JPH0483313A - Soft magnetic thin film and magnetic head - Google Patents

Soft magnetic thin film and magnetic head

Info

Publication number
JPH0483313A
JPH0483313A JP19730490A JP19730490A JPH0483313A JP H0483313 A JPH0483313 A JP H0483313A JP 19730490 A JP19730490 A JP 19730490A JP 19730490 A JP19730490 A JP 19730490A JP H0483313 A JPH0483313 A JP H0483313A
Authority
JP
Japan
Prior art keywords
soft magnetic
thin film
magnetic
flux density
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19730490A
Other languages
Japanese (ja)
Inventor
Kumio Nako
久美男 名古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19730490A priority Critical patent/JPH0483313A/en
Publication of JPH0483313A publication Critical patent/JPH0483313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To enable high-saturation flux density, low magnetic distortion, and thermal stability to be improved by allowing a title item to have a main constituent of Fe and to be formed by an iron-group signal-layer alloy with a composition which includes specific atom% of N and Nb. CONSTITUTION:When a soft magnetic thin film is formed by an iron-group signal-layer alloy with a composition which includes 5-16atom% of Fe and 7-14atom% of Nb having Fe as a main constituent, a crystal particle can be thinned in a signal-layer film state, thus achieving a soft magnetic property which is superb in a high saturation flux density and a thermal stability, especially a low magnetic distortion regardless of multilayering of nitride and nonnitride. Also, a soft magnetic alloy thin film in a system which includes 5-16atom% of N and 7-14atom% of Nb with Fe as a main constituent and which includes at least one type of element out of Ta, Ti, and Cr elements by 0.5-6atom% achieves further improved soft magnetic property thermal stability, wear-resistance, and corrosion resistance. Also, a magnetic head which uses this either soft magnetic thin film as a ceramic head core material is highly reliable and attains a high-density recording.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気録画再生装置(VTR) 、磁気録音再
生装置等の磁気記録再生装置における磁気ヘッド等に用
いられる軟磁性薄膜並びに磁気ヘッドに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a soft magnetic thin film and a magnetic head used in magnetic heads and the like in magnetic recording and reproducing devices such as magnetic recording and reproducing devices (VTRs) and magnetic recording and reproducing devices. be.

従来の技術 近年の磁気記録分野における高密度記録化の要求に対し
て、高保磁力媒体に対応した高性能磁気ヘッドの開発が
進められている。磁気ヘッドの特性は、それに使用する
コア材料の材料特性に密接に関連しており、磁気ヘッド
の高性能化に向けて、高い飽和磁束密度、低い磁歪を有
し、熱的に安定な優れた軟磁気特性(低い保磁力、高い
透磁率)を有する高性能軟磁性薄膜が要求されている。
2. Description of the Related Art In response to the recent demand for higher density recording in the field of magnetic recording, development of high-performance magnetic heads compatible with high coercive force media is progressing. The characteristics of a magnetic head are closely related to the material characteristics of the core material used in it, and in order to improve the performance of the magnetic head, we are developing materials with high saturation magnetic flux density, low magnetostriction, and excellent thermal stability. High performance soft magnetic thin films with soft magnetic properties (low coercive force, high magnetic permeability) are required.

゛このような要求に対し、フェライトの飽和磁束密度は
約0.5T、パーマロイ、センダスト、C。
``For these requirements, the saturation magnetic flux density of ferrite is approximately 0.5T, permalloy, sendust, and C.

県北品質材料でも約11前後と低く、これら従来の材料
では飽和磁束密度に限界が有る。
Even with materials made in the northern part of the prefecture, it is as low as around 11, and these conventional materials have a limit to their saturation magnetic flux density.

そこで、F e−3i/N i−F e、 F e−C
/Ni−Fe、Fe/5tot、Fe−Al−N/S 
1−N5F e−Nb/F e−Nb−N等の様に数十
〜数百人の異種類の磁性膜、あるいは非磁性膜の極薄膜
を交互に積層した多層膜において、高飽和磁束密度を有
すると共に、熱的に安定な良好な軟磁気特性を示す材料
が提供されている。そして、これら多層膜の高飽和磁束
密度、優れた軟磁気特性はFe主成分の微細結晶粒組織
に起因していると考えられている。つまり、数十〜数百
人の異種類の極薄膜を交互に積層することにより、膜の
厚み方向の粒成長を抑制し、二次元的に、結晶粒の微細
化を図ろうとしたものである。
Therefore, F e-3i/N i-F e, F e-C
/Ni-Fe, Fe/5tot, Fe-Al-N/S
1-N5F e-Nb/F e-Nb-N, etc., have a high saturation magnetic flux density in a multilayer film made by alternately laminating tens to hundreds of different types of magnetic films or ultra-thin non-magnetic films. There has been provided a material that is thermally stable and exhibits good soft magnetic properties. It is believed that the high saturation magnetic flux density and excellent soft magnetic properties of these multilayer films are due to the fine crystal grain structure mainly composed of Fe. In other words, by alternately stacking tens to hundreds of ultra-thin films of different types, the attempt was made to suppress grain growth in the thickness direction of the film and to achieve two-dimensional refinement of crystal grains. .

発明が解決しようとする課題 しかしながら、これらの多層膜からなる軟磁性薄膜を磁
気ヘッドコア材料として用いる場合、数十〜数百人の異
種類の極薄膜を交互に積層し、総膜厚を数μm〜数十μ
m形成する必要があるため、成膜プロセスが繁雑であり
、また、各層が異種類の極薄膜であるため、膜厚制御が
困難であり、成膜速度を速くすることが出来ず、量産性
に問題がある。また、磁気特性の異なる異種類の極薄膜
を交互に積層してなる軟磁性薄膜であるため、膜の厚み
方向の磁気特性(飽和磁束密度、磁歪、保磁力、透磁率
)が不均一であるという問題を生じる。
Problems to be Solved by the Invention However, when using a soft magnetic thin film made of these multilayer films as a magnetic head core material, tens to hundreds of ultra-thin films of different types are alternately laminated to make a total film thickness of several μm. ~several tens of μ
The film-forming process is complicated because it is necessary to form a film with a thickness of 1.5 m, and since each layer is a different type of ultra-thin film, it is difficult to control the film thickness, making it impossible to increase the film-forming speed, making it difficult to mass-produce. There is a problem. In addition, since the soft magnetic thin film is made by alternately laminating different types of ultra-thin films with different magnetic properties, the magnetic properties (saturation magnetic flux density, magnetostriction, coercive force, magnetic permeability) in the thickness direction of the film are non-uniform. The problem arises.

特に、これら微細結晶粒組織からなる軟磁性薄膜は薄膜
磁歪が大きくても、見掛は上の結晶磁気異方性が低下す
るため、良好な軟磁気特性が得られるが、薄膜磁歪が大
きな材料が多く、磁気へ・ノド加工プロセスに於けるギ
ャップ形成時等の外部圧力による逆磁歪効果により、磁
気へ・ノドの再生出力が劣化するという問題を生じる。
In particular, even if soft magnetic thin films made of these fine grain structures have large thin film magnetostriction, the apparent magnetocrystalline anisotropy decreases, so good soft magnetic properties can be obtained. This causes a problem in that the reproduction output of the magnetic groove is degraded due to the reverse magnetostrictive effect due to external pressure such as when forming a gap in the magnetic groove processing process.

本発明は、上述の問題点を解決するためになされたもの
であり、前述の様な、量産性、及び膜厚方向の磁気特性
に問題のある異種類の極薄膜の多層化によらず、単層膜
の状態で、三次元的に結晶粒の微細化を図り、高い飽和
磁束密度、低い磁歪、及び熱的安定性に優れた軟磁性を
有する鉄基合金から成る軟磁性薄膜、及び前記軟磁性薄
膜を磁気ヘッドコア材料として用いた磁気ヘッドを提供
しようとするものである。
The present invention has been made to solve the above-mentioned problems, and does not rely on multilayering of different types of ultra-thin films, which have problems in mass production and magnetic properties in the film thickness direction, as described above. A soft magnetic thin film made of an iron-based alloy that has three-dimensionally refined crystal grains in a single layer state, and has high saturation magnetic flux density, low magnetostriction, and soft magnetism with excellent thermal stability; The present invention aims to provide a magnetic head using a soft magnetic thin film as a magnetic head core material.

課題を解決するための手段 本発明者は、高い飽和磁束密度を有するFe基合金薄膜
において、単層膜の状態で結晶粒の微細化を図り、高飽
和磁束密度、低磁歪、及び熱的安定性に優れた軟磁性を
有する合金薄膜を開発することを目的とする研究を行っ
た。成膜直後の薄膜の金属組織が、粒成長した結晶質の
状態では、熱処理を行ってもFe主成分の微細結晶粒組
織を実現することが出来ず、成膜直後の状態を非晶質状
にし、熱処理により微細結晶粒を析出する必要がある。
Means for Solving the Problems The present inventor aimed to refine the crystal grains in a single layer state of an Fe-based alloy thin film having a high saturation magnetic flux density, and to achieve high saturation magnetic flux density, low magnetostriction, and thermal stability. We conducted research aimed at developing alloy thin films with excellent soft magnetic properties. If the metal structure of the thin film immediately after deposition is in a crystalline state with grain growth, it is not possible to achieve a fine grain structure of Fe as the main component even if heat treatment is performed, and the state immediately after deposition is an amorphous state. It is necessary to precipitate fine crystal grains by heat treatment.

一般に、平衡状態図上、共晶組成の合金を共晶点直上の
温度から急冷することにより、非晶質合金が形成され易
いことが知られている。また、Ar−N、混合ガス中で
薄膜を形成することにより、結晶粒が微細化し易いこと
が知られている。
Generally, it is known that an amorphous alloy is easily formed by rapidly cooling an alloy having a eutectic composition from a temperature just above the eutectic point in an equilibrium phase diagram. Furthermore, it is known that by forming a thin film in Ar--N or a mixed gas, crystal grains tend to become finer.

そこで、Fe主成分の微細結晶粒組織を実現する目的で
、平衡状態図上、Fe高濃度側で共晶点を有する共晶点
近傍組成のFe−Nb系合金に着目し、Ar−N、混合
ガス中で薄膜を形成する研究を行ったところ、Fe−N
b/Fe−Nb−N等のような窒化−非窒化の多層膜化
によらずとも、単層膜の状態で結晶粒が微細化し、高い
飽和磁束密度、及び熱的安定性に優れた軟磁気特性(低
い保持力、高い透磁率)、特に、低い磁歪を呈するとい
う事実を見いだし請求項(1)の発明に至った。
Therefore, in order to realize a fine grain structure mainly composed of Fe, we focused on a Fe-Nb alloy with a composition near the eutectic point, which has a eutectic point on the high Fe concentration side on the equilibrium phase diagram. When we conducted research on forming thin films in a mixed gas, we found that Fe-N
Even without using a nitrided-non-nitrided multilayer film such as b/Fe-Nb-N, the crystal grains become finer in the single layer state, resulting in a soft film with high saturation magnetic flux density and excellent thermal stability. The inventor discovered the fact that it exhibits magnetic properties (low coercive force, high magnetic permeability), especially low magnetostriction, leading to the invention of claim (1).

また、Feを主成分とし、N、Nbを含むと共に、Ti
、Ta、Cr元素の少なくとも1種の元素を含む系の軟
磁性合金薄膜は、特に組成範囲において、更に優れた軟
磁気特性の熱的安定性、及び更に優れた耐摩耗性、耐食
性を併せ持つという事実を見いだし請求項(2)の発明
に至った。
In addition, the main component is Fe, contains N, Nb, and Ti.
It is said that a soft magnetic alloy thin film containing at least one of the following elements: , Ta, and Cr has superior thermal stability of soft magnetic properties, as well as superior wear resistance and corrosion resistance, especially in the composition range. We discovered the facts and came up with the invention of claim (2).

請求項(3)の発明に係わる磁気ヘッドは、信顛性高(
、高密度記録を達成するために、高い飽和磁束密度、低
い磁歪と優れた軟磁気特性を有すると共に耐食性、およ
び耐摩耗性に優れた本発明の軟磁性薄膜を磁気ヘッドコ
ア材料として用いたものである。
The magnetic head according to the invention of claim (3) has high reliability (
In order to achieve high-density recording, the soft magnetic thin film of the present invention, which has high saturation magnetic flux density, low magnetostriction, and excellent soft magnetic properties, as well as excellent corrosion resistance and wear resistance, is used as a magnetic head core material. be.

作用 請求項(1)の発明の構成によれば、Fe高濃度側で共
晶点を有する共晶点近傍組成のFe−Nb系合金をA 
r−N、混合ガス中で薄膜化した、特定の組成範囲のF
e、Nb、Nの元素を含む系の軟磁性合金薄膜であるか
ら、Fe主成分の微細結晶粒組織を有し、優れた軟磁気
特性とその熱的安定性、高飽和磁束密度、特に、低磁歪
を有すると共に、優れた耐摩耗性、耐食性を併せ持つこ
とが出来る。また、請求項(2)の発明の構成によれば
、Feを主成分とし、N、Nbを含むと共に、Ti、T
a、Cr元素の少なくとも1種の元素を含む系の特定の
組成範囲の軟磁性合金薄膜であるから、更に軟磁気特性
の熱的安定性に優れ、優れた耐摩耗性、耐食性を併せ持
つことが出来る。
According to the structure of the invention of function claim (1), A--A
r-N, F of a specific composition range thinned in a mixed gas
Since it is a soft magnetic alloy thin film containing the elements e, Nb, and N, it has a fine grain structure mainly composed of Fe, and has excellent soft magnetic properties, thermal stability, high saturation magnetic flux density, and especially, It has low magnetostriction as well as excellent wear resistance and corrosion resistance. Further, according to the structure of the invention of claim (2), Fe is the main component, N and Nb are included, and Ti, T
Since it is a soft magnetic alloy thin film with a specific composition range of a system containing at least one element of the Cr element, it has excellent thermal stability of soft magnetic properties and also has excellent wear resistance and corrosion resistance. I can do it.

請求項(3)の発明の構成によれば、高い飽和磁束密度
、低い磁歪と熱的安定性に優れた軟磁気特性を有すると
共に、優れた耐摩耗性、耐食性を併せ持つ前記軟磁性薄
膜を磁気ヘッドコア材料として使用した磁気ヘッドであ
るから、信鯨性の高い磁気ヘッドで高密度記録を達成す
ることが出来る。
According to the structure of the invention of claim (3), the soft magnetic thin film has high saturation magnetic flux density, low magnetostriction, and soft magnetic properties with excellent thermal stability, and also has excellent wear resistance and corrosion resistance. Since the magnetic head is used as a head core material, high-density recording can be achieved with a highly reliable magnetic head.

実施例 実施例l Fe83〜95原子%、Nb5〜17原子%の組成範囲
のFeNb合金ターゲットを用い、Arガス中にN2ガ
スを導入し、全圧12mTorr、 Nt分分圧全全圧
比P Ht/ P yot−t )2.5%、投入電力
400Wで高周波反応性スパッタ法より、水冷した基板
上に膜圧2μmの軟磁性薄膜を形成した。膜の組成分析
は、ラグフォード後方散乱分光法により行った(以下、
膜組成Fe77原子%、Nb1O原子%、N13原子%
等はF e 77N b toN 13のように示す)
Examples Example 1 Using a FeNb alloy target with a composition range of 83 to 95 at% Fe and 5 to 17 at% Nb, N2 gas was introduced into Ar gas, the total pressure was 12 mTorr, and the Nt partial pressure and total pressure ratio P Ht/ A soft magnetic thin film with a film thickness of 2 μm was formed on a water-cooled substrate by high frequency reactive sputtering at P yot-t ) 2.5% and input power of 400 W. The compositional analysis of the film was performed by Ragford backscattering spectroscopy (hereinafter referred to as
Film composition: Fe77 at%, Nb1O at%, N13 at%
etc. are shown as F e 77N b toN 13)
.

これらの軟磁性薄膜を5 Xl0−’Torr以下の真
空中において、5000eの回転磁場中で、500″C
の温度で1時間の熱処理を行った。これらの軟磁性薄膜
の保持力Hc、IMHzの実効透磁率μ。、飽和磁束密
度Bs、及び飽和磁歪λSを測定した。
These soft magnetic thin films were heated at 500''C in a rotating magnetic field of 5000e in a vacuum below 5Xl0-'Torr.
Heat treatment was performed at a temperature of 1 hour. Coercive force Hc and effective magnetic permeability μ at IMHz of these soft magnetic thin films. , saturation magnetic flux density Bs, and saturation magnetostriction λS were measured.

その結果を第1表に示した。第1表に示すように、膜の
軟磁気特性は、共晶点近傍組成のNb含有量7〜14原
子%の範囲で良好な特性(低い保持力Fe1高い実効透
磁率μ。)を示す。特に、Nb含有量10原子%で最も
優れた軟磁気特性を示す。飽和磁歪λSは、Nb含有量
で7〜14原子%の範囲でlXl0−’以下の低い値を
示し、Nb含有量4原子%では大きなλS値を示す。飽
和磁束密度Bsは、Nb含有量の増加と共に減少する傾
向を示し、Nb含有量14原子%でも1.5Tもの高い
値を示す。
The results are shown in Table 1. As shown in Table 1, the soft magnetic properties of the film exhibit good properties (low coercive force Fe1 high effective magnetic permeability μ) when the Nb content is in the range of 7 to 14 atomic % near the eutectic point composition. In particular, the best soft magnetic properties are exhibited when the Nb content is 10 at %. The saturation magnetostriction λS shows a low value of 1X10-' or less in the Nb content range of 7 to 14 atomic%, and shows a large λS value at a Nb content of 4 atomic%. The saturation magnetic flux density Bs shows a tendency to decrease as the Nb content increases, and shows a value as high as 1.5 T even when the Nb content is 14 at%.

従って、優れた軟磁気特性、低い磁歪、高い飽和磁束密
度を示す膜中のNb含有量は、7〜14原子%の範囲で
あることが分かった。
Therefore, it was found that the Nb content in the film exhibiting excellent soft magnetic properties, low magnetostriction, and high saturation magnetic flux density was in the range of 7 to 14 at.%.

第1表 次に同様の反応性スパッタ法により、共晶組成のF e
 toN b lz合金ターゲットを用い、N2分圧対
全圧比O〜5%の範囲で膜厚2μmのFeNbN合金膜
を形成した。これらの軟磁性薄膜を5×10−’Tor
r以下の真空中において、5000eの回転磁場中で、
500℃の温度で1時間の熱処理を行い、これらの軟磁
性薄膜の保磁力Hc、飽和磁束密度Bs、及び飽和磁歪
λSを測定した。N2分圧対全圧比と保磁力Hcの関係
を第1図に示す。
Table 1 Next, by the same reactive sputtering method, Fe of eutectic composition was
Using a toN b lz alloy target, a FeNbN alloy film with a thickness of 2 μm was formed at a N2 partial pressure to total pressure ratio in the range of 0 to 5%. These soft magnetic thin films were heated to 5×10-'Tor.
In a vacuum below r, in a rotating magnetic field of 5000e,
Heat treatment was performed at a temperature of 500° C. for 1 hour, and the coercive force Hc, saturation magnetic flux density Bs, and saturation magnetostriction λS of these soft magnetic thin films were measured. The relationship between the N2 partial pressure to total pressure ratio and the coercive force Hc is shown in FIG.

保磁力Hcは、N2分圧対全圧比2.5%で最小値0.
30eを示し、1.7%〜3.5%の範囲でloe以下
の低保磁力を示す。N2分圧対全圧比と飽和磁束密度B
sの関係を第2図に示す。飽和磁束密度Bsは、N2分
圧対全圧比2.5%で最大値1.7Tを示し、5%でも
1.3Tもの値を示す。次に、N2分圧対全圧比と飽和
磁歪λSの関係を第3図に示す。飽和磁歪λSは、N2
分圧対全圧比1.7〜3.5%の範囲でI Xl0−’
以下の低磁歪を示す。
The coercive force Hc has a minimum value of 0.0 at a N2 partial pressure to total pressure ratio of 2.5%.
30e, and exhibits a low coercive force below loe in the range of 1.7% to 3.5%. N2 partial pressure to total pressure ratio and saturation magnetic flux density B
The relationship between s is shown in FIG. The saturation magnetic flux density Bs shows a maximum value of 1.7T at a N2 partial pressure to total pressure ratio of 2.5%, and shows a value as high as 1.3T even at 5%. Next, FIG. 3 shows the relationship between the N2 partial pressure to total pressure ratio and the saturation magnetostriction λS. The saturation magnetostriction λS is N2
I Xl0-' in the range of partial pressure to total pressure ratio 1.7 to 3.5%
It exhibits low magnetostriction of:

従って、優れた軟磁気特性、低い磁歪、高い飽和磁束密
度を示すN2分圧対全圧比は1.7〜3.5%の範囲で
あることが分かった。
Therefore, it was found that the N2 partial pressure to total pressure ratio, which exhibits excellent soft magnetic properties, low magnetostriction, and high saturation magnetic flux density, is in the range of 1.7 to 3.5%.

次に、N2分圧対全圧比と膜中の窒素含有量との関係は
、第4図に示すように、直線的関係にあることが分かる
。従って、優れた軟磁気特性、低い磁歪、高い飽和磁束
密度を示す膜中のN含有量は、5〜16原子%の範囲で
あることが分かった。
Next, it can be seen that the relationship between the N2 partial pressure to total pressure ratio and the nitrogen content in the film is a linear relationship, as shown in FIG. Therefore, it was found that the N content in the film exhibiting excellent soft magnetic properties, low magnetostriction, and high saturation magnetic flux density was in the range of 5 to 16 at.%.

第5図に、最も優れた磁気特性を示した熱処理後のFe
2.7NblON13合金膜のX線回折(Cu−にα線
)の測定結果を示す。図より、膜構造は、α−Feの微
細結晶粒組織であることが分かる。
Figure 5 shows Fe after heat treatment, which showed the best magnetic properties.
The measurement results of X-ray diffraction (Cu- and alpha rays) of a 2.7NblON13 alloy film are shown. From the figure, it can be seen that the film structure is a fine crystal grain structure of α-Fe.

デバイ−シェラ−の式から結晶粒径を算出すると、約3
0人の微細結晶粒であった。比較として、良好な軟磁気
特性の得られなかったFe5xNb4N+z合金膜のX
線回折(Cu−にα線)の測定結果を第6図に示す。デ
バイ−シェラ−の式から結晶粒径を算出すると、約10
0人に粒成長していた。
When calculating the grain size from the Debye-Scherrer equation, it is approximately 3
There were 0 fine crystal grains. For comparison, the X
The measurement results of line diffraction (Cu- and alpha rays) are shown in FIG. When calculating the crystal grain size from the Debye-Scherrer equation, it is approximately 10
It had gradually grown to 0 people.

また、同様の反応性スパッタ法により、FewzN b
 +。T a a N 13合金膜を作成し、耐食性、
耐摩耗性、及び軟磁気特性の熱処理温度依存性を調べた
ところ、FettNb+。N1ff合金膜よりも、更に
、耐摩耗性に優れ、熱的安定性にも優れていることが分
かった。なお、本実施例では、Fe7:INb+eT 
a 4 NIs合金膜について説明したが、前記以外の
Feを主成分としNを5〜16原子%Nbを7〜14原
子%含むと共に、Ta、Ti、Cr元素の1種もしくは
2種以上の元素を0.5〜6原子%含む組成を有する鉄
基単層合金から成る軟磁性薄膜でも同様の効果を有する
。また、前記スパッタ法はArガス中にN2ガスを混入
させた反応性スパッタ法に限るものではなく、窒化物を
ターゲットに用いたスパッタ法、直流または高周波によ
る二極、三極、マグネトロン方式のスパッタ法、および
バイアススパッタ法、イオンビームスパッタ法において
も同様の効果を有する。また、前記スパッタ法以外の電
子ビーム蒸着法、クラスターイオンビーム法、MBE法
においても同様の効果を有する。
In addition, FewzN b
+. Created a T a a N 13 alloy film to improve corrosion resistance,
When we investigated the heat treatment temperature dependence of wear resistance and soft magnetic properties, we found that FettNb+. It was found that it had even better wear resistance and thermal stability than the N1ff alloy film. In addition, in this example, Fe7:INb+eT
a 4 Although the NIs alloy film has been described, it is mainly composed of Fe other than those mentioned above, contains 5 to 16 at.% of Nb, and 7 to 14 at.% of Nb, and also contains one or more of Ta, Ti, and Cr elements. A soft magnetic thin film made of an iron-based single-layer alloy having a composition containing 0.5 to 6 atomic percent of ions has a similar effect. Furthermore, the sputtering method is not limited to the reactive sputtering method in which N2 gas is mixed into Ar gas, but also the sputtering method using nitride as a target, bipolar sputtering, triode sputtering, and magnetron sputtering using direct current or high frequency. Similar effects can be obtained in the method, bias sputtering method, and ion beam sputtering method. Furthermore, similar effects can be obtained in electron beam evaporation, cluster ion beam, and MBE methods other than the sputtering method.

実施例2 第7図に示すように、磁路の大部分をフエライトエで構
成し、磁気的に飽和しやすいギヤツブ2近傍部にのみ軟
磁性薄膜3を設けた構造の磁気ヘッド(M I Gヘッ
ドと呼ばれている)において、軟磁性薄膜3部分に実施
例1で作成した飽和磁束密度166Tの鉄基単層合金か
ら成る軟磁性薄膜を用いて前記MIGヘッドを作製した
。前記鉄基単層合金から成る軟磁性薄膜の膜厚(第7図
中し、M)は各々5μmとし、ギャップ長0.15μm
、トラック幅5μm、ギャップデプス20μm、コイル
の巻き数は22ターンとした。また、比較として、飽和
磁束密度1.ITのセンダスト膜を軟磁性薄膜3部分に
用いて前記同様の構造のMIGヘッドを作製し、Co−
Cr単層媒体(厚み0.2μm、Hc(±)=1300
0eSHk=5KOe)での記録再生特性を調べた。周
速3m/seeで自己録再で行った。その結果、本発明
の鉄基単層合金から成る軟磁性薄膜を磁気ヘッドコア材
料として用いた磁気ヘッドは、センダスト膜を磁気ヘッ
ドコア材料として用いた磁気ヘッドに比べて約3dBの
出力の増加が得られた。
Embodiment 2 As shown in FIG. 7, a magnetic head (MIG head) has a structure in which most of the magnetic path is made of ferrite, and a soft magnetic thin film 3 is provided only in the vicinity of the gear 2, which is likely to be magnetically saturated. The MIG head was fabricated using the soft magnetic thin film made of an iron-based single layer alloy with a saturation magnetic flux density of 166T prepared in Example 1 for the soft magnetic thin film 3 portion. The thickness (M in FIG. 7) of each soft magnetic thin film made of the iron-based single layer alloy was 5 μm, and the gap length was 0.15 μm.
The track width was 5 μm, the gap depth was 20 μm, and the number of turns of the coil was 22 turns. Also, for comparison, the saturation magnetic flux density is 1. A MIG head with the same structure as above was fabricated using the IT sendust film as the soft magnetic thin film 3 portion, and Co-
Cr single layer medium (thickness 0.2 μm, Hc (±) = 1300
The recording and reproducing characteristics at 0eSHk=5KOe) were investigated. This was done by self-recording and replay at a circumferential speed of 3m/see. As a result, a magnetic head using the soft magnetic thin film made of the iron-based single-layer alloy of the present invention as the magnetic head core material has an output increase of about 3 dB compared to a magnetic head using the Sendust film as the magnetic head core material. Ta.

発明の効果 請求項(1)の発明によれば、熱的に安定な優れた軟磁
気特性と高飽和磁束密度特に、低磁歪を有すると共に、
優れた耐摩耗性、耐食性を併せ持つ軟磁性薄膜を提供す
ることが出来、本発明の軟磁性薄膜を使用する磁気ヘッ
ドは、例えば、磁気記録媒体と速い相対速度で摺動する
高品位VTR等に好適である。
Effects of the Invention According to the invention of claim (1), it has excellent thermally stable soft magnetic properties and high saturation magnetic flux density, especially low magnetostriction, and
A soft magnetic thin film having both excellent wear resistance and corrosion resistance can be provided, and a magnetic head using the soft magnetic thin film of the present invention can be used, for example, in a high-quality VTR that slides at a high relative speed with a magnetic recording medium. suitable.

請求項(2)の発明によれば、請求項(1)の発明によ
る軟磁性薄膜よりも、更に、熱的安定性に優れた軟磁気
特性を有すると共に、更に、優れた耐摩耗性、耐食性を
併せ持つ軟磁性薄膜を提供することが出来る。
According to the invention of claim (2), it has soft magnetic properties with even better thermal stability than the soft magnetic thin film according to the invention of claim (1), and also has even better wear resistance and corrosion resistance. It is possible to provide a soft magnetic thin film having both of the following.

請求項(3)の発明によれば、高い飽和磁束密度、低い
磁歪と熱的安定性に優れた軟磁気特性を有すると共に、
優れた耐摩耗性、耐食性を併せ持つ軟磁性薄膜を磁気ヘ
ッドコア材料として使用した磁気ヘッドであるから、信
転性の高い磁気ヘッドで高密度記録を達成することが出
来る。
According to the invention of claim (3), it has soft magnetic properties with high saturation magnetic flux density, low magnetostriction, and excellent thermal stability, and
Since the magnetic head uses a soft magnetic thin film having excellent wear resistance and corrosion resistance as the magnetic head core material, high-density recording can be achieved with a magnetic head with high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例で作成した軟磁性薄膜のN2
分圧対全圧比と保磁力Hcの関係を示す図、第2図はN
2分圧対全圧比と飽和磁束密度BSの関係を示す図、第
3図はN2分圧対全圧比と飽和磁歪λSの関係を示す図
、第4図はNz分圧対全圧比と膜中の窒素含有量との関
係を示す図、第5図および第6図はX線回折図、第7図
は磁気ヘッドの概略図である。 1・・・・・・フェライト、2・・・・・・ギャップ、
3・・・・・・軟磁性薄膜、4・・・・・・ガラス。 代理人の氏名 弁理士 粟野重孝 ばか1名第 図 を青分民/命瓦げ/。) 第 図 2      3      仝 t! を9Tt−/ 全H(’/、) 第 図 窒素分氏/仝及 (χ→ 第 区 θ 窒秦分X/4瓦(ン、) 第 図 Zθ(Nり 第 図 Zθ(慶)
Figure 1 shows the N2 soft magnetic thin film produced in one embodiment of the present invention.
A diagram showing the relationship between partial pressure to total pressure ratio and coercive force Hc, Figure 2 is N
2 is a diagram showing the relationship between the partial pressure to total pressure ratio and the saturation magnetic flux density BS, Figure 3 is a diagram showing the relationship between the N2 partial pressure to total pressure ratio and saturation magnetostriction λS, and Figure 4 is the diagram showing the relationship between the Nz partial pressure to total pressure ratio and the saturation magnetic flux density BS. FIG. 5 and FIG. 6 are X-ray diffraction diagrams, and FIG. 7 is a schematic diagram of a magnetic head. 1... Ferrite, 2... Gap,
3...Soft magnetic thin film, 4...Glass. Agent's name: Patent attorney Shigetaka Awano One idiot's plan is for the people of Aobun. ) Figure 2 3! 9Tt-/ Total H ('/,) Fig. Nitrogen Min/Reference (χ→ Sec.

Claims (3)

【特許請求の範囲】[Claims] (1)Feを主成分としNを5〜16原子%、Nbを7
〜14原子%含む組成を有することを特徴とする鉄基単
層合金から成る軟磁性薄膜。
(1) Fe is the main component, N is 5 to 16 at%, and Nb is 7
A soft magnetic thin film made of an iron-based single layer alloy, characterized in that it has a composition containing ~14 at.%.
(2)Feを主成分としNを5〜16原子%、Nbを7
〜14原子%含むと共に、Ta、Ti、Cr元素の少な
くとも1種の元素を0.5〜6原子%含む組成を有する
ことを特徴とする鉄基単層合金から成る軟磁性薄膜。
(2) Fe is the main component, N is 5 to 16 atomic%, and Nb is 7
1. A soft magnetic thin film made of an iron-based single-layer alloy, characterized by having a composition containing ~14 at.% and 0.5-6 at.% of at least one of Ta, Ti, and Cr elements.
(3)請求項(1)または(2)のいずれかに記載の軟
磁性薄膜を磁気ヘッドコア材料として用いたことを特徴
とする磁気ヘッド。
(3) A magnetic head characterized in that the soft magnetic thin film according to any one of claims (1) and (2) is used as a magnetic head core material.
JP19730490A 1990-07-25 1990-07-25 Soft magnetic thin film and magnetic head Pending JPH0483313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19730490A JPH0483313A (en) 1990-07-25 1990-07-25 Soft magnetic thin film and magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19730490A JPH0483313A (en) 1990-07-25 1990-07-25 Soft magnetic thin film and magnetic head

Publications (1)

Publication Number Publication Date
JPH0483313A true JPH0483313A (en) 1992-03-17

Family

ID=16372236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19730490A Pending JPH0483313A (en) 1990-07-25 1990-07-25 Soft magnetic thin film and magnetic head

Country Status (1)

Country Link
JP (1) JPH0483313A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529143A (en) * 1990-07-27 1993-02-05 Fuji Photo Film Co Ltd Soft magnetic thin film
JPH05135989A (en) * 1991-11-12 1993-06-01 Fuji Photo Film Co Ltd Manufacture of soft magnetic thin film
US6134079A (en) * 1997-09-17 2000-10-17 Fujitsu Limited Magnetic head including a pole piece with soft magnetic particles dispersed therein and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529143A (en) * 1990-07-27 1993-02-05 Fuji Photo Film Co Ltd Soft magnetic thin film
JPH05135989A (en) * 1991-11-12 1993-06-01 Fuji Photo Film Co Ltd Manufacture of soft magnetic thin film
US6134079A (en) * 1997-09-17 2000-10-17 Fujitsu Limited Magnetic head including a pole piece with soft magnetic particles dispersed therein and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US5264981A (en) Multilayered ferromagnetic film and magnetic head employing the same
JP2001101645A (en) High density information recording medium and method for manufacturing the medium
US5403457A (en) Method for making soft magnetic film
US5452167A (en) Soft magnetic multilayer films for magnetic head
JPS63119209A (en) Soft magnetic thin-film
JP2698814B2 (en) Soft magnetic thin film
US4609593A (en) Magnetic recording medium
JPH0483313A (en) Soft magnetic thin film and magnetic head
US5133814A (en) Soft magnetic thin film
JPS60132305A (en) Iron-nitrogen laminated magnetic film and magnetic head using the same
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JP2979557B2 (en) Soft magnetic film
JP3232592B2 (en) Magnetic head
JP2782994B2 (en) Manufacturing method of magnetic head
KR940008644B1 (en) Magnetic alloy thin film for magnetic head
JPH01175707A (en) Laminated soft thin magnetic film
KR0136419B1 (en) Soft magnetic alloy thin film substrate
JPH0315245B2 (en)
JPH0389502A (en) Magnetic multilayer film
JPS63146417A (en) Soft magnetic thin film
JPH0376102A (en) Multilayer magnetic thin film and magnetic head using the same
JPS633406A (en) Magnetically soft thin film
JPH0513223A (en) Magnetic head
JPH04367205A (en) Soft magnetic thin film
JPH06124846A (en) Manufacture of soft magnetic film, manufacture of soft magnetic multi layer film and magnetic head