入し不活性雰囲
気としておくものとする。回転ドラム内面に噴流された
合金は高速回転による遠心力のため、回転ドラム内面に
強く接触せしめられることにより、超高速冷却が与えら
れて非晶質合金とすることができる。なお少なくとも1
04℃/秒の冷却速度で超急冷するには前記遠心急冷す
る手段及び装置のほかに例えば圧延急冷する手段及び装
置を用いても行なうことができる。
The raw material alloy is first charged through the inlet port 1a of the quartz tube 1 by fluid conveyance, etc., and heated and melted in the heating furnace 4. Then, the raw material alloy is heated and melted by the air piston 8 so that the nozzle 2 faces the inner surface of the rotating drum 5. The tube 1 is lowered to the position shown in the figure,
Then, almost at the same time as it starts to rise, gas pressure is applied to the molten alloy 3, and the alloy is jetted toward the inner surface of the rotating drum. In order to prevent the alloy 3 from oxidizing, an inert gas such as argon gas 9 is constantly fed into the quartz tube to create an inert atmosphere. The alloy jetted onto the inner surface of the rotating drum is brought into strong contact with the inner surface of the rotating drum due to the centrifugal force caused by the high-speed rotation, thereby being cooled at an ultra-high speed and can be turned into an amorphous alloy. At least 1
Ultra-quenching at a cooling rate of 0.4 DEG C./second can be carried out by using, for example, a rolling quenching means and apparatus in addition to the centrifugal quenching means and apparatus described above.

このようにして例えば厚さ20μm程度のリボン薄板状
の本発明の非晶質合金を製造することができる。
In this way, the amorphous alloy of the present invention in the form of a thin ribbon having a thickness of, for example, about 20 μm can be produced.

本発明の溶融状態の合金を超急冷することによつて非晶
質化し、合金の結晶異方性を消失させることができる効
果がある。
Ultra-quenching the molten alloy of the present invention has the effect of making it amorphous and eliminating the crystal anisotropy of the alloy.

さらにまた前記超急冷してなる非晶質合金をその合金の
結晶化温度未満の温度で焼鈍した後、急冷あるいは徐冷
して本発明の磁気ヘツド用非晶質合金を得ることができ
る。この場合焼鈍雰囲気は非酸化性あるいは真空中で行
うことは有利である。前記本発明の合金の結晶化温度は
その成分組成によつて異なるが大体380〜550℃の
範囲内にあり、結晶化温度以上の温度で焼鈍すると再結
晶して異方性を有するようになり磁気ヘツドとして使用
するに必要な磁気特性が劣化するに至る。
Furthermore, the amorphous alloy for magnetic heads of the present invention can be obtained by annealing the ultra-quenched amorphous alloy at a temperature below the crystallization temperature of the alloy and then rapidly or slowly cooling it. In this case, it is advantageous for the annealing to be performed in a non-oxidizing atmosphere or in a vacuum. The crystallization temperature of the alloy of the present invention varies depending on its component composition, but is generally within the range of 380 to 550°C, and when annealed at a temperature higher than the crystallization temperature, it recrystallizes and becomes anisotropic. This leads to deterioration of the magnetic properties necessary for use as a magnetic head.

前記焼鈍、ならびにそれに続く急冷あるいは徐冷により
加工歪を除去させ、軟磁性を向上させる効果がある。前
記焼鈍は特に150℃乃至結晶化温度未満の温度範囲で
行うと優れた諸特性を有する本発明の合金を得ることが
できる。
The annealing and the subsequent rapid cooling or slow cooling have the effect of removing processing strain and improving soft magnetism. The alloy of the present invention having excellent properties can be obtained especially when the annealing is carried out at a temperature ranging from 150° C. to below the crystallization temperature.

なおこの場合の保持時間はおよそ1分乃至500時間で
ある。本発明の合金のさらに他の製造方法として、前記
超急冷して非晶質化した合金を磁場内で焼鈍した後、急
冷あるいは徐冷して本発明の合金を得ることができる。
Note that the retention time in this case is approximately 1 minute to 500 hours. As yet another method for producing the alloy of the present invention, the alloy of the present invention can be obtained by annealing the ultra-quenched and amorphous alloy in a magnetic field and then rapidly or slowly cooling it.

この場合超急冷により非晶質化する条件ならびに焼鈍す
る条件は既述本発明の他の方法とそれぞれ同様の条件で
行なうことができる。
In this case, the conditions for amorphousization by ultra-quenching and the conditions for annealing can be the same as in the other methods of the present invention described above.

この方法において磁場内で焼鈍した後急冷、あるいは徐
冷することにより加工歪の除去と共に磁区図形を容易磁
化方向に整列させる効果があり、軟磁性を非磁場内焼鈍
の場合に較べ向上させることができる。前記本発明方法
において磁場の強さは通常5000e以下で充分であり
、5000e以上で磁化が飽和するのでそれ以上強い磁
場で磁化するには及ばない。
In this method, rapid cooling or slow cooling after annealing in a magnetic field has the effect of removing machining strain and aligning the magnetic domain shape in the easy magnetization direction, improving soft magnetism compared to annealing in a non-magnetic field. can. In the method of the present invention, it is usually sufficient for the magnetic field strength to be 5000 e or less, and since magnetization is saturated at 5000 e or more, magnetization cannot be achieved with a stronger magnetic field.

このようにして得られたリボン状薄板の磁気特性をGi
Offi型のB−Hループ積分器で測定すると保磁力0
.0060e1最大透磁率950,000の最高値を有
する優秀な高透磁率非晶質合金が得られる。
The magnetic properties of the ribbon-like thin plate thus obtained are Gi
Coercive force is 0 when measured with an Offi type B-H loop integrator.
.. 0060e1 An excellent high permeability amorphous alloy with a maximum permeability of 950,000 is obtained.

土述の超急冷は結晶異方性を消失させる効果をもち、ま
た上記の急冷に次いで行なわれる非磁場中あるいは磁場
中の加熱、冷却は加工歪の除去と、特に磁場中加熱、冷
却はさらに磁区図形を容易磁化方向に整列させる効果が
あり、軟磁性を向土させるが、特に150℃以上結晶化
温度未満の加熱においてその効果が大きいことが見出さ
れた。次に本発明の合金において、熱処理と磁気特性と
の関係について説明する。
The ultra-quenching described above has the effect of eliminating crystal anisotropy, and the heating and cooling performed in a non-magnetic field or in a magnetic field after the above-mentioned quenching is for the removal of processing strain, and especially the heating and cooling in a magnetic field has the effect of eliminating crystal anisotropy. It has the effect of aligning the magnetic domain shape in the direction of easy magnetization and improves soft magnetism, and it has been found that this effect is particularly great when heated at a temperature of 150° C. or higher and lower than the crystallization temperature. Next, the relationship between heat treatment and magnetic properties of the alloy of the present invention will be explained.

例えばFe4.7%、Sil5%、BlO%を含み残部
実質的にCOよりなる本発明のFe−CO−Si−B系
非晶質合金(以下合金の成分組成の表示を簡略にするた
めFe4.7cO7O.3si,5BlOの如く記載す
る)のリボン状試料を用いて種々な熱処理を施した後保
磁力、残留磁束密度および最大透磁率を測定した結果、
第2表に示す如き特性値を得た。
For example, the Fe-CO-Si-B amorphous alloy of the present invention contains 4.7% of Fe, 5% of Sil, and % of BIO, with the remainder substantially consisting of CO (hereinafter, to simplify the display of the composition of the alloy, Fe4. As a result of measuring coercive force, residual magnetic flux density, and maximum magnetic permeability after various heat treatments using ribbon-shaped samples of 7cO7O.3si, 5BIO),
Characteristic values as shown in Table 2 were obtained.

同表中特に試料番号2−4は200℃の真空中で400
0eの磁場内で30分加熱後徐冷したものであり、保磁
力0.0060e1最大透磁率950,000μmの優
秀な特性と共にビツカース硬度(H)870という高い
硬度を有するに至り、磁気ヘツド用として好適に使用す
ることができる。第2図はFe4.7cO7O.3Si
l5BlOの成分組成の合金(第3表合金番号1)を超
急冷しつつリボン状とした後、コイルに巻いてヒステリ
シスループを測定した結果を示す図である。
In particular, sample number 2-4 in the same table is 400℃ in vacuum at 200℃
It is heated in a magnetic field of 0e for 30 minutes and then slowly cooled, and has excellent properties with a coercive force of 0.0060e and a maximum permeability of 950,000 μm, as well as a high hardness of Vickers hardness (H) of 870, making it suitable for magnetic heads. It can be suitably used. Figure 2 shows Fe4.7cO7O. 3Si
FIG. 3 is a diagram showing the results of measuring the hysteresis loop of an alloy having a composition of 15B1O (Alloy No. 1 in Table 3) which was ultra-quenched into a ribbon shape and then wound into a coil.

図中急冷状態の場合を1とし、200℃で120分間焼
鈍した場合を2、200℃で4000eの磁場中で30
分間加熱後20『C/Hrの速度で冷却した状態を3で
示す。急冷状態の保磁力は0.0110e1最大透磁率
は130,000であり、これも磁気ヘツド用として充
分使用することができるがこれを焼鈍した場合それぞれ
0.0170e1170,000となつて焼鈍のみによ
つて角形性が増大すると共に磁気ヘツド用として欠くこ
とのできない特性であるビツカース硬度は870、摩耗
量(フエライトを1とした場合)は3であり、第3表最
下段に示すフエライトを除く従来品に較べて摩耗の少な
いことから、さらに磁気ヘツド用として好適であること
が判る。一方前記合金リボンを磁場中で焼鈍後急冷する
と保磁力は0.0060eと減少し最大透磁率は950
,000まで増し、角形性も大きく、かつビツカース硬
度8701摩耗量(フエライトを1とした場合)3とな
り、従来品に比し高透磁性でかつ摩耗量が少ない。すな
わち前記諸特性は本発明の磁気ヘツド用非晶質合金の大
きな特徴である。本発明の合金、例えば第3表合金番号
1を急冷したものについて保磁力および残留磁束密度に
対する張力の影響を研究したところ第3図に示す結果を
得た。
In the figure, 1 is the case of rapid cooling, 2 is the case of annealing at 200℃ for 120 minutes, and 30 is the case of annealing at 200℃ in a magnetic field of 4000e.
The state of cooling at a rate of 20 C/Hr after heating for minutes is indicated by 3. The coercive force in the rapidly cooled state is 0.0110e1, and the maximum magnetic permeability is 130,000, which can also be used sufficiently for magnetic heads, but when annealed, it becomes 0.0170e1170,000, and it is difficult to use only by annealing. As a result, the squareness increases, and the Vickers hardness, which is an indispensable characteristic for magnetic heads, is 870, and the wear amount (when ferrite is 1) is 3. Conventional products other than ferrite shown in the bottom row of Table 3 It can be seen that it is more suitable for use in magnetic heads because it has less wear compared to the previous one. On the other hand, when the alloy ribbon is annealed in a magnetic field and then rapidly cooled, the coercive force decreases to 0.0060e and the maximum permeability decreases to 950.
,000, the squareness is large, and the Vickers hardness is 8701, and the wear amount is 3 (when ferrite is 1), and it has high magnetic permeability and less wear amount than conventional products. That is, the above-mentioned properties are major features of the amorphous alloy for magnetic heads of the present invention. The influence of tension on the coercive force and residual magnetic flux density of the alloy of the present invention, such as alloy No. 1 in Table 3, which was rapidly cooled was studied, and the results shown in FIG. 3 were obtained.

この結果によれば、張力の影響はほとんど認められず、
本発明の合金は切断、打ち抜きなどの機械加工によつて
磁性が殆んど劣化しないことは本発明の他の1つの特徴
である。本発明の合金例えば第2表合金番号2−1につ
いて高周波特性を測定した結果、第4図1に示すように
実効透磁率は周波数100KHz付近までは変化せず、
可聴周波数範囲内で優秀な性質を示すことが判る。
According to this result, almost no effect of tension was observed;
Another feature of the present invention is that the magnetism of the alloy of the present invention is hardly deteriorated by machining such as cutting or punching. As a result of measuring the high frequency characteristics of the alloy of the present invention, for example alloy number 2-1 in Table 2, the effective magnetic permeability did not change up to a frequency of around 100 KHz, as shown in Fig. 4.
It can be seen that it exhibits excellent properties within the audible frequency range.

また前記合金は第3表合金番号1の電気比抵抗の欄に示
す如く140μΩ−?と大きく、20〜40μm程度の
薄板の製造が容易なため磁気ヘツドとしての感度をより
優れたものとすることができる。一方第4図には比較の
ために従来品(アルバーム)の実効透磁率を破線で示す
が、本発明品は前記従来品よりこの特性値をはるかに凌
ぐものであることが判る。本発明の合金において、その
耐摩耗性は第5お飼よび6図に示す如く従来品たるセン
タストよりははるかに優れており、フエライトにほマ匹
敵することが判る。
The alloy has a resistance of 140μΩ-? as shown in the electrical resistivity column of Alloy No. 1 in Table 3. Since it is easy to manufacture a thin plate of about 20 to 40 .mu.m, the sensitivity of the magnetic head can be improved. On the other hand, in FIG. 4, the effective magnetic permeability of the conventional product (album) is shown by a broken line for comparison, and it can be seen that the product of the present invention far exceeds this characteristic value than the conventional product. As shown in Figures 5 and 6, the wear resistance of the alloy of the present invention is far superior to that of the conventional Centast product, and is almost comparable to that of ferrite.

なお第5図に示す測定は厚さ0.07m77!、巾2m
m1長さ3mmの寸法に調整した非晶質合金片を用いV
TR磁気ヘツドを作り、テープと接触するヘツドトラツ
ク面の幅を0.07mへ長さを2mmとして相対速度1
1m/SO)CrO2の磁気テープに擦り合わせ摩耗量
を求めたものである。また第6図にみる如くFe−CO
−Si−B系非晶質合金の耐摩耗性は、非晶質化可能な
領域において摩耗率が3〜5の間で変化しており、Si
およびB量を変えることにより任意の摩耗率をもつ合金
が得られるが、B8〜12%、Sil5〜25%で囲ま
れる領域においてもつともすぐれた耐摩耗性を有する合
金の得られることが判る。以上第3表合金番号1の本発
明の合金についてその特性の研究結果を述べたが、これ
らの特性の傾向は本発明のすべての合金に共通している
The measurement shown in Figure 5 has a thickness of 0.07m77! , width 2m
V using an amorphous alloy piece adjusted to m1 length 3 mm
Make a TR magnetic head, set the width of the head track surface in contact with the tape to 0.07 m, the length to 2 mm, and set the relative speed to 1.
1m/SO) CrO2 magnetic tape was rubbed against it to determine the amount of wear. Also, as shown in Figure 6, Fe-CO
-The wear resistance of the Si-B amorphous alloy is such that the wear rate varies between 3 and 5 in the region where it can become amorphous, and the
Although an alloy having an arbitrary wear rate can be obtained by changing the B content, it is clear that an alloy with excellent wear resistance can be obtained in the region surrounded by 8 to 12% B and 5 to 25% Sil. The results of research on the properties of the alloy of the present invention, Alloy No. 1 in Table 3, have been described above, but the trends in these properties are common to all alloys of the present invention.

次に本発明を第3表記載の他の実施例の数例について説
明する。実施例 1 第3表合金番号7のFe5cO7Osi,5BlO+W
2の成分組成の非晶質合金に種々の熱処理を施して得た
結果を第3表および第4表について説明する。
Next, the present invention will be described with reference to several other embodiments listed in Table 3. Example 1 Table 3 Alloy No. 7 Fe5cO7Osi, 5BlO+W
The results obtained by subjecting the amorphous alloy having the component composition No. 2 to various heat treatments will be explained with reference to Tables 3 and 4.

同表中例えば番号3−4によれば200℃の真空中40
00eの磁場中で30分加熱後徐冷した .1ものは最
大透磁率μ771310,000、ビツカース硬度Hv
86Oであり磁気ヘツド用として極めて優秀であること
が判る。実施例 2 第3表合金番号10のFe5CO7OSil5BlO+
(Ni+M)2の成分組成の非晶質合金に種々の熱処理
を施して得た結果を第3表および第5表により説明する
For example, according to number 3-4 in the same table, 40
After heating in a magnetic field of 00e for 30 minutes, it was slowly cooled. 1 has a maximum magnetic permeability μ771310,000 and a Vickers hardness Hv
86O, and is found to be extremely excellent for use in magnetic heads. Example 2 Table 3 Alloy No. 10 Fe5CO7OSil5BlO+
Tables 3 and 5 explain the results obtained by subjecting an amorphous alloy having a component composition of (Ni+M)2 to various heat treatments.

同表中例えば番号4−5によれば400℃の真空中40
00eの磁場中で30分加熱後徐冷したものは最大透磁
率μM25O,OOOlビツカース硬度Hv85Oであ
り磁気ヘツド用として極めて優秀であることが判る。
For example, according to number 4-5 in the same table, 40
The material which was heated for 30 minutes in a magnetic field of 00e and then slowly cooled had a maximum magnetic permeability of μM25O and an OOOl Vickers hardness of Hv85O, which indicates that it is extremely excellent for use in magnetic heads.

以上実施例1および2、ならびに第3表合金番号1のF
e4.7cO7O.3sil5BlOの合金において見
られた優秀な軟磁気特性は非晶質合金が結晶異方性をも
たず、かつ組成的に磁歪が1×1『6以下にあることに
よるものである。
Examples 1 and 2 above, and F of alloy number 1 in Table 3
e4.7cO7O. The excellent soft magnetic properties observed in the 3sil5BlO alloy are due to the fact that the amorphous alloy has no crystal anisotropy and has a compositional magnetostriction of 1×1′6 or less.

既に説明した本発明の合金と共に、その他の成分組成を
有する本発明の合金の磁気的、機械的特性を従来品と比
較して示す。
The magnetic and mechanical properties of the alloys of the present invention having other compositions as well as the alloys of the present invention described above are shown in comparison with conventional products.

第3表より明らかな如く本発明の高透磁率合金は従来品
と同等以上の磁気特性を有し、かつ電気抵抗率が従来品
のほマ2倍以上になると共に摩耗率においてはそれを大
きく上廻つている。本発明の急冷状態の非晶質合金は低
温焼鈍によつて保磁力は減少するが、磁場中焼鈍によつ
てさらに磁気特性を向上させることができることが判る
As is clear from Table 3, the high magnetic permeability alloy of the present invention has magnetic properties equivalent to or better than conventional products, and has an electrical resistivity that is more than twice that of conventional products, and a significantly higher wear rate. It's going up. It can be seen that although the coercive force of the rapidly cooled amorphous alloy of the present invention is reduced by low-temperature annealing, the magnetic properties can be further improved by annealing in a magnetic field.

また磁場中焼鈍により6800Gの飽和磁束密度、50
00の初透磁率、950,000の最大透磁率と0.0
060eの保磁力が得られたが、この特性は比較的低温
の焼鈍により得られ、容易に劣化しない特長がある。さ
らにまた電気抵抗率の高いこと、硬度の高いこと、耐摩
耗性の大きいことに加えて、非晶質本来の性質である薄
板試料を容易に製造することができ、しかも切断、打ち
抜き加工が容易であるという大きな特長を兼ね備えてい
るので、電子計算機、録画用、カードリーダー用などの
磁気ヘツドのコア材として非常に好適に使用することが
できる。
In addition, by annealing in a magnetic field, the saturation magnetic flux density of 6800G, 50
Initial permeability of 00, maximum permeability of 950,000 and 0.0
A coercive force of 060e was obtained, but this property was obtained by annealing at a relatively low temperature and has the advantage of not easily deteriorating. Furthermore, in addition to having high electrical resistivity, high hardness, and high wear resistance, it is possible to easily manufacture thin plate samples due to their inherent amorphous properties, and it is also easy to cut and punch. Because it has these great features, it can be very suitably used as a core material for magnetic heads for computers, video recorders, card readers, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の合金を溶融状態から超急冷するに用い
られる装置の1例を示す概略図、第2図はFe−CO−
Si−B非晶質合金のヒステリシスループを示す図、第
3図はFe−CO−Si−B非晶質合金の張力に対する
保磁力と飽和磁束密度との関係を示す図、第4図はFe
−CO−Si−B非晶質合金の周波数と実効透磁率との
関係を示す図、第5図はFe−CO−Si−B非晶質合
金の摩耗量と時間との関係を示す図、第6図はFe−C
O−Si−B非晶質合金の摩耗量と組成との関係を示す
図である。
Figure 1 is a schematic diagram showing an example of an apparatus used to ultra-quench the alloy of the present invention from a molten state, and Figure 2 is a
Figure 3 is a diagram showing the hysteresis loop of the Si-B amorphous alloy, Figure 3 is a diagram showing the relationship between coercive force and saturation magnetic flux density with respect to tension in the Fe-CO-Si-B amorphous alloy, and Figure 4 is a diagram showing the relationship between the coercive force and saturation magnetic flux density of the Fe-CO-Si-B amorphous alloy.
- A diagram showing the relationship between frequency and effective magnetic permeability of the CO-Si-B amorphous alloy, FIG. 5 is a diagram showing the relationship between the wear amount and time of the Fe-CO-Si-B amorphous alloy, Figure 6 shows Fe-C
FIG. 3 is a diagram showing the relationship between the amount of wear and composition of an O-Si-B amorphous alloy.

Claims (1)

【特許請求の範囲】 1 原子比率でFe3〜7%、Si25%以下、B7〜
30%を含み残部実質的にCoよりなる高透磁率で磁歪
が小さく耐摩耗性の大きい磁気ヘッド用非晶質合金。 2 原子比率でSi6〜25%、B8〜10%である特
許請求の範囲第1項記載の高透磁率で磁歪が小さく耐摩
耗性の大きい磁気ヘッド用非晶質合金。 3 原子比率でSi15〜25%である特許請求の範囲
第2項記載の高透磁率で磁歪が小さく耐摩耗性の大きい
磁気ヘッド用非晶質合金。 4 原子比率でFe3〜7%、Si25%以下、B7〜
30%、Ni、Pd、Ptのうちから選ばれる何れか少
なくとも1種20%以下を含み残部実質的にCoよりな
る高透磁率で磁歪が小さく耐摩耗の大きい磁気ヘッド用
非晶質合金。 5 原子比率でFe3〜7%、Si25%以下、B7〜
30%、P、Cのうちから選ばれる何れか少なくとも1
種15%以下を含み、残部実質的にCoよりなる高透磁
率で磁歪が小さく耐摩耗性の大きい磁気ヘッド用非晶質
合金。 6 原子比率でFe3〜7%、Si25%以下、B7〜
30%、Cr、V、Mo、W、Ti、Zr、Nbのうち
から選ばれる何れか少なくとも1種10%以下を含み残
部実質的にCoよりなる高透磁率で磁歪が小さく耐摩耗
性の大きい磁気ヘッド用非晶質合金。 7 原子比率でFe3〜7%、Si25%以下、B7〜
30%、Ru、Rhのうちから選ばれる何れか少なくと
も1種7%以下を含み残部実質的にCoよりなる高透磁
率で磁歪が小さく耐摩耗性の大きい磁気ヘッド用非晶質
合金。 8 原子比率でFe3〜7%、Si25%以下、B7〜
30%、Mn5%以下を含み残部実質的にCoよりなる
高透磁率で磁歪が小さく耐摩耗性の大きい磁気ヘッド用
非晶質合金。 9 原子比率でFe3〜7%、Si25%以下、B7〜
30%、Cu5%以下を含み残部実質的にCoよりなる
高透磁率で磁歪が小さ<耐摩耗性の大きい磁気ヘッド用
非晶質合金。 10 原子比率でFe3〜7%、Si25%以下、B7
〜30%と下記(イ)、(ロ)、(ハ)、(ニ)、(ホ
)、(ヘ)の群のうちから選ばれる何れか少なくとも2
群を原子比率で合計20%以下とを含み残部実質的にC
oよりなる高透磁率で磁歪が小さく耐摩耗性の大きい磁
気ヘッド用非晶質合金。 (イ)Ni、Pd、Ptのうちから選ばれる何れか少な
くとも1種を原子比率で20%以下。 (ロ)P、Cの何れか少なくとも1種を原子比率で15
%以下。 (ハ)Cr、V、Mo、W、Ti、Zr、Nbのうちか
ら選ばれる何れか少なくとも1種を原子比率で10%以
下。 (ニ)Ru、Rhの何れか少なくとも1種を原子比率で
7%以下。 (ホ)Mnを原子比率で5%以下。 (ヘ)Cuを原子比率で5%以下。 11 原子比率でFe3〜7%、Si25%以下、B7
〜30%と必要により下記(イ)乃至(ト)の群のうち
から選ばれる何れか1群とを含み、残部実質的にCoよ
りなる合金溶湯を少なくとも10^4℃/秒の冷却速度
で超急冷することを特徴とする高透磁率で磁歪が小さく
耐摩耗性の大きい磁気ヘッド用非晶質合金の製造方式(
イ)Ni、Pd、Ptのうちから選ばれる何れか少なく
とも1種を原子比率で20%以下。 (ロ)P、Cの何れか少なくとも1種を原子比率で15
%以下。 (ハ)Cr、V、Mo、W、Ti、Zr、Nbのうちか
ら選ばれる何れか少なくとも1種を原子比率で10%以
下。 (ニ)Ru、Rhの何れか少なくとも1種を原子比率で
7%以下。 (ホ)Mnを原子比率で5%以下。 (ヘ)Cuを原子比率で5%以下。 (ト)前記(イ)〜(ヘ)の群のうちから選ばれる何れ
か少なくとも2群を原子比率で20%以下。 12 原子比率でFe3〜7%、Si25%以下、B7
〜30%と必要により下記(イ)乃至(ト)の群のうち
から選ばれる何れか1群とを含み残部実質的にCoより
なる合金溶湯を少なくとも10^4℃/秒の冷却速度で
超急冷して非晶質となし、さらにこの合金の結晶化温度
未満の温度に加熱した後冷却することを特徴とする高透
磁率で磁歪が小さく耐摩耗性の大きい磁気ヘッド非晶質
合金の製造方法。 (イ)Ni、Pd、Ptのうちから選ばれる何れか少な
くとも1種を原子比率で20%以下。(ロ)P、Cの何
れか少なくとも1種を原子比率で15%以下。 (ハ)Cr、V、Mo、W、Ti、Zr、Nbのうちか
ら選ばれる何れか少なくとも1種を原子比率で10%以
下。 (ニ)Ru、Rhの何れか少なくとも1種を原子比率で
7%以下。 (ホ)Mnを原子比率で5%以下。 (ヘ)Cuを原子比率で5%以下。 (ト)前記(イ)〜(ヘ)の群のうちから選ばれる何れ
か少なくとも2群を原子比率で20%以下。 13 原子比率でFe3〜7%、Si25%以下、B7
〜30%と、必要により下記(イ)乃至(ト)の群のう
ちから選ばれる何れか1群とを含み、残部実質的にCo
よりなる合金溶湯を少なくとも10^4℃/秒の冷却速
度で超急冷して非晶質となし、次いで磁場中でこの合金
の結晶化温度未満の温度に加熱した後冷却することを特
徴とする高透磁率で磁歪が小さく耐摩耗性の大きい磁気
ヘッド用非晶質合金の製造方法。 (イ)Ni、Pd、Ptのうちから選ばれる何れか少な
くとも1種を原子比率で20%以下。 (ロ)P、Cの何れか少なくとも1種を原子比率で15
%以下。 (ハ)Cr、V、Mo、W、Ti、Zr、Nbのうちか
ら選ばれる何れか少なくとも1種を原子比率で10%以
下。 (ニ)Ru、Rhの何れか少なくとも1種を原子比率で
7%以下。 (ホ)Mnを原子比率で5%以下。 (ヘ)Cuを原子比率で5%以下。 (ト)前記(イ)〜(ヘ)の群のうちから選ばれる何れ
か少なくとも2群を原子比率で20%以下。 14 加熱温度が150℃以上合金の結晶化温度未満の
範囲内であることを特徴とする特許請求の範囲第12ま
たは13項記載の高透磁率で磁歪が小さく耐摩耗性の大
きい磁気ヘッド用非晶質合金の製造方法。
[Claims] 1. Fe 3 to 7%, Si 25% or less, B7 to atomic ratio
An amorphous alloy for a magnetic head having high magnetic permeability, low magnetostriction, and high wear resistance, comprising 30% and the remainder being substantially Co. 2. The amorphous alloy for a magnetic head having high magnetic permeability, low magnetostriction, and high wear resistance as claimed in claim 1, wherein the atomic ratio is 6 to 25% Si and 8 to 10% B. 3. The amorphous alloy for a magnetic head having high magnetic permeability, low magnetostriction, and high wear resistance as claimed in claim 2, wherein the atomic ratio is 15 to 25% Si. 4 Atomic ratio Fe3~7%, Si25% or less, B7~
An amorphous alloy for a magnetic head having high magnetic permeability, low magnetostriction, and high wear resistance, comprising 30% and 20% or less of at least one selected from Ni, Pd, and Pt, and the remainder being substantially Co. 5 Atomic ratio Fe3~7%, Si25% or less, B7~
At least one selected from 30%, P, and C
An amorphous alloy for a magnetic head, which has high magnetic permeability, low magnetostriction, and high wear resistance, and contains 15% or less of seeds and the remainder is substantially Co. 6 Atomic ratio Fe3~7%, Si25% or less, B7~
30%, 10% or less of at least one selected from Cr, V, Mo, W, Ti, Zr, and Nb, and the remainder substantially consists of Co. High magnetic permeability, low magnetostriction, and high wear resistance. Amorphous alloy for magnetic heads. 7 Atomic ratio Fe3~7%, Si25% or less, B7~
An amorphous alloy for a magnetic head having high magnetic permeability, low magnetostriction, and high wear resistance, comprising 30% or less of at least one selected from Ru, Rh, and 7% or less of any one selected from Ru and Rh, and the remainder being substantially Co. 8 Atomic ratio Fe3~7%, Si25% or less, B7~
An amorphous alloy for a magnetic head having high magnetic permeability, low magnetostriction, and high wear resistance, comprising 30% Mn and 5% or less and the remainder substantially Co. 9 Atomic ratio Fe3~7%, Si25% or less, B7~
An amorphous alloy for a magnetic head having high magnetic permeability, low magnetostriction, and high wear resistance, comprising 30% Cu, 5% or less Cu, and the remainder substantially Co. 10 Atomic ratio Fe3-7%, Si25% or less, B7
~30% and at least two of the following selected from the following groups (a), (b), (c), (d), (e), and (f).
The remainder is substantially C.
An amorphous alloy for magnetic heads that has high magnetic permeability, low magnetostriction, and high wear resistance. (a) At least one selected from Ni, Pd, and Pt in an atomic ratio of 20% or less. (b) At least one of P or C in an atomic ratio of 15
%below. (c) At least one selected from Cr, V, Mo, W, Ti, Zr, and Nb in an atomic ratio of 10% or less. (d) At least one of Ru and Rh is contained in an atomic ratio of 7% or less. (e) Mn in atomic ratio of 5% or less. (f) Cu content is 5% or less in terms of atomic ratio. 11 Atomic ratio Fe3-7%, Si25% or less, B7
~30% and one group selected from the following groups (a) to (g) as necessary, and the remainder substantially consists of Co at a cooling rate of at least 10^4°C/sec. A manufacturing method for an amorphous alloy for magnetic heads that features high magnetic permeability, low magnetostriction, and high wear resistance, characterized by ultra-rapid cooling (
b) At least one selected from Ni, Pd, and Pt in an atomic ratio of 20% or less. (b) At least one of P or C in an atomic ratio of 15
%below. (c) At least one selected from Cr, V, Mo, W, Ti, Zr, and Nb in an atomic ratio of 10% or less. (d) At least one of Ru and Rh is contained in an atomic ratio of 7% or less. (e) Mn in atomic ratio of 5% or less. (f) Cu content is 5% or less in terms of atomic ratio. (G) The atomic ratio of at least two groups selected from the groups (A) to (F) above is 20% or less. 12 Atomic ratio Fe3-7%, Si25% or less, B7
~30% and one group selected from the following groups (a) to (g) if necessary, and the remainder substantially consists of Co at a cooling rate of at least 10^4°C/sec. Production of an amorphous magnetic head alloy with high magnetic permeability, low magnetostriction, and high wear resistance, which is characterized by rapid cooling to make it amorphous, then heating to a temperature below the crystallization temperature of this alloy, and then cooling. Method. (a) At least one selected from Ni, Pd, and Pt in an atomic ratio of 20% or less. (b) The atomic ratio of at least one of P and C is 15% or less. (c) At least one selected from Cr, V, Mo, W, Ti, Zr, and Nb in an atomic ratio of 10% or less. (d) At least one of Ru and Rh is contained in an atomic ratio of 7% or less. (e) Mn in atomic ratio of 5% or less. (f) Cu content is 5% or less in terms of atomic ratio. (G) The atomic ratio of at least two groups selected from the groups (A) to (F) above is 20% or less. 13 Atomic ratio Fe3-7%, Si25% or less, B7
~30% and, if necessary, one group selected from the following groups (a) to (g), and the remainder is substantially Co.
A molten alloy consisting of the following is ultra-quenched at a cooling rate of at least 10^4°C/sec to become amorphous, then heated in a magnetic field to a temperature below the crystallization temperature of the alloy, and then cooled. A method for producing an amorphous alloy for magnetic heads that has high magnetic permeability, low magnetostriction, and high wear resistance. (a) At least one selected from Ni, Pd, and Pt in an atomic ratio of 20% or less. (b) At least one of P or C in an atomic ratio of 15
%below. (c) At least one selected from Cr, V, Mo, W, Ti, Zr, and Nb in an atomic ratio of 10% or less. (d) At least one of Ru and Rh is contained in an atomic ratio of 7% or less. (e) Mn in atomic ratio of 5% or less. (f) Cu content is 5% or less in terms of atomic ratio. (G) The atomic ratio of at least two groups selected from the groups (A) to (F) above is 20% or less. 14. A non-metallic material for a magnetic head having high magnetic permeability, low magnetostriction and high wear resistance as claimed in claim 12 or 13, characterized in that the heating temperature is within a range of 150° C. or higher and lower than the crystallization temperature of the alloy. Method for manufacturing crystalline alloys.
JP51030805A 1976-03-23 1976-03-23 Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method Expired JPS59582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51030805A JPS59582B2 (en) 1976-03-23 1976-03-23 Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51030805A JPS59582B2 (en) 1976-03-23 1976-03-23 Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP60257310A Division JPS61210134A (en) 1985-11-16 1985-11-16 Production of amorphous alloy for magnetic head having high magnetic permeability, large effective magnetic permeability, small magnetorestriction, high hardness and large wear resistance

Publications (2)

Publication Number Publication Date
JPS52114421A JPS52114421A (en) 1977-09-26
JPS59582B2 true JPS59582B2 (en) 1984-01-07

Family

ID=12313886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51030805A Expired JPS59582B2 (en) 1976-03-23 1976-03-23 Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS59582B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51118675A (en) * 1975-04-04 1976-10-18 Toyama Chemical Co Ltd Plant growth control substance
JPS6043899B2 (en) * 1977-12-28 1985-10-01 株式会社東芝 High effective permeability non-quality alloy
JPS54107827A (en) * 1978-02-13 1979-08-24 Toshiba Corp High permeability amorphous alloy
JPS56102541A (en) * 1980-01-11 1981-08-17 Matsushita Electric Ind Co Ltd Amorphous magnetic alloy
DE2924280A1 (en) * 1979-06-15 1981-01-08 Vacuumschmelze Gmbh AMORPHE SOFT MAGNETIC ALLOY
JPS5644734A (en) * 1979-09-20 1981-04-24 Tdk Corp Amorphous magnetic alloy sheet for magnetic head
JPS606907Y2 (en) * 1980-12-05 1985-03-07 ソニー株式会社 sliding member
JPS57198521A (en) * 1981-05-28 1982-12-06 Tdk Corp Core for magnetic head
JPS5825449A (en) * 1981-08-05 1983-02-15 Toshiba Corp Amorphous magnetic alloy for magnetic head
JPS58147539A (en) * 1982-02-26 1983-09-02 Toshiba Corp Amorphous alloy for magnetic head
JPS61143546A (en) * 1984-11-12 1986-07-01 Alps Electric Co Ltd Amorphous alloy for magnetic head
JPS61204349A (en) * 1985-03-08 1986-09-10 Akai Electric Co Ltd Thin foil of amorphous magnetic alloy
JPS6169939A (en) * 1985-09-19 1986-04-10 Toshiba Corp Amorphous alloy for magnetic head
JPS61210134A (en) * 1985-11-16 1986-09-18 Res Inst Iron Steel Tohoku Univ Production of amorphous alloy for magnetic head having high magnetic permeability, large effective magnetic permeability, small magnetorestriction, high hardness and large wear resistance
US4881989A (en) * 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
DE3717043A1 (en) * 1987-05-21 1988-12-15 Vacuumschmelze Gmbh AMORPHOUS ALLOY FOR STRIP-SHAPED SENSOR ELEMENTS

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AIP CONFEREUCE MATERIALS=1974 *
JAPANESE JOURNAL OF APPLIED PHYSICS=1975 *
THE SCIENCE REPORTS OF THE RESEARCH INSTITUTES TOHOKU UNIVERSITY SERIES A *

Also Published As

Publication number Publication date
JPS52114421A (en) 1977-09-26

Similar Documents

Publication Publication Date Title
JPS5929644B2 (en) Method for modifying magnetic properties of high magnetic permeability amorphous alloy
JPS59582B2 (en) Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method
US5474624A (en) Method of manufacturing Fe-base soft magnetic alloy
JPS6133900B2 (en)
US4581080A (en) Magnetic head alloy material and method of producing the same
JPS5842741A (en) Wear resistant alloy with high permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
JPH08143994A (en) Wear resistant high magnetic permeability alloy and its production and magnetic recording reproducing head
JPH0230375B2 (en)
JPS6212296B2 (en)
JP3251899B2 (en) Wear-resistant high permeability alloy and magnetic recording / reproducing head
JPS61210134A (en) Production of amorphous alloy for magnetic head having high magnetic permeability, large effective magnetic permeability, small magnetorestriction, high hardness and large wear resistance
JPH0413420B2 (en)
JPH0368107B2 (en)
JPH0645847B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JPH0310699B2 (en)
JPH032216B2 (en)
JPH02153052A (en) Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head
JPH0310700B2 (en)
JPH05267031A (en) Magnetic core material
JPH0525947B2 (en)
JP2878472B2 (en) High saturation magnetic flux density Fe soft magnetic alloy
JPS62124262A (en) Method for modifying magnetic characteristic of high permeability amorphous alloy
JPS6151402B2 (en)
JPH0645849B2 (en) Manufacturing method of wear resistant high permeability alloy.