JPS6321746B2 - - Google Patents

Info

Publication number
JPS6321746B2
JPS6321746B2 JP59135594A JP13559484A JPS6321746B2 JP S6321746 B2 JPS6321746 B2 JP S6321746B2 JP 59135594 A JP59135594 A JP 59135594A JP 13559484 A JP13559484 A JP 13559484A JP S6321746 B2 JPS6321746 B2 JP S6321746B2
Authority
JP
Japan
Prior art keywords
magnetic
atomic
magnetic material
amorphous
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59135594A
Other languages
Japanese (ja)
Other versions
JPS6115952A (en
Inventor
Hisamori Kono
Kyoyuki Esashi
Masateru Nose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP59135594A priority Critical patent/JPS6115952A/en
Publication of JPS6115952A publication Critical patent/JPS6115952A/en
Publication of JPS6321746B2 publication Critical patent/JPS6321746B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業分野 この発明は、磁気ヘツド用を始めとする非晶質
磁性材料の熱処理方法に係り、軟質磁性材料とし
て好ましい諸特性を有し、特に、高透磁率で、か
つ低い測定磁界での透磁率を著しく向上させる非
晶質磁性材料の熱処理方法に関する。 背景技術 磁気ヘツド用コア材として、従来は、パーマロ
イ、センダスト、フエライト等が用いられてきた
が、パーマロイは耐摩耗性に劣り、センダストは
脆弱なために薄板に加工する際に多大の工数を要
し、また、フエライトは磁束密度が約4000〜
5000G程度と低い等、種々の問題点があつた。 かかる問題を解消した磁気ヘツド用磁性材料と
して、良好な軟磁性特性を有し、箔帯であるため
に渦電流損失が少ないほど好ましい特性を有する
非晶質磁性材料が開発されており、さらに、非晶
質磁性材料の耐摩耗性や高磁束密度化及び高透磁
率化等の改善が種々提案されている。 例えば、特開昭51―73920号公報、特公昭59―
8048号公報に開示され、実用化されているCo―
Fe―Si―B系非晶質磁性材料は、非晶質化元素
としてSi、B等の半金属(メタロイド)を、15〜
30原子%程度含有する非晶質磁性材料(一般にメ
タル―メタロイドという)であるが、一般に、耐
摩耗性がセンダストよりも劣り、熱安定性はその
透磁率が初期には大きな値を示すが、磁気ヘツド
製造時に多用される接着あるいはモールド加工の
ための100℃程度の加熱保持によつて、大きく低
下する問題があつた。 そこで、Zr,Hf,Nb等を非晶質化元素として
5〜20原子%程度含有し、半金属元素は全く含ま
ないか、あるいは10原子%以下の少量しか含まな
い非晶質磁性材料(一般にメタル―メタル系とい
う)が注目され、Co―Zr系で磁歪の小さくなる
組成において、Mo,B,Niを含有させて、耐食
性、耐摩耗性、飽和磁束密度を高めた磁気ヘツド
用非晶質合金が提案(特開昭59―38349号)され
ているなど一般に高磁束密度な材料が求められて
いる。 ところで、上記の磁気ヘツド用磁性材料で磁気
ヘツドを組立て、各種レコーダー等に実装した場
合、一般に切望されている高磁束密度材料が必ず
しも良い実装特性を示すとは限らず、実装特性と
して重視されるインピーダンス、バイアス電流
値、録音信号電流値、再生周波数特性、再生感度
等は、使用した磁性材料の透磁率、とりわけ低い
磁界での透磁率に大きく依存していることが知ら
れるようになり、最近特に注目されている。 かかる磁気ヘツドの実装特性向上の観点から、
磁束密度が高いCo基非晶質磁性材料を検討する
と、単に10kGを越える高い飽和磁束密度を有す
るだけの磁性材料は、高い磁界(10mOe以上)
での透磁率は比較的よい値が得られるが、1mOe
程度の低い磁界における透磁率は高磁界の場合に
対して極端に低く、例えば、音声録再用磁気ヘツ
ドにおける再生感度が低くなる問題があつた。 そこで、非晶質磁性材料の熱処理方法の工夫に
より、磁性材料の特性向上を計ることが考えられ
るが、Co濃度が高く、結晶化温度がキユーリー
温度より低い材料では、メタル―メタロイド系あ
るいはメタル―メタル系のいずれの場合において
も、結晶化温度以下、キユーリー温度以上での熱
処理が不可能なため、回転磁界中熱処理が施され
ているが、結晶化温度とキユーリー温度との差が
大きい場合には、結晶化温度以下での回転磁界中
熱処理を施しても、低い測定磁界での透磁率の向
上はあまり得られなかつた。例えば、特開昭56―
112449号、特開昭57―114646号。 一方、結晶化温度がキユーリー温度より高い非
晶質磁性材料に関しては、通常の熱処理方法、す
なわち、結晶化温度以下、キユーリー温度以上の
温度範囲で、所要時間、焼鈍後空冷または水冷す
る方法が可能であることはよく知られている。ま
た、この方法を上記のメタル―メタロイド系非晶
質磁性材料に適用すると、十分に高い透磁率が得
られることが知られている。 さらに、メタル―メタロイド系である、Co―
Fe―Si―B系合金のD・A(デイスアコモデーシ
ヨン)の低減を目的とした熱処理方法として、特
開昭55―110764号に、通常熱処理と回転磁界中熱
処理を施す方法が提案されているが、透磁率の向
上には、10%前後の効果しかなく、また、該系合
金は100℃〜150℃程度の加熱による透磁率の減少
が極端に大きいことは前述のとおりであり、磁気
ヘツドのコア材としては不十分であつた。 また、メタル―メタル系非晶質磁性材料に対し
て、上記の結晶化温度以下、キユーリー温度以上
の温度範囲で所要時間、焼鈍後空冷または水冷す
る熱処理を施しても、メタル―メタロイド系非晶
質磁性材料に比べて十分な透磁率が得難い場合が
あつた。 特に、メタル―メタル系非晶質磁性材料の磁束
密度が約7000G以上で、結晶化温度がキユーリー
温度より高いが、その温度差が狭い場合には、通
常の熱処理方法では十分な透磁率が得られない場
合が多かつた。 発明の目的 この発明は、磁気ヘツド用の軟磁性材料として
好ましい諸特性が得られ、磁気ヘツドの実装特性
の向上が得られるように、メタル―メタル系非晶
質磁性材料に関し、高い透磁率、特に低測定磁界
での高い透磁率が得られる熱処理方法を目的とし
ている。 発明の構成と効果 この発明は、磁気ヘツドの実装特性向上の観点
から、例えば、約6000G以上の適当な高磁束密度
を有する材料において、特に、0.1mOe〜3mOe
程度の低い測定磁界における透磁率が極めて高い
値が得られるように、種々の熱処理方法を検討し
た結果、半金属を10原子%以下の少量あるいは全
く含まない、本質的にメタル―メタル系非晶質合
金は、急冷状態での誘導磁気異方性が比較的大き
いため、結晶化温度以下、キユーリー温度以上で
熱処理する手段を用いても、この磁気異方性が完
全になくならないが、さらに、150℃以上、キユ
ーリー温度以下で回転磁界中熱処理する手段によ
り、該磁気異方性が実質的に零となり、保磁力を
小さくし、透磁率、特に、低い測定磁界における
透磁率を50%〜300%以上も飛躍的に向上させる
ことができることを知見したものである。 さらに、詳述すれば、前記の特開昭55―110764
号公報記載のCo―Fe―Si―B系合金は、半金属
を多量に含むメタル―メタロイド系非晶質合金で
あり、もともと誘導磁気異方性が小さいため、結
晶化温度以下、キユーリー温度以上で焼鈍するだ
けで、その磁気異方性は実質的に零となり、キユ
ーリー温度以下で回転磁界中熱処理を施しても、
透磁率はさほど向上せず、この発明方法は、上記
のメタル―メタロイド系非晶質合金に適用して始
めて、かかる飛躍的な効果が得られるのである。 また、磁気ヘツドの実装特性向上の観点から、
約6000G以上の適当な高磁束密度を有し、特に、
0.1mOe〜3mOe程度の低い測定磁界における透
磁率が極めて高い値を示し、さらに、耐食性、耐
摩耗性も兼備しすぐれた軟磁性特性を有する磁性
材料を得るため、添加元素の組み合せ等を種々検
討した結果、CoとZrに、Ni,Nb,Mo,及びB
を含有する非晶質合金が有効で、結晶化温度がキ
ユーリー温度より高い本系磁性材料を、該磁性材
料の結晶化温度以下、キユーリー温度以上の温度
範囲に保持し、さらに、該磁性材料に、該磁性材
料と相対的に回転する磁界を印加しながら、150
℃〜上記キユーリー温度範囲で保持する2段熱処
理を施すことにより、0.3〜3mOeの測定磁界での
透磁率(1kHz)が15000以上に向上することを知
見したものである。 すなわち、この発明は、 Zr,Ti,Hf,Nb,Ta,Yのうちの少なくと
も1種を5原子%〜20原子%及び Co65原子%〜85原子%を主成分とし、かつ、
結晶化温度(Tx)がキユーリー温度(Tc)より
も高い非晶質磁性材料、 あるいは、 Co 75原子%〜84原子%、 Ni 2原子%〜6原子%、 Mo 5原子%〜10原子%、 Nb 0.5〜5原子%、 B 0.1原子%〜5原子%、 Zr 7原子%〜9原子%を含有し、 Mo+Nb+Zr 13原子%〜20原子%及び Co+Ni+Mo+Nb+B+Zr=100を満足し、 かつ、結晶化温度(Tx)がキユーリー温度
(Tc)よりも高く優先的に非晶質からなる磁性材
料を、 該非晶質磁性材料の結晶化温度(Tx)以下、
キユーリー温度(Tc)以上の温度範囲に、 1〜100分間保持し、 その後、該磁性材料に、該磁性材料と相対的に
回転する磁界を印加しながら、 150℃〜上記キユーリー温度範囲で、 1〜1000分間保持することを特徴とする磁性材
料の熱処理方法である。 この発明において、対象とする非晶質磁性材料
を、 Zr,Ti,Hf,Nb,Ta,Yのうち少なくとも
1種を5原子%〜20原子%及び Co 65原子%〜85原子%を主成分とし、結晶化
温度がキユーリー温度よりも高い磁性材料に限定
するのは、この限定範囲外では、磁気ヘツド用磁
性材料として好ましい諸特性を有するメタル―メ
タル系非晶質磁性材料とならないため、また、前
述した本発明の2段熱処理の透磁率向上機構が有
効に働かないためである。 上記のCo及び主たる非晶質化元素としてのZr,
Ti,Hf,Nb,Ta,Y以外の添加元素は、諸特
性の改善のために種々添加されるもので、例え
ば、耐食性を向上させるためにMo,Crが添加さ
れたり、磁歪を低下させるためにNiが添加され、
磁束密度を上げるためにはMn,Feが添加され
る。 このような添加元素が添加されても、上記の元
素の成分範囲にあり、半金属元素が約10原子%以
下含まれるか、あるいは全く含まれない実質的に
メタル―メタル系非晶質磁性材料であれば、この
発明による熱処理方法は全て適用可能てあり、そ
の効果も同様に得られる。 この発明において、結晶化温度以下、キユーリ
ー温度以上に保持する時間は、1分未満では前記
効果が得られず、また、100分を越えて保持する
と、却つて磁気特性が劣化したり、脆化するた
め、1〜100分間とする必要があり、望ましくは
3〜20分で、最も好ましいのは5分から10分間で
ある。 磁性材料に、該磁性材料と相対的に回転する磁
界を印加しながら保持する温度は、150℃以上、
キユーリー温度以下の範囲でないと、磁気異方性
を実質的に零にする効果がないため、この温度範
囲とする。 また、磁性材料に、該磁性材料と相対的に回転
する磁界を印加しながら、150℃以上、キユーリ
ー温度以下の温度範囲に保持する時間は、1分未
満では上記効果がなく、また、1000分を越えると
却つて磁気特性が劣化するため、1〜1000分間と
するが、磁性材料の組成及び必要とする磁気特性
に応じて、保持温度と保持時間との組み合せを適
宜選定する必要があり、望ましい保持時間は5〜
300分、さらに望ましくは5〜150分である。 また、磁性材料に、印加する回転磁界の強さ
は、当該磁性材料のもつ誘導磁気異方性の大きさ
に応じて適宜選定すればよいが、1kG以上は必要
であり、3kG以上あればよく、望ましくは5kG以
上がよい。 成分限定理由 この発明において、対象とする非晶質磁性材料
の限定理由は前述したとおりであり、ここでは、
特許請求の範囲第4項に記載した磁気ヘツド用磁
性材料に最適の非晶質磁性材料の成分限定理由を
説明する。Coは、本組成における主成分であり、
約6000G以上の磁束密度を得るためには75原子%
以上必要であるが、84原子%を越えると、低測定
磁界における透磁率が向上しないため、75原子%
〜84原子%の含有とし、望しくは77原子%〜82原
子%がよく、さらに望ましくは77原子%〜88原子
%がよい。 Niは、磁束密度を低下せるこなく、磁歪を低
減させて負にする効果を有するために添加し、他
の成分元素の含有範囲において、磁歪を実質的に
零もしくはやや負で、磁束密度が6000G以上の磁
性材料とするためには2原子%以上の添加が必要
であるが、6原子%を越えて添加すると、結晶化
温度及び飽和磁束密度が低下するため、2原子%
〜6原子%の添加とする。 Moは、磁歪を負にし、透磁率を向上し、透磁
率あるいは保磁力の熱的安定性を高める元素であ
り添加するが、5原子%未満では上記効果がな
く、また10原子%を越えると、磁束密度が著しく
低下するため、5原子%〜10原子%の含有とす
る。 Nbは、Zr,Bに次ぐ非晶質形成能を有し、Zr
及びBと共に含有されることによつて非晶質形成
能を高める効果を有し、Moと同じく磁歪を負に
し、熱処理後の透磁率の向上を促進させる作用を
有するため、0.5原子%以上添加するが、5原子
%を越えて添加しても磁気特性の向上効果が得ら
れないため、0.5原子%〜5原子%の含有とし、
望ましくは、1.5原子%〜5原子%の範囲がよい。 Bは、Zrと同時に含有することにより、材料
の非晶質形成能を高め、磁気異方性の低減に効果
があり、0.1原子%以上、望ましくは0.5原子%以
上から上記効果があるが、5原子%を越えて添加
しても、磁気異方性の低減にはさほど効果がな
く、磁束密度の低下を来たし、脆化し易くなり、
さらには磁性の熱的安定性も低下するため、0.1
原子%〜5原子%とする。また、望ましくは、
0.5原子%〜3原子%がよく、さらに、極めて高
い熱的安定性を得るには、0.5原子%以上、1原
子%以下の含有がよい。 Zrは、本系組成の主たる非晶質化元素であり、
容易に非晶質化し、かつ安定した非晶質状態を得
るためには7原子%以上含有する必要があるが、
一方、当該磁性材料の磁歪を正にする元素であ
り、磁歪をできるだけ零に近づけるためには9原
子%以下にする必要があり、7原子%〜9原子%
とする。 また、Mo,Nb,Zrは、キユーリー温度を下
げる効果を有するが、その合計含有量が13原子%
未満では十分な透磁率が得られず、20原子%を越
えると磁束密度が著しく低下するため、Mo+Nb
+Zrは13原子%〜20原子%とし、望ましくは15
原子%〜18原子%の範囲がよい。 この非晶質磁性材料は、上記の各元素を種々の
組み合せで含有し、 Mo+Nb+Zr 13原子%〜20原子%及び Co+Ni+Mo+Nb+B+Zr=100を満足する。 また、上記非晶質磁性材料の薄帯または薄膜
は、保磁力及び磁歪が小さく、透磁率、特に、低
測定磁界の透磁率が著しく高く、熱的に経時的に
安定した磁気特性が得られることを特徴とし、さ
らに、耐食性及び耐摩耗性に富み、半金属元素を
多量に含む従来の非晶質磁性材料に比べて脆化し
難く、打ち抜きや切断等の機械加工性にすぐれて
いる。また、電気抵抗が120〜140μΩcmと高く、
しかも数100Å〜50μm程度の薄帯または薄膜で得
られるため、磁気ヘツド用コア材料に最適であ
り、実周波特性のよい小型磁心材料にも適してい
る。 実施例 第1図は、実施例2における測定磁界と透磁率
との関係を示すグラフ、 第2図は、実施例4における、1段目熱処理温
度及び2段目熱処理温度と、モールド前後での角
型比の変化率及びモールド後の角型比との関係を
示すグラフである。 実施例 1 この発明による非晶質磁性合金として、 No.1.(at%);Co80―B5―Nb15、 Tx=495℃、Tc=450℃ No.2.(at%);Co80―B5―Ta5―Zr10、 Tx=560℃、Tc=490℃ No.3.(at%);Co70.5―Fe4.5―Si15―B10 Tx=490℃、Tc=440℃ なる組成の溶湯を超急冷して、幅約15mm、厚み約
30μmの薄帯を製造し、10mmφ×6mmφのリング
を打ち抜き、各々の結晶化温度より約45―50℃低
い温度で5分間焼鈍したのち水冷し、透磁率の磁
場依存性を測定した。 ついで各リングを、15kOeの磁界中、350℃×
30分の回転磁界中熱処理したのち、磁気特性を測
定した。測定結果は第1表に示すとおりである。 第1表の結果から明らかなように、No.1及びNo.
2の非晶質磁性材料は、2段目の熱処理によつ
て、低い磁界における透磁率が飛躍的に向上して
おり、通常の熱処理と回転磁界中熱処理を組合せ
た2段熱処理方法は、メタル―メタル系非晶質磁
性材料に適用して初めて著しい効果が得られるこ
とが分る。 実施例 2 No.4及びNo.5(at%); Co78.8―Ni3.2―Mo7―Nb2―B0.95―Zr8.05、 Tx=556℃、Tc=480℃ No.6(at%); Co85―Ni2―Nb1―Mo1―B4―Zr7、 Tx=483℃、Tc>Tx (TxよりTcのほうが高いので測定不可) なる組成の溶湯を超急冷して、幅約15mm、厚み約
30μmの薄帯を製造し、10mmφ×6mmφのリング
を打ち抜き、各々、下記に示す熱処理を行なつた
のち、室温で透磁率の測定を行なつた。 熱処理条件; 本発明熱処理に係るNo.4は、500℃×5分の加
熱後水冷し、ついで300℃×20分の回転磁界中熱
処理した。 比較例No.5は、500℃×5分の加熱後水冷した。
比較例No.6は、380℃×30分の回転磁界中熱処理
を施した。 透磁率の測定結果は第1図に示すとおりであ
り、1mOe程度の低い測定磁界において、比較例
No.6は4000〜5000、比較例No.5は約10000程度し
か得られないが、本発明No.4は、20000以上の著
しく高い透磁率を得ていることが分る。 因に、上記の磁性材料を使用して、C形の録再
用磁気ヘツドを作製し、同一レコーダーに装着し
て、333Hzにおける再生感度を測定したところ、
比較例No.6の磁性材料を使用した磁気ヘツドに比
べて、本発明熱処理によるNo.4の磁性材料を使用
した磁気ヘツドは5dBも高い値を示し、実装特性
のすぐれていることが分る。 実施例 3 この発明による非晶質磁性合金として、 No.7(at%); Co79―Ni3―Mo7―Nb2―B0.9―Zr8.1、 Tx=558℃、Tc=478℃ No.8(at%); Co79―Ni13―Mo9―B0.9―Zr8.1 Tx=556℃、Tc=483℃ なる組成の溶湯を超急冷して、幅約15mm、厚み約
30μmの薄帯を製造し、10mmφ×6mmφのリング
を打ち抜き、各々の試料を、500℃×5分の焼鈍
した後、得られた試料の磁気特性、透磁率μz(測
定磁界10mOe)の周波数依存性、透磁率(1kHz)
のレベル特性を測定した。 さらに、同一の試料につき、9.8kOeの磁界に
よる350℃×20分の回転磁界中熱処理を施し、同
様の磁気特性を測定した。これらの測定結果を第
2表に示す。 第2表から明らかなように、この発明による2
段熱処理により透磁率が飛躍的に向上し、特に低
い測定磁界における透磁率が著しく改善されてい
ることが分る。
Industrial Field The present invention relates to a method of heat treatment of amorphous magnetic materials such as those for use in magnetic heads, and has various properties preferable as a soft magnetic material, particularly high magnetic permeability and magnetic permeability in a low measuring magnetic field. The present invention relates to a heat treatment method for amorphous magnetic materials that significantly improves the properties of amorphous magnetic materials. Background technology Conventionally, permalloy, sendust, ferrite, etc. have been used as core materials for magnetic heads, but permalloy has poor wear resistance, and sendust is brittle, so it requires a large number of man-hours to process into a thin plate. In addition, ferrite has a magnetic flux density of about 4000~
There were various problems such as low power of around 5000G. As a magnetic material for a magnetic head that solves this problem, an amorphous magnetic material has been developed that has good soft magnetic properties and has favorable properties such that the eddy current loss is small because it is a foil strip. Various improvements have been proposed for amorphous magnetic materials, such as improving their wear resistance, increasing their magnetic flux density, and increasing their magnetic permeability. For example, JP-A-51-73920, JP-A-59-
Co- disclosed in Publication No. 8048 and put into practical use
Fe-Si-B-based amorphous magnetic materials contain semimetals (metalloids) such as Si and B as amorphous elements, and
It is an amorphous magnetic material (generally called metal-metalloid) containing about 30 atomic percent, but its wear resistance is generally inferior to sendust, and its thermal stability is such that its magnetic permeability initially shows a large value, but There was a problem in that the magnetic head was significantly degraded due to heating and holding at about 100°C for bonding or molding, which is often used when manufacturing magnetic heads. Therefore, amorphous magnetic materials (generally An amorphous material for magnetic heads that has a Co-Zr composition with low magnetostriction and that contains Mo, B, and Ni to improve corrosion resistance, wear resistance, and saturation magnetic flux density. There is a general demand for materials with high magnetic flux density, such as alloys being proposed (Japanese Patent Laid-Open No. 59-38349). By the way, when a magnetic head is assembled using the above-mentioned magnetic materials for magnetic heads and mounted on various recorders, etc., the generally coveted high magnetic flux density material does not necessarily exhibit good mounting characteristics, and the mounting characteristics are considered important. It has recently become known that impedance, bias current value, recording signal current value, playback frequency characteristics, playback sensitivity, etc. greatly depend on the magnetic permeability of the magnetic material used, especially in low magnetic fields. It is receiving particular attention. From the viewpoint of improving the mounting characteristics of such magnetic heads,
When considering Co-based amorphous magnetic materials with high magnetic flux density, magnetic materials that simply have a high saturation magnetic flux density of over 10 kG require a high magnetic field (10 mOe or more).
A relatively good value of magnetic permeability can be obtained at 1 mOe.
The magnetic permeability in a low magnetic field is extremely low compared to that in a high magnetic field, resulting in a problem that, for example, the reproduction sensitivity of a magnetic head for audio recording and reproduction becomes low. Therefore, it is possible to improve the properties of magnetic materials by devising heat treatment methods for amorphous magnetic materials. In either case, heat treatment in a rotating magnetic field is performed because heat treatment below the crystallization temperature and above the Curie temperature is impossible, but when the difference between the crystallization temperature and the Curie temperature is large, Even if heat treatment was performed in a rotating magnetic field at a temperature below the crystallization temperature, no significant improvement in magnetic permeability could be obtained at a low measurement magnetic field. For example, JP-A-1986-
No. 112449, Japanese Unexamined Patent Publication No. 114646. On the other hand, for amorphous magnetic materials whose crystallization temperature is higher than the Curie temperature, the usual heat treatment method is possible, that is, air cooling or water cooling after annealing at a temperature range below the crystallization temperature and above the Curie temperature for the required time. It is well known that Furthermore, it is known that when this method is applied to the above metal-metalloid amorphous magnetic material, a sufficiently high magnetic permeability can be obtained. Furthermore, the metal-metalloid type Co-
As a heat treatment method aimed at reducing D.A (disaccommodation) of Fe-Si-B alloys, a method of applying normal heat treatment and heat treatment in a rotating magnetic field was proposed in JP-A-55-110764. However, the effect of improving magnetic permeability is only around 10%, and as mentioned above, the decrease in magnetic permeability of these alloys when heated to about 100°C to 150°C is extremely large. This was insufficient as a core material for the head. Furthermore, even if metal-metallic amorphous magnetic materials are subjected to heat treatment in the temperature range below the above crystallization temperature and above the Curie temperature for the required time by air-cooling or water-cooling after annealing, metal-metalloid amorphous magnetic materials In some cases, it was difficult to obtain sufficient magnetic permeability compared to highly magnetic materials. In particular, when the magnetic flux density of the metal-metal amorphous magnetic material is approximately 7000G or higher and the crystallization temperature is higher than the Curie temperature, but the temperature difference is narrow, sufficient magnetic permeability cannot be obtained using normal heat treatment methods. There were many cases where it was not possible. Purpose of the Invention The present invention relates to a metal-to-metal type amorphous magnetic material, which has high magnetic permeability, high magnetic permeability, and has various desirable characteristics as a soft magnetic material for a magnetic head, and improves the mounting characteristics of the magnetic head. In particular, the objective is a heat treatment method that can obtain high magnetic permeability in a low measuring magnetic field. Structure and Effects of the Invention From the viewpoint of improving the mounting characteristics of a magnetic head, the present invention is particularly directed to materials having an appropriate high magnetic flux density of about 6000G or more, for example, 0.1 mOe to 3 mOe.
In order to obtain an extremely high magnetic permeability in a low measuring magnetic field, we investigated various heat treatment methods and found that an essentially metal-metal type amorphous material containing only a small amount of metalloids of less than 10 atomic percent or no metalloids was obtained. Since the induced magnetic anisotropy of a high quality alloy is relatively large in a rapidly cooled state, this magnetic anisotropy cannot be completely eliminated even if a heat treatment is used below the crystallization temperature and above the Curie temperature. By means of heat treatment in a rotating magnetic field at 150°C or higher and lower than the Curie temperature, the magnetic anisotropy becomes substantially zero, the coercive force is reduced, and the magnetic permeability, especially the magnetic permeability at a low measurement magnetic field, is reduced to 50% to 300%. It was discovered that it is possible to dramatically improve the performance by more than %. Furthermore, in detail, the above-mentioned Japanese Patent Application Laid-Open No. 55-110764
The Co-Fe-Si-B alloy described in the publication is a metal-metalloid amorphous alloy containing a large amount of semimetal, and has originally low induced magnetic anisotropy, so the temperature is below the crystallization temperature and above the Curie temperature. The magnetic anisotropy becomes virtually zero just by annealing at
The magnetic permeability does not improve much, and the method of this invention can only achieve such a dramatic effect when applied to the metal-metalloid amorphous alloy mentioned above. In addition, from the perspective of improving the mounting characteristics of magnetic heads,
It has a suitably high magnetic flux density of about 6000G or more, and in particular,
In order to obtain a magnetic material that exhibits an extremely high magnetic permeability in a low measurement magnetic field of about 0.1 mOe to 3 mOe, and also has excellent soft magnetic properties that also have corrosion resistance and wear resistance, various combinations of additive elements were investigated. As a result, Ni, Nb, Mo, and B were added to Co and Zr.
An amorphous alloy containing . , while applying a rotating magnetic field relative to the magnetic material, 150
It has been found that by carrying out two-stage heat treatment maintained in the Curie temperature range of 0.degree. That is, the present invention has at least one of Zr, Ti, Hf, Nb, Ta, and Y as a main component of 5 to 20 at% and Co65 to 85 at%, and
Amorphous magnetic material whose crystallization temperature (Tx) is higher than the Curie temperature (Tc), or Co 75 atomic% to 84 atomic%, Ni 2 atomic% to 6 atomic%, Mo 5 atomic% to 10 atomic%, Contains Nb 0.5 to 5 atom%, B 0.1 atom% to 5 atom%, Zr 7 atom% to 9 atom%, satisfies Mo+Nb+Zr 13 atom% to 20 atom% and Co+Ni+Mo+Nb+B+Zr=100, and crystallization temperature ( A magnetic material whose Tx) is higher than the Curie temperature (Tc) and is preferentially amorphous is lower than the crystallization temperature (Tx) of the amorphous magnetic material.
Maintain the magnetic material in the temperature range above the Curie temperature (Tc) for 1 to 100 minutes, and then apply a magnetic field that rotates relative to the magnetic material to the magnetic material while maintaining the temperature in the Curie temperature range of 150°C to the above Curie temperature. This is a heat treatment method for magnetic materials characterized by holding the heat for 1000 minutes. In this invention, the target amorphous magnetic material is mainly composed of at least one of Zr, Ti, Hf, Nb, Ta, and Y from 5 at% to 20 at% and Co from 65 at% to 85 at%. The reason why magnetic materials are limited to those whose crystallization temperature is higher than the Curie temperature is because outside this limited range, metal-to-metal type amorphous magnetic materials with desirable characteristics as magnetic materials for magnetic heads cannot be obtained. This is because the magnetic permeability improvement mechanism of the two-stage heat treatment of the present invention described above does not work effectively. The above Co and Zr as the main amorphous element,
Various additive elements other than Ti, Hf, Nb, Ta, and Y are added to improve various properties.For example, Mo and Cr are added to improve corrosion resistance, and to reduce magnetostriction. Ni is added to
Mn and Fe are added to increase the magnetic flux density. Even if such additive elements are added, the composition is within the range of the above elements, and substantially metal-to-metal type amorphous magnetic material that contains less than about 10 atomic percent or no metalloid elements. If so, the heat treatment method according to the present invention can be applied to all of them, and the same effects can be obtained. In this invention, if the temperature is kept below the crystallization temperature and above the Curie temperature for less than 1 minute, the above effect cannot be obtained, and if kept for more than 100 minutes, the magnetic properties may deteriorate or become brittle. Therefore, the heating time needs to be 1 to 100 minutes, preferably 3 to 20 minutes, and most preferably 5 to 10 minutes. The temperature at which the magnetic material is maintained while applying a magnetic field that rotates relative to the magnetic material is 150°C or higher,
If the temperature is not within the range below the Curie temperature, there is no effect of reducing the magnetic anisotropy to substantially zero, so this temperature range is set. In addition, the above effect does not occur if the time for holding the magnetic material in a temperature range of 150°C or higher and the Curie temperature or lower while applying a magnetic field that rotates relative to the magnetic material is less than 1 minute, and 1000 minutes. If it exceeds this, the magnetic properties will deteriorate, so the duration should be 1 to 1000 minutes, but it is necessary to select the combination of holding temperature and holding time appropriately depending on the composition of the magnetic material and the required magnetic properties. Desired retention time is 5~
It is 300 minutes, more preferably 5 to 150 minutes. In addition, the strength of the rotating magnetic field applied to the magnetic material may be selected appropriately depending on the magnitude of the induced magnetic anisotropy of the magnetic material, but 1 kG or more is required, and 3 kG or more is sufficient. , preferably 5kG or more. Reasons for limiting the components In this invention, the reasons for limiting the target amorphous magnetic materials are as described above, and here,
The reason for limiting the components of the amorphous magnetic material that is most suitable for the magnetic material for the magnetic head described in claim 4 will be explained. Co is the main component in this composition,
75 atomic% to obtain a magnetic flux density of approximately 6000G or more
However, if it exceeds 84 atom%, the magnetic permeability in low measurement magnetic fields will not improve, so 75 atom%
The content is preferably 77 atomic % to 82 atomic %, more preferably 77 atomic % to 88 atomic %. Ni is added to have the effect of reducing magnetostriction and making it negative without reducing the magnetic flux density, and within the content range of other component elements, it makes the magnetostriction substantially zero or slightly negative and the magnetic flux density In order to make a magnetic material of 6000G or more, it is necessary to add more than 2 atom %, but if it exceeds 6 atom %, the crystallization temperature and saturation magnetic flux density will decrease, so the addition of 2 atom % or more is necessary.
The addition amount is 6 atomic %. Mo is an element that makes magnetostriction negative, improves magnetic permeability, and increases the thermal stability of magnetic permeability or coercive force, and is added, but if it is less than 5 at%, it will not have the above effect, and if it exceeds 10 at% , since the magnetic flux density decreases significantly, the content is set at 5 to 10 at%. Nb has the ability to form an amorphous state next to Zr and B, and Zr
It has the effect of increasing the amorphous formation ability by being contained together with Mo and B, and has the effect of making magnetostriction negative like Mo and promoting the improvement of magnetic permeability after heat treatment, so it is added at 0.5 atomic % or more. However, since the effect of improving magnetic properties cannot be obtained even if it is added in an amount exceeding 5 at%, the content is set at 0.5 at% to 5 at%,
Desirably, the range is 1.5 atomic % to 5 atomic %. When B is contained at the same time as Zr, it is effective in increasing the amorphous formation ability of the material and reducing magnetic anisotropy. Even if it is added in an amount exceeding 5 atomic percent, it is not very effective in reducing magnetic anisotropy, and the magnetic flux density decreases, making it more likely to become brittle.
Furthermore, the thermal stability of magnetism also decreases, so 0.1
The content is from atomic% to 5 atomic%. Also, preferably,
The content is preferably 0.5 atomic % to 3 atomic %, and furthermore, in order to obtain extremely high thermal stability, the content is preferably 0.5 atomic % or more and 1 atomic % or less. Zr is the main amorphous element in this system composition,
In order to easily become amorphous and obtain a stable amorphous state, it is necessary to contain 7 at% or more.
On the other hand, it is an element that makes the magnetostriction of the magnetic material positive, and in order to bring the magnetostriction as close to zero as possible, it needs to be 9 atomic % or less, and 7 atomic % to 9 atomic %.
shall be. In addition, Mo, Nb, and Zr have the effect of lowering the Curie temperature, but their total content is 13 at%
Mo + Nb
+Zr should be 13 at% to 20 at%, preferably 15
A preferable range is atomic% to 18 atomic%. This amorphous magnetic material contains the above-mentioned elements in various combinations, and satisfies Mo+Nb+Zr from 13 at.% to 20 at.% and Co+Ni+Mo+Nb+B+Zr=100. In addition, the ribbon or thin film of the amorphous magnetic material has low coercive force and magnetostriction, and has extremely high magnetic permeability, especially in low measured magnetic fields, and can provide magnetic properties that are thermally stable over time. Furthermore, it has excellent corrosion resistance and wear resistance, is less susceptible to embrittlement than conventional amorphous magnetic materials containing large amounts of metalloid elements, and has excellent machinability such as punching and cutting. In addition, the electrical resistance is high at 120 to 140μΩcm,
Furthermore, since it can be obtained in the form of a ribbon or film with a thickness of several hundred Å to 50 μm, it is ideal as a core material for a magnetic head, and is also suitable as a small magnetic core material with good real frequency characteristics. Example Figure 1 is a graph showing the relationship between the measured magnetic field and magnetic permeability in Example 2. Figure 2 shows the first-stage heat treatment temperature and second-stage heat treatment temperature in Example 4, and the temperature before and after molding. It is a graph showing the relationship between the change rate of the squareness ratio and the squareness ratio after molding. Example 1 As an amorphous magnetic alloy according to the present invention, No. 1. (at%); Co80-B5-Nb15, Tx = 495°C, Tc = 450°C No. 2. (at%); Co80-B5- Ta5-Zr10, Tx=560℃, Tc=490℃ No.3. (at%); Co70.5-Fe4.5-Si15-B10 Tx=490℃, Tc=440℃ Ultra-quenched molten metal Width: approx. 15mm, thickness: approx.
A 30 μm thin strip was produced, a 10 mmφ×6 mmφ ring was punched out, annealed for 5 minutes at a temperature approximately 45-50°C lower than each crystallization temperature, and then water-cooled to measure the dependence of magnetic permeability on the magnetic field. Each ring was then heated at 350°C in a 15kOe magnetic field.
After heat treatment in a rotating magnetic field for 30 minutes, magnetic properties were measured. The measurement results are shown in Table 1. As is clear from the results in Table 1, No. 1 and No.
The second-stage heat treatment of the amorphous magnetic material No. 2 dramatically improves the magnetic permeability in a low magnetic field. - It can be seen that significant effects can only be obtained when applied to metal-based amorphous magnetic materials. Example 2 No.4 and No.5 (at%); Co78.8―Ni3.2―Mo7―Nb2―B0.95―Zr8.05, Tx=556℃, Tc=480℃ No.6 (at% ); Co85-Ni2-Nb1-Mo1-B4-Zr7, Tx=483℃, Tc>Tx (cannot be measured because Tc is higher than Tx) A molten metal with a composition of
A 30 μm thin strip was produced, and rings of 10 mmφ×6 mmφ were punched out. After each ring was subjected to the heat treatment shown below, the magnetic permeability was measured at room temperature. Heat treatment conditions: No. 4 according to the heat treatment of the present invention was heated at 500° C. for 5 minutes, cooled with water, and then heat treated in a rotating magnetic field at 300° C. for 20 minutes. Comparative Example No. 5 was heated at 500° C. for 5 minutes and then cooled with water.
Comparative Example No. 6 was subjected to heat treatment in a rotating magnetic field at 380° C. for 30 minutes. The magnetic permeability measurement results are shown in Figure 1, and in a low measurement magnetic field of about 1 mOe, the comparative example
It can be seen that No. 6 has a permeability of 4,000 to 5,000, and Comparative Example No. 5 has a permeability of only about 10,000, but No. 4 of the present invention has a significantly high magnetic permeability of 20,000 or more. Incidentally, a C-shaped recording/playback magnetic head was made using the above magnetic material, and when it was attached to the same recorder, the playback sensitivity at 333Hz was measured.
Compared to the magnetic head using the magnetic material of Comparative Example No. 6, the magnetic head using the magnetic material of No. 4 subjected to the heat treatment of the present invention showed a value 5 dB higher, indicating that it has superior mounting characteristics. . Example 3 As an amorphous magnetic alloy according to the present invention, No. 7 (at%); Co79-Ni3-Mo7-Nb2-B0.9-Zr8.1, Tx=558℃, Tc=478℃ No.8 ( at%); Co79-Ni13-Mo9-B0.9-Zr8.1 The molten metal with the composition Tx=556℃, Tc=483℃ is ultra-quenched to a width of about 15mm and a thickness of about
After producing a 30μm thin strip and punching out a 10mmφ×6mmφ ring, and annealing each sample at 500℃×5 minutes, the magnetic properties of the obtained sample and the frequency dependence of magnetic permeability μz (measured magnetic field 10mOe) permeability (1kHz)
The level characteristics of were measured. Furthermore, the same sample was subjected to heat treatment in a rotating magnetic field of 9.8 kOe at 350°C for 20 minutes, and the same magnetic properties were measured. The results of these measurements are shown in Table 2. As is clear from Table 2, 2 according to this invention
It can be seen that the magnetic permeability is dramatically improved by the step heat treatment, and in particular, the magnetic permeability at a low measurement magnetic field is significantly improved.

【表】【table】

【表】 実施例 4 No.9(at%); Co78―Ni4.5―Mo6.5―Mb2―B1―Zr8、 Tx=550℃、Tc=490℃ なる組成の溶湯を超急冷して、幅約15mm、厚み約
30μの薄帯を製造し、10mmφ×6mmφのリングを
打ち抜いた試料を用いて、この発明による熱処理
方法の効果を調べた。 まず、無誘導炉によりAr雰囲気で、5分間加
熱し、その後水冷する方法により、加熱温度490
℃、及び510℃でそれぞれ熱処理した。 直流BHトレーサーを用いて、熱処理した試料
のBHカーブを測定し、ついで、その試料をエポ
キシ樹脂でモールドし、同方法でBHカーブを測
定した。これらのBHカーブより角型比(Br/
Bs)を各々求め、モールド前後における角型比
の変化率を求めた。 一般に、磁気ヘツドはコア材をケースに入れ、
これを樹脂でモールドして製造されるが、磁歪の
僅かな変化(1ppm以下)でも、モールドによつ
て特性が大きく変化することが知られている。例
えば、磁歪がプラス側にずれていると、モールド
によつて圧縮応力を受け、角型比(Br/Bs)は
小さくなり、逆に磁歪がマイナス側の場合はモー
ルド後は角型比は大きくなる。 第2図に測定結果を示すように、□,〇は、こ
のモールド前後での角型比の変化を示し、その値
は、モールド前の角型比をR1,モールド後の角
型比をR2とすれば、1―R2/R1で表示され、こ
の値が0のとき、角型比が変化していないことを
示し、マイナスのときはモールド後角型比が増加
(磁歪はマイナス側にずれている)、プラスのとき
はモールド後角型比が低下(磁歪はプラス側にず
れている)したことが分る。また■,●は、モー
ルド後の角型比を示し、実用的には0.4〜0.6程度
が良いとされている。 第2図から明らかなように、通常熱処理に相当
する1段目熱処理の温度によつても、モールドに
よる角型比の変化率がかわり、熱処理温度が高い
程、変化率は小さくなつており、換言すれば、磁
歪がマイナス側からプラス側へ移行していること
が分る。 次に、510℃×5分間の1段目熱処理を施した
試料を、15kGの磁界中で、回転させ、2段目の
熱処理を施した。処理温度は、それぞれ250℃,
300℃,350℃,400℃の4種類の温度で行ない、
上記と同方法でモールド前後での角型とその変化
率を求めた。 2段目の熱処理により、角型比の変化率はプラ
ス側に移行しており、換言すれば、磁歪がマイナ
ス側からプラス側へ変化したことを示している。
また、2段目の熱処理温度が高いほど、その傾向
が著しく、例えば、400℃の熱処理を施した試料
では、角型比の変化率は−0.71から0.86までに上
昇し、モールド後の角型比は0.66から0.06に低下
している。 このように、急冷状態もしくは通常の熱処理を
施した状態の非晶質磁性材料の磁歪が、マイナス
数ppmであつても、上記のような2段目の熱処理
温度を適宜選定することにより、モールド前後で
の角型比のほとんど変化しないコア材料を得るこ
とができる。 実施例 5 この発明による非晶質磁性合金として、 No.10(at%); Co78.7―Ni3.5―Mo6.8―Nb2―B0.9―Zr8.1、 Tx=555℃、Tc=485℃ なる組成の溶湯を超急冷して、幅約15mm、厚み約
30μmの薄帯を製造し、10mmφ×6mmφのリング
を打ち抜き、試料を、500℃×5分の加熱後冷水
し、15kOeの磁界による300℃×20分の回転磁界
中熱処理を施した。 比較例として、 No.11(at%); Co69―Fe4―Nb2―Si10―B15、 Tx=520℃、Tc=320℃ なる組成の溶湯を超急冷して、幅約15mm、厚み約
30μmの薄帯を製造し、10mmφ×6mmφのリング
を打ち抜き、試料を、430℃×10分の加熱後水冷
した。 得れた試料の1kHz、10mOeにおける透磁率μz
(1kHz,10mOe)を測定した。 ついで、上記試料を120℃で加熱保持した後冷
却し、室温で透磁率を測定し、120℃の加熱保持
による透磁率の劣化程度を測定し、その時間依存
性を第3表に示す。 一般に、薄板に加工したコア材を積層して磁気
ヘツドを組立加工する際には、80℃〜150℃の温
度で3〜6時間程度加熱されることが多いが、本
発明磁性材料は、かかる加熱工程を経ても磁気特
性の劣化が比較例に比べて少ないことが分る。
[Table] Example 4 No.9 (at%); Co78―Ni4.5―Mo6.5―Mb2―B1―Zr8, Tx=550℃, Tc=490℃ A molten metal with the following composition was ultra-quenched and the width Approximately 15mm, thickness approximately
The effect of the heat treatment method according to the present invention was investigated using a sample obtained by manufacturing a 30μ thin strip and punching out a ring of 10mmφ×6mmφ. First, the heating temperature was 490℃ by heating for 5 minutes in an Ar atmosphere in a non-induction furnace and then cooling with water.
℃ and 510℃, respectively. The BH curve of the heat-treated sample was measured using a DC BH tracer, and then the sample was molded with epoxy resin and the BH curve was measured in the same manner. From these BH curves, the squareness ratio (Br/
Bs) were determined, and the rate of change in squareness ratio before and after molding was determined. Generally, a magnetic head has a core material placed in a case.
This is manufactured by molding it with resin, but it is known that even a slight change in magnetostriction (1 ppm or less) can significantly change the characteristics depending on the mold. For example, if the magnetostriction is on the positive side, compressive stress will be applied by the mold, and the squareness ratio (Br/Bs) will be small; on the other hand, if the magnetostriction is on the negative side, the squareness ratio will be large after molding. Become. As shown in the measurement results in Figure 2, □ and ○ indicate the change in the squareness ratio before and after this molding, and the value is R 1 for the squareness ratio before molding, and R 1 for the squareness ratio after molding. R 2 is expressed as 1-R 2 /R 1. When this value is 0, it indicates that the squareness ratio has not changed, and when it is negative, the squareness ratio after molding has increased (magnetostriction is It can be seen that when it is positive, the squareness ratio after the mold has decreased (the magnetostriction is shifted to the positive side). In addition, ■ and ● indicate the squareness ratio after molding, and it is said that approximately 0.4 to 0.6 is practically good. As is clear from Figure 2, the rate of change in the squareness ratio due to molding also changes depending on the temperature of the first stage heat treatment, which corresponds to normal heat treatment, and the higher the heat treatment temperature, the smaller the rate of change. In other words, it can be seen that the magnetostriction is shifting from the minus side to the plus side. Next, the sample that had been subjected to the first heat treatment at 510° C. for 5 minutes was rotated in a 15 kG magnetic field and subjected to the second heat treatment. The processing temperatures were 250℃ and 250℃, respectively.
Conducted at four different temperatures: 300℃, 350℃, and 400℃.
The square shape and its change rate before and after molding were determined using the same method as above. Due to the second heat treatment, the rate of change in the squareness ratio shifted to the positive side, in other words, the magnetostriction changed from the negative side to the positive side.
In addition, the higher the second stage heat treatment temperature, the more remarkable this tendency becomes.For example, in the sample heat-treated at 400℃, the rate of change in squareness ratio increases from -0.71 to 0.86, and the squareness ratio after molding increases. The ratio has decreased from 0.66 to 0.06. In this way, even if the magnetostriction of the amorphous magnetic material in the rapidly cooled state or in the state subjected to normal heat treatment is minus several ppm, it is possible to mold the material by appropriately selecting the second heat treatment temperature as described above. It is possible to obtain a core material in which the squareness ratio between the front and back hardly changes. Example 5 As an amorphous magnetic alloy according to the present invention, No.10 (at%); Co78.7—Ni3.5—Mo6.8—Nb2—B0.9—Zr8.1, Tx=555°C, Tc= The molten metal with a composition of 485℃ is ultra-quenched to form a material with a width of approximately 15 mm and a thickness of approx.
A 30 μm thin strip was produced, a ring of 10 mmφ×6 mmφ was punched out, the sample was heated at 500°C for 5 minutes, cooled, and then heat treated in a rotating magnetic field of 15 kOe at 300°C for 20 minutes. As a comparative example, a molten metal with the composition No. 11 (at%); Co69-Fe4-Nb2-Si10-B15, Tx = 520℃, Tc = 320℃ was ultra-quenched, and a width of approximately 15 mm and a thickness of approximately
A 30 μm thin strip was produced, a ring of 10 mmφ×6 mmφ was punched out, and the sample was heated at 430° C. for 10 minutes and then cooled with water. Magnetic permeability μz of the obtained sample at 1kHz and 10mOe
(1kHz, 10mOe) was measured. Next, the sample was heated and held at 120°C, then cooled, and its magnetic permeability was measured at room temperature.The degree of deterioration of the magnetic permeability due to heating and holding at 120°C was measured, and its time dependence is shown in Table 3. Generally, when assembling and processing a magnetic head by laminating core materials processed into thin plates, it is often heated at a temperature of 80°C to 150°C for about 3 to 6 hours. It can be seen that even after the heating process, the deterioration of magnetic properties is less than that of the comparative example.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例2における測定磁界と透磁率
との関係を示すグラフ、第2図は、実施例4にお
ける、1段目熱処理温度及び2段目熱処理温度
と、モールド前後での角型比の変化率及びモール
ド後の角型化との関係を示すグラフである。
Fig. 1 is a graph showing the relationship between the measured magnetic field and magnetic permeability in Example 2, and Fig. 2 is a graph showing the relationship between the measured magnetic field and magnetic permeability in Example 4. It is a graph showing the relationship between the rate of change in ratio and squaring after molding.

Claims (1)

【特許請求の範囲】 1 Zr,Ti,Hf,Nb,Ta,Yのうち少なくと
も1種を5原子%及び、 Co65原子%〜85原子%を主成分とし、かつ、
結晶化温度(Tx)がキユーリー温度(Tc)より
も高い非晶質磁性材料を、 該非晶質磁性材料の結晶化温度(Tx)以下、
キユーリー温度(Tc)以上の温度範囲に、 1〜100分間保持し、 その後、該磁性材料に、該磁性材料と相対的に
回転する磁界を印加しながら、 150℃〜上記キユーリー温度範囲で、 1〜1000分間保持することを特徴とする磁性材
料の熱処理方法。 2 150℃〜当該磁性材料のキユーリー温度範囲
での保持時間を、5〜150分間とすることを特徴
とする特許請求の範囲第1項記載の磁性材料の熱
処理方法。 3 印加する磁界強度が、5kOe以上であること
を特徴とする特許請求の範囲第1項記載の磁性材
料の熱処理方法。 4 Co75原子%〜84原子%、 Ni2原子%〜6原子%、 Mo5原子%〜10原子%、 Nb0.5原子%〜5原子%、 B0.1原子%〜5原子%、 Zr7原子%〜9原子%を含有し、 Mo+Nb+Zr13原子%〜20原子%及び Co+Ni+Mo+Nb+B+Zr=100を満足し、 かつ、結晶化温度(Tx)がキユーリー温度
(Tc)よりも高く優先的に非晶質からなる磁性材
料を、 該非晶質磁性材料の結晶化温度(Tx)以下、
キユーリー温度(Tc)以上の温度範囲に、 1〜100分間保持し、 その後、該磁性材料に、該磁性材料と相対的に
回転する磁界を印加しながら、 150℃〜上記キユーリー温度範囲で、 5〜1000分間保持することを特徴とする磁性材
料の熱処理方法。
[Claims] 1 The main component is 5 at% of at least one of Zr, Ti, Hf, Nb, Ta, and Y, and 55 at% to 85 at% of Co6, and
An amorphous magnetic material whose crystallization temperature (Tx) is higher than the Curie temperature (Tc) is lower than the crystallization temperature (Tx) of the amorphous magnetic material,
Maintain the magnetic material in the temperature range above the Curie temperature (Tc) for 1 to 100 minutes, and then apply a magnetic field that rotates relative to the magnetic material to the magnetic material while maintaining the temperature in the Curie temperature range of 150°C to the above Curie temperature. A method for heat treatment of magnetic materials characterized by holding for ~1000 minutes. 2. The method for heat treating a magnetic material according to claim 1, wherein the holding time in the Curie temperature range of 150° C. to the Curie temperature of the magnetic material is 5 to 150 minutes. 3. The method of heat treating a magnetic material according to claim 1, wherein the applied magnetic field strength is 5 kOe or more. 4 Co75 atomic% - 84 atomic%, Ni2 atomic% - 6 atomic%, Mo5 atomic% - 10 atomic%, Nb 0.5 atomic% - 5 atomic%, B0.1 atomic% - 5 atomic%, Zr7 atomic% - 9 A magnetic material that contains Mo+Nb+Zr13 to 20 atom% and Co+Ni+Mo+Nb+B+Zr=100, and has a crystallization temperature (Tx) higher than the Curie temperature (Tc) and is preferentially amorphous. Below the crystallization temperature (Tx) of the amorphous magnetic material,
Maintain the magnetic material in a temperature range equal to or higher than the Curie temperature (Tc) for 1 to 100 minutes, and then apply a magnetic field that rotates relative to the magnetic material to the magnetic material in the Curie temperature range of 150°C to the above-mentioned Curie temperature. A method for heat treatment of magnetic materials characterized by holding for ~1000 minutes.
JP59135594A 1984-06-29 1984-06-29 Method for heat treating magnetic material Granted JPS6115952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59135594A JPS6115952A (en) 1984-06-29 1984-06-29 Method for heat treating magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59135594A JPS6115952A (en) 1984-06-29 1984-06-29 Method for heat treating magnetic material

Publications (2)

Publication Number Publication Date
JPS6115952A JPS6115952A (en) 1986-01-24
JPS6321746B2 true JPS6321746B2 (en) 1988-05-09

Family

ID=15155467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59135594A Granted JPS6115952A (en) 1984-06-29 1984-06-29 Method for heat treating magnetic material

Country Status (1)

Country Link
JP (1) JPS6115952A (en)

Also Published As

Publication number Publication date
JPS6115952A (en) 1986-01-24

Similar Documents

Publication Publication Date Title
JPS5929644B2 (en) Method for modifying magnetic properties of high magnetic permeability amorphous alloy
JPS6133900B2 (en)
US5227940A (en) Composite magnetic head
JPS6362579B2 (en)
JP2963003B2 (en) Soft magnetic alloy thin film and method of manufacturing the same
JPS625972B2 (en)
US4420348A (en) Amorphous alloy for magnetic head core
JPH08188858A (en) Glass alloy having permimber characteristic
US4298381A (en) Abrasion-resistive high permeability magnetic alloy
JPS5943837A (en) Amorphous alloy with high saturation magnetic flux density
JPS6129105A (en) Magnetic alloy thin film
US4743313A (en) Amorphous alloy for use in magnetic heads
JPS6321746B2 (en)
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JPH0138862B2 (en)
JPH055164A (en) Iron base soft magnetic alloy
JPS6089539A (en) Amorphous magnetic alloy having low magnetostriction
JP2812572B2 (en) Magnetic head
JPH0413420B2 (en)
JPS6115935A (en) Magnetic material for magnetic head
JPH0310699B2 (en)
JP3279591B2 (en) Ferromagnetic thin film and manufacturing method thereof
JPH03158440A (en) Magnetic alloy for magnetic head core and its production
JPS5867845A (en) High permeability alloy thin strip
JPH01269208A (en) Magnetic head