JP2522284B2 - Soft magnetic thin film - Google Patents

Soft magnetic thin film

Info

Publication number
JP2522284B2
JP2522284B2 JP62019032A JP1903287A JP2522284B2 JP 2522284 B2 JP2522284 B2 JP 2522284B2 JP 62019032 A JP62019032 A JP 62019032A JP 1903287 A JP1903287 A JP 1903287A JP 2522284 B2 JP2522284 B2 JP 2522284B2
Authority
JP
Japan
Prior art keywords
soft magnetic
thin film
atomic
alloy
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62019032A
Other languages
Japanese (ja)
Other versions
JPS63186404A (en
Inventor
和彦 林
正俊 早川
健二 香取
興一 阿蘇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62019032A priority Critical patent/JP2522284B2/en
Publication of JPS63186404A publication Critical patent/JPS63186404A/en
Application granted granted Critical
Publication of JP2522284B2 publication Critical patent/JP2522284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、軟磁性薄膜に関するものであり、詳細には
Fe−Ga−Si系合金薄膜の物理的特性(例えば耐摩耗性や
耐蝕性,内部応力等。)、磁気特性の改良に関するもの
である。
TECHNICAL FIELD The present invention relates to a soft magnetic thin film, and in detail,
The present invention relates to improvement of physical properties (eg wear resistance, corrosion resistance, internal stress, etc.) and magnetic properties of Fe-Ga-Si alloy thin films.

〔発明の概要〕[Outline of Invention]

本発明は、Fe−Ga−Si系合金薄膜、あるいはFe−Co−
Ga−Si系合金薄膜において、構成元素の少なくとも1種
を10原子%を越え15原子%以下のRuで置換することによ
って、耐蝕性,耐摩耗性,内部応力等の物理的特性の改
善を図ると同時に、軟磁気特性,特に抗磁力のさらなる
向上を図ろうとするものである。
The present invention is a Fe-Ga-Si alloy thin film, or Fe-Co-
In the Ga-Si alloy thin film, at least one of the constituent elements is replaced with Ru of more than 10 atomic% and less than 15 atomic% to improve physical properties such as corrosion resistance, wear resistance and internal stress. At the same time, it is intended to further improve the soft magnetic characteristics, especially the coercive force.

〔従来の技術〕[Conventional technology]

磁気記録における記録の高密度化,高品質化を図る目
的で、高抗磁力を有する磁気記録媒体,例えば磁性粉に
Fe,Co,Ni等の金属あるいは合金からなる金属磁性粉末を
用いた、いわゆる合金塗布型のメタルテープ等が開発さ
れ、オーディオテープレコーダをはじめ、いわゆる8ミ
リVTR(8ミリビデオテープレコーダ)等、民生用の磁
気記録の分野で実用化が進んでいる。
In order to achieve high density and high quality recording in magnetic recording, a magnetic recording medium having a high coercive force, for example, magnetic powder is used.
So-called alloy coating type metal tapes using magnetic metal powder made of metals such as Fe, Co, Ni or alloys have been developed, including audio tape recorders, so-called 8mm VTR (8mm video tape recorder), etc. Practical application is progressing in the field of consumer magnetic recording.

したがって、このような磁気記録媒体を充分に磁化す
るためには、磁気ヘッドのコア材料に対して、この媒体
の抗磁力に見合った充分高い飽和磁束密度を有すること
が要求される。また、特に記録・再生を同一の磁気ヘッ
ドで行う場合においては、上述の飽和磁束密度のみなら
ず、適用する周波数帯域で充分に高い透磁率を有する材
料であることが必要である。
Therefore, in order to sufficiently magnetize such a magnetic recording medium, the core material of the magnetic head is required to have a sufficiently high saturation magnetic flux density commensurate with the coercive force of the medium. Further, particularly when recording and reproducing are performed by the same magnetic head, it is necessary that the material has not only the above-mentioned saturation magnetic flux density but also a sufficiently high magnetic permeability in the applied frequency band.

従来、このような基本的な磁気特性を満たすコア材料
として、Fe−Al−Si系合金(センダスト合金)が知られ
ており、実用に供されていることは周知の通りである。
Conventionally, as a core material satisfying such basic magnetic characteristics, an Fe-Al-Si alloy (Sendust alloy) has been known, and it is well known that it has been put to practical use.

しかしながら、このセンダスト合金のように軟磁気特
性に優れた材料においては、磁歪λsと結晶磁気異方性
Kが共に零付近であることが望ましく、磁気ヘッドに使
用可能な材料組成はこれら両者の値を考慮して決められ
る。したがって、飽和磁束密度もこの組成に対応して一
義的に決まり、センダスト合金の場合、10〜11kガウス
が限界である。
However, in a material having excellent soft magnetic properties such as this Sendust alloy, it is desirable that both the magnetostriction λs and the crystal magnetic anisotropy K are near zero, and the material composition usable for the magnetic head is the value of both of them. Can be decided in consideration. Therefore, the saturation magnetic flux density is uniquely determined corresponding to this composition, and in the case of Sendust alloy, the limit is 10 to 11 kGauss.

あるいは、上記センダスト合金に代わり、高周波数領
域での透磁率の低下が少なく高い飽和磁束密度を有する
非晶質磁性合金材料(いわゆるアモルファス磁性合金材
料)も開発されているが、この非晶質磁性合金材料でも
飽和磁束密度は12kガウス程度であり、また、熱的に不
安定で結晶化の可能性が大きいので500℃以上の温度を
長時間加えることはできず、例えばガラス融着のように
各種熱処理が必要な磁気ヘッドに使用するには工程上制
約が生ずる。
Alternatively, an amorphous magnetic alloy material (so-called amorphous magnetic alloy material), which has a high saturation magnetic flux density with a small decrease in magnetic permeability in the high frequency region, has been developed in place of the above Sendust alloy. Even with alloy materials, the saturation magnetic flux density is about 12 kGauss, and since it is thermally unstable and has a high possibility of crystallization, it is not possible to apply a temperature of 500 ° C or higher for a long time. When used in a magnetic head that requires various heat treatments, there are process restrictions.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このような状況から、さらに良好な軟磁気特性を示す
軟磁性材料の研究が進められ、例えば本願出願人は先に
特願昭60−77338号明細書において、Fe,Ga,Siを主成分
として高飽和磁束密度を有するFe−Ga−Si系軟磁性薄膜
を、さらには特願昭60−218737号明細書において、Feの
一部をCoで置換したFe−Ga−Si系軟磁性薄膜を提案し
た。
Under such circumstances, researches on soft magnetic materials exhibiting further excellent soft magnetic properties have been advanced. For example, the applicant of the present application has previously described in Japanese Patent Application No. 60-77338 that Fe, Ga, Si as main components. Proposed Fe-Ga-Si soft magnetic thin film with high saturation magnetic flux density, and Fe-Ga-Si soft magnetic thin film in which a part of Fe was replaced by Co in Japanese Patent Application No. 60-218737. did.

本発明は、このFe−Ga−Si系軟磁性薄膜の物理的特性
や軟磁気特性の一層の改善を図るものである。
The present invention aims to further improve the physical properties and soft magnetic properties of this Fe-Ga-Si based soft magnetic thin film.

すなわち、本発明は、センダスト合金を凌ぐ高い飽和
磁束密度を有するとともに、より一層低い抗磁力を示
し、耐摩耗性,耐蝕性,内部応力の点でも優れた特性を
有する軟磁性薄膜を提供することを目的とする。
That is, the present invention provides a soft magnetic thin film having a high saturation magnetic flux density superior to that of Sendust alloy, showing a lower coercive force, and having excellent properties in terms of wear resistance, corrosion resistance, and internal stress. With the goal.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、前述の問題点を解消せんものと鋭意研
究の結果、所定量のRuの添加が耐蝕性,耐摩耗性の向上
に有効で、また保磁力や内部応力の点でも有利であると
の知見を得るに至った。
The inventors of the present invention, as a result of earnest research to solve the above problems, addition of a predetermined amount of Ru is effective in improving corrosion resistance and wear resistance, and is also advantageous in terms of coercive force and internal stress. We have come to the knowledge that there is.

本発明の軟磁性薄膜は、このような知見に基づいて完
成されたものであった、FeaGabSic(但し、a,b,cはそれ
ぞれ組成比を原子%として表す。)なる組成式で示さ
れ、その組成範囲が68≦a≦84,1≦b≦23,9≦c≦31,a
+b+c=100である軟磁性薄膜において、Fe,Ga,Siの
少なくとも1種を10原子%を越え15原子%以下のRuで置
換したことを特徴としている。なお、上記組成式中、Fe
の一部を0〜15原子%のCoで置換してもよい。
The soft magnetic thin film of the present invention was completed on the basis of such findings, and has a composition of Fe a Ga b Si c (where a, b, and c are each represented by the composition ratio in atomic%). The composition range is 68 ≦ a ≦ 84, 1 ≦ b ≦ 23, 9 ≦ c ≦ 31, a
The soft magnetic thin film with + b + c = 100 is characterized in that at least one of Fe, Ga, and Si is replaced with Ru of more than 10 atomic% and 15 atomic% or less. In the above composition formula, Fe
May be partially replaced with 0 to 15 atomic% of Co.

Ruの添加は、耐蝕性,耐摩耗性の改善に極めて有効
で、軟磁性薄膜の組成を Fe76-xRuxGa7.5Si16.5 ・・・(I) (ただし、数値はそれぞれ原子%を示す。) とし、Ruの添加量xを変えて摩耗量を調べたところ、第
1図に示すように、Ruの添加量xの増加に伴って摩耗量
低減に顕著な効果を示した。例えば、Ruの添加量xを10
原子%を越えるようにするとセンダストよりも大幅に優
れた耐摩耗性を示した。但し、Ru添加による耐摩耗性向
上には限度があり、あまりRuの添加量xを多くしすぎて
もそれ以上の向上は見られない。なお、ここで摩耗量
は、上記の軟磁性薄膜を磁気ヘッドに加工し30時間磁気
テープを走行させた後の値とした。
The addition of Ru is extremely effective in improving the corrosion resistance and the wear resistance, and the composition of the soft magnetic thin film is Fe 76-x Ru x Ga 7.5 Si 16.5 ... (I) (where the numerical values represent atomic% respectively). .), The amount of wear was investigated by changing the amount x of Ru added, and as shown in FIG. 1, a remarkable effect in reducing the amount of wear was shown as the amount x of Ru added was increased. For example, the addition amount x of Ru is 10
When it exceeded the atomic percentage, it showed significantly better wear resistance than Sendust. However, there is a limit to the improvement of wear resistance by the addition of Ru, and even if the addition amount x of Ru is increased too much, no further improvement is observed. Here, the amount of wear was a value after the above soft magnetic thin film was processed into a magnetic head and the magnetic tape was run for 30 hours.

また、Ruの添加は保磁力Hcや内部応力の点でも有利で
あることが実験で明らかとなった。
Experiments have also revealed that the addition of Ru is advantageous in terms of coercive force Hc and internal stress.

先ず、軟磁性薄膜(膜厚7μm)の組成を先の(I)
なる組成とし、そのRu添加量xを0,4,10原子%に変えて
室温での保磁力Hcの熱処理温度Ta依存性を調べたとこ
ろ、第2図に示すようにRu添加量の増加と共に保磁力Hc
は減少し、かつ高温での劣化が少ないことが判明した。
特に、Ru添加量xを10原子%としたときには、高温での
熱処理を行っても全く保磁力Hcの劣化が見られず、如何
なる熱処理温度においても最も低い保磁力Hcを示した。
そこで、熱処理温度を550℃とし、保磁力HcのRu添加量
x依存性を調べたところ、第3図に示すような結果が得
られた。
First, the composition of the soft magnetic thin film (thickness 7 μm) is the same as in (I) above.
When the composition x of Ru was changed to 0, 4, 10 atom% and the dependence of the coercive force Hc at room temperature on the heat treatment temperature Ta was investigated, as shown in FIG. Coercive force Hc
Was found to be reduced, and there was little deterioration at high temperatures.
In particular, when the Ru addition amount x was set to 10 atomic%, no deterioration of the coercive force Hc was observed even when the heat treatment was performed at a high temperature, and the lowest coercive force Hc was shown at any heat treatment temperature.
Therefore, when the heat treatment temperature was set to 550 ° C. and the dependence of the coercive force Hc on the Ru addition amount x was examined, the results shown in FIG. 3 were obtained.

次に、同様の組成を有する軟磁性薄膜の膜厚を5μm
とし、Ru添加量xを4原子%及び10原子%とした2種類
のサンプル薄膜について、膜内部応力σのスパッタリン
グガス圧(アルゴンガス圧)PAr依存性を調べた。結果
を第4図に示す。一般に、良好な軟磁気特性を得るため
にはスパッタリングガス圧PArの最適値が存在し、この
場合には4〜6mTorr付近であった。この範囲での膜内部
応力σを比較したところ、明らかにRu添加量x4原子%の
ときより10原子%としたときの方が膜ストレスが小さ
く、スパッタリング後の基板からの膜剥離や膜自体のヒ
ビ割れが妨げることがわかった。
Next, the film thickness of the soft magnetic thin film having the same composition is 5 μm.
Then, the dependence of the film internal stress σ on the sputtering gas pressure (Argon gas pressure) P Ar was examined for two types of sample thin films in which the Ru addition amount x was 4 atom% and 10 atom%. Results are shown in FIG. In general, there is an optimum value of the sputtering gas pressure P Ar in order to obtain good soft magnetic characteristics, and in this case, it is around 4 to 6 mTorr. Comparing the film internal stress σ in this range, it is clear that the film stress is smaller when the amount of Ru added is 4 at% than when it is 10 at%, and film peeling from the substrate after sputtering or the film itself It turned out that the cracks hindered.

そこで、磁気特性が最良となるスパッタリングガス圧
PAr(5mTorr)に固定し、膜の組成を fe77-xRuxGa8.5Si14.5 ・・・(II) としてRu添加量xを変化させたときの膜の内部応力σを
調べたところ、第5図に示すようにRu添加量xが10〜12
原子%付近で内部応力は最小値を示した。
Therefore, the sputtering gas pressure that gives the best magnetic characteristics
When fixed to P Ar (5 mTorr) and the composition of the film was set to fe 77-x Ru x Ga 8.5 Si 14.5 ... (II), the internal stress σ of the film was examined when the amount x of Ru added was changed. As shown in FIG. 5, the Ru addition amount x is 10 to 12
The internal stress showed the minimum value at around atomic%.

一方、Ruを例えばFeと置換すると、飽和磁束密度Bsが
若干減少し、RuとFeの1原子%置換あたりおよそ0.138k
G(キロガウス)減少する。Fe−Ga−Si系軟磁性薄膜の
最も良好な軟磁気特性を示す組成での飽和磁束密度Bsは
約13kGであるから、RuとFeの置換量が15原子%を越える
と飽和磁束密度Bsは11kGを下回ることになり、センダス
ト系合金(Fe−Al−Si系合金)に較べ飽和磁束密度Bsに
関して大きなメリットがなくなる。
On the other hand, when Ru is replaced with, for example, Fe, the saturation magnetic flux density Bs is slightly decreased, and about 0.138 k per 1 atomic% replacement of Ru and Fe.
G (kilo gauss) decreases. The saturation magnetic flux density Bs of the composition showing the best soft magnetic characteristics of the Fe-Ga-Si soft magnetic thin film is about 13 kG, so that when the substitution amount of Ru and Fe exceeds 15 atomic%, the saturation magnetic flux density Bs is This is less than 11 kG, and there is no great merit regarding the saturation magnetic flux density Bs as compared with the sendust-based alloy (Fe-Al-Si-based alloy).

以上の実験結果ならびに考案より、本発明ではRuの添
加量を10原子%を越え15原子%以下とした。添加量が10
原子%以下では耐摩耗性,保磁力,内部応力等の改善に
充分な効果が期待できず、一方、添加量が15原子%を越
えると軟磁気特性の劣化や飽和磁束密度の減少をもたら
し、センダスト系合金に対する優位性の点で本来の意味
を失うからである。
Based on the above experimental results and ideas, the amount of Ru added in the present invention is more than 10 atomic% and 15 atomic% or less. 10 added
If it is less than atomic%, sufficient effects cannot be expected to improve wear resistance, coercive force, internal stress, etc. On the other hand, if the amount added exceeds 15 atomic%, soft magnetic properties deteriorate and saturation magnetic flux density decreases. This is because the original meaning is lost in terms of superiority to sendust-based alloys.

一方、本発明の軟磁性薄膜において、所定の磁気特性
を確保するために、基本成分であるFe,Ga,Siについて
は、Ga1〜23原子%,Si9〜31原子%,残部Feとする。た
だし、Feの含有量は68〜84原子%の範囲である。これら
基本成分が前記組成範囲を外れると、飽和磁束密度,透
磁率,保磁力等の磁気特性を確保することが難しくな
る。
On the other hand, in the soft magnetic thin film of the present invention, in order to secure predetermined magnetic characteristics, the basic components Fe, Ga, and Si are Ga1 to 23 atom%, Si9 to 31 atom%, and the balance Fe. However, the Fe content is in the range of 68 to 84 atomic%. If these basic components deviate from the above composition ranges, it becomes difficult to secure magnetic characteristics such as saturation magnetic flux density, magnetic permeability, and coercive force.

また、Coを添加する場合には、飽和磁束密度や耐蝕
性,耐摩耗性の改善、軟磁気特性の確保等の点から、Fe
に対する置換量は0〜15原子%に抑えるのが好ましい。
すなわち、その組成を FeaCobGacSid (ただし、a,b,c,dはそれぞれ組成比を原子%として表
す。) とした場合に、その組成範囲は 65≦a+b≦85 0≦b≦15 1≦c≦35 1≦d≦35 a+b+c+d=100 なる関係を満足するものとする。なお、いずれの場合に
も、Gaの一部をAlで置換してもよく、また、Siの一部を
Geで置換してもよい。
Also, when Co is added, it is necessary to improve the saturation magnetic flux density, corrosion resistance and wear resistance, and to secure soft magnetic characteristics.
It is preferable that the amount of substitution with respect to is suppressed to 0 to 15 atom%.
That is, when the composition is Fe a Co b Ga c Si d (where a, b, c, and d are each the composition ratio expressed as atomic%), the composition range is 65 ≦ a + b ≦ 850 ≦ b ≦ 15 1 ≦ c ≦ 35 1 ≦ d ≦ 35 a + b + c + d = 100. In any case, part of Ga may be replaced with Al, and part of Si may be replaced.
It may be replaced by Ge.

本発明の軟磁性薄膜は、上述の基本成分の少なくとも
何れか1種を前述の範囲内でRuにより置換したものであ
る。
The soft magnetic thin film of the present invention is obtained by substituting Ru for at least one of the above-mentioned basic components within the above range.

上述の軟磁性薄膜の製造方法としては種々の方法が考
えられるが、なかでも真空薄膜形成技術によるのが良
い。
Various methods are conceivable as the method for manufacturing the above-mentioned soft magnetic thin film, and among them, the vacuum thin film forming technique is preferable.

この真空薄膜形成技術の手法としては、スパッタリン
グやイオンプレーティング,真空蒸着法,クラスター・
イオンビーム法等が挙げられる。
This vacuum thin film forming technique includes sputtering, ion plating, vacuum deposition, cluster
An ion beam method and the like can be mentioned.

また、上記各成分元素の組成を調節する方法として
は、 i)Fe,Ru,Ga,Si、さらには必要に応じてCoを所定の割
合となるように秤量し、これらをあらかじめ例えば高周
波溶解炉等で溶解して合金インゴットを形成しておき、
この合金インゴットを蒸発源として使用する方法、 ii)各成分の単独元素の蒸発源を用意し、これら蒸発源
の数で組成を制御する方法、 iii)各成分の単独原子の蒸発源を用意し、これら蒸発
源に加える出力(印加電圧)を制御して蒸発スピードを
コントロールし組成を制御する方法、 iv)合金を蒸発源として蒸着しながら他の元素を打ち込
む方法、 等が挙げられる。
In addition, as a method for adjusting the composition of each of the above-mentioned component elements, i) Fe, Ru, Ga, Si and, if necessary, Co are weighed so as to have a predetermined ratio, and these are preliminarily measured, for example, in a high frequency melting furnace. And melted to form an alloy ingot,
A method of using this alloy ingot as an evaporation source, ii) a method of preparing evaporation sources of individual elements of each component, and a method of controlling the composition by the number of these evaporation sources, iii) preparation of evaporation sources of individual atoms of each component , A method of controlling the vaporization speed by controlling the output (applied voltage) applied to these vaporization sources, iv) a method of implanting another element while vapor-depositing the alloy as the vaporization source, and the like.

なお、上述の真空薄膜形成技術等により膜付けされた
軟磁性薄膜は、そのままの状態では保磁力は若干高い値
を示し良好な軟磁磁気特性が得られないので、熱処理を
施して膜の歪を除去し、軟磁気特性を改善することが好
ましい。
The soft magnetic thin film formed by the above-mentioned vacuum thin film forming technique has a slightly higher coercive force in the state as it is, and good soft magnetic characteristics cannot be obtained. It is preferable to remove and improve the soft magnetic properties.

〔作用〕[Action]

このように、Fe,Ga,Siを基本成分とするFe−Ga−Si系
合金あるいはCoを添加したFe−Co−Ga−Si系合金へのRu
の添加は、特に添加量を10原子%を越えるようにしたと
きに耐摩耗性向上や耐蝕性の改善,低保磁力化,膜内部
応力の解消等の点で顕著に作用する。また、Ruの添加に
よる飽和磁束密度の減少も著しく少なく、添加量を15原
子%以下に抑えればセンダスト系合金以上の飽和磁束密
度が確保される。
In this way, Ru to the Fe-Ga-Si-based alloy containing Fe, Ga, and Si as the basic components or the Fe-Co-Ga-Si-based alloy containing Co is added.
Especially, when the amount of addition exceeds 10 atomic%, it significantly acts in terms of improvement of wear resistance, corrosion resistance, reduction of coercive force, elimination of internal stress of film, and the like. Further, the reduction of the saturation magnetic flux density due to the addition of Ru is remarkably small, and if the addition amount is suppressed to 15 atomic% or less, the saturation magnetic flux density higher than that of the Sendust alloy can be secured.

〔実施例〕〔Example〕

以下、本発明の具合的な実施例について説明するが、
本発明がこの実施例に限定されるものではない。
Hereinafter, specific examples of the present invention will be described,
The invention is not limited to this example.

先ず、Fe,Ru,Ga,Si及びCoをそれぞれ所定の組成比と
なるように秤量し、アルゴン雰囲気中で高周波誘導加熱
炉を用いて溶解・鋳造後、さらに平面研削盤により機械
加工を行って直径4インチ,厚み4mmのスパッタリング
用合金ターゲットを得た。
First, Fe, Ru, Ga, Si, and Co are weighed so that each has a predetermined composition ratio, melted and cast in a high-frequency induction heating furnace in an argon atmosphere, and then machined by a surface grinder. An alloy target for sputtering with a diameter of 4 inches and a thickness of 4 mm was obtained.

次に、この合金ターゲットを用いて、高周波マグネト
ロンスパッタ装置により、アルゴン分圧5×10-3Torr,
投入電力300Wの条件でスパッタリングを行い、水冷した
結晶化ガラス基板(保谷ガラス社製,商品名HOYA PEG3
130C)上に膜厚約1μmの薄膜を得た。
Next, using this alloy target, an argon partial pressure of 5 × 10 −3 Torr, by a high frequency magnetron sputtering device,
Crystallized glass substrate water-cooled by sputtering under the condition of input power of 300 W
A thin film having a film thickness of about 1 μm was obtained on 130C).

さらに、この薄膜を、1×10-6Torr以下の真空下でTa
なる温度で1時間焼鈍し、徐冷して軟磁性薄膜を得た。
Furthermore, this thin film was Ta under a vacuum of 1 × 10 -6 Torr or less.
It was annealed at the following temperature for 1 hour and gradually cooled to obtain a soft magnetic thin film.

上述の方法に従い、合金ターゲットの組成比を次表中
に示すような値に設定し、サンプル1ないしサンプル4
を作製した。
According to the method described above, the composition ratio of the alloy target is set to the values shown in the following table, and the sample 1 to the sample 4 are set.
Was produced.

得られた各サンプルについて、軟磁性薄膜の膜組成を
分析し、飽和磁束密度Bs,抗磁力Hc,透磁率μ(1MHzにお
ける値),摩耗量および耐蝕性について調べた。
With respect to each of the obtained samples, the film composition of the soft magnetic thin film was analyzed, and the saturation magnetic flux density Bs, coercive force Hc, magnetic permeability μ (value at 1 MHz), wear amount and corrosion resistance were examined.

ここで、飽和磁束密度Bsは試料振動磁束計(VSM)、
抗磁力Hcは交流10HzのB−Hループトレーサ、透磁率μ
は8の字コイル字透磁率計で測定した。また、各サンプ
ルの膜厚は、試料表面にアルミニウムを薄く蒸着し、多
重干渉膜厚計によって膜と基板との段差を測定すること
により求めた。さらに、各サンプルの組成分析は、EPMA
(Electron Probe Micro−Analysis)法によった。
Here, the saturation magnetic flux density Bs is the sample vibration magnetometer (VSM),
Coercive force Hc is AC BHz loop tracer with 10Hz, permeability μ
Was measured with an 8-shaped coil permeability meter. The film thickness of each sample was obtained by thinly depositing aluminum on the surface of the sample and measuring the step between the film and the substrate with a multiple interference film thickness meter. In addition, the composition analysis of each sample
(Electron Probe Micro-Analysis) method.

摩耗量は次のようにして求めた。すなわち、先ず基板
としてフェライトよりなる疑似ヘッドを作製し、先に述
べたスパッタ条件と同一の条件で膜厚18μmの軟磁性薄
膜をヘッドチップの先端に成膜した。この擬似ヘッドを
テープ幅1インチのビデオテープレコーダ(相対速度2
5.6m/sec)にトラック幅0.5mm,突き出し量80μmとなる
ように取り付け、γ−Fe2O3を磁性粉末とする磁気テー
プを30時間走行させて膜の減少量を顕微鏡で写真観察し
て求めた。
The amount of wear was determined as follows. That is, first, a pseudo head made of ferrite was prepared as a substrate, and a soft magnetic thin film having a film thickness of 18 μm was formed on the tip of the head chip under the same sputtering conditions as described above. This pseudo head is a video tape recorder with a tape width of 1 inch (relative speed 2
5.6 m / sec) with a track width of 0.5 mm and a protrusion of 80 μm, and a magnetic tape containing γ-Fe 2 O 3 as magnetic powder was run for 30 hours, and the amount of film reduction was observed with a microscope. I asked.

各サンプルの耐蝕性は、1規定の食塩水に室温で一週
間浸した後の膜面の表面の観察に依った。この耐蝕性の
評価は、下記のような表面状態から判定した。
The corrosion resistance of each sample was based on the observation of the surface of the film surface after being immersed in 1N saline for 1 week at room temperature. The evaluation of the corrosion resistance was made based on the following surface conditions.

A:膜面に変化がなく、鏡面を保ったままの状態。A: There is no change in the film surface and the mirror surface is maintained.

B:膜面に薄く錆が発生した状態。B: A state where thin rust is generated on the film surface.

C:膜面に薄く錆が発生した状態。C: A state where thin rust is generated on the film surface.

D:膜自体が消失する程度に錆が発生した状態。D: Rust generated to such an extent that the film itself disappears.

結果を次表に示す。なお、比較のために、上述の方法
と同様に成膜したFe−Ga−Si合金(Ruを含まず。),Fe
−Ga−Si−Ru合金(ただしRuの添加量が本発明の範囲か
ら外れたもの。),Fe−Al−Si合金についても、比較サ
ンプル1〜比較サンプル5として各値を測定した。
The results are shown in the table below. For comparison, a Fe-Ga-Si alloy (not including Ru) and Fe formed in the same manner as the above method were used.
With respect to —Ga—Si—Ru alloy (however, the amount of Ru added is out of the range of the present invention) and Fe—Al—Si alloy, each value was measured as Comparative Sample 1 to Comparative Sample 5.

この表より、本発明を適用した各サンプルにあって
は、特に耐蝕性や摩耗量,保磁力において顕著な改善効
果が見られ、また飽和磁束密度,透磁率についてもFe−
Al−Si系合金と遜色のないことがわかった。
From this table, in each of the samples to which the present invention is applied, a remarkable improvement effect can be seen particularly in the corrosion resistance, the wear amount, and the coercive force, and the saturation magnetic flux density and the magnetic permeability are Fe-
It was found to be comparable to Al-Si alloys.

これに対してRu添加量が少ないサンプル(比較サンプ
ル3,比較サンプル4)では、摩耗量や保磁力の改善効果
が若干不足していた。またRu添加量が15原子%を越える
サンプル(比較サンプル5)は、飽和磁束密度がFe−Al
−Si合金を下回っていた。
On the other hand, in the samples containing a small amount of Ru added (Comparative Samples 3 and 4), the effects of improving the amount of wear and the coercive force were slightly insufficient. The sample with a Ru content of more than 15 atomic% (Comparative sample 5) had a saturation magnetic flux density of Fe-Al.
-It was below the Si alloy.

〔発明の効果〕〔The invention's effect〕

上述の説明からも明らかなように、Fe,Ga,Siを基本成
分とするFe−Ga−Si系合金あるいはCoを添加したFe−Co
−Ga−Si系合金に、Ruを10原子%を越えて添加すること
により、耐蝕性や耐摩耗性の大幅な改善が図られ、膜内
部応力を抑えられる。同時に軟磁気特性,特に保磁力も
改善され、極めて小さな保磁力を示すようになる。
As is clear from the above description, Fe, Ga, and Fe-Ga-Si-based alloys having Si as basic components or Fe-Co with Co added.
By adding more than 10 atomic% of Ru to the —Ga—Si alloy, the corrosion resistance and wear resistance are significantly improved, and the internal stress of the film can be suppressed. At the same time, the soft magnetic properties, especially the coercive force, are improved, and the coercive force becomes extremely small.

また、このRuの添加による飽和磁束密度の減少は、他
の添加元素に較べて少なく、添加量を15原子%以下に抑
えることにより、Fe−Al−Si系合金を上回る飽和磁束密
度が確保される。
Further, the reduction of the saturation magnetic flux density due to the addition of Ru is smaller than that of the other additive elements, and by suppressing the addition amount to 15 atomic% or less, the saturation magnetic flux density higher than that of the Fe-Al-Si alloy is secured. It

したがって、耐蝕性,耐摩耗性,膜内部応力等の実用
特性に優れるとともに、軟磁磁気特性,特に保磁力や飽
和磁束密度にも優れた軟磁性薄膜の提供が可能となり、
磁気ヘッドのコア材等として極めて実用価値が高いと言
える。
Therefore, it is possible to provide a soft magnetic thin film that is excellent in practical properties such as corrosion resistance, wear resistance, and film internal stress, and is also excellent in soft magnetic properties, particularly coercive force and saturation magnetic flux density.
It can be said that it has extremely high practical value as a core material of a magnetic head.

【図面の簡単な説明】[Brief description of drawings]

第1図は膜組成をFe76-xRuxGa7.5Si16.5としたときのRu
の添加量xと摩耗量の関係を示す特性図であり、第2図
はRu置換に伴う保磁力Hcの熱処理温度Ta依存性の変化の
様子を示す特性図、第3図は熱処理温度を550℃とした
ときのRu添加量xと保磁力Hcの関係を示す特性図であ
る。 第4図はRu添加量を4原子%,10原子%としたときの膜
内部応力σのスパッタリングガス圧PAr依存性を示す特
性図であり、第5図は膜組成をFe77-xRuxGa8.5Si14.5
しスパッタリングガス圧5mTorrとしたときのRu添加量x
と膜内部応力σの関係を示す特性図である。
Figure 1 shows Ru when the film composition is Fe 76-x Ru x Ga 7.5 Si 16.5.
FIG. 2 is a characteristic diagram showing the relationship between the addition amount x of Al and the amount of wear. FIG. 2 is a characteristic diagram showing the change in the heat treatment temperature Ta dependence of the coercive force Hc due to Ru substitution, and FIG. It is a characteristic view which shows the relationship between Ru addition amount x and coercive force Hc when it is set to ° C. FIG. 4 is a characteristic diagram showing the sputtering gas pressure P Ar dependence of the internal stress σ of the film when the added amount of Ru is 4 atom% and 10 atom%, and FIG. 5 shows the film composition of Fe 77-x Ru. x Ga 8.5 Si 14.5 and sputtering gas pressure 5 mTorr, Ru addition amount x
FIG. 6 is a characteristic diagram showing the relationship between the film internal stress σ and

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿蘇 興一 東京都品川区北品川6丁目7番35号 ソ ニー株式会社内 (56)参考文献 特公 平7−89527(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koichi Aso, 6-735 Kita-Shinagawa, Shinagawa-ku, Tokyo, Sony Corporation (56) References Japanese Patent Publication 7-89527 (JP, B2)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】FeaGabSic(但し、a,b,cはそれぞれ組成比
を原子%として表す。)なる組成式で示され、その組成
範囲が68≦a≦84,1≦b≦23,9≦c≦31,a+b+c=10
0である軟磁性薄膜において、 Fe,Ga,Siの少なくとも1種を10原子%を越え15原子%以
下のRuで置換したことを特徴とする軟磁性薄膜。
1. A composition formula of Fe a Ga b Si c (where a, b, and c are each expressed as an atomic percentage), and the composition range is 68 ≦ a ≦ 84,1 ≦ b. ≤23,9 ≤c≤31, a + b + c = 10
In the soft magnetic thin film of 0, at least one of Fe, Ga, and Si is replaced with Ru of more than 10 atomic% and 15 atomic% or less.
【請求項2】FeaCobGacSid(但し、a,b,c,dはそれぞれ
組成比を原子%として表す。)なる組成式で示され、そ
の組成範囲が65≦a+b≦85,0<b≦15,1≦c≦35,1≦
d≦35,a+b+c+d=100である軟磁性薄膜におい
て、 Fe,Co,Ga,Siの少なくとも1種を10原子%を越え15原子
%以下のRuで置換したことを特徴とする軟磁性薄膜。
2. A composition formula of Fe a Co b Ga c Si d (where a, b, c, and d are each represented by the composition ratio in atomic%), and the composition range is 65 ≦ a + b ≦ 85. , 0 <b ≦ 15,1 ≦ c ≦ 35,1 ≦
A soft magnetic thin film in which d ≦ 35, a + b + c + d = 100, wherein at least one of Fe, Co, Ga, and Si is replaced by Ru in an amount of more than 10 atomic% and 15 atomic% or less.
JP62019032A 1987-01-29 1987-01-29 Soft magnetic thin film Expired - Lifetime JP2522284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62019032A JP2522284B2 (en) 1987-01-29 1987-01-29 Soft magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62019032A JP2522284B2 (en) 1987-01-29 1987-01-29 Soft magnetic thin film

Publications (2)

Publication Number Publication Date
JPS63186404A JPS63186404A (en) 1988-08-02
JP2522284B2 true JP2522284B2 (en) 1996-08-07

Family

ID=11988105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62019032A Expired - Lifetime JP2522284B2 (en) 1987-01-29 1987-01-29 Soft magnetic thin film

Country Status (1)

Country Link
JP (1) JP2522284B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789527A (en) * 1993-07-30 1995-04-04 Yoshikazu Taniguchi Heat insulating box made of paper

Also Published As

Publication number Publication date
JPS63186404A (en) 1988-08-02

Similar Documents

Publication Publication Date Title
US4748000A (en) Soft magnetic thin film
JPS6129105A (en) Magnetic alloy thin film
JP2522284B2 (en) Soft magnetic thin film
US5786103A (en) Soft magnetic film and magnetic head employing same
JPH0789527B2 (en) Crystalline soft magnetic thin film
JPH0789526B2 (en) Crystalline soft magnetic thin film
JPH0746656B2 (en) Crystalline soft magnetic thin film
JP2556863B2 (en) Fe-based magnetic alloy film
JPS6195503A (en) Amorphous soft magnetic thin film
JP2508462B2 (en) Soft magnetic thin film
JPS6252907A (en) Magnetically soft thin film
JP2784105B2 (en) Soft magnetic thin film
JPH0789525B2 (en) Soft magnetic thin film for magnetic head
JPH0746653B2 (en) Crystalline soft magnetic thin film
JPS62104110A (en) Soft magnetic thin film
JPH0746652B2 (en) Crystalline soft magnetic thin film
JP3221035B2 (en) Magnetic head
JPH0789524B2 (en) Soft magnetic thin film for magnetic head
JPH0789523B2 (en) Soft magnetic thin film for magnetic head
JPS633406A (en) Magnetically soft thin film
JPH0789522B2 (en) Soft magnetic thin film for magnetic head
JPH07111926B2 (en) Soft magnetic thin film
JPH02174205A (en) Soft magnetic thin film
JPH04288805A (en) Soft magnetic thin film
JPH01146312A (en) Soft magnetic thin film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term