JPS6115935A - Magnetic material for magnetic head - Google Patents

Magnetic material for magnetic head

Info

Publication number
JPS6115935A
JPS6115935A JP59135593A JP13559384A JPS6115935A JP S6115935 A JPS6115935 A JP S6115935A JP 59135593 A JP59135593 A JP 59135593A JP 13559384 A JP13559384 A JP 13559384A JP S6115935 A JPS6115935 A JP S6115935A
Authority
JP
Japan
Prior art keywords
magnetic
atomic
permeability
amorphous
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59135593A
Other languages
Japanese (ja)
Inventor
Hisamori Kono
港野 久衛
Kiyoyuki Esashi
清行 江刺
Masateru Nose
正照 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP59135593A priority Critical patent/JPS6115935A/en
Publication of JPS6115935A publication Critical patent/JPS6115935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a magnetic material for a magnetic head showing high magnetic permeability in a weak magnetic field for measurement by preparing a preferentially amorphous alloy consisting of specified percentages of Co, Ni, Mo, Nb, B and Zr. CONSTITUTION:A molten alloy having a composition contg., by atom, 75-84% Co, 2-6% Ni, 5-10% Mo, 0.5-5% Nb, 0.1-5% B and 7-9% Zr and satisfying equations Mo%+Nb%+Zr%=13-20% and Co%+Ni%+Mo%+Nb%+B%+ Zr%=100% is made amorphous by very rapid cooling to obtain a magnetic material for a magnetic head having superior corrosion and wear resistances. The magnetic permeability of the magnetic material is very stable to heat.

Description

【発明の詳細な説明】 産業分野 この発明は、磁気ヘッド用の非晶質磁性材料に係り、軟
磁性材料として好ましい諸特性を有し、特に、低測定磁
界での高い透磁率を示し、かつ透磁率の熱安定性にすぐ
れ、さらに、耐食性、耐摩耗性にすぐれた磁気ヘッド用
磁性材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an amorphous magnetic material for a magnetic head, which has various properties preferable as a soft magnetic material, particularly exhibits high magnetic permeability in a low measuring magnetic field, and The present invention relates to a magnetic material for a magnetic head that has excellent thermal stability of magnetic permeability, corrosion resistance, and wear resistance.

背景技術 磁気ヘッド用コア材として、従来は、パーマロイ、セン
ダスト、フェライト等が用いられてきたが、パーマロイ
は耐摩耗性に劣り、センダストは脆弱なために薄板に加
工する際に多大の工数を要し、また、フェライトは磁束
密度が約4000〜5000G程度と低い等、種々の問
題点があった。
Background Art Conventionally, permalloy, sendust, ferrite, etc. have been used as core materials for magnetic heads, but permalloy has poor wear resistance, and sendust is brittle, so it requires a large number of man-hours to process into a thin plate. However, ferrite has various problems such as a low magnetic flux density of about 4000 to 5000G.

かかる問題を解消した磁気ヘッド用磁性材料として、良
好な軟磁性特性であり、箔帯であるために渇電流損失が
少ないなど好ましい特性を有する非晶質磁性材料が開発
されており、さらに、非晶質磁性材料の耐摩耗性や高磁
束密度化及び高透磁率化等の改善が種々提案されている
As a magnetic material for magnetic heads that solves this problem, an amorphous magnetic material has been developed that has favorable properties such as good soft magnetic properties and low current loss because it is a foil strip. Various improvements have been proposed to improve the wear resistance, increase magnetic flux density, and increase magnetic permeability of crystalline magnetic materials.

例えば、特開昭51−73920号公報、特公昭59−
8048号公報等に開示され、実用化されているGo−
Fe  si  B系非晶質磁性材料は、高磁束密度で
あるが、一般に、耐摩耗性がセンダストよりも劣り、熱
安定性はその透磁率が初期には大きな値を示すが、磁気
ヘッド製造時に多用される接着あるいはモールド加工の
ための100℃程度の加熱保持によって、大きく低下す
る問題があった。
For example, JP-A-51-73920, JP-A-59-
The Go-
Although Fe si B-based amorphous magnetic materials have high magnetic flux density, their wear resistance is generally inferior to Sendust, and their thermal stability is such that their magnetic permeability initially shows a large value, but There has been a problem in that the temperature is significantly reduced by heating and holding at about 100° C. for bonding or molding, which are frequently used.

一方、出願人が共同提案(特開昭56−84439号、
特開昭56−130449号)したコバルト基非晶質合
金は、磁歪が小さく、高透磁率特性を示し、磁束密度も
比較的高いが、通常の熱処理方法で、極めて高い透磁率
を得るには、極限られた組成範囲しか利用できない問題
があった。
On the other hand, the applicant jointly proposed (Japanese Patent Application Laid-open No. 56-84439,
The cobalt-based amorphous alloy developed in JP-A-56-130449 has low magnetostriction, high magnetic permeability, and relatively high magnetic flux density, but it is difficult to obtain extremely high magnetic permeability using ordinary heat treatment methods. However, there was a problem in that only an extremely limited composition range could be used.

また、ω−7,r系で磁歪の小さくなる組成において、
Mo、B、NLを含有させて、耐食性、耐摩耗性、飽和
磁束密度を高めた磁気ヘッド用非晶質合金が提案(特開
昭59−38349号)されそいるなど、一般に高磁束
密度な材料が求められている。
In addition, in the composition where the magnetostriction becomes small in the ω-7,r system,
An amorphous alloy for magnetic heads that contains Mo, B, and NL and has improved corrosion resistance, wear resistance, and saturation magnetic flux density has been proposed (Japanese Patent Application Laid-open No. 59-38349). Materials are needed.

ところで、上記の磁気ヘッド用磁性材料で磁気ヘッドを
組立て、各種レコーダー等に実装した場合、一般に切望
されている高磁束密度材料が必ずしも良い実装特性を示
すとは限らず、実装特性として重視されるインピーダン
ス、バイアス電流値、録音信号電流値、再生周波数特性
、再生感度等は、使用した磁性材料の透磁率、とりわけ
低い磁界での透磁率に大きく依存していることが知られ
るようになり、最近特に注目されている。
By the way, when a magnetic head is assembled using the above-mentioned magnetic materials for magnetic heads and mounted on various recorders, etc., the generally desired high magnetic flux density material does not necessarily show good mounting characteristics, and the mounting characteristics are considered important. It has recently become known that impedance, bias current value, recording signal current value, playback frequency characteristics, playback sensitivity, etc. greatly depend on the magnetic permeability of the magnetic material used, especially in low magnetic fields. It is receiving particular attention.

かかる磁気ヘッドの実装特性向上の観点から、従来の磁
性材料を検討すると、単に10 kGを越える高い飽和
磁束密度を有するだけの磁性材料は、高い磁界(101
110e以上)での透磁率は比較的よい値が得られるが
、11110e程度の低い磁界における透磁率は高磁界
の場合に対して極端に低く、例えば、音声録再用磁気ヘ
ッドにおける再生感度が低くなる問題があった。
When considering conventional magnetic materials from the viewpoint of improving the mounting characteristics of such magnetic heads, it is found that magnetic materials that simply have a high saturation magnetic flux density of over 10 kG cannot withstand high magnetic fields (101
110e or higher), but the magnetic permeability in a low magnetic field of about 11110e is extremely low compared to a high magnetic field, and for example, the reproduction sensitivity of a magnetic head for audio recording and reproduction is low. There was a problem.

発明の目的 この発明は、磁気ヘッド用の軟磁性材料とじて好ましい
諸特性を有し、磁気ヘッドの実装特性の 5向上が得ら
れるように、特に、低磁界での高い透磁率を示し、かつ
透磁率の熱安定性にすぐれ、さらに、耐食性、耐摩耗性
にすぐれた磁気ヘッド用磁性材料を目的としている。
Purpose of the Invention The present invention has various desirable properties as a soft magnetic material for a magnetic head, and exhibits especially high magnetic permeability in a low magnetic field so as to improve the mounting characteristics of a magnetic head. The objective is to create a magnetic material for magnetic heads that has excellent thermal stability in magnetic permeability, as well as corrosion resistance and wear resistance.

発明の構成と効果 この発明は、磁気ヘッド用磁性材料として好ましい軟磁
気特性を有する磁性材料を目的に検約し、らを主成分と
し、Zrを主たる非晶質化元素とする磁歪の小さな非晶
質材料につき、さらに検討を加え、磁気ヘッドの実装特
性向上の観点から、約6000G以上の適当な高磁束密
度を有し、特に、0.1m0e〜3 moθ程度の低い
測定磁界における透磁率が極めて高い値を示し、さらに
、耐食性、耐摩耗性も兼備しすぐれた軟磁気特性を有す
る磁性材料を得るため、添加元素の組み合せ等を種々検
討した結果、6とzrに、NL 、14 、rb 、及
びBを含有する非晶質合金が上記目的に有用であり、0
.1m0e〜3 moe程度の低い測定磁界における透
磁率(1kl−1z )が10000以上も得られるこ
とを知見したものである。
Structure and Effects of the Invention The present invention aims to create a magnetic material having soft magnetic properties preferable as a magnetic material for a magnetic head, and a magnetic material with small magnetostriction, which has Zr as the main component and Zr as the main amorphous element. Further studies have been conducted on crystalline materials, and from the perspective of improving the mounting characteristics of magnetic heads, we have developed materials that have an appropriate high magnetic flux density of about 6000 G or more, and in particular have a magnetic permeability in a low measurement magnetic field of about 0.1 m0e to 3 moθ. In order to obtain a magnetic material that exhibits an extremely high value and also has corrosion resistance, wear resistance, and excellent soft magnetic properties, we investigated various combinations of additive elements. , and B are useful for the above purpose, and 0
.. It was discovered that a magnetic permeability (1kl-1z) of 10,000 or more can be obtained in a low measurement magnetic field of about 1 m0e to 3 moe.

さらに、詳述すると、Co−Zr系において、Niの添
加により磁歪を調整し、冷の添加により、透磁率、保磁
力の熱的安定性を高め、またB及び、特に陽の添加によ
り、透磁率を向上させ得ることを知見し、磁気ヘッド用
磁性材料として必要な諸特性の向上を目的に検討し、各
成分及び相互の含有関係を知見、限定したものである。
Furthermore, in detail, in the Co-Zr system, the magnetostriction is adjusted by adding Ni, the thermal stability of magnetic permeability and coercive force is increased by adding cold, and the permeability is improved by adding B and especially positive. It was discovered that the magnetic property could be improved, and studies were conducted for the purpose of improving various properties necessary for a magnetic material for a magnetic head, and the relationships among each component and their mutual content were determined and limited.

すなわち、この発明は、 Co  75原子%〜84原子%、 Ni  2原子%〜6原子%、 −5原子%〜10原子%。That is, this invention: Co 75 atomic% to 84 atomic%, Ni 2 atomic% to 6 atomic%, -5 at% to 10 at%.

陽 0.5原子%〜5原子%。Positive 0.5 at% to 5 at%.

B O01原子%〜5原子%、 Zr  ’−7原子%〜9原子%を含有し、Fb +N
b +Zr  13原子%〜20原子%及びも十Ni十
冷+陽+B+Zr = 100原子%を満足し、優先的
に非晶質からなる磁気ヘッド用磁性材料である。
Contains B O0 1 atomic % to 5 atomic %, Zr'-7 atomic % to 9 atomic %, Fb +N
It is a magnetic material for a magnetic head that satisfies b + Zr 13 atomic % to 20 atomic % and Ni 10 cold + positive + B + Zr = 100 atomic % and is preferentially amorphous.

この発明による非晶質磁性材料は、所定の成分組成を有
する溶湯を超急冷することによって非晶質化することが
でき、また、気相から超急冷する方法、例えばスパッタ
法によっても得られるので、一般に薄帯または薄膜で得
られる。
The amorphous magnetic material according to the present invention can be made amorphous by ultra-quenching a molten metal having a predetermined composition, and can also be obtained by ultra-quenching from a gas phase, such as sputtering. , generally obtained in ribbons or films.

この発明による非晶質薄帯または薄膜は、保磁力及び磁
歪が小さく、透磁率、特に、低測定磁界の透磁率が著し
く高く、熱的に経時的に安定した磁気特性が得られるこ
とを特徴とし、さらに、耐食性及び耐摩耗性に冨み、半
金属元素を多量に含む従来の非晶質磁性材料に比べて脆
化し難く、打ち抜きや切断等の機械加工性にすぐれてい
る。また、電気抵抗が120〜140μΩcmと高く、
しかも数100八〜50週程度の薄帯または薄膜で得ら
れるため、磁気ヘッド用コア材料に最適であり、高周波
特性のよい小型磁心材料にも適している。
The amorphous ribbon or thin film according to the present invention is characterized by having low coercive force and magnetostriction, extremely high magnetic permeability, especially low magnetic field permeability, and providing magnetic properties that are thermally stable over time. Moreover, it is rich in corrosion resistance and wear resistance, is less susceptible to embrittlement than conventional amorphous magnetic materials containing large amounts of metalloid elements, and has excellent machinability such as punching and cutting. In addition, the electrical resistance is high at 120 to 140 μΩcm,
Moreover, since it can be obtained in the form of a ribbon or thin film with a thickness of about 100 to 50 weeks, it is ideal for core materials for magnetic heads, and is also suitable for small-sized magnetic core materials with good high frequency characteristics.

また、この発明による非晶質磁性材料は、実施例に示す
如く、結晶化温度がキューリ一温度より高い水系磁性材
料を、該磁性材料の結晶化温度以上、キューリ一温度以
下の温度範囲に、1〜100分間保持し、さらに、該磁
性材料に、該磁性材料と相対的に回転する磁界を印加し
、150℃〜上記キュ上記キューリーマ、5〜1000
分間保持する2段熱処理を施すことにより、0.3〜3
 moeの測定磁界での透磁率(1kH7)が1500
0乃至20000以上に向上する。
In addition, as shown in the examples, the amorphous magnetic material according to the present invention is characterized in that a water-based magnetic material whose crystallization temperature is higher than the Curie temperature is heated to a temperature range of not less than the crystallization temperature of the magnetic material and not more than the Curie temperature. The magnetic material is held for 1 to 100 minutes, and a magnetic field that rotates relative to the magnetic material is applied to the magnetic material.
By performing two-stage heat treatment for 0.3 to 3
Magnetic permeability (1kHz7) at moe measurement magnetic field is 1500
Improves from 0 to over 20,000.

成分限定理由 COは、本組成における主成分であり、約6000G以
上の磁束密度を得るためには75原子%以上必要である
が、84原子%を越えると、低測定磁界における透磁率
が向上しないため、75原子%〜84原子%の含有とし
、望ましくは71原子%〜82原子%がよく、さらに望
ましくは、77原子%〜8011i!子%が良い。
Reason for component limitation CO is the main component in this composition, and 75 atomic % or more is required to obtain a magnetic flux density of about 6000 G or more, but if it exceeds 84 atomic %, the magnetic permeability at low measurement magnetic fields will not improve. Therefore, the content should be 75 at % to 84 at %, preferably 71 at % to 82 at %, and more preferably 77 at % to 8011i! Child% is good.

N1は、磁束密度を低下させるこなく、磁歪を低減させ
て負にする効果を有するために添加し、他の成分元素の
含有範囲において、磁歪を実質的に零もしくはやや負で
、磁束密度が6000(3以上の磁性材料とするために
は2原子%以上の添加が必要であるが、6原子%を越え
て添加すると、結晶化温度及び飽和磁束密度が低下する
ため、2原子%〜6原子%の添加とする。
N1 is added to have the effect of reducing magnetostriction and making it negative without reducing the magnetic flux density, and within the content range of other component elements, the magnetostriction is substantially zero or slightly negative, and the magnetic flux density is 6000 (to make a magnetic material of 3 or more, it is necessary to add 2 at % or more, but if it is added in excess of 6 at %, the crystallization temperature and saturation magnetic flux density will decrease, so it is necessary to add 2 at % or more). The addition amount is atomic%.

MOは、磁歪を負にし、透磁率あるいは保磁力の熱的安
定性を高める元素であり添加するが、5原子%未満では
上記効果がなく、また10原子%を越えると、磁束密度
が著しく低下するため、5Wt子%〜10原子%の含有
とする。
MO is an element that makes magnetostriction negative and increases the thermal stability of magnetic permeability or coercive force, and is added, but if it is less than 5 at%, it will not have the above effect, and if it exceeds 10 at%, the magnetic flux density will decrease significantly. Therefore, the content is set to be 5 Wt % to 10 atomic %.

Nbは、Zr、Bに次ぐ非晶質形成能を有し、Zr及び
日と共に含有されることによって非晶質形成能を高める
効果を有し、磁歪を負にし、熱処理後の透磁率の向上を
促進させる作用を有するため添加するが、0.5原子%
未満では所要の効果が得られず、また、5原子%を越え
て添加しても磁気特性の向上効果が得られないため、0
,5原子%〜5原子%の含有とする。望ましくは、1.
5原子%〜5原子%の範囲がよい。
Nb has the ability to form an amorphous state next to Zr and B, and when included together with Zr and Nb, it has the effect of increasing the ability to form an amorphous state, makes magnetostriction negative, and improves magnetic permeability after heat treatment. It is added because it has the effect of promoting
If the amount is less than 0, the desired effect cannot be obtained, and even if it is added in an amount exceeding 5 atomic percent, the effect of improving magnetic properties cannot be obtained.
, 5 at% to 5 at%. Preferably, 1.
The range is preferably from 5 at.% to 5 at.%.

Bは、lrと同時に含有することにより、材料の非晶質
形成能を高め、磁気異方性の低減に効果があり、0.1
原子%以上、望ましくは0.5原子%以上から上記効果
があるが、5原子%を越えて添加しても、磁気異方性の
低減にはさほど効果がなく、磁束密度の低下を来たし、
脆化し易くなり、ざらには磁性の熱的安定性も低下する
ため、0.1原子%〜5原子%とする。また、望ましく
は0.5原子%〜3原子%がよく、さらに、極めて高い
熱的安定性を得るには、0.5原子%以上1原子%以下
の含有がよい。
By containing B at the same time as lr, it is effective in increasing the ability of the material to form an amorphous state and reducing magnetic anisotropy.
The above effects can be obtained when the amount is at least 5 at%, preferably at least 0.5 at%, but adding more than 5 at% is not so effective in reducing magnetic anisotropy and causes a decrease in magnetic flux density.
Since it becomes easy to become brittle and also reduces the thermal stability of magnetism, the content is set to 0.1 atomic % to 5 atomic %. Further, the content is preferably 0.5 at % to 3 at %, and furthermore, in order to obtain extremely high thermal stability, the content is preferably 0.5 at % or more and 1 at % or less.

2「は、水系組成の主たる非晶質化元素であり、容易に
非晶質化し、かつ安定した非晶質状態を得るためには7
原子%以上含有する必要があるが、一方、当該磁性材料
の磁歪を正にする元素であり、磁歪をできるだけ零に近
づけるためには9原子%以下にする必要があり、1原子
%〜9原子%とする。
2 is the main amorphous element in the aqueous composition, and in order to easily become amorphous and obtain a stable amorphous state, 7
On the other hand, it is an element that makes the magnetostriction of the magnetic material positive, and in order to bring the magnetostriction as close to zero as possible, it needs to be contained at 9 atomic % or less, and 1 atomic % to 9 atomic %. %.

また、Mo、Nb、Zrは、キュー !J −mW’f
r下げる効果を有するが、その合計含有量が13原子%
未満ではキューリ一温度が高く、熱処理を施しても十分
な透磁率が得られず、20原子%を越えると磁束密度が
著しく低下するため、比+陽+Zrは13原子%〜20
原子%とし、望ましくは15原子%〜18原子%の範囲
がよい。
Also, Mo, Nb, and Zr are cue! J −mW'f
It has the effect of lowering r, but its total content is 13 at%
If it is less than 20 atomic %, the Curie temperature is high and sufficient magnetic permeability cannot be obtained even if heat treatment is performed, and if it exceeds 20 atomic %, the magnetic flux density will decrease significantly.
It is expressed as atomic %, preferably in the range of 15 atomic % to 18 atomic %.

この発明による磁性材料は、上述の各元素を種々の組み
合せで含有し、 一十陽+Zr  13原子%〜20原子%及びC< +
 NL+冷+陽+B+Zy=100原子%を満足する。
The magnetic material according to the present invention contains the above-mentioned elements in various combinations, and contains 10 + Zr 13 at % to 20 at % and C < +
NL+cold+positive+B+Zy=100 atomic% is satisfied.

実施例 第1図は、実施例1における測定磁界と透磁率との関係
を示すグラフ、 第2図、は実施例2におけるB元素含有量と、測定方向
による保磁力差及び磁化の大きさとの関係を示すグラフ
、 第3図は、実施例3における時効時間と透磁率の低下率
との関係を示すグラフ、 第4図は、実施例5におCプるt% + t+ + Z
r含有量と結晶化温度、キューリ一温度及び磁化の大き
さとの関係を示すグラフ、 第5図は、実施例6における時効時間と透磁率との関係
を示すグラフである。
Example Figure 1 is a graph showing the relationship between the measured magnetic field and magnetic permeability in Example 1, and Figure 2 is a graph showing the relationship between the B element content and the coercive force difference and magnetization size depending on the measurement direction in Example 2. FIG. 3 is a graph showing the relationship between aging time and magnetic permeability reduction rate in Example 3. FIG. 4 is a graph showing the relationship between aging time and magnetic permeability reduction rate in Example 5.
Graph showing the relationship between r content, crystallization temperature, Curie temperature, and magnitude of magnetization. FIG. 5 is a graph showing the relationship between aging time and magnetic permeability in Example 6.

Ki医上 この発明による非晶質磁性合金:陽1(at%)。Ki medical Amorphous magnetic alloy according to the present invention: positive 1 (at%).

隘2(at%)として、 Co78.8− Ni 3.2−冷7−Nb2−B  
O,95−Zy 8.O5、比較倒置3(at%)とし
て、 Co82.3− NLl−Ha 6.4−82−Zr 
8.3、なる組成の溶湯を超急冷して、幅約15mm、
厚み約30ρの薄帯を製造し、10mmφX 6mmφ
のリングを打ち抜き、各々、下記に示す最適の熱処理及
び歪取りを行なったのち、室温で透磁率の測定を行なっ
た。
As 隘2 (at%), Co78.8-Ni3.2-Cold7-Nb2-B
O,95-Zy 8. As O5, comparative inversion 3 (at%), Co82.3-NLl-Ha 6.4-82-Zr
8.3, by ultra-quenching a molten metal with the following composition, a width of about 15 mm,
Manufacture a thin strip with a thickness of about 30ρ, 10mmφX 6mmφ
The rings were punched out, and after each was subjected to the optimum heat treatment and strain relief shown below, the magnetic permeability was measured at room temperature.

熱処理条件: 本発明陽1は、500℃×5分の加熱後水冷し、陽2は
、500℃×5分の加熱後水冷し、ついで9.8 ko
eの磁界中で300℃×20分の回転磁界中熱処理した
Heat treatment conditions: Invention No. 1 was heated at 500°C for 5 minutes and then water-cooled, and No. 2 was heated at 500°C for 5 minutes and then water-cooled, and then heated at 9.8 ko
Heat treatment was performed in a rotating magnetic field at 300° C. for 20 minutes in a magnetic field of e.

比較例1N&L3は、9.8にらの磁界中で375℃×
30分の加熱後に水冷した。
Comparative Example 1N&L3 was heated at 375°C in a magnetic field of 9.8 chives.
After heating for 30 minutes, it was cooled with water.

透磁率の測定結果は第1図に示すとおりであり、1 m
oe程度の低い測定磁界において、比較倒置3は400
0〜5000程度しか得られないが、本発明陽1は、約
1oooo1陽2は20000以上の著しく高い透磁率
を得ていることが分る。
The measurement results of magnetic permeability are as shown in Figure 1.
At a measurement field as low as oe, the comparative inversion 3 is 400
Although only about 0 to 5,000 can be obtained, it can be seen that positive 1 of the present invention has a significantly high magnetic permeability of about 1oooo1 and positive 2 of about 20,000 or more.

囚に、上記の磁性材料を使用して、C形の録再用磁気ヘ
ッドを作製し、同一レコーダーに装着して、333Hz
における再生感度を測定したところ、比較倒置3め磁性
材料を使用した磁気ヘッドに比べて、本発明階2の磁性
材料を使用した磁気ヘッドは5dBも高い値を示し、実
装特性のすぐれていることが分る。
Finally, a C-shaped recording/reproducing magnetic head was made using the above magnetic material, and it was attached to the same recorder to produce a 333Hz
When the reproduction sensitivity was measured, the magnetic head using the magnetic material of the second level of the present invention showed a value 5 dB higher than that of the magnetic head using the comparative inverted third magnetic material, indicating that the mounting characteristics were excellent. I understand.

実施例2 この発明による非晶質磁性合金として、Co179.’
5−Xi−NL 3.2−  t’b7二Nb2−BX
   −7,r  8.1  (aj%)ゝなる組成で
、Xすなわち日の含有量を種々変化させた組成の溶湯を
超急冷して、幅約15mm、厚み約30加の薄帯を製造
し、各種の薄帯の長手方向の保磁力HC//と、薄帯幅
方向の保磁力Hc、1の差の絶対値、IHc//−HC
LIを測定した。
Example 2 As an amorphous magnetic alloy according to the present invention, Co179. '
5-Xi-NL 3.2-t'b72Nb2-BX
-7, r 8.1 (aj%), and the molten metal with various X, i.e., day contents, was ultra-quenched to produce a ribbon about 15 mm wide and about 30 mm thick. , the absolute value of the difference between the coercive force HC in the longitudinal direction of various ribbons and the coercive force Hc in the width direction of the ribbon, 1, IHc //-HC
LI was measured.

第2図は、上記絶対値とBの含有量との関係を示したも
ので、日の添加と共に上記差は小さくなり、4原子%の
添加でほぼ零となり、それ以上添加すると再びか大きく
なるのが分る。
Figure 2 shows the relationship between the above absolute value and the content of B. The above difference becomes smaller as the amount is added, becomes almost zero when 4 atomic % is added, and increases again when more is added. I understand.

一般に、非晶質軟磁性材料にも磁頓異方性が存在し、ロ
ール法による薄帯のみならず、スパッタ法による薄帯に
も磁気異方性は存在し、トルクメータにより測定されて
いるが、薄帯の方向による保磁力の差によっても定性的
に磁気異方性の大小を推定することができることから、
第2図よりBは約5原子%以下の添加でも磁気異方性を
小さくする効果のあることが分る。
In general, magnetic anisotropy exists even in amorphous soft magnetic materials, and magnetic anisotropy exists not only in ribbons produced by the roll method but also in ribbons produced by the sputtering method, and is measured with a torque meter. However, since it is possible to qualitatively estimate the magnitude of magnetic anisotropy based on the difference in coercive force depending on the direction of the ribbon,
From FIG. 2, it can be seen that B has the effect of reducing magnetic anisotropy even when added in an amount of about 5 atomic % or less.

また、上記の数種の薄帯において、Bを8原子%以上含
有したものは一部脆化しており、10原子%含有したも
のは全面的に脆化していた。
Further, among the several types of ribbons mentioned above, those containing 8 at % or more of B were partially embrittled, and those containing 10 at % were entirely embrittled.

従って、Bは磁気異方性を小さくする効果を有するが、
含有量の増大と共に脆化し易くなるため、5原子%以下
の添加が好ましいことが分る。
Therefore, B has the effect of reducing magnetic anisotropy, but
It can be seen that addition of 5 atomic % or less is preferable because as the content increases, embrittlement becomes more likely.

実施例3 この発明による非晶質磁性合金に冷を選定した理由を明
らかにするため、 この発明の非晶質磁性合金として m4(at%) : Co 77−N12−t’に+9
−Nb1−B 1−Zy 9、比較例として、 11h5(at%) : Co 77−Ni2−Cr9
−陽1”E31−Zr 9、m6(at%)  ; G
o 77−NL2−V 9−t41−81−Zr 9、
なる組成の溶湯を超急冷して、幅約15++vn、厚み
約30ρの薄帯を製造し、10mmφX 6mmφのリ
ングを打ち抜き、キューリ一温度以上、結晶化温度より
50℃以下の温度で10分間の焼鈍を施し、その後水冷
し、各試料の透磁率(μ2 :  1 kHz 、 1
0 m0e)をトランス法で測定し、ついで、100℃
で時効させて、透磁率の変化を調べ、第3図に示す。
Example 3 In order to clarify the reason why cold was selected for the amorphous magnetic alloy of the present invention, m4 (at%): +9 to Co77-N12-t' was used as the amorphous magnetic alloy of the present invention.
-Nb1-B1-Zy9, as a comparative example, 11h5 (at%): Co77-Ni2-Cr9
-positive 1"E31-Zr 9, m6 (at%); G
o 77-NL2-V 9-t41-81-Zr 9,
A thin strip with a width of about 15++vn and a thickness of about 30ρ was produced by ultra-quenching the molten metal having the following composition. Rings of 10 mmφ x 6 mmφ were punched out and annealed for 10 minutes at a temperature above one Curie temperature and below 50°C below the crystallization temperature. The magnetic permeability of each sample (μ2: 1 kHz, 1
0 m0e) was measured using the transformer method, and then heated to 100°C.
The changes in magnetic permeability were investigated and shown in Figure 3.

第3図から明らかなように、出を含むCo −zr金合
金、透磁率の変化が少な(、最も熱的に安定した磁性材
料であることが分る。
As is clear from FIG. 3, the Co-Zr gold alloy containing copper is the most thermally stable magnetic material with little change in magnetic permeability.

実施例4 この発明による非晶質磁性合金として、陽7(at%)
: Co79− NL3−1%?−flI&1I2−B O
,9−Zr 8.1、比較例として、 148(at%) ; Co79− Ni 3− Fb
9−B O09−Zy 8.1、なる組成の溶湯を超急
冷して、幅約15mm1厚み約30項の薄帯を製造し、
10mmφX 6mmφのリングを打ち抜き、各々の試
料を、500℃×5分の焼鈍した後、9.8 koeの
磁界による350℃×20分の回転磁界中熱処理した。
Example 4 As an amorphous magnetic alloy according to the present invention, 7 (at%)
: Co79- NL3-1%? -flI&1I2-BO
,9-Zr 8.1, as a comparative example, 148 (at%); Co79-Ni3-Fb
9-B O09-Zy 8.1, a molten metal having a composition of
Rings of 10 mmφ x 6 mmφ were punched out, each sample was annealed at 500° C. for 5 minutes, and then heat treated in a rotating magnetic field of 350° C. for 20 minutes using a magnetic field of 9.8 koe.

得られた試料の磁気特性、透磁率μ2 (測定磁界10
10e)の周波数依存性、透磁率(1kH2)のレベル
特性を測定し、第・1表に示す。
The magnetic properties of the obtained sample, magnetic permeability μ2 (measured magnetic field 10
The frequency dependence and level characteristics of magnetic permeability (1kHz) of 10e) were measured and are shown in Table 1.

第1表から明らかなように、両方の合金とも磁束密度は
ほぼ同等であり、rI&L8の材料においても相当高い
透磁率を示しているが、本発明材料池7は比較装置8に
対して、透磁率が周波数全般に渡って高く、特に低い測
定磁界における透磁率が大きく改善されていることが分
る。
As is clear from Table 1, the magnetic flux densities of both alloys are almost the same, and the material rI&L8 also exhibits a considerably high magnetic permeability. It can be seen that the magnetic permeability is high over the entire frequency range, and that the magnetic permeability is particularly improved at low measurement magnetic fields.

これは、本発明材料は、比較例の七の一部を陽で置換し
たもので、水系組成において、陽が透磁率の改善に有効
なことが明らかである。
This is because the material of the present invention has a part of 7 in the comparative example replaced with positive, and it is clear that positive is effective in improving magnetic permeability in an aqueous composition.

以下余白 に直匠呈 この発明による非晶質磁性合金として、ctA87−X
I NL 2  t’bX  Nb 2  B I  
Zr 8 (at%)、なる組成のXを種々変化させた
一連の組成溶湯を超急冷して、幅約15mm、厚み約3
0ρの薄帯を製造し、磁化の大きさ、結晶化温度、キュ
ーリ一温度を測定し、隔十比+Zr量(at%)との関
係として、第4図に示す。
ctA87-X is shown below as an amorphous magnetic alloy according to the present invention.
I NL 2 t'bX Nb 2 B I
Zr 8 (at%), a series of molten metals with various compositions of X were ultra-quenched to form a material with a width of about 15 mm and a thickness of about 3 mm.
A thin ribbon of 0 ρ was produced, and the magnitude of magnetization, crystallization temperature, and Curie temperature were measured, and the relationship between the magnetization ratio and the Zr content (at%) is shown in FIG.

第4図から明らかなように、陽子t’b +Zr量が1
3原子%未満では結晶化温度とキューリ一温度との差が
、100℃以上と大きくなり、また、20原子%を越え
ると磁化の大きさは著しく低下するため、陽子%+Zr
量は13原子%〜20原子%が好ましく、さらに好まし
くは15原子%〜18原子%の範囲であることが分る。
As is clear from Figure 4, the amount of protons t'b + Zr is 1
If it is less than 3 atomic %, the difference between the crystallization temperature and the Curie temperature will be as large as 100°C or more, and if it exceeds 20 atomic %, the magnitude of magnetization will decrease significantly.
It can be seen that the amount is preferably in the range of 13 atom % to 20 atom %, and more preferably in the range of 15 atom % to 18 atom %.

友腹鼠旦 この発明による非晶質磁性合金として、lV&L9(a
t%): Co78.8− NL 3.2− Fb7−Fh2−B
 0095−Zr 8.05、なる組成のImを超急冷
して、幅約15町、厚み約30ρの薄帯を製造し、10
mmφX 6nvnφのリングを打ち抜き、試料を、5
00℃×5分の加熱後水冷し、15 koeの磁界によ
る300℃×20分の回転磁界中熱処理を施した。
As an amorphous magnetic alloy according to this invention, lV & L9 (a
t%): Co78.8-NL3.2-Fb7-Fh2-B
Im with a composition of 0095-Zr 8.05 was ultra-quenched to produce a ribbon with a width of about 15 mm and a thickness of about 30 ρ.
Punch out a ring of mmφX 6nvnφ and make a sample of 5
After heating at 00° C. for 5 minutes, the sample was cooled with water and subjected to heat treatment in a rotating magnetic field at 300° C. for 20 minutes using a magnetic field of 15 koe.

得られた試料の測定磁界10110eにおける、透磁率
μz(1kHz及び100 kH2)をトランス法で測
定した。
The magnetic permeability μz (1 kHz and 100 kHz) of the obtained sample at a measurement magnetic field of 10110e was measured using a transformer method.

ついで、上記試料を120℃で加熱保持した後冷却し、
室温で透磁率を測定し、120℃の加熱保持による透磁
率の劣化程度を測定し、その時間依存性を第6図に示す
Next, the sample was heated and held at 120°C, and then cooled.
The magnetic permeability was measured at room temperature, and the degree of deterioration of the magnetic permeability due to heating and holding at 120° C. was measured, and the time dependence thereof is shown in FIG.

一般に、薄板または薄膜状のコア材から磁気ヘッドを組
立加工する際には、80℃〜150℃の温度で3〜6時
間程度加熱されることが多いが、本発明磁性材料は、か
かる加熱工程を経ても磁気特性の劣化がほとんどないこ
とが分る。
Generally, when assembling and processing a magnetic head from a thin plate or thin film core material, it is often heated at a temperature of 80°C to 150°C for about 3 to 6 hours. It can be seen that there is almost no deterioration of the magnetic properties even after passing through this process.

K直匠り この発明による非晶質磁性合金として、階10 (at
%); C079−NL3−門o7−Nb2−81−Zy8、陽
11 (at%): Co78.1− Ni 4.5−1’&8−1’40.
5−8 0.9− Zr 8、陽12(at%); Co80.5− Ni 2.1− Mo5−1’41.
4− F34−Zr  7、rI&L13(at%): C080,5−NL O,5−1%8−Nb O,5−
82−Zy  8,5、比較例1kL14 (at%)
として、Co 66−Fe4−Ru5−Cr3−8L4
−B 18、なる組成の溶湯を超急冷して、薄帯を製造
し、10馴角の薄板を成型して、これを積層して厚み0
.5mmの試験片となし、先端部を5Rに研摩したのち
、同一条件で摩耗試験機にかけ、耐摩耗性試験し、第2
表の結果を得た。
As an amorphous magnetic alloy according to the invention of Riko K.
%); C079-NL3-gate o7-Nb2-81-Zy8, positive 11 (at%): Co78.1-Ni 4.5-1'&8-1'40.
5-8 0.9- Zr 8, positive 12 (at%); Co80.5- Ni 2.1- Mo5-1'41.
4-F34-Zr7,rI&L13(at%): C080,5-NLO,5-1%8-NbO,5-
82-Zy 8,5, comparative example 1kL14 (at%)
As, Co 66-Fe4-Ru5-Cr3-8L4
-B 18, a molten metal with a composition of
.. A 5mm test piece was prepared, the tip was polished to 5R, and then subjected to an abrasion tester under the same conditions to perform an abrasion resistance test.
Obtained the results in the table.

試験条件は、摺動テープに酸化鉄を塗布した市販のテー
プを用い、摺動速度は4.75cm /sec 。
The test conditions were as follows: A commercially available sliding tape coated with iron oxide was used, and the sliding speed was 4.75 cm 2 /sec.

雰囲気は瀉[40℃、湿度70%であった。The atmosphere was 40° C. and 70% humidity.

第2表の結果から明らかなように、この発明による磁気
ヘッド用磁性材料は陽14に比べて、いずれも6〜12
倍ものすぐれた耐摩耗性を有することが分る。
As is clear from the results in Table 2, the magnetic material for magnetic heads according to the present invention has a 6 to 12
It can be seen that the wear resistance is twice as good.

第2表Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1における測定磁界と透磁率との関係
を示すグラフ、 第2図、は実施例2における8元素含有量と、測定方向
による保磁力差及び磁化の大きさとの関係を示すグラフ
、 第3図は、実施例3における時効時間と透磁率の低下率
との関係を示すグラフ、 第4図は、実施例5における出+陽+Zr含有量と結晶
化温度、キューリ一温度及び磁化の大きさとの関係を示
すグラフ、 一第5図は、実施例6における時効時間と透磁率との関
係を示すグラフである。 出願人  住友特殊金属株式会社 第1図 測定磁界(moe) 第2図 B原子(チ) 第3図 大 時効時間(分) 第4図
Figure 1 is a graph showing the relationship between the measured magnetic field and magnetic permeability in Example 1, and Figure 2 is a graph showing the relationship between the content of eight elements and the coercive force difference and magnetization size depending on the measurement direction in Example 2. FIG. 3 is a graph showing the relationship between aging time and magnetic permeability reduction rate in Example 3. FIG. 4 is a graph showing the relationship between aging time and magnetic permeability reduction rate in Example 5. FIG. FIG. 5 is a graph showing the relationship between aging time and magnetic permeability in Example 6. Applicant Sumitomo Special Metals Co., Ltd. Figure 1 Measured magnetic field (MOE) Figure 2 B atoms (chi) Figure 3 Large aging time (minutes) Figure 4

Claims (1)

【特許請求の範囲】 1 Co 75原子%〜84原子%、 Ni 2原子%〜6原子%、 Mo 5原子%〜10原子%、 Nb 0.5原子%〜5原子%、 B 0.1原子%〜5原子%、 Zr 7原子%〜9原子%を含有し、 Mo+Nb+Zr 13原子%〜20原子%及びCo+
Ni+Mo+Nb+B+Zr=100原子%を満足し、
優先的に非晶質からなる磁気ヘッド用磁性材料。 2 B 0.5原子%〜3原子%を含有することを特徴とす
る特許請求の範囲第1項記載の磁気ヘッド用磁性材料。 3 B 0.5原子%〜1原子%を含有することを特徴とす
る特許請求の範囲第1項記載の磁気ヘッド用磁性材料。
[Claims] 1 Co: 75 at.% to 84 at.%, Ni: 2 at.% to 6 at.%, Mo: 5 at.% to 10 at.%, Nb: 0.5 at.% to 5 at.%, B: 0.1 atom. % to 5 atom%, Zr 7 atom% to 9 atom%, Mo+Nb+Zr 13 atom% to 20 atom%, and Co+
Ni+Mo+Nb+B+Zr=100 atomic%,
A magnetic material for magnetic heads that is preferentially amorphous. 2. The magnetic material for a magnetic head according to claim 1, which contains 0.5 to 3 at% of B. 3. The magnetic material for a magnetic head according to claim 1, which contains 0.5 at.% to 1 at.% of B.
JP59135593A 1984-06-29 1984-06-29 Magnetic material for magnetic head Pending JPS6115935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59135593A JPS6115935A (en) 1984-06-29 1984-06-29 Magnetic material for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59135593A JPS6115935A (en) 1984-06-29 1984-06-29 Magnetic material for magnetic head

Publications (1)

Publication Number Publication Date
JPS6115935A true JPS6115935A (en) 1986-01-24

Family

ID=15155444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59135593A Pending JPS6115935A (en) 1984-06-29 1984-06-29 Magnetic material for magnetic head

Country Status (1)

Country Link
JP (1) JPS6115935A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130449A (en) * 1980-03-19 1981-10-13 Takeshi Masumoto Amorphous cobalt alloy with very low magnetostriction and high permeability
JPS5757854A (en) * 1980-09-19 1982-04-07 Hitachi Ltd Metal-metal type ferromagnetic amorphous alloy and magnetic core using it
JPS5938349A (en) * 1982-08-26 1984-03-02 Hitachi Ltd Amorphous magnetic alloy with high saturation magnetic flux density and high magnetic permeability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130449A (en) * 1980-03-19 1981-10-13 Takeshi Masumoto Amorphous cobalt alloy with very low magnetostriction and high permeability
JPS5757854A (en) * 1980-09-19 1982-04-07 Hitachi Ltd Metal-metal type ferromagnetic amorphous alloy and magnetic core using it
JPS5938349A (en) * 1982-08-26 1984-03-02 Hitachi Ltd Amorphous magnetic alloy with high saturation magnetic flux density and high magnetic permeability

Similar Documents

Publication Publication Date Title
US4748000A (en) Soft magnetic thin film
US4420348A (en) Amorphous alloy for magnetic head core
JP2698814B2 (en) Soft magnetic thin film
JPH0324043B2 (en)
JPS6129105A (en) Magnetic alloy thin film
JPS6115935A (en) Magnetic material for magnetic head
JPH0653039A (en) Corrosion-resistant magnetic film and magnetic head using the same
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JPH0359978B2 (en)
JPH0483313A (en) Soft magnetic thin film and magnetic head
JP2727274B2 (en) Soft magnetic thin film
JP3279591B2 (en) Ferromagnetic thin film and manufacturing method thereof
JPS6089539A (en) Amorphous magnetic alloy having low magnetostriction
JP2979557B2 (en) Soft magnetic film
JP3019400B2 (en) Amorphous soft magnetic material
JPS633406A (en) Magnetically soft thin film
JPS6321746B2 (en)
JP2522284B2 (en) Soft magnetic thin film
JP3221035B2 (en) Magnetic head
KR940008644B1 (en) Magnetic alloy thin film for magnetic head
JPH0789527B2 (en) Crystalline soft magnetic thin film
JPH0789526B2 (en) Crystalline soft magnetic thin film
JPS644327B2 (en)
JPS63146417A (en) Soft magnetic thin film
JPS62104110A (en) Soft magnetic thin film