JPH0746652B2 - Crystalline soft magnetic thin film - Google Patents

Crystalline soft magnetic thin film

Info

Publication number
JPH0746652B2
JPH0746652B2 JP60218736A JP21873685A JPH0746652B2 JP H0746652 B2 JPH0746652 B2 JP H0746652B2 JP 60218736 A JP60218736 A JP 60218736A JP 21873685 A JP21873685 A JP 21873685A JP H0746652 B2 JPH0746652 B2 JP H0746652B2
Authority
JP
Japan
Prior art keywords
thin film
soft magnetic
magnetic
alloy
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60218736A
Other languages
Japanese (ja)
Other versions
JPS6278804A (en
Inventor
和彦 林
正俊 早川
祥隆 落合
秀樹 松田
理 石川
洋 岩崎
興一 阿蘇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60218736A priority Critical patent/JPH0746652B2/en
Publication of JPS6278804A publication Critical patent/JPS6278804A/en
Publication of JPH0746652B2 publication Critical patent/JPH0746652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、良好な軟磁気特性を示し磁気ヘッド材料等に
好適な軟磁性薄膜に関するものである。
TECHNICAL FIELD The present invention relates to a soft magnetic thin film which exhibits good soft magnetic properties and is suitable for magnetic head materials and the like.

〔発明の概要〕[Outline of Invention]

本発明は、Fe,Co,Al,Geを主成分とする新規な組成を有
する軟磁性薄膜を提供し、特に飽和磁束密度Bsが極めて
大きな軟磁性薄膜を提供するものである。
The present invention provides a soft magnetic thin film having a novel composition containing Fe, Co, Al and Ge as main components, and particularly a soft magnetic thin film having a very high saturation magnetic flux density Bs.

〔従来の技術〕 例えばオーディオテープレコーダやVTR(ビデオテープ
レコーダ)等の磁気記録再生装置においては、記録信号
の高密度化や高品質化等が進められており、この高記録
密度化に対応して、磁気記録媒体として磁性粉にFe,Co,
Ni等の金属あるいは合金からなる粉末を用いた、いわゆ
るメタルテープや、強磁性金属材料を真空薄膜形成技術
によりベースフィルム上に直接被着した、いわゆる蒸着
テープ等が開発され、各分野で実用化されている。
[Prior Art] For example, in magnetic recording / reproducing devices such as audio tape recorders and VTRs (video tape recorders), high density and high quality of recording signals are being advanced, and it is necessary to cope with this high recording density. As a magnetic recording medium, magnetic powder such as Fe, Co,
So-called metal tapes using powders of metals such as Ni or alloys, and so-called vapor-deposition tapes made by directly depositing a ferromagnetic metal material on the base film by vacuum thin film forming technology have been developed and put into practical use in various fields. Has been done.

ところで、このような高抗磁力を有する磁気記録媒体の
特性を発揮せしめるためには、磁気ヘッドのコア材料の
特性として、高い飽和磁束密度を有するとともに、同一
の磁気ヘッドで再生を行なおうとする場合においては、
高透磁率を併せて有することが要求される。例えば、従
来磁気ヘッドのコア材料として多用されているフェライ
ト材では飽和磁束密度が低く、また、パーマロイでは耐
摩耗性に問題がある。
By the way, in order to bring out the characteristics of the magnetic recording medium having such a high coercive force, it is attempted to perform reproduction with the same magnetic head while having a high saturation magnetic flux density as the characteristics of the core material of the magnetic head. In some cases,
It is also required to have a high magnetic permeability. For example, the saturation magnetic flux density is low in a ferrite material which has been widely used as a core material of a magnetic head in the related art, and permalloy has a problem in wear resistance.

従来、かかる諸要求を満たすコア材料として、Fe−Al−
Si系合金からなるセンダスト合金が好適であると考えら
れ、すでに実用に供されていることは周知の通りであ
る。
Conventionally, Fe-Al-
It is well known that a sendust alloy made of a Si-based alloy is considered to be suitable and has already been put into practical use.

しかしながら、このセンダスト合金のように軟磁気特性
に優れた材料においては、磁歪λsと結晶磁気異方性K
が共に零付近であることが望ましく、磁気ヘッドに使用
可能な材料組成はこれら両者の値を考慮して決められ
る。したがって、飽和磁束密度もこの組成に対応して一
義的に決まり、センダスト合金の場合、10〜11kガウス
が限界である。
However, in a material having excellent soft magnetic characteristics such as this Sendust alloy, magnetostriction λs and crystalline magnetic anisotropy K
Is preferably near zero, and the material composition that can be used for the magnetic head is determined in consideration of both values. Therefore, the saturation magnetic flux density is uniquely determined corresponding to this composition, and in the case of Sendust alloy, the limit is 10 to 11 kGauss.

あるいは、上記センダスト合金にかわり、高周波領域で
の透磁率の低下が少なく高い飽和磁束密度を有する非晶
質磁性合金材料(いわゆるアモルファス磁性合金材料)
も開発されているが、この非晶質磁性合金材料でも飽和
磁束密度は12kガウス程度であり、また、熱的に不安定
で結晶化の可能性が大きいので500℃以上の温度を長時
間加えることはできず、例えばガウス融着のように各種
熱処理が必要な磁気ヘッドに使用するには工程上制限が
生ずる。
Alternatively, instead of the Sendust alloy, an amorphous magnetic alloy material (so-called amorphous magnetic alloy material) having a high saturation magnetic flux density with little decrease in magnetic permeability in a high frequency region
However, even with this amorphous magnetic alloy material, the saturation magnetic flux density is about 12k gauss, and since it is thermally unstable and there is a high possibility of crystallization, a temperature of 500 ° C or higher is applied for a long time. However, there is a process limitation when used in a magnetic head which requires various heat treatments such as Gaussian fusion.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このような状況から、高品質化,高記録密度化を図るた
めの磁気記録媒体の高抗磁力化の試みも、従来のコア材
料を用いる限りにおいて、飽和磁束密度の限界から自ず
と制約を受けているのが現状である。
Under such circumstances, attempts to increase the coercive force of magnetic recording media for higher quality and higher recording density are naturally limited by the limit of saturation magnetic flux density as long as the conventional core material is used. It is the current situation.

そこで本発明は、上述の従来の実情に鑑みて提案された
ものであって、センダスト合金と同程度の軟磁気特性
(透磁率や抗磁力等)を有し、高い飽和磁束密度を有す
る軟磁性薄膜を提供することを目的とする。
Therefore, the present invention has been proposed in view of the above-mentioned conventional circumstances, and has the same soft magnetic characteristics (permeability, coercive force, etc.) as the Sendust alloy and has a high saturation magnetic flux density. The purpose is to provide a thin film.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、上述の目的を達成せんものと長期に亘り
鋭意研究の結果、次のような知見を得るに至った。
The present inventors have obtained the following findings as a result of earnest research over a long period of time without achieving the above object.

すなわち、 (1)センダスト合金以上の飽和磁束密度Bsを有する軟
磁性材料を得るためには、磁歪λs=0の線と結晶磁気
異方性K=0の線との交点がよりFe高濃度側になければ
ならないこと。しかも、磁化の減少の割合がSiやAlより
も穏やかな元素が望ましいこと。
That is, (1) In order to obtain a soft magnetic material having a saturation magnetic flux density Bs higher than that of Sendust alloy, the intersection of the line of magnetostriction λs = 0 and the line of magnetocrystalline anisotropy K = 0 is higher in the Fe concentration side. What you have to do. Moreover, it is desirable to use an element whose magnetization reduction rate is milder than that of Si or Al.

(2)また、磁気モーメントの減少という観点から見る
と、絶対零度における磁気モーメントの減少の割合は、
1原子%あたりAlで−2.66μ,Siで−2.99μ,Gaで−
1.43μ,Geで−1.36μであることから、これらの元
素を適当に組み合わせることにより、Fe−Si−Alの組み
合わせよりも高飽和磁束密度が得られる可能性があるこ
と。
(2) From the viewpoint of reducing the magnetic moment, the rate of decrease of the magnetic moment at absolute zero is:
Per atomic% Al is −2.66μ B , Si is −2.99μ B , Ga is −
1.43Myu B, because it is -1.36Myu B in Ge, by combining these elements properly, also a combination of Fe-Si-Al is a high saturation magnetic flux density may be obtained.

(3)Coの添加は飽和磁束密度のみならず耐蝕性や耐摩
耗性の向上に効果があること。
(3) The addition of Co has the effect of improving not only the saturation magnetic flux density but also the corrosion resistance and wear resistance.

そこで、本発明においては、その組成をFe−Co−Al−Ge
系合金とし、さらに検討を加えた。
Therefore, in the present invention, the composition is changed to Fe-Co-Al-Ge.
As a system alloy, further investigation was added.

先ず、Fe−Co−Al−Ge系合金を各々3成分系に分割し、
それぞれ結晶磁気異方性K=0と磁歪λ=0の線を調
べると、第1図(A)ないし第1図(C)に示すような
ものであった。即ち、Fe−Al−Geの3元系においては、
第1図(B)に示すようにK=0とλ=0の交点が存
在し、その領域で軟磁気特性が得られる。Fe−Co−Ge3
元系においても、第1図(C)に示すように、同様にK
=0とλ=0の交点が存在する。一方、Fe−Co−Al3
元系においては、第1図(A)に示すようにK=0の線
は存在するが、λ=0の線は不明確で、しかもFe高濃
度側では存在しない。したがって、Fe−Co−Al−Geの状
態図を立体的に考えると、K=0の面とλ=0の面が
少なくともFe高濃度側の領域で存在し、その交線で軟磁
気特性が得られるものと推定される。
First, the Fe-Co-Al-Ge alloy is divided into three-component systems,
When the lines of crystal magnetic anisotropy K = 0 and magnetostriction λ S = 0 were examined, they were as shown in FIGS. 1 (A) to 1 (C). That is, in the Fe-Al-Ge ternary system,
As shown in FIG. 1 (B), there is an intersection of K = 0 and λ S = 0, and soft magnetic characteristics can be obtained in that region. Fe-Co-Ge3
In the original system as well, as shown in FIG.
There is an intersection of = 0 and λ S = 0. On the other hand, Fe-Co-Al3
In the original system, the line of K = 0 exists as shown in FIG. 1 (A), but the line of λ S = 0 is unclear and does not exist on the high Fe concentration side. Therefore, when the phase diagram of Fe-Co-Al-Ge is considered three-dimensionally, the plane of K = 0 and the plane of λ S = 0 exist in at least the Fe high concentration side region, and the soft magnetic characteristic Is estimated to be obtained.

また、Fe−Al−Ge系合金にCoを添加するという観点から
見ると、Coの添加量の増加とともに飽和磁束密度のみな
らず耐蝕性,耐摩耗性は明らかに向上するが、Co添加量
が多過ぎると飽和磁束密度の劣化が顕著になるばかり
か、軟磁気特性も悪化する。
From the viewpoint of adding Co to the Fe-Al-Ge alloy, not only the saturation magnetic flux density but also the corrosion resistance and wear resistance are obviously improved with the increase of the Co addition amount, but the Co addition amount is If it is too large, not only the saturation magnetic flux density is significantly deteriorated, but also the soft magnetic characteristics are deteriorated.

例えば、Fe78-xCoxAl13.3Ge8.7とし、Co添加量と熱処理
(500℃および650℃)後の抗磁力Hcとの関係を調べたと
ころ、第3図に示すように、Co添加量10原子%付近で抗
磁力Hcは極小値を示し、20原子%を越えると軟磁気特性
が著しく悪化することがわかった。したがって、Co添加
量には最適値が存在する。
For example, when Fe 78-x Co x Al 13.3 Ge 8.7 was used and the relationship between the Co addition amount and the coercive force Hc after heat treatment (500 ° C. and 650 ° C.) was examined, as shown in FIG. It was found that the coercive force Hc showed a minimum value near 10 atom%, and that the soft magnetic property was remarkably deteriorated when it exceeded 20 atom%. Therefore, there is an optimum value for the amount of Co added.

以上の点を併せ考え、さらに実験を重ねた結果、本発明
の結晶質軟磁性薄膜は、FexCoyAlaGeb(ただしx,y,a,b
はそれぞれ組成比を原子%として表す。)なる組成式で
示され、その組成範囲が65≦x+y≦85,0<y≦20,1≦
a≦35,1≦b≦35,x+y+a+b=100なる関係を満足
することを特徴とした。
As a result of further experiments in consideration of the above points, the crystalline soft magnetic thin film of the present invention shows that Fe x Co y Al a Ge b (where x, y, a, b
Represents the composition ratio in atomic%. ), The composition range is 65 ≦ x + y ≦ 85,0 <y ≦ 20,1 ≦
It is characterized in that the relationship of a ≦ 35, 1 ≦ b ≦ 35, x + y + a + b = 100 is satisfied.

すなわち、本発明の軟磁性薄膜は、Fe,Co,Al,Geを主成
分とするものであって、センダスト合金よりも飽和磁束
密度Bsははるかに高く、また、Fe−Si系合金である電磁
鋼板よりも軟磁気特性や耐蝕性に優れるものである。な
お、上記組成式において、Alの一部をGaで置換してもよ
く、また、Geの一部をSiで置換してもよい。
That is, the soft magnetic thin film of the present invention is Fe, Co, Al, Ge as a main component, the saturation magnetic flux density Bs is much higher than the sendust alloy, and also the Fe-Si alloy It has better soft magnetic properties and corrosion resistance than steel plates. In the above composition formula, part of Al may be replaced with Ga, and part of Ge may be replaced with Si.

本発明の軟磁性薄膜においては、各成分元素の組成比を
所定の範囲内に設定することが好ましく、この範囲を外
れると磁歪が大きくなり、磁気特性が劣化する。
In the soft magnetic thin film of the present invention, it is preferable to set the composition ratio of each component element within a predetermined range, and if it is out of this range, the magnetostriction becomes large and the magnetic characteristics deteriorate.

上記軟磁性薄膜の製造方法としては種々の方法が考えら
れるが、なかでも真空薄膜形成技術によるのが良い。
Various methods are conceivable as the method for manufacturing the soft magnetic thin film, and among them, the vacuum thin film forming technique is preferable.

この真空薄膜形成技術の手法としては、スパッタリング
やイオンプレーティング,真空蒸着法,クラスター・イ
オンビーム法等が挙げられる。
Examples of the technique of this vacuum thin film forming technique include sputtering, ion plating, vacuum evaporation method, cluster ion beam method and the like.

また、上記各成分元素の組成を調節する方法としては、 i)Fe,Co,Al,Geを所定の割合となるように秤量し、こ
れらをあらかじめ例えば高周波溶解炉等で溶解して合金
インゴットを形成しておき、この合金インゴットを蒸発
源として使用する方法、 ii)各成分の単独元素の蒸発源を用意し、これら蒸発源
の数で組成を制御する方法、 iii)各成分の単独元素の蒸発源を用意し、これら蒸発
源に加える出力(印加電圧)を制御して蒸発スピードを
コントロールし組成を制御する方法、 iv)合金を蒸発源として蒸着しながら他の元素を打ち込
む方法、 等が挙げられる。
In addition, as a method of adjusting the composition of each of the above-mentioned component elements, i) Fe, Co, Al, and Ge are weighed so as to have a predetermined ratio, and these are melted in advance in, for example, a high-frequency melting furnace to form an alloy ingot. Forming and using this alloy ingot as an evaporation source, ii) preparing evaporation sources of individual elements of each component, and controlling composition by the number of these evaporation sources, iii) of individual elements of each component Prepare evaporation sources and control the output (applied voltage) applied to these evaporation sources to control the evaporation speed to control the composition, iv) the method of implanting other elements while depositing the alloy as the evaporation source, etc. Can be mentioned.

なお、上述の真空薄膜形成技術等により膜付けされた軟
磁性薄膜は、そのままの状態では保磁力は若干高い値を
示し良好な軟磁気特性が得られないので、熱処理を施し
て膜の歪を除去し、軟磁気特性を改善することが好まし
い。
The soft magnetic thin film formed by the above-mentioned vacuum thin film forming technique has a slightly higher coercive force in the state as it is, and good soft magnetic characteristics cannot be obtained. It is preferable to remove and improve the soft magnetic properties.

〔作用〕[Action]

このように、軟磁性薄膜の構成元素としてFe,Co,Al,Ge
を選び、これらの組成比を所定の範囲内に設定すること
により、飽和磁束密度Bsはセンダスト合金等に比べて大
幅に大きなものとなり、抗磁力,透磁率等の軟磁気特性
や耐蝕性,耐摩耗性も確保される。
In this way, Fe, Co, Al, Ge are the constituent elements of the soft magnetic thin film.
Saturation magnetic flux density Bs becomes significantly larger than that of Sendust alloy by setting these composition ratios within a predetermined range, and soft magnetic characteristics such as coercive force and magnetic permeability, corrosion resistance, and corrosion resistance. Wearability is also secured.

〔実施例〕〔Example〕

以下、本発明の具体的な実施例について説明するが、本
発明がこの実施例に限定されるものではない。
Hereinafter, specific examples of the present invention will be described, but the present invention is not limited to these examples.

先ず、Fe,Co,Al,Geをそれぞれ所定の組成比となるよう
に秤量し、アルゴン雰囲気中で高周波誘導加熱炉を用い
て溶解・鋳造後、さらに機械加工を行って直径4イン
チ,厚み4mmのスパッタリング用合金ターゲットを得
た。
First, Fe, Co, Al, and Ge are weighed so that each has a predetermined composition ratio, melted and cast in a high-frequency induction heating furnace in an argon atmosphere, and further machined to have a diameter of 4 inches and a thickness of 4 mm. An alloy target for sputtering was obtained.

次に、この合金ターゲットを用いて、高周波マグネトロ
ンスパッタ装置により、アルゴン分圧5×10-3Torr,投
入電力300Wの条件でスパッタリングを行い、水冷した結
晶化ガラス基板(保谷ガラス社製,商品名HOYA PEG3130
C)上に膜厚約1μmの薄膜を得た。
Next, using this alloy target, a high-frequency magnetron sputtering device was used to perform sputtering under conditions of an argon partial pressure of 5 × 10 −3 Torr and an input power of 300 W, and a water-cooled crystallized glass substrate (trade name of Hoya Glass Co., Ltd.) HOYA PEG3130
A thin film having a thickness of about 1 μm was obtained on C).

さらに、この薄膜を、1×10-6Torr以下の真空下でTaな
る温度で1時間焼鈍し、徐冷して軟磁性薄膜を得た。
Further, this thin film was annealed at a temperature of Ta for 1 hour under a vacuum of 1 × 10 −6 Torr or less and gradually cooled to obtain a soft magnetic thin film.

上述の方法に従い、合金ターゲットの組成比を次表中に
示すような値に設定し、サンプル1ないしサンプル11を
作製した。
According to the method described above, the composition ratio of the alloy target was set to the values shown in the following table, and samples 1 to 11 were manufactured.

得られた各サンプルについて、軟磁性薄膜の膜組成を分
析し、飽和磁束密度Bs,抗磁力Hc,透磁率μ(1MHzおよび
100MHzにおける値),磁歪および耐蝕性について調べ
た。
For each of the obtained samples, the film composition of the soft magnetic thin film was analyzed, and the saturation magnetic flux density Bs, coercive force Hc, magnetic permeability μ (1 MHz and
The value at 100 MHz), magnetostriction and corrosion resistance were investigated.

ここで、飽和磁束密度Bsは試料振動磁束計(VSM)、抗
磁力HcはB−Hループトレーサ、透磁率μは8の字コイ
ル型透磁率計で測定した。また、各サンプルの膜厚は、
試料表面にアルミニウムを薄く蒸着し、多重干渉膜厚計
によって膜と基板との段差を測定することにより求め
た。さらに、各サンプルの組成分析は、EPMA(Electron
Probe Micro−Analysis)法によった。
Here, the saturation magnetic flux density Bs was measured by a sample vibrating magnetometer (VSM), the coercive force Hc was measured by a BH loop tracer, and the magnetic permeability μ was measured by an 8-shaped coil type magnetic permeability meter. The film thickness of each sample is
It was determined by thinly depositing aluminum on the surface of the sample and measuring the step between the film and the substrate with a multiple interference film thickness meter. In addition, the compositional analysis of each sample is performed using EPMA (Electron
Probe Micro-Analysis) method.

各サンプルの耐蝕性は、室温で水道水に約一週間浸した
後の膜面の表面の観察に依った。この耐蝕性の評価は、
下記のような表面状態から判定した。
The corrosion resistance of each sample depended on the observation of the surface of the film surface after immersion in tap water for about one week at room temperature. This evaluation of corrosion resistance is
It was judged from the following surface conditions.

A:膜面に変化がなく、鏡面を保ったままの状態。A: There is no change in the film surface and the mirror surface is maintained.

B:膜面に薄く錆が発生した状態。B: A state where thin rust is generated on the film surface.

C:膜面に濃く錆が発生した状態。C: A state where thick rust is generated on the film surface.

D:膜自体が消失する程度に錆が発生した状態。D: Rust generated to such an extent that the film itself disappears.

結果を次表に示す。なお、比較のために、上述の方法と
同様に成膜したFe−Si合金(電磁鋼板)およびFe−Si−
Al合金(センダスト)についても、それぞれ比較サンプ
ル1および比較サンプル2として、各値を測定した。
The results are shown in the table below. For comparison, the Fe-Si alloy (electromagnetic steel sheet) and Fe-Si- formed by the same method as described above are used.
With respect to the Al alloy (Sendust), each value was measured as Comparative Sample 1 and Comparative Sample 2.

この表より、本発明に係る各サンプルにあっては、セン
ダスト合金よりも若干軟磁気特性に劣るものの、飽和磁
束密度Bsははるかに高いことがわかる。また、これら各
サンプルの軟磁気特性や耐蝕性はFe−Si合金よりも優れ
ていることがわかる。
From this table, it can be seen that in each sample according to the present invention, although the soft magnetic characteristics are slightly inferior to the Sendust alloy, the saturation magnetic flux density Bs is much higher. Also, it can be seen that the soft magnetic characteristics and corrosion resistance of each of these samples are superior to those of the Fe-Si alloy.

ところで、本実施例においては、軟磁性薄膜をスパッタ
リングにより被着した後、温度500〜650℃の条件で熱処
理を施しているが、これは次のような理由による。
By the way, in this embodiment, after the soft magnetic thin film is deposited by sputtering, the heat treatment is performed at a temperature of 500 to 650 ° C. This is for the following reason.

例えば、Fe67.3Co10.2Al13.8Ge8.7なる組成を有する軟
磁性薄膜(膜厚2μm)について、スパッタリングによ
り被着したままの状態で抗磁力Hcを測定したところ、約
17エルステッドとかなり高い値を示した。
For example, when the coercive force Hc of the soft magnetic thin film (film thickness 2 μm) having the composition of Fe 67.3 Co 10.2 Al 13.8 Ge 8.7 was measured while being deposited by sputtering,
It was quite high, at 17 Oersted.

そこで、本発明者等はさらに実験を重ね、スパッタリン
グにより被着した薄膜に対して熱処理を加え、この熱処
理温度と得られる軟磁性薄膜の抗磁力Hc及び1MHzにおけ
る透磁率μの関係について調べた。結果を第3図及び第
4図に示す。
Therefore, the present inventors further conducted experiments, performed heat treatment on the thin film deposited by sputtering, and investigated the relationship between this heat treatment temperature and the coercive force Hc of the obtained soft magnetic thin film and the magnetic permeability μ at 1 MHz. The results are shown in FIGS. 3 and 4.

この第3図より、スパッタリングにより被着した薄膜に
対して熱処理を施すことにより得られる軟磁性薄膜の抗
磁力Hcが大幅に低減し、特に熱処理温度が450℃の時に
極小値を示すことがわかった。同様に、第4図より、熱
処理により透磁率μが向上し、熱処理温度が550℃の時
に極大値を示すことがわかった。
From this Fig. 3, it is found that the coercive force Hc of the soft magnetic thin film obtained by subjecting the thin film deposited by sputtering to the heat treatment is significantly reduced, and shows a minimum value particularly when the heat treatment temperature is 450 ° C. It was Similarly, from FIG. 4, it was found that the magnetic permeability μ was improved by the heat treatment and showed the maximum value at the heat treatment temperature of 550 ° C.

実際、この軟磁性薄膜について、熱処理前と温度550
℃、1時間の条件での焼鈍・徐冷後の磁化曲線を求めた
ところ、第5図および第6図に示すように、温度550℃
での熱処理により得られる軟磁性薄膜の磁気特性が著し
く改善されたことがわかった。
In fact, for this soft magnetic thin film, before heat treatment and at a temperature of 550
When the magnetization curve after annealing / slow cooling under the condition of 1 ° C for 1 hour was obtained, as shown in Figs. 5 and 6, the temperature was 550 ° C.
It was found that the magnetic properties of the soft magnetic thin film obtained by the heat treatment in the above were significantly improved.

上記熱処理温度の最適値は組成比によって若干異なり、
したがって、熱処理温度Taはサンプル毎に決めた。
The optimum value of the heat treatment temperature is slightly different depending on the composition ratio,
Therefore, the heat treatment temperature Ta was determined for each sample.

〔発明の効果〕〔The invention's effect〕

上述の説明からも明らかなように、軟磁性薄膜の成分元
素としてFe,Co,Al,Geを選び、これらの組成比を所定の
値に設定することにより、センダスト合金を凌ぐ飽和磁
束密度Bsを達成することができるとともに、軟磁気特性
や耐蝕性,耐摩耗性を確保することが可能となった。
As is clear from the above description, Fe, Co, Al, Ge are selected as the component elements of the soft magnetic thin film, and the saturation magnetic flux density Bs superior to that of the Sendust alloy is set by setting the composition ratio of these to a predetermined value. In addition to being able to achieve this, it has become possible to secure soft magnetic properties, corrosion resistance, and wear resistance.

したがって、この軟磁性薄膜を例えば磁気ヘッドのコア
材料として用いることにより、磁気記録媒体の高抗磁力
化に充分対処することができ、高品質化や高記録密度化
を図ることが可能となる。
Therefore, by using this soft magnetic thin film as a core material of a magnetic head, for example, it is possible to sufficiently cope with a high coercive force of a magnetic recording medium, and it is possible to achieve high quality and high recording density.

【図面の簡単な説明】[Brief description of drawings]

第1図(A)はFe−Co−Al3元系における結晶磁気異方
性K=0の線と磁歪λ=0の線を表す特性図、第1図
(B)はFe−Al−Ge3元系における結晶磁気異方性K=
0の線と磁歪λ=0の線を表す特性図、第1図(C)
はFe−Co−Ge3元系における結晶磁気異方性K=0の線
と磁歪λ=0の線を表す特性図である。 第2図はFe78-xCoxAl13.3Ge8.7におけるCo添加量xと抗
磁力Hcの関係を熱処理温度500℃及び650℃の場合につい
て求めた特性図である。 第3図はスパッタリングにより被着した軟磁性薄膜(Fe
67.3Co10.2Al13.8Ge8.7)の抗磁力Hcと熱処理温度の関
係を示す特性図であり、第4図は透磁率と熱処理温度の
関係を示す特性図である。第5図はこの軟磁性薄膜の熱
処理前の磁化曲線を示す特性図、第6図は550℃、1時
間の熱処理後の磁化曲線を示す特性図である。
FIG. 1 (A) is a characteristic diagram showing a line of magnetocrystalline anisotropy K = 0 and a line of magnetostriction λ S = 0 in the Fe-Co-Al3 ternary system, and FIG. 1 (B) is Fe-Al-Ge3. Crystal magnetic anisotropy in the original system K =
Characteristic diagram showing the line of 0 and the line of magnetostriction λ S = 0, FIG. 1 (C)
FIG. 3 is a characteristic diagram showing a line of magnetocrystalline anisotropy K = 0 and a line of magnetostriction λ S = 0 in the Fe-Co-Ge ternary system. FIG. 2 is a characteristic diagram showing the relation between the Co addition amount x and the coercive force Hc in Fe 78-x Co x Al 13.3 Ge 8.7 at the heat treatment temperatures of 500 ° C. and 650 ° C. Figure 3 shows a soft magnetic thin film (Fe
67.3 is a characteristic diagram showing the relationship between the coercive force Hc of Co 10.2 Al 13.8 Ge 8.7 ) and the heat treatment temperature, and FIG. 4 is a characteristic diagram showing the relationship between the magnetic permeability and the heat treatment temperature. FIG. 5 is a characteristic diagram showing the magnetization curve of this soft magnetic thin film before heat treatment, and FIG. 6 is a characteristic diagram showing the magnetization curve after heat treatment at 550 ° C. for 1 hour.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松田 秀樹 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 石川 理 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 岩崎 洋 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 阿蘇 興一 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (56)参考文献 特開 昭58−27941(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Hideki Matsuda, 6-735 Kita-Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation (72) Inventor, Osamu Ishikawa 6-35, Kita-Shinagawa, Shinagawa-ku, Tokyo Sony Corporation (72) Inventor Hiroshi Iwasaki 6-735 Kitashinagawa, Shinagawa-ku, Tokyo Sony Corporation (72) Inventor Koichi Aso 6-735 Kita-Shinagawa, Shinagawa-ku, Tokyo Soni -Incorporated (56) Reference JP-A-58-27941 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】FexCoyAlaGeb(ただしx,y,a,bはそれぞれ
組成比を原子%として表す。)なる組成式で示され、そ
の組成範囲が65≦x+y≦85,0<y≦20,1≦a≦35,1≦
b≦35,x+y+a+b=100なる関係を満足することを
特徴とする結晶質軟磁性薄膜
1. A composition formula of Fe x Co y Al a Ge b (where x, y, a, and b are expressed as atomic%), and the composition range is 65 ≦ x + y ≦ 85, 0 <y ≤ 20, 1 ≤ a ≤ 35, 1 ≤
A crystalline soft magnetic thin film characterized by satisfying a relationship of b ≦ 35, x + y + a + b = 100
JP60218736A 1985-10-01 1985-10-01 Crystalline soft magnetic thin film Expired - Fee Related JPH0746652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60218736A JPH0746652B2 (en) 1985-10-01 1985-10-01 Crystalline soft magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60218736A JPH0746652B2 (en) 1985-10-01 1985-10-01 Crystalline soft magnetic thin film

Publications (2)

Publication Number Publication Date
JPS6278804A JPS6278804A (en) 1987-04-11
JPH0746652B2 true JPH0746652B2 (en) 1995-05-17

Family

ID=16724625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60218736A Expired - Fee Related JPH0746652B2 (en) 1985-10-01 1985-10-01 Crystalline soft magnetic thin film

Country Status (1)

Country Link
JP (1) JPH0746652B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243042A (en) * 1987-03-30 1988-10-07 Chiyoda Chem Eng & Constr Co Ltd Adsorption and separation of 2,6-methylisopropylnaphthalene

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104870B2 (en) * 1981-08-11 1994-12-21 株式会社日立製作所 Method for producing amorphous thin film

Also Published As

Publication number Publication date
JPS6278804A (en) 1987-04-11

Similar Documents

Publication Publication Date Title
US4918555A (en) Magnetic head containing an Fe-base soft magnetic alloy layer
EP0159027B1 (en) Magnetic thin film
JPH0834154B2 (en) Soft magnetic thin film
US4748000A (en) Soft magnetic thin film
JPS6129105A (en) Magnetic alloy thin film
JPH0746652B2 (en) Crystalline soft magnetic thin film
JPH0746653B2 (en) Crystalline soft magnetic thin film
JPH0789525B2 (en) Soft magnetic thin film for magnetic head
JP2508462B2 (en) Soft magnetic thin film
JPH0789524B2 (en) Soft magnetic thin film for magnetic head
JPH0789523B2 (en) Soft magnetic thin film for magnetic head
JPH0789522B2 (en) Soft magnetic thin film for magnetic head
JP2522284B2 (en) Soft magnetic thin film
JP2556863B2 (en) Fe-based magnetic alloy film
JPH0789527B2 (en) Crystalline soft magnetic thin film
JPH0789526B2 (en) Crystalline soft magnetic thin film
JPH0758647B2 (en) Crystalline soft magnetic thin film
JP3232592B2 (en) Magnetic head
JPH0746656B2 (en) Crystalline soft magnetic thin film
JP3221035B2 (en) Magnetic head
JP3087265B2 (en) Magnetic alloy
JPH07111926B2 (en) Soft magnetic thin film
JP2657710B2 (en) Method for manufacturing soft magnetic thin film
JPH0645146A (en) Manufacture of soft magnetic film
JPS62104110A (en) Soft magnetic thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees