JPS6089539A - Amorphous magnetic alloy having low magnetostriction - Google Patents

Amorphous magnetic alloy having low magnetostriction

Info

Publication number
JPS6089539A
JPS6089539A JP58194270A JP19427083A JPS6089539A JP S6089539 A JPS6089539 A JP S6089539A JP 58194270 A JP58194270 A JP 58194270A JP 19427083 A JP19427083 A JP 19427083A JP S6089539 A JPS6089539 A JP S6089539A
Authority
JP
Japan
Prior art keywords
magnetic
alloy
amorphous
magnetostriction
amorphous magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58194270A
Other languages
Japanese (ja)
Inventor
Moichi Otomo
茂一 大友
Takayuki Kumasaka
登行 熊坂
Takeo Yamashita
武夫 山下
Noritoshi Saitou
斉藤 法利
Sanehiro Kudo
工藤 実弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58194270A priority Critical patent/JPS6089539A/en
Publication of JPS6089539A publication Critical patent/JPS6089539A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To reduce the absolute value of magnetostriction of an amorphous Co- Nb-Zr alloy, to increase the saturation magnetic flux density, and to improve the heat resistance and corrosion resistance by substituting Cr, Mo, V, Ta or W for part of Nb in the alloy. CONSTITUTION:Cr, Mo, V, Ta, or W is substituted for part of Nb in an amorphous magnetic Co-Nb-Zr alloy to provide a composition represented by a formula Coa(Nb1-xMx)bZrc [where 81<=a<=95(atom%), 2.5<=c<=5, a+b+c=100, c/(b+c)>0.25, when M is Cr, Mo, V or Ta, 0<x<=0.5, and when M is W, 0<x<= 0.2]. The resulting amorphous magnetic alloy having low magnetostriction is suitable for use as the material of a magnetic head having high performance formed by a thin film forming technique such as sputtering.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は低磁歪非晶質磁性合金に係り、特に磁気ヘッド
材料として好適な高飽和磁束密度を有し、磁歪が小さい
Co、Nb、zri主成分とする非晶質磁性合金に関す
る。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a low magnetostriction amorphous magnetic alloy, which has a high saturation magnetic flux density and is particularly suitable as a magnetic head material. This invention relates to an amorphous magnetic alloy as a component.

〔発明の背景〕[Background of the invention]

近年、磁気記録技術は高保磁力テープおよび同テープ用
の高性能磁気ヘッド材料の開発によシ著しい進展を遂げ
つつある。特に高保磁力のメタルテープを用いた場合に
は、記録波長数μmから1μm以下の高記録密度の領域
において、従来に比して著しい出力の増加、C/N〈出
力−ノイズ比)の増加が達成され、VTRなどの高記録
密度が必要とされる分野において大幅な記録密度の向上
が達成されつつある。しかし、従来VTRなどに用いら
れて来たフエライトヲ用いた磁気ヘッドでは、フェライ
トの飽和磁束密度が約5000カウス以下であるために
、記録磁界の大きさが十分でなく、高保磁カメタルテー
プ全使用するためには飽和磁束密度の大きい金属磁性材
料を用いた磁気ヘッドが必要になって来た。従来用いら
れて来た金属磁性材料としてはpe−ht−sl系合金
、あるいはFe −N r系合金などの結晶質合金がち
9、また最近開発された非晶質磁性合金がある。Fe 
−ht−sI系あるいはFe−Ni系などの結晶質合金
は、結晶であるがゆえに結晶磁気異方性を有しており、
磁気ヘッドに好適な優れた磁気特性、特に高い透磁率を
得るためには、結晶磁気異方性が零となる近傍の組成と
しなければならない。また磁気ヘッドに使用するために
は、同時に磁歪定数も零に近くしなければならず、従っ
て、使用できる組成は極めて限られており、組成の制御
が困難であるという問題があった。非晶′6磁性合金は
前記結晶磁気異方性がないため、磁歪定数のみを調整す
ればよく、使用可能な組成が比較的広いこと、誘導磁気
異方性による透磁率の劣化が適当な熱処理により改善で
きること、結晶質合金では得られない高飽和磁束密度で
、低保磁力の合金が得られること、眠気抵抗が高いため
渦電流損失を低減できること、などの種々の利点がある
。この非晶質磁性合金の中で、メタロイド元素を含まな
い金属−金属系非晶質合金は、金属−メタロイド系非晶
質合金よシも結晶化温度が高く、また耐食性、耐摩耗性
に優れているため磁気ヘッド用として有望である。
In recent years, magnetic recording technology has made significant progress with the development of high coercive force tapes and high performance magnetic head materials for the same tapes. In particular, when using a metal tape with high coercive force, there is a significant increase in output and C/N (output-to-noise ratio) compared to conventional methods in the high recording density region from a recording wavelength of several μm to 1 μm or less. This has been achieved, and significant improvements in recording density are being achieved in fields such as VTRs that require high recording density. However, in magnetic heads that use ferrite, which has been conventionally used in VTRs, the saturation magnetic flux density of ferrite is approximately 5000 caus or less, so the recording magnetic field is not large enough, and high coercivity metal tapes are used entirely. To achieve this, a magnetic head using a metallic magnetic material with a high saturation magnetic flux density has become necessary. Conventionally used metallic magnetic materials include crystalline alloys such as pe-ht-sl alloys and Fe--Nr alloys9, and recently developed amorphous magnetic alloys. Fe
Crystalline alloys such as -ht-sI system or Fe-Ni system have magnetocrystalline anisotropy because they are crystals.
In order to obtain excellent magnetic properties suitable for a magnetic head, particularly high magnetic permeability, the composition must be close to zero in the magnetocrystalline anisotropy. In addition, in order to use it in a magnetic head, the magnetostriction constant must also be made close to zero, and therefore the usable composition is extremely limited, making it difficult to control the composition. Since the amorphous '6 magnetic alloy does not have the above-mentioned magnetocrystalline anisotropy, only the magnetostriction constant needs to be adjusted, and the usable composition is relatively wide, and deterioration of magnetic permeability due to induced magnetic anisotropy can be prevented by appropriate heat treatment. It has a variety of advantages, such as the ability to obtain an alloy with high saturation magnetic flux density and low coercive force that cannot be obtained with crystalline alloys, and the ability to reduce eddy current loss due to its high drowsiness resistance. Among these amorphous magnetic alloys, metal-metal amorphous alloys that do not contain metalloid elements have a higher crystallization temperature than metal-metalloid amorphous alloys, and also have excellent corrosion resistance and wear resistance. Therefore, it is promising for use in magnetic heads.

これらの非晶質磁性合金は従来スプラットクーリング法
によって作製され、厚さ10〜50μmの薄板状のもの
が得られていた。一方、非晶質磁性合金ヲスパッタリン
グな゛どの薄膜形成技術によシ作製することが近年性な
われるようになシ、試料の酸化などのために作シにくか
った組成の非晶質磁性合金も作製が可能となった。また
、薄膜形成技術によれば、非晶質合金膜と酸化物などの
絶縁物膜を多層に積層することも容易であシ、これによ
り渦電流損失糾低減でき、高周波で用いるVTR用磁気
ヘッド、計算機用磁気ヘッドに好適な材料を提供できる
。さらに磁気ヘッドのギャップ近傍にのみ非晶質磁性合
金金用い、他を磁性フェライトとした腹合型磁気ヘッド
、あるいは薄膜磁気ヘッドなどへの応用が期待されてい
る。
Conventionally, these amorphous magnetic alloys have been produced by a splat cooling method, and thin plate-like alloys having a thickness of 10 to 50 μm have been obtained. On the other hand, in recent years, it has become common to fabricate amorphous magnetic alloys using thin film forming techniques such as sputtering, and amorphous magnetic alloys with compositions that are difficult to fabricate due to sample oxidation, etc. It is now possible to create Furthermore, with thin film formation technology, it is easy to stack amorphous alloy films and insulating films such as oxides in multiple layers. , it is possible to provide a material suitable for magnetic heads for computers. Furthermore, it is expected to be applied to a belly-to-edge magnetic head or a thin-film magnetic head in which amorphous magnetic alloy gold is used only near the gap of the magnetic head and magnetic ferrite is used elsewhere.

金属−金属系非晶質磁性合金のうち、比戟的作製しやす
く、特性も優れたZrを含む非晶質磁性合金は、例えば
特開昭55−138049号公報、特開昭56−844
39号公報および特開昭57−155339号公報に述
べられている。これらの公報には、Zr5%以下あるい
は7%以下では非晶質合金の作製が困難であるかあるい
は合金が脆くなるので好ましくないと述べられている。
Among metal-metal type amorphous magnetic alloys, Zr-containing amorphous magnetic alloys that are relatively easy to produce and have excellent properties are disclosed in, for example, JP-A-55-138049 and JP-A-56-844.
No. 39 and Japanese Unexamined Patent Publication No. 155339/1983. These publications state that if the Zr content is less than 5% or 7%, it is difficult to produce an amorphous alloy or the alloy becomes brittle, which is not preferable.

しかし、本発明者らは、これらのZr系非晶質磁性合金
薄膜をスパッタリング法により作製し、特性を測定した
所、Co−Nb−zr系非晶質磁性合金において、Zr
が5%以下の組成において磁歪定数零を含む磁歪定数(
絶対値)の著しく小さい磁気特性の優れた領域が存在す
ることを見出し、特願昭s 5−65276号明細1に
述べた。
However, the present inventors fabricated these Zr-based amorphous magnetic alloy thin films by sputtering method and measured their properties, and found that Zr
The magnetostriction constant (including the magnetostriction constant zero at compositions where the
It was discovered that there exists a region with excellent magnetic properties in which the absolute value is extremely small, and this is described in Japanese Patent Application No. S5-65276, Specification 1.

本発明者らは、さらに(”o−Nb−4r系非晶質合金
のNbの一部をCr、 Mot v、Ta、Wなどの元
素で置換することによシ磁歪定数(絶対値)を小さく保
ったまま、飽和磁束密度が高く、耐熱性、耐食性に優れ
た非晶質磁性合金が得られること全見出した。
The present inventors further improved the magnetostriction constant (absolute value) by substituting a part of Nb in the o-Nb-4r amorphous alloy with elements such as Cr, Motv, Ta, and W. It has been found that an amorphous magnetic alloy with high saturation magnetic flux density, excellent heat resistance, and corrosion resistance can be obtained while keeping the magnetic flux density small.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、磁歪の絶対値の著しく小さく、飽和磁
束密度が高く、さらに耐熱性、耐食性に1愛れた非晶質
磁性合金、特にスパッタリングなどの薄膜形成技術によ
シ作製した高性能磁気ヘッド材料として好適な合金を提
供することにある。
The purpose of the present invention is to create a high-performance amorphous magnetic alloy that has a significantly small absolute value of magnetostriction, a high saturation magnetic flux density, and is excellent in heat resistance and corrosion resistance, especially a high-performance alloy made using thin film forming technology such as sputtering. The object of the present invention is to provide an alloy suitable as a magnetic head material.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明ではCo−Nb−Z
r系非晶買磁性合金のNbの一部をCu。
In order to achieve the above object, the present invention uses Co-Nb-Z
A part of the Nb of the r-based amorphous magnetic alloy is replaced by Cu.

Mo、V、TaあるいはWで置換し、それぞれの含有量
をCo、(Nbt−xMX)bZr 、と表わした時、
原子パーセントで81≦a≦95.2.5≦C(5,a
十す十c=ioo、c/(b十c)) 0.25となる
ように限定し、MがCr1M0IVあるいはTaの場合
はQ’ (x≦0.5とし、MがWを含む場合は0〈X
≦0.2を満足する組成とする。
When substituted with Mo, V, Ta or W, and the respective contents are expressed as Co, (Nbt-xMX)bZr,
81≦a≦95.2.5≦C (5, a
10s10c=ioo, c/(b10c)) 0.25, and when M is Cr1M0IV or Ta, Q' 0〈X
The composition should satisfy ≦0.2.

前述のように従来7.rを非晶〆化元素とする非晶質合
金はZr5%以下では製造が困難であるとされて来た。
As mentioned above, conventional 7. It has been said that it is difficult to manufacture an amorphous alloy in which r is an amorphous finishing element when the Zr content is 5% or less.

しかし、スパッタリングなどの薄膜1′μ製技術の進歩
によシ、非晶質化できる組成範囲はZr5%以下の領域
まで広がシつつある。一方7、rを5%以上言む非晶質
合金#膜は7.rが極めて酸化し7やすい金属でろるた
め、かえって耐酸化性に問題を生じて来た。このような
耐酸化性は、薄膜ヘッドのように薄膜磁性材料を種々の
高温プロセスを経過して使用する場合に重要である。以
上のような観点よシ、本発明ではZrの含有量を5チ以
Fとする。
However, with the advancement of thin film 1'μ manufacturing technology such as sputtering, the composition range that can be made amorphous is expanding to the region of 5% Zr or less. On the other hand, the amorphous alloy # film with r of 5% or more is 7. Since r is a metal that is extremely susceptible to oxidation, it has caused problems in oxidation resistance. Such oxidation resistance is important when thin film magnetic materials are used after undergoing various high-temperature processes, such as in thin film heads. From the above point of view, in the present invention, the Zr content is set to 5 or more F.

CO含有量は本発明合金の飽和磁束密度B8を左右し%
 Co81%以下ではBSが約8kG以下となシ、この
試料を用いた磁気ヘッドは高保磁力テープに対して十分
な記録磁界が得られず、目的を達することが出来ない。
The CO content affects the saturation magnetic flux density B8 of the alloy of the present invention and is %
If Co is less than 81%, the BS is less than about 8 kG, and a magnetic head using this sample cannot obtain a sufficient recording magnetic field for a high coercive force tape, and cannot achieve its purpose.

また、Co95%以上では非晶質合金を得ることが出来
ない。
Furthermore, if Co exceeds 95%, an amorphous alloy cannot be obtained.

%願昭58−65276公報に述べたように、Co−N
b−’Zr系非晶質合金膜はNbとZrの含有量の和に
占めるZrの割合が0.2〜0.25において磁歪定数
が零となる。この非晶質合金のNbの一部をCr、Mo
、V、’、pa、Wで置換した場合には、Zrの含有量
をC,NbとQr。
%As stated in the publication No. 58-65276, Co-N
b-' Zr-based amorphous alloy film has a magnetostriction constant of zero when the ratio of Zr to the sum of Nb and Zr contents is 0.2 to 0.25. A part of Nb in this amorphous alloy is replaced by Cr, Mo
, V,', pa, and W, the content of Zr is changed to C, Nb, and Qr.

Mo+V、TaおよびWの含有量の和をbとして、磁歪
定数零の組成はC/(b+C)が0.2〜0.25以上
の値に変化する。CO#度が一定の場合、Zr#度を増
加させることは結晶化温度の向上、非晶質形成範囲の拡
大につながる。従って、Zr5%以上の範囲でC/(b
十〇)の直が大きいほうが望ましい。また磁気ヘッド材
料にとって磁歪は零近傍であることが必要である。従っ
て、C0−Nb−’l、r系非晶質合金のNbの一部を
Cr。
When the sum of the contents of Mo+V, Ta, and W is b, the composition with a magnetostriction constant of zero changes to a value in which C/(b+C) is 0.2 to 0.25 or more. When the CO# degree is constant, increasing the Zr# degree leads to an improvement in the crystallization temperature and an expansion of the amorphous formation range. Therefore, C/(b
It is desirable that the straightness of 10) is larger. Further, it is necessary that the magnetostriction of the magnetic head material be near zero. Therefore, part of the Nb in the C0-Nb-'l,r-based amorphous alloy is replaced by Cr.

MO,V、TaあるいはWで置換することにより、磁歪
が零となるC/(b十〇)の値を増加することが出来、
結晶化温度TXを高め非晶質形成範囲を拡大することが
出来る。さらにこれらの元素、特にCrを添加すること
によシ耐食性を改善できる。Nbを置換する量は、置換
する元素がQr。
By replacing with MO, V, Ta or W, the value of C/(b10) at which the magnetostriction becomes zero can be increased,
It is possible to increase the crystallization temperature TX and expand the range of amorphous formation. Furthermore, corrosion resistance can be improved by adding these elements, especially Cr. The amount of Nb to be replaced is determined by replacing the element with Qr.

Mo、¥あるいはTaの場合は、Nbと置換する元素の
含有量の和を1とした時に0.5以下、置換する元素が
Wを含む場合には0.2以下とする。上記値を越える場
合には磁歪が零に近い組成がZr5%以上となるおそれ
がある。
In the case of Mo, ¥, or Ta, the content should be 0.5 or less, when the sum of the contents of Nb and the substituting element is 1, and if the substituting element contains W, the content should be 0.2 or less. If the above value is exceeded, there is a possibility that the composition where the magnetostriction is close to zero becomes 5% or more of Zr.

以下本発明の非晶質合金を実施例により説明する。The amorphous alloy of the present invention will be explained below using examples.

〔発明の実施例〕[Embodiments of the invention]

実施例 表1に、高周波2惨スパツタ装置を用いて作製した本発
明非晶質合金JIG(の%性を示した。作製の際のrル
ゴン圧は5 X 10−3’l’orrとした。
Example Table 1 shows the percent properties of the amorphous alloy JIG (JIG) of the present invention produced using a high-frequency dual sputtering device. The rgon pressure at the time of production was 5 .

〔発明の効果〕 以上のように本発明によシ、磁歪定数の絶対値が著しく
小さく、飽和磁束密度が高く、かつ耐熱性、耐食性、耐
酸化性のすぐれた非晶質合金膜が得られた。
[Effects of the Invention] As described above, according to the present invention, an amorphous alloy film having a significantly small absolute value of a magnetostriction constant, a high saturation magnetic flux density, and excellent heat resistance, corrosion resistance, and oxidation resistance can be obtained. Ta.

第1頁の続き @発明者 工藤 突弧 国分寺市東恋ケ窪1丁目28幡地 株式会社日立製作所
中央研究所内
Continuation of page 1 @ Inventor Kudo Touka Kokubunji City Higashikoigakubo 1-28 Hatachi Hitachi, Ltd. Central Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 1、組成式がCoa (Nbt−xMX)bZrcで示
され、MがCr、MO,V、1)a、Wからなる群のう
ちから選ばれた少なくとも一種以上の元素からなり、a
、b、cを原子ノ々−セントで表わした時に81≦a≦
95.2.5≦c (5でa+b+c=iooを満足し
、C/(b+C)) 0.25でありかつ、MがCr、
Mo、VあるいはTaの場合はQ(x≦0.5であり、
八4がWを含ひ場合はO<X≦02を肯定する低線全非
晶質磁性合金。
1. The compositional formula is Coa (Nbt-xMX)bZrc, M is at least one element selected from the group consisting of Cr, MO, V, 1) a, W, and a
, b, c are expressed as atomic cents, 81≦a≦
95.2.5≦c (5 satisfies a+b+c=ioo, C/(b+C)) 0.25, and M is Cr,
In the case of Mo, V or Ta, Q (x≦0.5,
When 84 contains W, it is a low-wire fully amorphous magnetic alloy that affirms O<X≦02.
JP58194270A 1983-10-19 1983-10-19 Amorphous magnetic alloy having low magnetostriction Pending JPS6089539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58194270A JPS6089539A (en) 1983-10-19 1983-10-19 Amorphous magnetic alloy having low magnetostriction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58194270A JPS6089539A (en) 1983-10-19 1983-10-19 Amorphous magnetic alloy having low magnetostriction

Publications (1)

Publication Number Publication Date
JPS6089539A true JPS6089539A (en) 1985-05-20

Family

ID=16321825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58194270A Pending JPS6089539A (en) 1983-10-19 1983-10-19 Amorphous magnetic alloy having low magnetostriction

Country Status (1)

Country Link
JP (1) JPS6089539A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274043A (en) * 1986-05-22 1987-11-28 Matsushita Electric Ind Co Ltd Amorphous alloy having high thermostability and high magnetic flux density
JPS6488907A (en) * 1987-09-30 1989-04-03 Canon Denshi Kk Magnetic head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274043A (en) * 1986-05-22 1987-11-28 Matsushita Electric Ind Co Ltd Amorphous alloy having high thermostability and high magnetic flux density
JPH0693391A (en) * 1986-05-22 1994-04-05 Matsushita Electric Ind Co Ltd Amorphous alloy having thermal stability and high magnetic flux density
JPS6488907A (en) * 1987-09-30 1989-04-03 Canon Denshi Kk Magnetic head

Similar Documents

Publication Publication Date Title
US4225339A (en) Amorphous alloy of high magnetic permeability
US5358576A (en) Amorphous materials with improved properties
JP2963003B2 (en) Soft magnetic alloy thin film and method of manufacturing the same
JPS5943837A (en) Amorphous alloy with high saturation magnetic flux density
US4707417A (en) Magnetic composite film
JPH0320444A (en) Soft magnetic alloy film
JPS6089539A (en) Amorphous magnetic alloy having low magnetostriction
US4743313A (en) Amorphous alloy for use in magnetic heads
JPH03131006A (en) Magnetic head
JPH03265104A (en) Soft magnetic alloy film
JPS59207608A (en) High permeability magnetic thin film
JP2757586B2 (en) Soft magnetic thin film
JPH0359978B2 (en)
JPS6043899B2 (en) High effective permeability non-quality alloy
JP3279591B2 (en) Ferromagnetic thin film and manufacturing method thereof
JP2979557B2 (en) Soft magnetic film
KR0136419B1 (en) Soft magnetic alloy thin film substrate
JPH0439905A (en) Magnetically soft alloy film
JPS61243144A (en) Amorphous alloy for magnetic head
JPS61284546A (en) Amorphous alloy for magnetic head
JPH05465B2 (en)
JPH0255496B2 (en)
JPS6115935A (en) Magnetic material for magnetic head
JPS59107054A (en) Amorphous alloy for magnetic head
JPS5993849A (en) Cobalt-base amorphous magnetic material