JPS61143546A - Amorphous alloy for magnetic head - Google Patents

Amorphous alloy for magnetic head

Info

Publication number
JPS61143546A
JPS61143546A JP59236731A JP23673184A JPS61143546A JP S61143546 A JPS61143546 A JP S61143546A JP 59236731 A JP59236731 A JP 59236731A JP 23673184 A JP23673184 A JP 23673184A JP S61143546 A JPS61143546 A JP S61143546A
Authority
JP
Japan
Prior art keywords
amorphous alloy
magnetic
atomic
amorphous
magnetic permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59236731A
Other languages
Japanese (ja)
Inventor
Teruhiro Makino
彰宏 牧野
Mikio Nakajima
中嶌 幹雄
Tadashi Sasaki
正 佐々木
Koichi Mukasa
幸一 武笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP59236731A priority Critical patent/JPS61143546A/en
Priority to KR1019850007622A priority patent/KR900007666B1/en
Priority to GB08527730A priority patent/GB2167087B/en
Priority to US06/797,238 priority patent/US4743313A/en
Publication of JPS61143546A publication Critical patent/JPS61143546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the amorphous alloy for magnetic heads having superior wear resistance and high thermal stability by providing a composition satisfying specific conditions in the amorphous alloy consisting of the four elements of Co, Fe, Si, and B. CONSTITUTION:The amorphous alloy consisting of the four elements of Co, Fe, Si, and B has a composition formula represented by the formula, where (c+d)=1, (b)=23-27 atomic%, and (c)/(c+d)=0.55-0.65; that is, the value of (b) represents the concentration of semimetals (Si, B), and when (b) exceeds 27 atomic%, the saturation magnetic flux density decreases, and when (b) is <=23 atomic%, the permeability decreases.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は磁気ヘッド用磁性合金に関し、Coを主成分と
する磁気ヘッド用非晶質合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a magnetic alloy for a magnetic head, and more particularly to an amorphous alloy for a magnetic head containing Co as a main component.

現用磁気ヘッド材料では、パーマロイ、センダストなど
の結晶質金属材料及びM n −Z nフェライト、N
 i−Z nフェライトなどの酸化物材料が主として使
用されている。結晶質金属材料は、酸化物材料であるフ
ェライトと比較して飽和磁束密度が高いという利点を有
するが、比抵抗が100μΩ・1以下と低いため、ビデ
オテープレコーダ等で使用される周波数帯域(MHz程
度)では透磁率が著しく低下してしまう。
Current magnetic head materials include crystalline metal materials such as permalloy and sendust, and M n -Z n ferrite, N
Oxide materials such as i-Zn ferrite are primarily used. Crystalline metal materials have the advantage of having a higher saturation magnetic flux density than ferrite, which is an oxide material. degree), the magnetic permeability decreases significantly.

一方、フェライトは比抵抗が大きく高周波帯域において
も優れた電磁変換特性を示し、さらに高い耐摩耗性を示
すためM n −Z n系がヒデオ用映像ヘッドを中心
に使用されている。しかしフェライトは飽和磁化が小さ
いため、記録歪を生じ、雑音が多い。
On the other hand, ferrite has a large resistivity and exhibits excellent electromagnetic conversion characteristics even in a high frequency band, and also exhibits high wear resistance, so the Mn-Zn type is mainly used in video heads. However, since ferrite has a small saturation magnetization, recording distortion occurs and there is a lot of noise.

一般に高密度記録は、高い周波数を使用帯域とする。従
って高密度磁気ヘッド用のコア材は、渦電流損失による
透磁率の劣下を防止するため、薄板化にするか、または
比抵抗ρを大きくする必要がある。センダストは、飽和
磁化が大きく比抵抗もパーマロイと比較して高いが脆弱
であるため、薄板化できない。
Generally, high-density recording uses a high frequency band. Therefore, the core material for a high-density magnetic head needs to be made thinner or have a larger resistivity ρ in order to prevent deterioration of magnetic permeability due to eddy current loss. Sendust has a large saturation magnetization and a high resistivity compared to permalloy, but it is brittle and cannot be made into a thin plate.

近年、結′晶構造をもたない非晶質合金において。In recent years, amorphous alloys that do not have a crystalline structure.

優れた磁気的性質及び機械的性質が見い出された。Excellent magnetic and mechanical properties were found.

すなわち、非晶質合金は結晶構造をもたないことに起用
して、比抵抗ρが結晶質の金属合金に比較して約数倍高
く、結晶磁気異方性が無いため保磁力が小さく、透磁性
も高い、さらにヴイカース硬度も1000程度であり結
晶質の金属より高い。
In other words, since amorphous alloys do not have a crystalline structure, their resistivity ρ is several times higher than that of crystalline metal alloys, and their coercive force is small because they do not have magnetocrystalline anisotropy. It has high magnetic permeability and also has a Vikers hardness of about 1000, which is higher than crystalline metals.

また磁気歪を零にする組成も基本的にはほぼ解明され磁
気ヘッド用コア材として検討が進められている。
In addition, the composition that makes magnetostriction zero has basically been elucidated and is being studied as a core material for magnetic heads.

しかし、より高密度記録用の磁気へラドコアとして非晶
質合金を用いるには低い周波数域ばかりでなく、I M
Hz以上の高周波数帯域で高い透磁率をもつことが必要
である。そのためには■高い比抵抗をもつこと、 ■高い初透磁率をもつこと。
However, the use of amorphous alloys as magnetic helad cores for higher density recording requires not only low frequency ranges but also I M
It is necessary to have high magnetic permeability in a high frequency band of Hz or higher. To achieve this, ■ it must have a high specific resistance, and ■ it must have a high initial permeability.

■高い耐摩耗性をもつこと。■Have high wear resistance.

■高い熱的安定性をもつこと。■Have high thermal stability.

を満足する必要がある。need to be satisfied.

■■■■のいずれも満足する非晶質合金は非常に狭い組
成領域でのみでしか得られないことを我々は見い出した
We have discovered that an amorphous alloy that satisfies all of ■■■■ can only be obtained in a very narrow composition range.

(発明の目的) 本発明は、Co、Fe、S i、Bの4元素の非晶質合
金において上記■〜■のいずれも満足する組成領域を開
示する。すなわち1本発明は初透磁率が高く、また比抵
抗が高いためI MHz以上の帯域においてもフェライ
ト以上の透磁率を示すとともに、優れた耐摩耗性及び高
い熱的安定性を示す非晶質合金を提出するものである。
(Objective of the Invention) The present invention discloses a composition range that satisfies all of the above conditions (1) to (2) in an amorphous alloy of four elements Co, Fe, Si, and B. In other words, the present invention is an amorphous alloy that has a high initial magnetic permeability and a high specific resistance, so it exhibits a magnetic permeability higher than that of ferrite even in a band of I MHz or higher, and also exhibits excellent wear resistance and high thermal stability. is to be submitted.

(発明の実施例) 本発明合金は(Fe1−a、 Coa) x −b(S
 ic、 B d)bなる式により表現され、特にc、
d、bが限定される。なお式中c+d== 1 、aは
通常磁歪を零にするため、約0.94程度であることが
知られている。
(Embodiment of the invention) The alloy of the present invention is (Fe1-a, Coa) x -b(S
ic, B d)b, especially c,
d and b are limited. In the formula, c+d==1 and a is known to be about 0.94 in order to normally make the magnetostriction zero.

本発明の磁気ヘッド用非晶質合金における組成の限定理
由は以下の如きである。まずbの値は半金属(St、B
)の濃度を示すが、bが27原子%を超えると飽和磁束
密度が低下し、磁気ヘッド用コア材として好ましくない
、一方、半金属濃度が20原子%以下では、透磁性が低
下し、均一な非晶質合金の形成が困難となる。また、4
0μm以上の厚さの非晶質薄板帯を安定して得るには、
半金属温度が23原子%以上であることが必要である。
The reasons for limiting the composition of the amorphous alloy for a magnetic head of the present invention are as follows. First, the value of b is a metalloid (St, B
), but if b exceeds 27 atomic %, the saturation magnetic flux density decreases, making it undesirable as a core material for a magnetic head.On the other hand, if the semimetal concentration is 20 atomic % or less, magnetic permeability decreases, resulting in a uniform It becomes difficult to form amorphous alloy. Also, 4
To stably obtain an amorphous thin plate strip with a thickness of 0 μm or more,
It is necessary that the metalloid temperature is 23 atomic % or more.

以下、実施例をもって詳細に説明する。Hereinafter, a detailed explanation will be given using examples.

(実施例) 表に示す組成の非晶質合金薄板帯は片ロール液体急冷法
に従い作成された。即ち1つの回転している鋼製ロール
上におかれた石英ノズルより溶融金属をアルゴンガスの
圧力により噴出させる。
(Example) Amorphous alloy thin plate strips having the compositions shown in the table were produced according to the single roll liquid quenching method. That is, molten metal is jetted out from a quartz nozzle placed on one rotating steel roll under the pressure of argon gas.

ロール回転数は500〜2000 rpm、噴出ガス圧
は0.1〜IKg/an2であった。作成された薄板は
巾約25m、厚さ32〜49μm、長さ約20〜3抛で
あった。
The roll rotation speed was 500 to 2000 rpm, and the ejected gas pressure was 0.1 to IKg/an2. The produced thin plate had a width of about 25 m, a thickness of 32 to 49 μm, and a length of about 20 to 3 mm.

作成されたすべての薄板はX線回折により、非晶質相で
あることが確認され、磁歪104オーダーでほぼ零であ
った。結晶化温度はDSCC元素走査型熱量計)にて決
定した。厚さはマイクロメーターにより測定した。透磁
率は薄帯より打抜きにして作成された外径10nwn、
内径6mのリングを10枚バラ積みしたものに巻線(1
次、2次側それぞれ20ターン)を処し、インダクタン
ス法により一定した。なお、透磁率は液体急冷された:
4帯より得られたリングの状態、及び一部のサンプルを
除いて、そのリングを焼鈍(100℃〜500℃で10
分保持後水焼入れ、保持温度は10℃間隔)した状態に
ついて室温にて測定された。
It was confirmed by X-ray diffraction that all the produced thin plates were in an amorphous phase, and the magnetostriction was on the order of 104 and almost zero. The crystallization temperature was determined using a DSCC (element scanning calorimeter). Thickness was measured using a micrometer. The magnetic permeability is 10nwn in outer diameter, which is made by punching out a thin ribbon.
Winding wire (1
20 turns each on the secondary side) and was stabilized using the inductance method. Furthermore, the magnetic permeability was liquid quenched:
The condition of the ring obtained from the 4th band and excluding some samples, the ring was annealed (100℃ to 500℃
After holding for 10 minutes, water quenching was carried out (holding temperature was 10° C.), and measurements were taken at room temperature.

初透磁率としては0.3m0e、I KHzにおけるそ
の実効透磁率を採用した。飽和磁化(σS)はVSMに
て10KOeの磁界で測定した。比抵抗は四端子法によ
り測定した。
As the initial magnetic permeability, the effective magnetic permeability at 0.3 m0e and I KHz was adopted. Saturation magnetization (σS) was measured with a VSM in a magnetic field of 10 KOe. Specific resistance was measured by the four-terminal method.

第1図に比抵抗ρとc/e+dとの関係を示す、b=2
3〜27yX子%の範囲でρはc/c+dが大きい方が
高い。
Figure 1 shows the relationship between specific resistance ρ and c/e+d, b=2
In the range of 3 to 27yX%, ρ is higher as c/c+d is larger.

第2図は結晶化温度に及ぼすb及びc/c + dの影
響を示す、この関係については、すでに種々の報告がな
されているが、我々の実験ではc/c + dが約0.
65付近で結晶化温度の急激な変化が見い出された。す
なわちc/c+d<0.65では結晶化温度が低くなっ
てしまう、この事実はすでに報告されているものと異な
っている。
Figure 2 shows the influence of b and c/c + d on the crystallization temperature. Various reports have already been made regarding this relationship, but in our experiments c/c + d was approximately 0.
A rapid change in crystallization temperature was found around 65. That is, when c/c+d<0.65, the crystallization temperature becomes low. This fact is different from what has already been reported.

第3図には、 100hrあたりの摩耗量とc/c+d
の関係が示しである。摩耗量の測定は液体急冷したアモ
ルファスより通常のオーディオタイプの磁気ヘッドを作
成し、市販のカセットタイプのデツキに装着した後、市
販のノーマルテープを用いて行なった。また摩耗量はc
/c+dが0.2〜0.4でほぼ一定であり、0.4よ
り大きくなるとしだいに小さくなり、 0.55以上で
ほぼ一定となる。c/c+dが0.55以上で良好な耐
摩耗性を示すことがわかる。
Figure 3 shows the wear amount per 100hr and c/c+d.
The relationship between them is an indication. The amount of wear was measured by making an ordinary audio type magnetic head from liquid-quenched amorphous, mounting it on a commercially available cassette type deck, and using a commercially available normal tape. Also, the amount of wear is c
/c+d is almost constant between 0.2 and 0.4, gradually decreases when it becomes larger than 0.4, and becomes almost constant when it is 0.55 or more. It can be seen that good wear resistance is exhibited when c/c+d is 0.55 or more.

第4図に液体急冷されたままの種々の組成をもつアモル
ファスの初透磁率μiとc/c+dの関係を示す、いず
れの場合もbが異なるとμiの値も異なってくるが、c
/e+dが0.4以下では低い一定値をとり、0.4〜
0.6で急激に増加し、しだいに高い一定値に近づく、
すなわち液体急冷のままではC/c + dが大きい方
がμiが高い、より好ましくはc/c+dが0.55以
上が望ましい。
Figure 4 shows the relationship between the initial magnetic permeability μi and c/c+d of amorphous materials with various compositions that have been rapidly cooled.
When /e+d is 0.4 or less, it takes a low constant value, and from 0.4 to
It increases rapidly at 0.6 and gradually approaches a high constant value.
That is, when the liquid is rapidly cooled, the larger C/c + d is, the higher μi is, and more preferably c/c + d is 0.55 or more.

一般にアモルファス磁性合金の透磁率は適当な条件での
焼鈍により改善されることが知られている。そこで、透
磁率に及ぼす焼鈍の効果について調べた。
It is generally known that the magnetic permeability of amorphous magnetic alloys can be improved by annealing under appropriate conditions. Therefore, we investigated the effect of annealing on magnetic permeability.

第5図は、b=24で種々のe/c+dの組成をもつア
モルファス合金(No、16〜19)を種々の温度で1
0分間焼鈍した後、水焼入れを行ない、その状態で測定
された初透磁率と焼鈍温度の関係を示す。種々の組成を
もつアモルファス合金における初透磁率に及ぼす焼鈍温
度の影響は類似しており、 c/c+dが0.5,0.
63において高いμiが得られ、焼鈍による初透磁率の
改善がこれらの組成で大きいことが確認された。各サン
プルにおける種々の焼鈍後のμiの最大値を比較し、μ
iの高い順にc/c + dをならべると、 0.63
.0.50.0.67、0.18であった。
Figure 5 shows amorphous alloys (No. 16 to 19) with b=24 and various e/c+d compositions at various temperatures.
After annealing for 0 minutes, water quenching was performed, and the relationship between the initial magnetic permeability measured in that state and the annealing temperature is shown. The effect of annealing temperature on the initial permeability in amorphous alloys with various compositions is similar, with c/c+d of 0.5, 0.
A high μi was obtained in No. 63, and it was confirmed that the improvement in initial permeability due to annealing was large in these compositions. The maximum value of μi after various annealing in each sample was compared, and μ
Arranging c/c + d in descending order of i, 0.63
.. They were 0.50, 0.67, and 0.18.

第6図はb=25b場合について第5図と同様にμiに
及ぼす熱処理効果を調べた結果である。各サンプルにお
ける種々の焼鈍後のμiの最大値を比較し、μiの高い
順にc/c + dをならべると0.64゜0.60.
0.50.0.40.0.68.0.20となる。
FIG. 6 shows the results of an investigation of the heat treatment effect on μi in the case of b=25b, similar to FIG. 5. Comparing the maximum values of μi after various annealing in each sample, and arranging c/c + d in descending order of μi, the results are 0.64° and 0.60.
0.50.0.40.0.68.0.20.

第7図は、b=27の場合について第5図と同様に、μ
iに及ぼす熱処理効果を調べた結果である。
FIG. 7 shows, similarly to FIG. 5, μ
These are the results of investigating the effect of heat treatment on i.

各サンプルにおける種々の焼碗後のμiの最大値を比較
し、μiの高い順にc/c + dをならべると。
Comparing the maximum values of μi after various roasting in each sample, and arranging c/c + d in descending order of μi.

0.63.0.50 、0.40.0.20.0.76
であった。
0.63.0.50, 0.40.0.20.0.76
Met.

第8図は種々の組成について焼鈍後得られたμiの最大
値とc/c+dとの関係を示すab=23.25e27
のいずれの場合においてもμiはc/c + dは約0
.6付近で最も大きい値となる。
Figure 8 shows the relationship between the maximum value of μi obtained after annealing and c/c+d for various compositions ab=23.25e27
In any case, μi is c/c + d is approximately 0
.. The maximum value is around 6.

また、実用材料としての観点から特性のばらつきを考慮
する必要があり、たとえば熱処理の操作を考えると広い
熱処理温度範囲で高い透磁率が得られることは作業性、
量産性あるいは材料の信頼性を増す。
Also, from the viewpoint of practical materials, it is necessary to take into account variations in properties. For example, when considering heat treatment operations, it is important to obtain high magnetic permeability over a wide heat treatment temperature range.
Increase mass productivity or reliability of materials.

第9図はμi>10’なる値が得られる焼鈍温度の範囲
(ΔT)を示す、μ1=10’なる値はへラドコア材と
して必要な値と近いと考えられる。T!L在、ヘッド用
コア材として使用されているパーマロイ、センダストの
μiはほぼこの程度の値である。
FIG. 9 shows the annealing temperature range (ΔT) in which the value μi>10′ is obtained. The value μ1=10′ is considered to be close to the value required for the Herad core material. T! Permalloy and Sendust, which are currently used as core materials for heads, have a μi of approximately this value.

dが大きいほどΔTも大きくなるが飽和磁束密度が小さ
くなる。 c+d=24.25.27の場合いずれも曲
線は類似しており@ C/C+dが0.5〜0.65付
近でそれぞれのdについてΔTは大きな値をとる。
As d increases, ΔT also increases, but the saturation magnetic flux density decreases. In the case of c+d=24.25.27, the curves are similar, and ΔT takes a large value for each d when C/C+d is around 0.5 to 0.65.

以上述べてきたことをまとめると、以下に示すようにな
る。
A summary of what has been said above is as follows.

比抵抗p    c/c+d→大 結晶化温度   c/c+d<0.65耐摩耗性   
 0.55< c /c+dtt i(A s Q) 
  ’0.55<c/c+dμi(熱処理後)  0.
50<c/c+d<0.65μi(ΔT)    0.
5<c/c+d<0.65いずれの条件をも満足するに
は。
Specific resistance p c/c+d→Large crystallization temperature c/c+d<0.65 Wear resistance
0.55<c/c+dtt i(A s Q)
'0.55<c/c+dμi (after heat treatment) 0.
50<c/c+d<0.65μi (ΔT) 0.
To satisfy both conditions: 5<c/c+d<0.65.

0.55<c/c+d<0.65 である必要がある。0.55<c/c+d<0.65 It must be.

アモルファス磁性合金において、他元素による置換、添
加により初透磁率、耐摩耗性及び比抵抗が改善されるこ
とはよく知られているが、本発明合金においても以述の
ことがm察されている。
It is well known that the initial magnetic permeability, wear resistance, and specific resistance of amorphous magnetic alloys can be improved by substitution or addition of other elements, and the following has been observed in the alloys of the present invention as well. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は非晶質合金の比抵抗ρとSi/Si+B(=c
/c+d)との関係を示す図、第2図は結晶化温度とb
(=Si+Bの温度)とc/c + dとの関係を示す
図、第3図は100時間当りの摩耗量とc/c + d
との関係を示す図、第4図は非晶質合金の初透磁率μi
とc/c+dとの関係を示す図、第5図ないし第れる焼
鈍温度の範囲とc/c + dとの関係を示す図である
。 〜    〜    〜    〜 か    −〇    (転) 比才(ジオ九(メ」Ω・cm) 初を態率 摩耗量(ILIm/ 1001’Y) 〜    ω    j′    ψ    Φ   
く第7図 第8図 α2  0.3  0.4  0.5  0.6  0
.77t+d !9図 00.1 α2  Q3 0.4  Q5 0.6 0
7C/c十d 手続補正書(自発) 昭和60年4月22日
Figure 1 shows the specific resistance ρ of the amorphous alloy and Si/Si+B (=c
Figure 2 shows the relationship between crystallization temperature and b
(=temperature of Si + B) and c/c + d. Figure 3 shows the relationship between the amount of wear per 100 hours and c/c + d.
Figure 4 shows the relationship between the initial magnetic permeability μi of the amorphous alloy
and c/c+d, and FIG. 5 is a diagram showing the relationship between the annealing temperature range and c/c+d. ~ ~ ~ ~ or -〇 (transformation) Hibisai (Geo 9 (Me) Ω・cm) First time rate wear amount (ILIm/ 1001'Y) ~ ω j′ ψ Φ
Figure 7 Figure 8 α2 0.3 0.4 0.5 0.6 0
.. 77t+d! 9Figure 00.1 α2 Q3 0.4 Q5 0.6 0
7C/c1d Procedural amendment (voluntary) April 22, 1985

Claims (1)

【特許請求の範囲】 組成式(Fe、Co)_1−b(Sic、Bd)bただ
しc+d=1 b=23〜27原子% c/c+d=0.55〜0.65 から成ることを特徴とする磁気ヘッド用非晶質合金。
[Claims] Compositional formula (Fe, Co)_1-b (Sic, Bd) b, where c+d=1 b=23-27 atomic % c/c+d=0.55-0.65. Amorphous alloy for magnetic heads.
JP59236731A 1984-11-12 1984-11-12 Amorphous alloy for magnetic head Pending JPS61143546A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59236731A JPS61143546A (en) 1984-11-12 1984-11-12 Amorphous alloy for magnetic head
KR1019850007622A KR900007666B1 (en) 1984-11-12 1985-10-16 Amorphous alloy for use in magnetic heads
GB08527730A GB2167087B (en) 1984-11-12 1985-11-11 Amorphous magnetic alloys
US06/797,238 US4743313A (en) 1984-11-12 1985-11-12 Amorphous alloy for use in magnetic heads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59236731A JPS61143546A (en) 1984-11-12 1984-11-12 Amorphous alloy for magnetic head

Publications (1)

Publication Number Publication Date
JPS61143546A true JPS61143546A (en) 1986-07-01

Family

ID=17004948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59236731A Pending JPS61143546A (en) 1984-11-12 1984-11-12 Amorphous alloy for magnetic head

Country Status (1)

Country Link
JP (1) JPS61143546A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235527A (en) * 1985-03-26 1986-10-20 Nippon Steel Corp Copper alloy for preventing fouling of marine life

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114421A (en) * 1976-03-23 1977-09-26 Tohoku Daigaku Kinzoku Zairyo Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance property

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114421A (en) * 1976-03-23 1977-09-26 Tohoku Daigaku Kinzoku Zairyo Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance property

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235527A (en) * 1985-03-26 1986-10-20 Nippon Steel Corp Copper alloy for preventing fouling of marine life

Similar Documents

Publication Publication Date Title
US4918555A (en) Magnetic head containing an Fe-base soft magnetic alloy layer
JPS6133900B2 (en)
JPS59582B2 (en) Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method
JPS5842741A (en) Wear resistant alloy with high permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
JPS6212296B2 (en)
JPH07116563B2 (en) Fe-based soft magnetic alloy
KR900007666B1 (en) Amorphous alloy for use in magnetic heads
JPH0917623A (en) Nano crystal alloy magnetic core and its manufacture
JPS61143546A (en) Amorphous alloy for magnetic head
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
KR900002758B1 (en) Amorphous alloy for magnetic heads
JPS61243144A (en) Amorphous alloy for magnetic head
JPH0413420B2 (en)
JPS61284546A (en) Amorphous alloy for magnetic head
KR960004664B1 (en) Soft-magnetic thin film alloy for magnetic head and the manufacturing method thereof
JPH032216B2 (en)
JPH0525947B2 (en)
JPH0368107B2 (en)
JPH031513A (en) Manufacture of soft magnetic thin film
JPH0310699B2 (en)
JPH02153052A (en) Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head
JP2812572B2 (en) Magnetic head
JP3215068B2 (en) High saturation magnetic flux density Fe soft magnetic alloy
JPH05267031A (en) Magnetic core material
JPS59179749A (en) Amorphous alloy for magnetic head