JPH0699769B2 - Thermal stability High magnetic flux density amorphous alloy - Google Patents

Thermal stability High magnetic flux density amorphous alloy

Info

Publication number
JPH0699769B2
JPH0699769B2 JP61117876A JP11787686A JPH0699769B2 JP H0699769 B2 JPH0699769 B2 JP H0699769B2 JP 61117876 A JP61117876 A JP 61117876A JP 11787686 A JP11787686 A JP 11787686A JP H0699769 B2 JPH0699769 B2 JP H0699769B2
Authority
JP
Japan
Prior art keywords
flux density
magnetic
magnetic flux
alloy
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61117876A
Other languages
Japanese (ja)
Other versions
JPS62274043A (en
Inventor
雄二 小俣
公一 釘宮
明 行徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61117876A priority Critical patent/JPH0699769B2/en
Publication of JPS62274043A publication Critical patent/JPS62274043A/en
Priority to JP5053377A priority patent/JPH0693391A/en
Publication of JPH0699769B2 publication Critical patent/JPH0699769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co

Landscapes

  • Magnetic Heads (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種磁気ヘッド等に用いられる金属−金属系
非晶質軟磁性合金にかかり、非晶質の熱的安定性に優
れ、飽和磁束密度が高く軟磁性特性に優れた非晶質合金
を提供するものである。
TECHNICAL FIELD The present invention relates to a metal-metal amorphous soft magnetic alloy used in various magnetic heads and the like, and has excellent amorphous amorphous thermal stability and saturation magnetic flux density. And an amorphous alloy excellent in soft magnetic properties.

従来の技術 金属−金属系非晶質合金は従来の非金属を有する金属−
非金属系非晶質合金と比べ結晶化温度が高く、また耐食
性にも優れている。さらに非晶質という構造上の特徴か
ら、軟磁気特性に大きな影響を及ぼす結晶磁気異方性を
持たないだけでなくCoを主成分とするものは磁速も小さ
い点など、良好な軟磁性特性を兼ねそなえている。その
ためガラスボンディング等の高い加工温度を覆歴する磁
気ヘッドに用いる磁性材料として注目されている。
2. Description of the Related Art A metal-metal amorphous alloy is a metal having a conventional nonmetal-
It has a higher crystallization temperature and better corrosion resistance than non-metallic amorphous alloys. Furthermore, due to the structural characteristic of being amorphous, not only does it have no crystalline magnetic anisotropy that has a large effect on soft magnetic properties, but those containing Co as the main component also have a low magnetic speed, which means that they have good soft magnetic properties. It also serves as a. Therefore, it is attracting attention as a magnetic material used for a magnetic head that covers high processing temperatures such as glass bonding.

発明が解決しようとする問題点 一方従来の金属−金属系非晶質合金は高磁束密度化を重
視した組成においては、結晶化温度TXが低下し、磁性材
料のキュリー温度TCを下まわることになり(TX<TC)、
磁気異方性を解消するためのTC以上の熱処理が可能な条
件のTC<TXの関係を保つことができなくなる。この場合
は回転磁界を用いた熱処理が必要である。
Problems to be Solved by the Invention On the other hand, in the conventional metal-metal type amorphous alloy, in a composition that emphasizes high magnetic flux density, the crystallization temperature T X is lowered and the Curie temperature T C of the magnetic material is lowered. (T X <T C ),
It becomes impossible to maintain the relationship of T C <T X under the condition that heat treatment of T C or more for eliminating magnetic anisotropy is possible. In this case, heat treatment using a rotating magnetic field is necessary.

他方、結晶化温度TXの高低の尺度とは別に結晶化温度TX
以下であっても、一定温度に長時間保持すると非晶質合
金の場合特に初透磁率μi等の構造敏感な要因をもつ特
性への影響が大きい。すなわち熱処理加工の不可欠な磁
気ヘッド等の実用素子に組み込む場合、非晶質合金では
その磁気特性に関して材料全体の結晶化以前にこのよう
な軟磁気特性についてのTX以下の温度での保持安定性が
大きな問題点であった(耐時効性)。
On the other hand, the crystallization temperature T X is different from the scale of the crystallization temperature T X.
Even if it is less than the above, when it is kept at a constant temperature for a long time, particularly in the case of an amorphous alloy, there is a great influence on the characteristics having a structure-sensitive factor such as initial magnetic permeability μ i . That is, when it is incorporated in a practical element such as a magnetic head, which is indispensable for heat treatment, the amorphous alloy has a magnetic stability before the crystallization of the entire material, and a holding stability at a temperature of T X or lower for such a soft magnetic property. Was a major problem (aging resistance).

しかも、低融点ガラスによる磁気ヘッドのボンディング
加工を考慮した場合、450℃以上数時間の耐久性が要求
されてきた。
Moreover, in consideration of the magnetic head bonding process using low melting point glass, durability of 450 ° C. or higher for several hours has been required.

このような軟磁気特性の耐久性を以下『熱安定性』と称
する。
The durability of such soft magnetic characteristics is hereinafter referred to as "thermal stability".

従来用いられてきた金属−金属系非晶質合金(Coを主成
分とする)においては、上に記したように高い飽和磁束
密度をもった軟磁気特性と熱安定性を併わせ持つ磁気ヘ
ッド材料として評価するならば、両特性に優れたものは
なく不十分であり、非磁力の高いメタルテープに適した
Bs8000〜8500Gの高い磁束密度をもち、且つヘッド加
工工程としての低融点ガラスの使用に耐え得る450℃以
上、数時間の熱安定性を持つ材料が要求されてきた。
In the conventionally used metal-metal amorphous alloy (containing Co as a main component), a magnetic head having both high soft magnetic characteristics and high thermal stability with high saturation magnetic flux density as described above. If it is evaluated as a material, there is no one that is excellent in both characteristics and it is insufficient, so it is suitable for metal tape with high non-magnetic force.
There has been a demand for a material having a high magnetic flux density of Bs8000 to 8500G and having a thermal stability of 450 ° C. or higher for several hours, which can withstand the use of a low melting point glass as a head processing step.

本発明は450〜500℃でも熱安定性にも優れ、メタルテー
プ等の高抗磁力媒体に適する高飽和磁束密度(Bs8000
G)をもった磁気ヘッド用の良好な軟磁気特性をもつ非
晶質合金を提供するものである。
The present invention has excellent thermal stability even at 450 to 500 ° C, and has a high saturation magnetic flux density (Bs8000) suitable for a high coercive force medium such as a metal tape.
It provides an amorphous alloy with good soft magnetic properties for magnetic heads with G).

問題点を解決するための手段 本発明による非晶質合金は、Co,Nb,Ta,Zrからなる4元
合金で、CoXNbYTaZZrWを原子組成で表わした時、 X82%,0.5%Y12%,1.5%Z8.5%,W<5%
でかつ8.0%(Y+Z)13.5%,X+Y+Z+W=100
%の範囲である。
Means for Solving the Problems The amorphous alloy according to the present invention is a quaternary alloy composed of Co, Nb, Ta and Zr, and when Co X Nb Y Ta Z Zr W is represented by atomic composition, X82%, 0.5% Y12%, 1.5% Z8.5%, W <5%
And 8.0% (Y + Z) 13.5%, X + Y + Z + W = 100
% Range.

作用 上記組成の合金は450℃付近の熱処理工程に耐えBsが800
0〜11000Gaussである。
Action Alloys with the above composition endure a heat treatment process at around 450 ° C and have a Bs of 800
It is 0-11000 Gauss.

Bs8000Gaussとなる為には次の条件が必要である。The following conditions are necessary to become Bs8000Gauss.

X82% ……(1) 又非晶質化する為には (Y+Z)8% ……(2) である事が必要条件である。この内、Nb及びTaは主たる
非晶質化元素であり、本発明における高熱安定性に寄与
するものであり、Zrは同じく非晶質化元素で、Co−(N
b,Ta)系の負の磁透λS<Oを解消することを目的とし
て添加される。ところで、Nb,Taは合金磁歪λを微かに
負にする効果があり、一方Zrはλを正にする効果がある
ので、(Y+Z)とWの比を約2〜3:1にすると合金の
λが零に近いものが得られる。又Bs8000Gaussの為に
はX82%でX+Y+Z+W=100%であるので、 Y+Z+W<18%であり、上述のλ0とする(Y+
Z)とWの比を考慮すると (Y+Z)13.5%,W<5% ……(3) である事が、X82でかつλ<10-5となる為に必要であ
る。又NbとTaの働きは似ているが、厳密にはTaはNbと比
較して結晶化温度TXを上昇させ非晶質合金の熱的安定性
を増加させる効果は大なるものの、Bsを減少させる効果
がNbより大きく、両者を適当にバランスさせる事がBs
8000Gaussで熱的に安定な合金を得るのに必要である。
この点と(Y+Z)<13.5%を考慮すると 0.5%Y12%,1.5%Z8.5% ……(4) である事が必要である。上述の(1)〜(4)式で満足
する合金系はBsが8000〜11000Gaussを有し、450℃での
ガラス接着工程が可能である。
X82% (1) Also, in order to amorphize, (Y + Z) 8% (2) is a necessary condition. Among these, Nb and Ta are main amorphizing elements and contribute to high thermal stability in the present invention, and Zr is also an amorphizing element, and Co- (N
b, Ta) system is added for the purpose of eliminating the negative magnetic permeability λ S <O. By the way, Nb and Ta have the effect of making the alloy magnetostriction λ slightly negative, while Zr has the effect of making λ positive, so if the ratio of (Y + Z) and W is set to about 2 to 3: 1, the alloy A value with λ close to zero is obtained. Also, for Bs8000Gauss, since X is 82% and X + Y + Z + W = 100%, Y + Z + W <18%, which is the above-mentioned λ0 (Y +
Considering the ratio of Z) to W, it is necessary that (Y + Z) 13.5%, W <5% (3) because X82 and λ <10 -5 . Although the functions of Nb and Ta are similar, strictly speaking, Ta has a large effect of increasing the crystallization temperature T X and increasing the thermal stability of the amorphous alloy, as compared with Nb, but Bs The reducing effect is greater than Nb, and it is Bs to balance both properly.
Necessary to obtain a thermally stable alloy at 8000 Gauss.
Considering this point and (Y + Z) <13.5%, it is necessary that 0.5% Y12%, 1.5% Z8.5% (4). The alloy system satisfying the above formulas (1) to (4) has Bs of 8000 to 11000 Gauss, and the glass bonding process at 450 ° C. is possible.

より信頼性の高いガラス接着を行なおうとするとガラス
の融点が高くなり一般には500℃でも安定な非晶質合金
が要求される。この時はBsを多少犠牲にして熱的安定性
を重視して、(Y+Z)を増加させて 9.5%(Y+Z) ……(5) とする事が必要となる。前述の(2)式を(6)式で置
きかえた(1),(3),(5)式を満足する合金系
は、Bsが8000〜9500Gaussで500℃のガラス接着工程に耐
え得る事がわかった。なおこれらの非晶質合金系は、液
体超急冷法では作製しにくく、スパッター法を用いると
容易に得られる事がわかった。
If more reliable glass bonding is attempted, the melting point of glass becomes high, and an amorphous alloy that is stable even at 500 ° C is generally required. At this time, it is necessary to increase the (Y + Z) to 9.5% (Y + Z) (5) by emphasizing thermal stability by sacrificing Bs to some extent. The alloy system satisfying the formulas (1), (3), and (5), which replaces the formula (2) with the formula (6), can withstand a glass bonding process at 500 ° C with Bs of 8000 to 9500 Gauss. all right. It has been found that these amorphous alloy systems are difficult to produce by the liquid quenching method and can be easily obtained by using the sputtering method.

実施例 第1図は、本発明の飽和磁束密度Bs8000GのCoXNbYTaZ
ZrW系の熱安定性を示すための一例として、Co82.9Nb
10.9Ta2.2Zr4.0非晶質材料、及びCo84.9Nb5.6Ta5.8Zr
3.7非晶質材料について、およそ450℃〜600℃までの各
温度範囲において1〜103分間一定温度に保持したとき
の初透磁率μiの劣下を見るために、軟磁性相消失の変
態の基準としたTTT状態図(時間−温度−変態図)を示
したものである。図中μiは1m0eの交流磁界下において
測定し、1MHz値でμi〜500を軟磁性劣下点(▲印)とし
たものである。即ち各温度の▲印点を結んだ線の左側が
μi500の良好(安定)軟磁性相を、右側がμi<500の
劣下軟磁性相を示している。上記実施例においては、1.
5×10-2Torr Arガス圧下で2極性高周波スパッタ装置
(入力電圧450W)を作成法として用いた(膜厚約5μ
m)。
Example FIG. 1 shows Co X Nb Y Ta Z of a saturation magnetic flux density Bs8000G of the present invention.
As an example to show the thermal stability of Zr W system, Co 82.9 Nb
10.9 Ta 2.2 Zr 4.0 Amorphous material, Co 84.9 Nb 5.6 Ta 5.8 Zr
3.7 For amorphous materials, in order to see the deterioration of the initial permeability μ i when kept at a constant temperature for 1 to 10 3 minutes in each temperature range from approximately 450 ° C to 600 ° C, the transformation of soft magnetic phase disappearance 3 is a TTT phase diagram (time-temperature-transformation diagram) which is used as a reference of FIG. In the figure, μ i is measured under an AC magnetic field of 1 m0e, and μ i 〜 500 at 1 MHz value is the soft magnetic inferior point (marked with ▲). That is, the left side of the line connecting the ▴ points at each temperature shows the good (stable) soft magnetic phase with μ i 500, and the right side shows the poor soft magnetic phase with μ i <500. In the above embodiment, 1.
A bipolar high-frequency sputtering device (input voltage 450 W) was used as a preparation method under a gas pressure of 5 × 10 −2 Torr Ar (film thickness of about 5 μm.
m).

上記の450〜600℃の温度範囲とはおよそ上記CoXNbYTaZZ
rW系の結晶化温度の約100℃下(すなわち結晶化温度と
しては550度C以上)に当たり、磁気ヘッド等の低融点
ガラスによる加工熱処理作業温度に相当するものであ
る。上記Co82.9Nb10.9Ta2.2Zr4.0及びCo84.9Nb5.6Ta5.8
Zr3.7材料の飽和磁束密度Bsは各々Bs〜8500G及びBs〜90
0Gであり、いずれもBs8000Gの特性をもちながら、500
℃での熱処理において、μi500を基準とした耐久時間
も、それぞれ第3図に示したように100分及び150分とい
うように低融点ガラスを用いた加工熱処理に対しても十
分に耐え得る熱安定性を有している。ただし第3図にお
いて、前者はTC500℃<TXであるため無磁界の熱処理
で異方性の解消ができることに対し、後者については50
0℃<TXTCであるため、全て回転磁界中の熱処理であ
ることが必要とされる。
The above temperature range of 450 to 600 ℃ is approximately the above Co X Nb Y Ta Z Z
The temperature is about 100 ° C. below the crystallization temperature of the r W system (that is, the crystallization temperature is 550 ° C. or higher), which corresponds to the working temperature of working heat treatment with a low melting point glass such as a magnetic head. Co 82.9 Nb 10.9 Ta 2.2 Zr 4.0 and Co 84.9 Nb 5.6 Ta 5.8
The saturation magnetic flux densities Bs of Zr 3.7 materials are Bs to 8500G and Bs to 90, respectively.
0G, all of which have the characteristics of Bs8000G, 500
In the heat treatment at ℃, the durability time based on μ i 500 is 100 minutes and 150 minutes as shown in FIG. 3, respectively, and it can sufficiently withstand the heat treatment using the low melting point glass. It has thermal stability. However, in FIG. 3, the former is T C 500 ° C <T X , so the anisotropy can be eliminated by heat treatment without a magnetic field, whereas the latter is 50
Since 0 ° C. <T X T C, it is necessary that all heat treatments are performed in a rotating magnetic field.

同様にCo−Nb−Ta−Zr4元系について上記の2例を含め
てNb=0.5at%〜12at%,Ta=1.5at%〜8.5at%,Co82
%の範囲で、Nb,Ta,Zrの組成比率を変化させた実施組成
の例を表1にまとめ、同表中に併せてBs値、450℃,及
び500℃における熱処理でのμi500を基準とした耐久
時間について示した。
Similarly, for the Co-Nb-Ta-Zr quaternary system, including the above two examples, Nb = 0.5 at% to 12 at%, Ta = 1.5 at% to 8.5 at%, Co82
Table 1 summarizes the examples of the actual compositions in which the composition ratios of Nb, Ta, and Zr were changed in the range of%, and the Bs values, μ i 500 at the heat treatments at 450 ° C and 500 ° C are also shown in the table. The durability time as a standard is shown.

なお熱処理における磁界条件についても付記した。The magnetic field conditions in the heat treatment are also added.

表1で示した実施例のうち、A〜Gの例についてはBs
8000の高飽和磁束密度を有しているが、A及びBについ
ては、μi500という軟磁気特性の基準に対して500℃
熱処理において、30分に満たない耐久性しか示さないた
め、磁気ヘッド加工上において500℃熱処理用の非晶質
材料としては不十分である。
Of the examples shown in Table 1, for the examples A to G, Bs
It has a high saturation magnetic flux density of 8000, but for A and B, it is 500 ° C against the standard of soft magnetic characteristics of μ i 500.
Since it exhibits a durability of less than 30 minutes in the heat treatment, it is insufficient as an amorphous material for heat treatment at 500 ° C. in magnetic head processing.

またFの例については、Bs<8000Gでやや低い(7500
G)。
In the case of F, Bs <8000G is slightly low (7500
G).

しかし、B〜GについてはBs8000Gだけでなく、上記
の基準による熱安定性についても併わせもつことがわか
る。これはこの4元系合金の元素比率をCoXNbYTaZZrW
表わしたとき、 Nbについては0.5Y12at% Taについては1.5at%Z8.5at% であり、両者の上記条件が同時に満たされて且つ、Yと
Zの和が 9.5Y+Z13.5 の範囲にある場合に相当する。また、同時に高Bs値につ
ながっているCoについては X82at% に相当する。
However, it is understood that B to G have not only Bs8000G but also thermal stability based on the above criteria. This is because when the element ratio of this quaternary alloy is expressed as Co X Nb Y Ta Z Zr W , Nb is 0.5Y12at% Ta is 1.5at% Z8.5at%, and both of the above conditions are satisfied at the same time. And the sum of Y and Z is in the range of 9.5Y + Z13.5. At the same time, Co that leads to a high Bs value is equivalent to X82at%.

この場合Zrの組成値Wについては上記の3元系の条件が
同時に満足されている場合であって、前述の理由により
W<5であり X+Y+Z+W=100at% を満足している。
In this case, with respect to the composition value W of Zr, the condition of the ternary system is satisfied at the same time, and W <5 and X + Y + Z + W = 100at% are satisfied for the above reason.

これ等の実施例が従来から知られていた金属−非金属系
非晶質合金のBs8000GをもつFeCoSiB系非晶質の熱安定
性に対して優れていることを示すため、同FeCoSiB系材
料の同様に450℃〜600℃におけるμiの劣下を軟磁性損
失の変態基準としたTTT状態図を第2図に示す。第1図
の本発明の合金系と比べ、軟磁性相(μi500)の熱安
定領域が小さいことがわかる。
In order to show that these examples are superior to the thermal stability of the FeCoSiB-based amorphous material having Bs8000G of the conventionally known metal-nonmetal-based amorphous alloy, Similarly, FIG. 2 shows a TTT phase diagram in which the deterioration of μ i at 450 ° C. to 600 ° C. is used as the transformation criterion of soft magnetic loss. It can be seen that the thermal stability region of the soft magnetic phase (μ i 500) is smaller than that of the alloy system of the present invention in FIG.

一方、表1の実施例を450℃熱処理に対して、μi500
という軟磁気特性の基準に対する耐久時間について評価
するならば、A〜Gの実施例のいずれもこの温度での熱
処理に耐えられ、しかもBs=8000〜11000Gauss、さらに
高い飽和磁束密度をもつ組成範囲においても使用可能な
非晶質膜として用いることができる。従って450℃付近
での低融点に及ぶガラス等の使用の場合に磁気ヘッド加
工への応用効果が大きい。
On the other hand, when the examples of Table 1 were heat treated at 450 ° C., μ i 500
If the durability time against the standard of soft magnetic characteristics is evaluated, all of the examples A to G can withstand the heat treatment at this temperature, and Bs = 8000 to 11000 Gauss, and in the composition range having a higher saturation magnetic flux density. Can also be used as a usable amorphous film. Therefore, when glass having a low melting point around 450 ° C. is used, it has a great application effect on magnetic head processing.

この場合の組成範囲は、同様に4元系合金の元素比率を
CoXNbYTaZZrWとして表わしたとき Nbについて0.5at%Y12at% Taについて1.5at%Z8.5at% であり両者の上記条件が、同時に満たされて且つYとZ
の和が 8.0at%Y+Z13.5at% の範囲にある場合に相当する。
Similarly, the composition range in this case is the element ratio of the quaternary alloy.
When expressed as Co X Nb Y Ta Z Zr W , Nb is 0.5 at% Y12 at% Ta is 1.5 at% Z8.5 at% and both of the above conditions are satisfied at the same time, and Y and Z are satisfied.
Corresponds to the case where the sum of is within the range of 8.0at% Y + Z13.5at%.

また同様に、CoについてはZrについては各々 X82at% W<5at% であり、X,Y,Z,Wの間には X+Y+Z+W=100at%を満たしている。Similarly, for Co, Zr is X82at% W <5at%, and between X, Y, Z and W, X + Y + Z + W = 100at% is satisfied.

表2には本発明との比較例として、CoNbZrの3元合金系
の各合金組成のスパッタ膜の飽和磁束密度値と450度C
熱処理後の初透磁率特性値をまとめた。TaのぬけたCoNb
Zrの3元合金膜における表2の例の様に、例えば本発明
のCoNbTaZr系からTaの一元素のみが抜けただけでも、熱
処理後も安定な初透磁率を有する高飽和磁束密度合金が
得にくくなることがわかる。このことは表1のCoNbTaZr
合金膜の450度C熱処理後の特性値との比較から明らか
である。つまり本発明の構成する4元素の組合せが8000
Gauss以上の高飽和磁束密度と450度C熱処理後の500以
上の初透磁率の両方を有するという実用的な要求を満た
す特異な合金系であることがわかる。
Table 2 shows, as a comparative example with the present invention, the saturation magnetic flux density value and 450 ° C. of the sputtered film of each alloy composition of CoNbZr ternary alloy system.
The initial permeability characteristic values after heat treatment are summarized. CoNb without Ta
As shown in the example of Table 2 in the Zr ternary alloy film, for example, even if only one element of Ta escapes from the CoNbTaZr system of the present invention, a high saturation magnetic flux density alloy having a stable initial magnetic permeability after heat treatment is obtained. You can see that it becomes difficult. This is shown in Table 1 as CoNbTaZr
It is clear from comparison with the characteristic value of the alloy film after heat treatment at 450 ° C. In other words, the combination of the four elements of the present invention is 8000
It can be seen that it is a unique alloy system that satisfies the practical requirements of having both a high saturation magnetic flux density of Gauss or higher and an initial magnetic permeability of 500 or higher after heat treatment at 450 ° C.

発明の効果 本発明のCoXNbYTaZZrW合金によれば、従来高磁束密度材
料を用いた各種磁気ヘッドにおいて低融点ガラス加工等
の高温度による熱処理に伴う軟磁気特性の劣下という制
約が大きかったことに対し、450℃,さらにまた500℃を
上まわる高い熱処理温度において長時間(数時間以上)
による熱処理を受けても、良好な軟磁気特性を保つこと
のできる熱安定性に優れた高磁束密度軟磁性合金が実現
できる。
EFFECTS OF THE INVENTION According to the Co X Nb Y Ta Z Zr W alloy of the present invention, soft magnetic properties are inferior due to heat treatment at a high temperature such as low melting point glass processing in various magnetic heads conventionally using a high magnetic flux density material. In contrast to the large restrictions, a long time (several hours or more) at a high heat treatment temperature of 450 ° C or even 500 ° C
It is possible to realize a high magnetic flux density soft magnetic alloy excellent in thermal stability and capable of maintaining good soft magnetic characteristics even when subjected to heat treatment by.

従ってこの材料を用い、ガラス接着工程を行って磁気ヘ
ッドを製造しても接着工程での高温においても良好な軟
磁気特性を保持すことができ、磁気ヘッドの製造におい
て、ヘッド加工歩留りが向上し、また高抗磁力磁気記録
媒体に適した磁気ヘッドとして十分なヘッド特性が得ら
れる。
Therefore, even if a magnetic head is manufactured by performing a glass bonding process using this material, good soft magnetic characteristics can be maintained even at a high temperature in the bonding process, and the head processing yield is improved in the manufacturing of the magnetic head. In addition, sufficient head characteristics can be obtained as a magnetic head suitable for a high coercive force magnetic recording medium.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例におけるCo−Nb−Ta−Zr系合金
を各温度で保持したときの、初透磁率の温度変化より得
た時間−温度−変態状態図(TTT状態図)、第2図は従
来より知られていたCo−Fe−Si−B系合金のTTT状態図
(Bs8000Gのもの)、第3図は本発明の実施例におけ
るCo84.9Nb5.6Zr3.7Ta5.8及びCo82.9Nb10.9Zr4.0Ta2.2
について500℃における等温熱処理によるμiの劣下を示
したグラフである。
FIG. 1 is a time-temperature-transformation state diagram (TTT state diagram) obtained from the temperature change of the initial permeability when the Co—Nb—Ta—Zr alloy in the example of the present invention is held at each temperature. FIG. 2 is a conventionally known TTT phase diagram (of Bs8000G) of a Co—Fe—Si—B alloy, and FIG. 3 is Co 84.9 Nb 5.6 Zr 3.7 Ta 5.8 and Co 82.9 in the example of the present invention. Nb 10.9 Zr 4.0 Ta 2.2
Is a graph showing the deterioration of μ i by the isothermal heat treatment at 500 ° C.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 行徳 明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭58−185742(JP,A) 特開 昭58−84957(JP,A) 特開 昭60−89539(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Gyoutoku 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-58-185742 (JP, A) JP-A-58-84957 (JP, A) JP-A-60-89539 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】CoXNbYTaZZrWで示される組成よりなり、原
子組成パーセントで、X+Y+Z+W=100,X82,0.5
Y12,1.5Z8.5,W<5でかつ8.0Y+Z13.5
の範囲にあり、ガラス接着工程において450度Cの熱処
理を経た後も、500以上の初透磁率を有し、かつ8000Gau
ss以上の飽和磁束密度を有する熱安定性高磁束密度非晶
質合金。
1. A composition represented by Co X Nb Y Ta Z Zr W , wherein X + Y + Z + W = 100, X82,0.5 in atomic composition percentage.
Y12,1.5Z8.5, W <5 and 8.0Y + Z13.5
The initial magnetic permeability is 500 or more after the heat treatment at 450 ° C in the glass bonding process, and it is 8,000 Gau.
A thermally stable, high flux density amorphous alloy with a saturation flux density of ss or higher.
【請求項2】9.5Y+Z13.5であることを特徴とす
る特許請求の範囲第1項記載の熱安定性高磁束密度非晶
質合金。
2. The heat stable high magnetic flux density amorphous alloy according to claim 1, wherein 9.5Y + Z13.5.
【請求項3】合金作成の手段として、スパッタ蒸着法を
用いたことを特徴とする特許請求の範囲第1項記載の熱
安定性高磁束密度非晶質合金。
3. The thermally stable high magnetic flux density amorphous alloy according to claim 1, wherein a sputter vapor deposition method is used as a means for preparing the alloy.
JP61117876A 1986-05-22 1986-05-22 Thermal stability High magnetic flux density amorphous alloy Expired - Lifetime JPH0699769B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61117876A JPH0699769B2 (en) 1986-05-22 1986-05-22 Thermal stability High magnetic flux density amorphous alloy
JP5053377A JPH0693391A (en) 1986-05-22 1993-03-15 Amorphous alloy having thermal stability and high magnetic flux density

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61117876A JPH0699769B2 (en) 1986-05-22 1986-05-22 Thermal stability High magnetic flux density amorphous alloy
JP5053377A JPH0693391A (en) 1986-05-22 1993-03-15 Amorphous alloy having thermal stability and high magnetic flux density

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5053377A Division JPH0693391A (en) 1986-05-22 1993-03-15 Amorphous alloy having thermal stability and high magnetic flux density

Publications (2)

Publication Number Publication Date
JPS62274043A JPS62274043A (en) 1987-11-28
JPH0699769B2 true JPH0699769B2 (en) 1994-12-07

Family

ID=26394091

Family Applications (2)

Application Number Title Priority Date Filing Date
JP61117876A Expired - Lifetime JPH0699769B2 (en) 1986-05-22 1986-05-22 Thermal stability High magnetic flux density amorphous alloy
JP5053377A Pending JPH0693391A (en) 1986-05-22 1993-03-15 Amorphous alloy having thermal stability and high magnetic flux density

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP5053377A Pending JPH0693391A (en) 1986-05-22 1993-03-15 Amorphous alloy having thermal stability and high magnetic flux density

Country Status (1)

Country Link
JP (2) JPH0699769B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699769B2 (en) * 1986-05-22 1994-12-07 松下電器産業株式会社 Thermal stability High magnetic flux density amorphous alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884957A (en) * 1981-11-14 1983-05-21 Matsushita Electric Ind Co Ltd Amorphous magnetic alloy
JPS58185742A (en) * 1982-04-21 1983-10-29 Showa Denko Kk Amorphous magnetic alloy magnetic material
JPS6089539A (en) * 1983-10-19 1985-05-20 Hitachi Ltd Amorphous magnetic alloy having low magnetostriction
JPH0699769B2 (en) * 1986-05-22 1994-12-07 松下電器産業株式会社 Thermal stability High magnetic flux density amorphous alloy

Also Published As

Publication number Publication date
JPH0693391A (en) 1994-04-05
JPS62274043A (en) 1987-11-28

Similar Documents

Publication Publication Date Title
JPH0744110B2 (en) High saturation magnetic flux density soft magnetic film and magnetic head
JPH0699769B2 (en) Thermal stability High magnetic flux density amorphous alloy
JP2710453B2 (en) Soft magnetic alloy film
JP2842683B2 (en) Soft magnetic thin film material
JP2771674B2 (en) Soft magnetic alloy film
JPS62117143A (en) Production of magnetic recording medium
JP2675178B2 (en) Soft magnetic alloy film
JPS6313256B2 (en)
JP2635421B2 (en) Soft magnetic alloy film
JPS6320429A (en) Thermally stable amorphous alloy having high magnetic flux density
JPS60135546A (en) Amorphous soft magnetic alloy
JP2991478B2 (en) Soft magnetic thin film material
JP2551008B2 (en) Soft magnetic thin film
JPH0534421B2 (en)
JP2727274B2 (en) Soft magnetic thin film
JPS5975610A (en) Iron base magnetic alloy thin film and manufacture thereof
JPS61204349A (en) Thin foil of amorphous magnetic alloy
JPH0828297B2 (en) Soft magnetic thin film
JPS63119210A (en) Amorphous magnetic film and magnetic head
JPH04228568A (en) Production of amorphous thin film
JPS61290703A (en) Soft magnetic thin film
JPH0828298B2 (en) Soft magnetic thin film
JPS5993849A (en) Cobalt-base amorphous magnetic material
JPS6278804A (en) Soft magnetic thin film
JPH0760766B2 (en) Magnetic alloy film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term