JPH0693391A - Amorphous alloy having thermal stability and high magnetic flux density - Google Patents

Amorphous alloy having thermal stability and high magnetic flux density

Info

Publication number
JPH0693391A
JPH0693391A JP5053377A JP5337793A JPH0693391A JP H0693391 A JPH0693391 A JP H0693391A JP 5053377 A JP5053377 A JP 5053377A JP 5337793 A JP5337793 A JP 5337793A JP H0693391 A JPH0693391 A JP H0693391A
Authority
JP
Japan
Prior art keywords
flux density
magnetic flux
alloy
amorphous alloy
thermal stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5053377A
Other languages
Japanese (ja)
Inventor
Yuji Komata
雄二 小俣
Koichi Kugimiya
公一 釘宮
Akira Gyotoku
明 行徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP61117876A priority Critical patent/JPH0699769B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5053377A priority patent/JPH0693391A/en
Publication of JPH0693391A publication Critical patent/JPH0693391A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co

Landscapes

  • Magnetic Heads (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an amorphous alloy with thermal stability and high mag netic flux density, having stable soft-magnetic properties of high initial permeabil ity and also having high saturation magnetic flux density, by specifying a compo sition consisting of Co, Nb, Ta, and Zr. CONSTITUTION:This alloy is an amorphous alloy, with thermal stability and high magnetic flux density, having a composition represented by coXNbYTaZZrW (where(X+Y+X+W)=100%, by atomicm X=82%, 0.5<=Y<=12%, 1.5<=Z<=8.5%, W<5%, and 8.0<=Y+z<=13.5% and, as necessary, 9.5<=Y+Z<=13.5%. This alloy has a soft-magnetic property of >=500 initial permeability even after subjected to heat treatment at >=450 deg.C by low-melting glass bonding, etc., and also has >=8000 Gauss saturation magnetic flux density. This amorphous alloy can be easily obtained by using a sputtering technique.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は各種磁気ヘッド等に用い
られる金属−金属系非晶質軟磁性合金にかかり、非晶質
の熱的安定性に優れ、飽和磁束密度が高く軟磁気特性に
優れた非晶質合金を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-metal amorphous soft magnetic alloy used for various magnetic heads, etc., and has excellent amorphous amorphous thermal stability, high saturation magnetic flux density and soft magnetic characteristics. It provides an excellent amorphous alloy.

【0002】[0002]

【従来の技術】金属−金属系非晶質合金は従来の非金属
を有する金属−非金属系非晶質合金と比べ結晶化温度が
高く、また耐食性にも優れている。さらに非晶質という
構造上の特徴から、軟磁気特性に大きな影響を及ぼす結
晶磁気異方性を持たないだけでなくCoを主成分とする
ものは磁速も小さい点など、良好な軟磁気特性を兼ねそ
なえている。そのためガラスボンディング等の高い加工
温度を覆歴する磁気ヘッドに用いる磁性材料として注目
されている。
2. Description of the Related Art A metal-metal amorphous alloy has a higher crystallization temperature and a higher corrosion resistance than the conventional metal-nonmetal amorphous alloy having a nonmetal. Furthermore, due to its structural characteristic of being amorphous, not only does it have no crystalline magnetic anisotropy that greatly affects the soft magnetic characteristics, but also those containing Co as the main component have a low magnetic speed, and thus have good soft magnetic characteristics. It also serves as a. Therefore, it is attracting attention as a magnetic material used for a magnetic head that covers high processing temperatures such as glass bonding.

【0003】[0003]

【発明が解決しようとする課題】一方従来の金属−金属
系非晶質合金は高磁束密度化を重視した組成において
は、結晶化温度TX が低下し、磁性材料のキュリー温度
C を下まわることになり(TX <TC )、磁気異方性
を解消するためのTC 以上の熱処理が可能な条件のTC
<TX の関係を保つことができなくなる。この場合は回
転磁界を用いた熱処理が必要である。
On the other hand, in the conventional metal-metal type amorphous alloy, the crystallization temperature T X is lowered and the Curie temperature T C of the magnetic material is lowered in the composition in which high magnetic flux density is emphasized. (T X <T C ), and T C under the condition that heat treatment of T C or more for eliminating magnetic anisotropy is possible.
<The relationship of T X cannot be maintained. In this case, heat treatment using a rotating magnetic field is necessary.

【0004】他方、結晶化温度TX の高低の尺度とは別
に結晶化温度TX 以下であっても、一定温度に長時間保
持すると非晶質合金の場合特に初透磁率μi 等の構造敏
感な要因をもつ特性への影響が大きい。すなわち熱処理
加工の不可欠な磁気ヘッド等の実用素子に組み込む場
合、非晶質合金ではその磁気特性に関して材料全体の結
晶化以前にこのような軟磁気特性についてのTX 以下の
温度での保持安定性が大きな問題点であった(耐時効
性)。
[0004] On the other hand, the crystallization temperature T X be the measure of the level of less separately crystallization temperature T X, the structure of i such particularly initial permeability μ For long retention to the amorphous alloy at a constant temperature It has a great influence on the characteristics having sensitive factors. That is, when it is incorporated in a practical element such as a magnetic head, which is indispensable for heat treatment, the amorphous alloy retains its magnetic stability before the crystallization of the entire material, and the holding stability of the soft magnetic characteristic at a temperature of T X or lower. Was a major problem (aging resistance).

【0005】しかも、低融点ガラスによる磁気ヘッドの
ボンディング加工を考慮した場合、450℃以上数時間
の耐久性が要求されてきた。
Moreover, in consideration of the magnetic head bonding process using a low melting point glass, durability of 450 ° C. or higher for several hours has been required.

【0006】このような軟磁気特性の耐久性を以下『熱
安定性』と称する。従来用いられてきた金属−金属系非
晶質合金(Coを主成分とする)においては、上に記し
たように高い飽和磁束密度をもった軟磁気特性と熱安定
性を併わせ持つ磁気ヘッド材料として評価するならば、
両特性に優れたものはなく不十分であり、非磁力の高い
メタルテープに適したBS ≧8000〜8500Gの高
い磁束密度をもち、且つヘッド加工工程としての低融点
ガラスの使用に耐え得る450℃以上、数時間の熱安定
性を持つ材料が要求されてきた。
The durability of such soft magnetic characteristics is hereinafter referred to as "thermal stability". In the conventionally used metal-metal amorphous alloy (containing Co as a main component), a magnetic head having both a soft magnetic characteristic having a high saturation magnetic flux density and a thermal stability as described above. If you evaluate it as a material,
There is nothing excellent in both characteristics and it is insufficient. It has a high magnetic flux density of B S ≧ 8000 to 8500G suitable for a metal tape having a high non-magnetic force, and can withstand the use of a low melting point glass as a head processing step. There has been a demand for a material having a thermal stability of several degrees Celsius or higher for several hours.

【0007】本発明は450〜500℃でも熱安定性に
も優れ、メタルテープ等の高抗磁力媒体に適する高飽和
磁束密度(BS ≧8000G)をもった磁気ヘッド用の
良好な軟磁気特性をもつ非晶質合金を提供するものであ
る。
The present invention is excellent in thermal stability even at 450 to 500 ° C., and has good soft magnetic characteristics for a magnetic head having a high saturation magnetic flux density (B S ≧ 8000 G) suitable for a high coercive force medium such as a metal tape. And an amorphous alloy having

【0008】[0008]

【課題を解決するための手段】本発明による非晶質合金
は、Co,Nb,Ta,Zrからなる4元合金で、Co
X NbY TaZ Zrw を原子組成で表わした時、X≧8
2%,0.5%≦Y≦12%,1.5%≦Z≦8.5%,W<
5%でかつ8.0%≦(Y+Z)≦13.5%,X+Y+Z
+W=100%の範囲にあり、450℃の熱処理を経た
後も、軟磁気特性として500以上の初透磁率を有し、
かつ8000Gauss以上の飽和磁束密度を有するも
のである。
The amorphous alloy according to the present invention is a quaternary alloy of Co, Nb, Ta and Zr.
When X Nb Y Ta Z Zr w is represented by atomic composition, X ≧ 8
2%, 0.5% ≦ Y ≦ 12%, 1.5% ≦ Z ≦ 8.5%, W <
5% and 8.0% ≦ (Y + Z) ≦ 13.5%, X + Y + Z
Within the range of + W = 100%, it has an initial permeability of 500 or more as a soft magnetic property even after a heat treatment at 450 ° C.,
Moreover, it has a saturation magnetic flux density of 8000 Gauss or more.

【0009】[0009]

【作用】上記組成の合金は450℃付近の熱処理工程に
耐えBS が8000〜11000Gaussである。
The alloy having the above composition withstands a heat treatment process at around 450 ° C. and has a B S of 8000 to 11000 Gauss.

【0010】BS ≧8000Gaussとなる為には次
の条件が必要である。 X≧82% ………………(1) 又非晶質化する為には (Y+Z)≧8% ………………(2) である事が必要条件である。この内、Nb及びTaは主
たる非晶質化元素であり、本発明における高熱安定性に
寄与するものであり、Zrは同じく非晶質化元素で、C
o−(Nb,Ta)系の負の磁透λS <Oを解消するこ
とを目的として添加される。ところで、Nb,Taは合
金磁歪λを微かに負にする効果があり、一方Zrはλを
正にする効果があるので、(Y+Z)をWの比を約2〜
3:1にすると合金のλが零に近いものが得られる。又
S ≧8000Gaussの為にはX≧82%でX+Y
+Z+W=100%であるので、Y+Z+W=<18%
であり、上述のλ=0とする(Y+Z)とWの比を考慮
すると (Y+Z)≦13.5%,W<5% ………(3) である事が、X≧82でかつλ<10-5となる為に必要
である。又NbとTaの働きは似ているが、厳密にはT
aとNbと比較して結晶化温度TX を上昇させ非晶質合
金の熱的安定性を増加させる効果は大なるものの、BS
を減少させる効果がNbより大きく、両者を適当にバラ
ンスさせる事がBS ≧8000Gaussで熱的に安定
な合金を得るのに必要である。この点と(Y+Z)<1
3.5%を考慮すると 0.5%≦Y≦12%,1.5%≦Z≦8.5% ……(4) である事が必要である。上述の(1)〜(4)式で満足
する合金系はBs が8000〜11000Gaussを
有し、450℃でのガラス接着工程が可能である。
The following conditions are necessary for B S ≧ 8000 Gauss. X ≧ 82% ····································································································································· (1) Among them, Nb and Ta are main amorphizing elements and contribute to high thermal stability in the present invention, and Zr is also an amorphizing element and C
It is added for the purpose of eliminating the negative magnetic permeability λ S <O of the o- (Nb, Ta) system. By the way, Nb and Ta have the effect of making the alloy magnetostriction λ slightly negative, while Zr has the effect of making λ positive, so that the ratio of (Y + Z) to W is approximately 2 to 2.
A ratio of 3: 1 gives alloys with λ close to zero. For B S ≧ 8000 Gauss, X ≧ 82% and X + Y
Since + Z + W = 100%, Y + Z + W = <18%
Therefore, considering the ratio of (Y + Z) and W where λ = 0, (Y + Z) ≦ 13.5%, W <5% (3), X ≧ 82 and λ It is necessary for < 10-5 . The functions of Nb and Ta are similar, but strictly speaking T
Although the effect of increasing the crystallization temperature T x and increasing the thermal stability of the amorphous alloy is greater than that of a and Nb, B S
Is more effective than Nb, and proper balance between the two is necessary to obtain a thermally stable alloy with B S ≧ 8000 Gauss. This point and (Y + Z) <1
Considering 3.5%, it is necessary that 0.5% ≦ Y ≦ 12%, 1.5% ≦ Z ≦ 8.5% (4). The alloy system satisfying the above formulas (1) to (4) has B s of 8000 to 11000 Gauss, and a glass bonding process at 450 ° C. is possible.

【0011】より信頼性の高いガラス接着を行なおうと
するとガラスの融点が高くなり一般には500℃でも安
定な非晶質合金が要求される。この時はBS を多少犠牲
にして熱的安定性を重視して、(Y+Z)を増加させて 9.5%≦(Y+Z) ………………(5) とする事が必要となる。前述の(2)式を(6)式で置
きかえた(1)、(3)、(5)式を満足する合金系
は、BS が8000〜9500Gaussで500℃の
ガラス接着工程に耐え得る事がわかった。なおこれらの
非晶質合金系は、液体超急冷法では作製しにくく、スパ
ッター法を用いると容易に得られる事がわかった。
If more reliable glass bonding is attempted, the melting point of the glass becomes high, and an amorphous alloy that is stable even at 500 ° C. is generally required. In this case, it is necessary to increase (Y + Z) to be 9.5% ≦ (Y + Z) ………… (5) by emphasizing thermal stability at the expense of B S. . The alloy system satisfying the formulas (1), (3), and (5), in which the formula (2) is replaced by the formula (6), can withstand a glass bonding process at 500 ° C. with B S of 8000 to 9500 Gauss. I understood. It has been found that these amorphous alloy systems are difficult to produce by the liquid quenching method and can be easily obtained by using the sputtering method.

【0012】[0012]

【実施例】第1図は、本発明の飽和磁束密度BS ≧80
00GのCoX NbY TaZ Zr W 系の熱安定性を示す
ための一例として、Co82.9Nb10.9Ta2.2 Zr4.0
非晶質材料、及びCo84.9Nb5.6 Ta5.8 Zr3.7
晶質材料について、およそ450℃〜600℃までの各
温度範囲において1〜103 分間一定温度に保持したと
きの初透磁率μi の劣下を見るために、軟磁性相消失の
変態の基準としたTTT状態図(時間−温度−変態図)
を示したものである。図中μi は1mOeの交流磁界下
において測定し、1MHz値でμi 〜500を軟磁性劣
下点(△印)としたものである。即ち各温度の△印点を
結んだ線の左側がμi ≧500の良好(安定)軟磁性相
を、右側がμi <500の劣下軟磁性相を、示してい
る。上記実施例においては、1.5×10-2Torr A
rガス圧下で2極性高周波スパッタ装置(入力電圧45
0W)を作成法として用いた(膜厚約5μm)。
EXAMPLE FIG. 1 shows the saturation magnetic flux density B of the present invention.S≧ 80
00G CoXNbYTaZZr WShows the thermal stability of the system
As an example for82.9Nb10.9Ta2.2Zr4.0
Amorphous material and Co84.9Nb5.6Ta5.8Zr3.7Non
For crystalline materials, each from approximately 450 ° C to 600 ° C
1-10 in the temperature range3If kept at a constant temperature for a minute
Mushroom initial permeability μiTo see the subordination of the soft magnetic phase disappearance
TTT phase diagram (time-temperature-transformation diagram) as a reference for transformation
Is shown. Μ in the figureiIs under an alternating magnetic field of 1 mOe
At 1MHz valuei~ 500 is inferior in soft magnetic
It is the lower point (marked with a triangle). That is, the △ mark at each temperature
The left side of the connected line is μiGood (stable) soft magnetic phase of ≧ 500
On the right is μiShows a subordinate soft magnetic phase of <500
It In the above embodiment, 1.5 × 10-2Torr A
Bipolar high frequency sputtering equipment (input voltage 45
0 W) was used as a preparation method (film thickness of about 5 μm).

【0013】上記の450〜600℃の温度範囲とはお
よそ上記CoX NbY TaZ ZrW系の結晶化温度の約
100℃下に当たり、磁気ヘッド等の低融点ガラスによ
る加工熱処理作業温度に相当するものである。上記Co
82.9Nb10.9Ta2.2 Zr4. 0 及びCo84.9Nb5.6
5.8 Zr3.7 材料の飽和磁束密度BS は各々Bs〜8
500G及びBS 〜900Gであり、いずれもBS ≧8
000Gの特性をもちながら、500℃での熱処理にお
いて、μi ≧500を基準とした耐久時間も、それぞれ
第3図に示したように100分及び150分というよう
に低融点ガラスを用いた加工熱処理に対しても十分に耐
え得る熱安定性を有している。ただし第3図において、
前者はTC ≦500℃<TX であるため無磁界の熱処理
で異方性の解消ができることに対し、後者については5
00℃<TX ≦TC であるため、全て回転磁界中の熱処
理であることが必要とされる。
The above temperature range of 450 to 600 ° C. corresponds to about 100 ° C. below the crystallization temperature of the above Co X Nb Y Ta Z Zr W system, and corresponds to the working temperature of working heat treatment with a low melting point glass such as a magnetic head. To do. Above Co
82.9 Nb 10.9 Ta 2.2 Zr 4. 0 and Co 84.9 Nb 5.6 T
a 5.8 Zr 3.7 The saturation magnetic flux density B S of each material is Bs to 8
500 G and B S to 900 G, both of which are B S ≧ 8
Despite having the characteristics of 000G, in the heat treatment at 500 ° C., the durability times based on μ i ≧ 500 are 100 minutes and 150 minutes, respectively, as shown in FIG. It has sufficient thermal stability to withstand heat treatment. However, in FIG.
The former is T C ≦ 500 ° C. <T X , so that the anisotropy can be eliminated by heat treatment without a magnetic field, while the latter is 5
Since 00 ° C. <T X ≦ T C , all heat treatments in a rotating magnetic field are required.

【0014】同様にCo−Nb−Ta−Zr4元系につ
いて上記の2例を含めてNb=0.5at%〜12at
%,Ta=1.5at%〜8.5at%,Co≧82%の範
囲で、Nb,Ta,Zrの組成比率を変化させた実施組
成の例を表1にまとめ、同表中に併せてBS 値、450
℃,及び500℃における熱処理でのμi ≧500を基
準とした耐久時間について示した。
Similarly, for the Co-Nb-Ta-Zr quaternary system, including the above two examples, Nb = 0.5 at% to 12 at.
%, Ta = 1.5 at% to 8.5 at%, and Co ≧ 82% in range, the composition ratios of Nb, Ta, and Zr are shown in Table 1. B S value, 450
The endurance time based on μ i ≧ 500 in the heat treatment at ° C and 500 ° C is shown.

【0015】なお熱処理における磁界条件についても付
記した。
The magnetic field conditions in the heat treatment are also added.

【0016】[0016]

【表1】 [Table 1]

【0017】表1で示した実施例のうち、A〜Gの例に
ついてはBS ≧8000の高飽和磁束密度を有している
が、A及びBについては、μi ≧500という軟磁気特
性の基準に対して500℃熱処理において、30分に満
たない耐久性しか示さないため、磁気ヘッド加工上にお
いて500℃熱処理用の非晶質材料としては不十分であ
る。
Of the examples shown in Table 1, the examples A to G have a high saturation magnetic flux density of B S ≧ 8000, but A and B have a soft magnetic property of μ i ≧ 500. In the heat treatment at 500 ° C., the durability is less than 30 minutes, which is insufficient as an amorphous material for heat treatment at 500 ° C. in magnetic head processing.

【0018】またFの例については、BS <8000G
でやや低い(7500G)。しかし、B〜Gについては
S ≧8000Gだけでなく、上記の基準による熱安定
性についても併わせもつことがわかる。これはこの4元
系合金の元素比率をCoX NbY TaZ ZrW で表わし
たとき、 Nbについては 0.5≦Y≦12at% Taについては 1.5at%≦Z≦8.5at% であり、両者の上記条件が同時に満たされて且つ、Yと
Zの和が、 9.5≦Y+Z≦13.5 の範囲にある場合に相当する。また、同時に高BS 値に
つながっているCoについては X≧82at% に相当する。この場合Zrの組成値Wについては上記の
3元系の条件が同時に満足されている場合であって、前
述の理由によりW<5であり X+Y+Z+W=100at% を満足している。
For the example of F, B S <8000G
Moderately low (7500G). However, for B to G, not only B S ≧ 8000 G, but also the thermal stability based on the above criteria is found to be combined. This means that when the element ratio of this quaternary alloy is expressed by Co X Nb Y Ta Z Zr W , Nb is 0.5 ≦ Y ≦ 12at% Ta is 1.5at% ≦ Z ≦ 8.5at%. Yes, this corresponds to the case where both the above conditions are simultaneously satisfied and the sum of Y and Z is in the range of 9.5 ≦ Y + Z ≦ 13.5. Further, for Co that is simultaneously connected to a high B S value, it corresponds to X ≧ 82 at%. In this case, regarding the composition value W of Zr, it is a case where the above conditions of the ternary system are simultaneously satisfied, and W <5 and X + Y + Z + W = 100 at% are satisfied for the above reason.

【0019】これ等の実施例が従来から知られていた金
属−非金属系非晶質合金のBS ≧8000GをもつFe
CoSiB系非晶質の熱安定性に対して優れていること
を示すため、同FeCoSiB系材料の同様に450℃
〜600℃におけるμi の劣下を軟磁性損失の変態基準
としたTTT状態図を第2図に示す。第1図の本発明の
合金系と比べ、軟磁性相(μi ≧500)の熱安定領域
が小さいことがわかる。
Fe having a B S ≧ 8000 G, which is a conventionally known metal-nonmetal type amorphous alloy in these examples.
In order to show that the CoSiB-based amorphous material is superior in thermal stability, the same temperature as that of the FeCoSiB-based material at 450 ° C.
FIG. 2 shows a TTT phase diagram in which the deterioration of μ i at ˜600 ° C. is used as the transformation criterion of soft magnetic loss. It can be seen that the thermal stability region of the soft magnetic phase (μ i ≧ 500) is smaller than that of the alloy system of the present invention in FIG.

【0020】一方、表1の実施例を450℃熱処理に対
して、μi ≧500という軟磁気特性の基準に対する耐
久時間について評価するならば、A〜Gの実施例のいず
れもこの温度での熱処理に耐えられ、しかもBS =80
00〜11000Gauss、さらに高い飽和磁束密度
をもつ組成範囲においても使用可能な非晶質膜として用
いることができる。従って450℃付近での低融点に及
ぶガラス等の使用の場合に磁気ヘッド加工への応用効果
が大きい。
On the other hand, if the examples of Table 1 are evaluated with respect to the 450 ° C. heat treatment with respect to the durability time with respect to the soft magnetic characteristic criterion of μ i ≧ 500, all of the examples of A to G are obtained at this temperature. Can withstand heat treatment and has B S = 80
It can be used as an amorphous film that can be used even in a composition range having a saturation magnetic flux density of 0 to 11000 Gauss and higher. Therefore, when glass or the like having a low melting point around 450 ° C. is used, the application effect to the magnetic head processing is great.

【0021】この場合の組成範囲は、同様に4元系合金
の元素比率をCoX NbY TaZ ZrW として表したと
き Nbについて 0.5at%≦Y≦12at% Taについて 1.5at%≦Z≦8.5at% であり両者の上記条件が、同時に満たされて且つYとZ
の和が 8.0at%≦Y+Z≦13.5at% の範囲にある場合に相当する。
Similarly, the composition range in this case is such that when the element ratio of the quaternary alloy is expressed as Co X Nb Y Ta Z Zr W , 0.5 at% ≤ Y ≤ 12 at% Ta and 1.5 at% ≤ Ta. Z ≦ 8.5 at%, both of the above conditions are satisfied at the same time, and Y and Z
Corresponds to the case where the sum of the above is within the range of 8.0 at% ≦ Y + Z ≦ 13.5 at%.

【0022】また同様に、CoについてはZrについて
は各々 X≧82at% W<5at% であり、X,Y,Z,Wの間には X+Y+Z+W=100at%を満たしている。
Similarly, for Co, Zr is X ≧ 82 at% W <5 at%, and X + Y + Z + W = 100 at% is satisfied between X, Y, Z, and W.

【0023】表2には本発明との比較例として、CoN
bZrの3元合金系の各合金組成のスパッタ膜の飽和磁
束密度と450度C熱処理後の初透磁率特性値をまとめ
た。TaのぬけたCoNbZrの3元合金膜における表
2の例の様に、例えば本発明のCoNbTaZr系から
Taの一元素のみが抜けただけでも、熱処理後も安定な
初透磁率を有する高飽和磁束密度合金が得にくくなるこ
とがわかる。このことは表1のCoNbTaZr合金膜
の450度C熱処理後の特性値との比較から明らかであ
る。つまり本発明の構成する4元素の組合せが8000
Gauss以上の高飽和磁束密度と450度C熱処理後
の500以上の初透磁率の両方を有するという実用的な
要求を満たす特異な合金系であることがわかる。
Table 2 shows CoN as a comparative example with the present invention.
The saturation magnetic flux density of the sputtered film of each alloy composition of the ternary alloy system of bZr and the initial permeability characteristic value after the heat treatment at 450 ° C. are summarized. As shown in the example of Table 2 in the ternary alloy film of CoNbZr without Ta, for example, even if only one element of Ta is removed from the CoNbTaZr system of the present invention, a high saturation magnetic flux having a stable initial magnetic permeability even after heat treatment. It can be seen that it becomes difficult to obtain a density alloy. This is clear from comparison with the characteristic values of the CoNbTaZr alloy film in Table 1 after heat treatment at 450 ° C. That is, the combination of the four elements of the present invention is 8000.
It can be seen that this is a unique alloy system that satisfies the practical requirements of having both a high saturation magnetic flux density of Gauss or higher and an initial magnetic permeability of 500 or higher after heat treatment at 450 ° C.

【0024】[0024]

【表2】 [Table 2]

【0025】以上の様に本発明の熱安定性は、ガラス接
着等のヘッドの熱処理による加工に対して、非晶質合金
膜の初透磁率を主とした軟磁気特性(物性値)の一定温
度での熱処理の保持時間安定性を意味するもので、これ
は単なる非晶質の結晶化温度の高さを示す構造の耐熱性
と区別されるものである。また上記の実施例から本発明
における合金組成範囲は、初透磁率という物性値の一定
熱処理温度での保持時間安定性をμi≧500を基準と
して、他の実用的な飽和磁束密度値(Bs)や飽和磁歪
(λs)などの磁気特性値との両立の観点から規定した
ものである。
As described above, the thermal stability of the present invention is that the soft magnetic characteristics (physical property values), mainly the initial magnetic permeability of the amorphous alloy film, are constant with respect to processing by heat treatment of the head such as glass bonding. It means the holding time stability of heat treatment at a temperature, which is distinguished from the heat resistance of a structure showing a high amorphous crystallization temperature. Further, the alloy composition range in the present invention from the above examples is based on the retention time stability of a physical property value called initial permeability at a constant heat treatment temperature of μi ≧ 500, and other practical saturation magnetic flux density values (Bs). And saturation magnetostriction (λs) and other magnetic characteristic values are specified.

【0026】[0026]

【発明の効果】本発明のCoX NbY TaZ ZrW 合金
によれば、従来高磁束密度材料を用いた各種磁気ヘッド
において低融点ガラス加工等の高温度による熱処理に伴
う軟磁気特性の劣下という制約が大きかったことに対
し、450℃,さらにまた500℃を上まわる高い熱処
理温度において長時間(数時間以上)による熱処理を受
けても、良好な軟磁気特性を保つことのできる熱安定性
に優れた高磁束密度軟磁性合金が実現できる。
According to the Co X Nb Y Ta Z Zr W alloy of the present invention, in various magnetic heads using a conventional high magnetic flux density material, soft magnetic properties are deteriorated due to heat treatment at a high temperature such as low melting point glass processing. In contrast to the large restriction on the lower side, thermal stability that can maintain good soft magnetic characteristics even when subjected to heat treatment for a long time (several hours or longer) at a high heat treatment temperature of 450 ° C. or even 500 ° C. A high magnetic flux density soft magnetic alloy with excellent properties can be realized.

【0027】従ってこの材料を用いた磁気ヘッドによれ
ばヘッド加工歩留りが向上し、また高抗磁力磁気記録媒
体に適した磁気ヘッドとして十分なヘッド特性が得られ
る。
Therefore, according to the magnetic head using this material, the head processing yield is improved, and sufficient head characteristics can be obtained as a magnetic head suitable for a high coercive force magnetic recording medium.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるCo−Nb−Ta−Z
r系合金を各温度で保持したときの、初透磁率の温度変
化より得た時間─温度─変態状態図(TTT状態図)で
ある。
FIG. 1 is a Co-Nb-Ta-Z in an example of the present invention.
FIG. 4 is a time-temperature-transformation phase diagram (TTT phase diagram) obtained from a change in initial magnetic permeability when the r-based alloy is held at various temperatures.

【図2】第2図は従来より知られていたCo−Fe−S
i−B系合金のTTT状態図(Bs≧8000Gのも
の)である。
FIG. 2 is a conventionally known Co—Fe—S film.
It is a TTT phase diagram (Bs> = 8000G) of an i-B type alloy.

【図3】本発明の実施例におけるCo84.9Nb5.6 Zr
3.7 Ta5.8 及びCo82.9Nb 10.9Zr4.0 Ta2.2
ついて500℃における等温熱処理によるμi の劣下を
示したグラフである。
FIG. 3 is a graph showing Co in an embodiment of the present invention.84.9Nb5.6Zr
3.7Ta5.8And Co82.9Nb 10.9Zr4.0Ta2.2To
About μ by isothermal heat treatment at 500 ℃iThe subordinates of
It is the graph shown.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】CoX NbY TaZ ZrW で示される組成
よりなり、原子組成パーセントで、X+Y+Z+W=1
00,X≧82,0.5≦Y≦12,1.5≦Z≦8.5,W
<5でかつ8.0≦Y+Z≦13.5の範囲にあり、450
℃の熱処理を経た後も、軟磁気特性として500以上の
初透磁率を有し、かつ8000Gauss以上の飽和磁
束密度を有する熱安定性高磁束密度非晶質合金。
1. A composition represented by Co X Nb Y Ta Z Zr W , wherein X + Y + Z + W = 1 in terms of atomic composition percentage.
00, X ≧ 82, 0.5 ≦ Y ≦ 12, 1.5 ≦ Z ≦ 8.5, W
<5 and within the range of 8.0 ≦ Y + Z ≦ 13.5, 450
A thermal stable high magnetic flux density amorphous alloy having a soft magnetic property of 500 or more as initial magnetic permeability and a saturation magnetic flux density of 8000 Gauss or more even after being subjected to heat treatment at ℃.
【請求項2】9.5≦Y+Z≦13.5であることを特徴と
する特許請求の範囲第1項記載の熱安定性高磁束密度非
晶質合金。
2. The heat stable high magnetic flux density amorphous alloy according to claim 1, wherein 9.5 ≦ Y + Z ≦ 13.5.
JP5053377A 1986-05-22 1993-03-15 Amorphous alloy having thermal stability and high magnetic flux density Pending JPH0693391A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61117876A JPH0699769B2 (en) 1986-05-22 1986-05-22 Thermal stability High magnetic flux density amorphous alloy
JP5053377A JPH0693391A (en) 1986-05-22 1993-03-15 Amorphous alloy having thermal stability and high magnetic flux density

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61117876A JPH0699769B2 (en) 1986-05-22 1986-05-22 Thermal stability High magnetic flux density amorphous alloy
JP5053377A JPH0693391A (en) 1986-05-22 1993-03-15 Amorphous alloy having thermal stability and high magnetic flux density

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61117876A Division JPH0699769B2 (en) 1986-05-22 1986-05-22 Thermal stability High magnetic flux density amorphous alloy

Publications (1)

Publication Number Publication Date
JPH0693391A true JPH0693391A (en) 1994-04-05

Family

ID=26394091

Family Applications (2)

Application Number Title Priority Date Filing Date
JP61117876A Expired - Lifetime JPH0699769B2 (en) 1986-05-22 1986-05-22 Thermal stability High magnetic flux density amorphous alloy
JP5053377A Pending JPH0693391A (en) 1986-05-22 1993-03-15 Amorphous alloy having thermal stability and high magnetic flux density

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP61117876A Expired - Lifetime JPH0699769B2 (en) 1986-05-22 1986-05-22 Thermal stability High magnetic flux density amorphous alloy

Country Status (1)

Country Link
JP (2) JPH0699769B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699769B2 (en) * 1986-05-22 1994-12-07 松下電器産業株式会社 Thermal stability High magnetic flux density amorphous alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089539A (en) * 1983-10-19 1985-05-20 Hitachi Ltd Amorphous magnetic alloy having low magnetostriction
JPS62274043A (en) * 1986-05-22 1987-11-28 Matsushita Electric Ind Co Ltd Amorphous alloy having high thermostability and high magnetic flux density

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884957A (en) * 1981-11-14 1983-05-21 Matsushita Electric Ind Co Ltd Amorphous magnetic alloy
JPS58185742A (en) * 1982-04-21 1983-10-29 Showa Denko Kk Amorphous magnetic alloy magnetic material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089539A (en) * 1983-10-19 1985-05-20 Hitachi Ltd Amorphous magnetic alloy having low magnetostriction
JPS62274043A (en) * 1986-05-22 1987-11-28 Matsushita Electric Ind Co Ltd Amorphous alloy having high thermostability and high magnetic flux density

Also Published As

Publication number Publication date
JPH0699769B2 (en) 1994-12-07
JPS62274043A (en) 1987-11-28

Similar Documents

Publication Publication Date Title
US5091266A (en) Soft-magnetic film having saturation magnetic-flux density and magnetic head utilizing the same
CA1317484C (en) Glassy metal alloys with perminvar characteristics
US4707417A (en) Magnetic composite film
JPH0693391A (en) Amorphous alloy having thermal stability and high magnetic flux density
JPS59170248A (en) Heat treatment of amorphous alloy
JPH0653039A (en) Corrosion-resistant magnetic film and magnetic head using the same
JPS59207608A (en) High permeability magnetic thin film
JPS58118015A (en) Magnetic head
US4936929A (en) Refractory amorphous Co-Ta-Hf alloy
JPH03132005A (en) Magnetic thin film and magnetic head using this film
JPS6320429A (en) Thermally stable amorphous alloy having high magnetic flux density
JP2991478B2 (en) Soft magnetic thin film material
KR0124624B1 (en) Soft magnetic thin film structure
JP2774708B2 (en) Soft magnetic thin film and thin film magnetic head using the same
JP3087265B2 (en) Magnetic alloy
JPH0799115A (en) Magnetic alloy film and magnetic head using this
JPH0786037A (en) Iron-based soft-magnetism thin-film alloy for magnetic head, and manufacture thereof
JPH0376102A (en) Multilayer magnetic thin film and magnetic head using the same
JPS5975610A (en) Iron base magnetic alloy thin film and manufacture thereof
JPS6089539A (en) Amorphous magnetic alloy having low magnetostriction
JPS62263945A (en) Soft-magnetic alloy
JPH0534421B2 (en)
JPS6278804A (en) Soft magnetic thin film
JPS62104111A (en) Soft magnetic thin film
JPS62183101A (en) Ferromagnetic thin film