JPH04228568A - Production of amorphous thin film - Google Patents

Production of amorphous thin film

Info

Publication number
JPH04228568A
JPH04228568A JP3136315A JP13631591A JPH04228568A JP H04228568 A JPH04228568 A JP H04228568A JP 3136315 A JP3136315 A JP 3136315A JP 13631591 A JP13631591 A JP 13631591A JP H04228568 A JPH04228568 A JP H04228568A
Authority
JP
Japan
Prior art keywords
thin film
amorphous thin
amorphous
substrate
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3136315A
Other languages
Japanese (ja)
Other versions
JPH072990B2 (en
Inventor
Shinji Takayama
高山 新司
Kazuo Shiiki
椎木 一夫
Yasuo Tsukuda
康夫 佃
Sanehiro Kudo
工藤 実弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3136315A priority Critical patent/JPH072990B2/en
Publication of JPH04228568A publication Critical patent/JPH04228568A/en
Publication of JPH072990B2 publication Critical patent/JPH072990B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily form an amorphous alloy thin film by sputtering and to improve thermal stability by substituting at least a part of the semimetal elements and rear-earth elements constituting the conventional alloy for metal elements such as Ti, Zr, Hf, Y, Ge, Se, Bi and Te as the vitrifying element. CONSTITUTION:A ferromagnetic amorphous thin film (an amorphous alloy consisting essentially of at least one kind of element selected from Fe, Ni and Co) is formed on a substrate. In this case, a magnetic filed rotating with respect to an amorphous thin film to be formed on the substrate is impressed, and the film is formed by sputtering. An amorphous thin film having high thermal stability, low holding power and high permeability and excellent in magnetic characteristic is obtained in this way, and the film is effectively utilized as the electro-acoustic transducer element material such as a magnetic core, magneto-striction element material, invar and elinvar material.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はスパッタ蒸着法により作
製した高い熱安定性を示すZr,Ti,Hf等の金属元
素を基とした本質的に遷移金属と半金属元素からなる合
金組成で磁歪が小さい非晶質薄膜に関するものである。 さらに詳しくは回転磁場中でスパッタ蒸着することやス
パッタ蒸着膜を該薄膜のキュリー温度以上結晶化温度以
下で熱処理、あるいは回転磁場中で熱処理することによ
り低保磁力・高初期透磁率非晶質薄膜を提供するもので
ある。
[Industrial Application Field] The present invention is a magnetostrictive material made of an alloy composition essentially consisting of transition metals and metalloid elements based on metal elements such as Zr, Ti, Hf, etc., which exhibits high thermal stability and is produced by sputter deposition. This relates to an amorphous thin film with a small value. More specifically, an amorphous thin film with low coercive force and high initial magnetic permeability is formed by sputter deposition in a rotating magnetic field, by heat-treating the sputter-deposited film at a temperature above the Curie temperature and below the crystallization temperature of the thin film, or by heat-treating the thin film in a rotating magnetic field. It provides:

【0002】0002

【従来の技術】ある種の金属あるいは合金をスパッタ蒸
着することにより、原子構造で長範囲規則度のない非晶
質構造を得ることができる。この方法により得られた従
来の非晶質薄膜は、主にB,C,Si等の半金属元素を
基とする金属−半金属系合金か、バブル磁性材料や光磁
気磁性材料に有用な希土類元素を基とする合金系よりな
っている。しかし、これらの非晶質合金系は機械的、磁
気的、電気的特性の劣化をもたらす熱安定性で未だ実用
上十分とはいえない。さらにB,C,Si等の半金属元
素を基とする金属−半金属系合金はスパッタ蒸着時に導
入される磁気異方性のため高い保磁力と低い透磁率を示
し実用上問題がある。
BACKGROUND OF THE INVENTION By sputter-depositing certain metals or alloys, it is possible to obtain an amorphous structure with no long-range order in the atomic structure. Conventional amorphous thin films obtained by this method are mainly metal-semimetal alloys based on semimetal elements such as B, C, and Si, or rare earth alloys useful for bubble magnetic materials and magneto-optical magnetic materials. It consists of an alloy system based on elements. However, these amorphous alloy systems have thermal stability that causes deterioration of mechanical, magnetic, and electrical properties, and are not yet sufficient for practical use. Furthermore, metal-metalloid alloys based on metalloid elements such as B, C, and Si exhibit high coercive force and low magnetic permeability due to magnetic anisotropy introduced during sputter deposition, which poses a practical problem.

【0003】0003

【発明の概要】本発明は、上述の問題点を解消するため
、ガラス化元素として従来の非晶質合金系の構成元素で
ある半金属元素および希土類元素の少なくとも一部をT
i,Zr,Hf,Y,Ge,Sb,Bi,Te等の金属
元素に置き換え、他は主として遷移金属元素を主成分と
し、必要に応じてP,B,C,Si,N等の元素を少量
添加することによって、スパッタ蒸着法による非晶質合
金薄膜の作製を容易にすると共に熱安定性の改善をはか
ったものである。さらに金属−半金属系合金では強磁性
元素Fe,Ni,Coで磁歪、飽和磁化の値を調整し、
V,Cr,Mn,Nb,Mo,W,希土類を少量添加し
て結晶化温度、硬度を向上させることにより磁歪が小さ
くて、しかも熱安定性、耐摩耗性の改善をはかったもの
である。さらに、強磁性を示す非晶質薄膜においては、
回転磁場中でスパッタ蒸着するか、スパッタ蒸着によっ
て非晶質磁性薄膜を得た後、該膜をそのキュリー温度以
上、結晶化温度以下の温度で熱処理することにより、磁
気異方性の小さい、低保磁力、高透磁率の磁性薄膜を得
られるようにしたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention uses T as a vitrifying element to at least part of metalloid elements and rare earth elements that are constituent elements of conventional amorphous alloy systems.
Replaced with metal elements such as i, Zr, Hf, Y, Ge, Sb, Bi, Te, etc., other elements are mainly transition metal elements, and elements such as P, B, C, Si, N are added as necessary. By adding a small amount, it is possible to facilitate the production of an amorphous alloy thin film by sputter deposition and to improve thermal stability. Furthermore, in metal-semimetal alloys, the values of magnetostriction and saturation magnetization are adjusted using ferromagnetic elements Fe, Ni, and Co.
By adding small amounts of V, Cr, Mn, Nb, Mo, W, and rare earth elements to improve the crystallization temperature and hardness, the magnetostriction is small and the thermal stability and wear resistance are improved. Furthermore, in amorphous thin films that exhibit ferromagnetism,
After obtaining an amorphous magnetic thin film by sputter deposition in a rotating magnetic field or by sputter deposition, the film is heat-treated at a temperature higher than its Curie temperature and lower than its crystallization temperature. This makes it possible to obtain a magnetic thin film with high coercive force and high magnetic permeability.

【0004】0004

【実施例】以下、本発明を実施例により詳細に説明する
。 <実施例1>合金組成がCo79Ti13Zr8,Co
84Zr16,Co80Ti18B2,Fe90Zr1
0,Co81Mo7Sm2Zr10(Co0.3Fe0
.7)90Ti2Zr8,Fe80Ni10Zr10の
母合金をアーク溶解により作製し、直径50mm、厚さ
約1mmのターゲットを作製した。薄膜作製は二極高周
波スパッタ装置を用い、約1〜5mTorrのアルゴン
圧力下で、ターゲットと基板の間隔を5〜10cmとし
て、厚さ数μm以下の薄膜を作製した。得られた薄膜の
X線ディフラクトメーターによる回折曲線はすべて、な
だらかなメインピークと二三のサブピークからなる非晶
質構造特有の回折曲線を示し、非晶質薄膜が得られてい
ることが確認された。
[Examples] The present invention will be explained in detail below with reference to Examples. <Example 1> Alloy composition is Co79Ti13Zr8, Co
84Zr16, Co80Ti18B2, Fe90Zr1
0,Co81Mo7Sm2Zr10(Co0.3Fe0
.. 7) A master alloy of 90Ti2Zr8, Fe80Ni10Zr10 was prepared by arc melting, and a target with a diameter of 50 mm and a thickness of about 1 mm was prepared. The thin film was produced using a bipolar high-frequency sputtering device under an argon pressure of about 1 to 5 mTorr, with a distance between the target and the substrate of 5 to 10 cm, and a thin film with a thickness of several μm or less. All the diffraction curves of the obtained thin film measured with an X-ray diffractometer showed a diffraction curve characteristic of an amorphous structure consisting of a gentle main peak and a few sub-peaks, confirming that an amorphous thin film was obtained. It was done.

【0005】<実施例2>組成がCo85.5Mo5Z
r9.5,Co82Mo8.5Zr9.5,Co75.
5Mo15Zr9.5になるように、直径50mmのコ
バルト円板上にMo,Zrの小塊を均一に配置した複合
ターゲットを用い、実施例1の条件で同時スパッタ蒸着
することにより非晶質薄膜を作製した。得られた非晶質
薄膜の結晶化温度(四端子法電気抵抗測定により決定)
は約500℃と高く、100℃、100時間の熱処理後
でも電気抵抗値はほとんど変わらず、高い熱安定性を示
した。また、飽和磁化はMo量が減少するとともに約6
0emu/gから100emu/gと変化し、高い値が
得られることがわかった。これらの膜の保磁力は約1〜
5Oeであった。磁歪が−8×10 ̄7(半導体歪ゲー
ジを用いて測定)と低い値を示すCo82Mo8.5Z
r9.5非晶質薄膜を膜面内方向に2kGの外部磁場を
印加し、1200r.p.m.の回転数で回転させなが
ら、400℃で20分間熱処理すると、保磁力80mO
e、初透磁率(20kHz)約6000の軟磁特性が得
られた。
<Example 2> Composition is Co85.5Mo5Z
r9.5, Co82Mo8.5Zr9.5, Co75.
An amorphous thin film was prepared by simultaneous sputter deposition under the conditions of Example 1 using a composite target in which small lumps of Mo and Zr were uniformly arranged on a cobalt disk with a diameter of 50 mm so that the target was 5Mo15Zr9.5. did. Crystallization temperature of the obtained amorphous thin film (determined by four-terminal electrical resistance measurement)
was as high as about 500°C, and the electrical resistance value remained almost unchanged even after heat treatment at 100°C for 100 hours, indicating high thermal stability. In addition, as the amount of Mo decreases, the saturation magnetization increases to about 6
It was found that high values were obtained, varying from 0 emu/g to 100 emu/g. The coercivity of these films is approximately 1~
It was 5 Oe. Co82Mo8.5Z exhibits a low magnetostriction of -8×10 ̄7 (measured using a semiconductor strain gauge)
An external magnetic field of 2 kG was applied to the r9.5 amorphous thin film in the in-plane direction, and the film was heated at 1200 r. p. m. When heated at 400℃ for 20 minutes while rotating at a rotation speed of
e, soft magnetic properties with an initial magnetic permeability (20 kHz) of about 6000 were obtained.

【0006】<実施例3>合金組成が(Co0.3Fe
0.7)91Zr9,(Fe0.7Ni0.3)90Z
r10,Co72Ni16Fe2Zr10,(Co0.
72Ni0.16Fe0.02Zr0.1)98B2,
Co85Cr4Ru2Zr9Co86W5Zr9,(C
o0.82Mo0.085Zr0.095)98B2の
直径50mmの焼結体をターゲットとして用い、実施例
1と同様な製造条件でスパッタ蒸着して非晶質薄膜を作
製した。(Co0.3Fe0.7)91Zr9,(Fe
0.7Ni0.3)90Zr10の非晶質薄膜の飽和磁
化はそれぞれ160emu/g,120emu/gと高
い値を示した。一方、Co72Ni16Fe2Zr10
非晶質薄膜では磁歪λsほぼ0、飽和磁化σs110e
mu/g,(Co0.72Ni0.16Fe0.02Z
r0.1)98B2非晶質薄膜ではλsほぼ0,σs1
05emu/g,Co85Cr4Ru2Zr9非晶質薄
膜ではλsほぼ0,σs96emu/gといずれも高い
飽和磁化をもつ磁歪零材が得られた。
<Example 3> The alloy composition is (Co0.3Fe
0.7)91Zr9, (Fe0.7Ni0.3)90Z
r10, Co72Ni16Fe2Zr10, (Co0.
72Ni0.16Fe0.02Zr0.1)98B2,
Co85Cr4Ru2Zr9Co86W5Zr9, (C
Using a sintered body of 0.82Mo0.085Zr0.095)98B2 with a diameter of 50 mm as a target, sputter deposition was performed under the same manufacturing conditions as in Example 1 to produce an amorphous thin film. (Co0.3Fe0.7)91Zr9, (Fe
The saturation magnetization of the amorphous thin films of 0.7Ni0.3)90Zr10 was as high as 160 emu/g and 120 emu/g, respectively. On the other hand, Co72Ni16Fe2Zr10
In an amorphous thin film, magnetostriction λs is almost 0 and saturation magnetization σs is 110e.
mu/g, (Co0.72Ni0.16Fe0.02Z
r0.1) In the 98B2 amorphous thin film, λs is almost 0, σs1
For the amorphous thin film of 05 emu/g and Co85Cr4Ru2Zr9, a zero magnetostriction material with high saturation magnetization of λs of approximately 0 and σs of 96 emu/g was obtained.

【0007】<実施例4>実施例1の条件により作製さ
れたCo75.5Mo15Zr9.5非晶質薄膜をその
キューリー温度(約400℃)以上、結晶化温度(50
5℃)以下の温度で熱処理後、水冷したところ、保磁力
50mOe、初透磁率(5kHz)10000の磁気異
方性の小さいすぐれた軟磁特性が得られた。
<Example 4> A Co75.5Mo15Zr9.5 amorphous thin film produced under the conditions of Example 1 was heated to a temperature higher than its Curie temperature (approximately 400°C) and a crystallization temperature (50°C).
After heat treatment at a temperature below 5° C.) and cooling with water, excellent soft magnetic properties with a coercive force of 50 mOe and an initial permeability (5 kHz) of 10,000 and small magnetic anisotropy were obtained.

【0008】<実施例5>組成がCo80Mo9Zr1
1の母合金をアーク溶解により作製し、直径50mm,
厚さ約1mmのターゲットを作製した。このターゲット
を用い、約3mTorrのAr圧力下で、基板面に平行
に50Oe以上の磁場を印加し、基板を回転しながら、
スパッタ蒸着することにより非晶質薄膜を作製した。得
られた非晶質薄膜の磁気特性は膜によってバラツキはあ
るが、その保磁力は0.1Oe以下、初透磁率(20k
Hz)は6100以上の実用に適した磁気特性が得られ
た。このことは、この作製法により誘導磁気異方性が小
さくなったことを示すものと思われる。
<Example 5> Composition is Co80Mo9Zr1
A master alloy of No. 1 was prepared by arc melting, with a diameter of 50 mm,
A target with a thickness of about 1 mm was prepared. Using this target, under an Ar pressure of approximately 3 mTorr, a magnetic field of 50 Oe or more was applied parallel to the substrate surface, and while rotating the substrate,
An amorphous thin film was prepared by sputter deposition. Although the magnetic properties of the obtained amorphous thin film vary depending on the film, its coercive force is less than 0.1 Oe, and its initial permeability (20 k
Hz) was 6,100 or more, and magnetic properties suitable for practical use were obtained. This seems to indicate that the induced magnetic anisotropy was reduced by this manufacturing method.

【0009】<実施例6>合金組成が(Co0.96F
e0.04)73Cr2Si10B15,(Co0.9
6Fe0.04)73Mn2Si10B15,(Co0
.96Fe0.04)73Nb2Si10B15,Co
45.9Fe10.1Ni24Si2B18の母合金を
アーク溶解により作製し、直径50mm,厚さ約1mm
のターゲットを作製した。 薄膜作製は二極高周波スパッタ装置を用い、約1〜5m
Torrのアルゴン圧力下で、ターゲットと基板との間
隔を5〜10cmとして厚さ数μm以下の非晶質薄膜を
作製した。得られた薄膜の膜面上に半導体歪ゲージをは
りつけ、4kGの外部磁場で磁歪を測定したところ、C
o45.9Fe10.1Ni24Si2B18は+1×
10 ̄6、他の合金組成のものは10 ̄7オーダーの低
い磁歪値を示した。作製されたままの薄膜の保磁力は0
.5〜1Oeであった。
<Example 6> The alloy composition is (Co0.96F
e0.04)73Cr2Si10B15, (Co0.9
6Fe0.04)73Mn2Si10B15, (Co0
.. 96Fe0.04)73Nb2Si10B15,Co
A master alloy of 45.9Fe10.1Ni24Si2B18 was produced by arc melting, and the diameter was 50 mm and the thickness was about 1 mm.
A target was created. Thin film is produced using a two-pole high frequency sputtering device, approximately 1 to 5 m long.
An amorphous thin film having a thickness of several micrometers or less was produced under argon pressure of Torr with a distance between the target and the substrate of 5 to 10 cm. When a semiconductor strain gauge was attached to the surface of the obtained thin film and the magnetostriction was measured with an external magnetic field of 4 kG, C
o45.9Fe10.1Ni24Si2B18 is +1×
10 ̄6, and those with other alloy compositions showed low magnetostriction values on the order of 10 ̄7. The coercive force of the as-prepared thin film is 0.
.. It was 5 to 1 Oe.

【0010】<実施例7>実施例6で得た(Co0.9
6Fe0.04)73Cr2Si10B15非晶質磁性
薄膜の結晶化温度(四端子法電気抵抗測定により決定)
は約510℃、キューリー温度(磁気天秤により測定)
は約440℃、飽和磁化は80emu/gであった。こ
の非晶質薄膜を真空中、470℃、10分間熱処理後、
水冷すると、保磁力は0.5Oeから70mOeに減少
し、スムースなB−H曲線が得られた。その時の初透磁
率は20kHzで9000という高い値を示した。
<Example 7> The (Co0.9
6Fe0.04)73Cr2Si10B15 Crystallization temperature of amorphous magnetic thin film (determined by four-probe method electrical resistance measurement)
is approximately 510℃, Curie temperature (measured with a magnetic balance)
The temperature was about 440°C, and the saturation magnetization was 80 emu/g. After heat treating this amorphous thin film at 470°C for 10 minutes in vacuum,
When cooled with water, the coercive force decreased from 0.5 Oe to 70 mOe, and a smooth BH curve was obtained. The initial magnetic permeability at that time was as high as 9000 at 20kHz.

【0011】<実施例8>合金組成が(Co0.96F
e0.04)77Mn2Si10B11の非晶質薄膜を
実施例6と同様な条件で作製した。この非晶質薄膜の結
晶化温度は450℃、飽和磁化は100emu/g、保
磁力は約10Oeであった。得られた円板状(直径10
mm)非晶質薄膜を4kGの静磁場中で膜面が磁場の方
向と平行になるようにして720r.p.m.の回転数
で回転させながら、昇温、急冷速度が20℃/minに
なるようにして400℃で20分間の熱処理を行った。 熱処理後のこの非晶質薄膜の保磁力は60mOeと低下
し、20kHzで約8000という高い透磁率を得た。 これらの軟磁気特性の改善は磁気異方性の減少、内部応
力の除去によるものと思われる。
<Example 8> The alloy composition is (Co0.96F
e0.04) An amorphous thin film of 77Mn2Si10B11 was produced under the same conditions as in Example 6. The crystallization temperature of this amorphous thin film was 450° C., the saturation magnetization was 100 emu/g, and the coercive force was about 10 Oe. The resulting disk shape (diameter 10
mm) The amorphous thin film was heated in a static magnetic field of 4 kG for 720 r.mm) with the film surface parallel to the direction of the magnetic field. p. m. Heat treatment was performed at 400° C. for 20 minutes while rotating at a rotational speed of 20° C. and a rapid cooling rate of 20° C./min. After heat treatment, the coercive force of this amorphous thin film decreased to 60 mOe, and a high magnetic permeability of about 8000 at 20 kHz was obtained. These improvements in soft magnetic properties are thought to be due to reduction in magnetic anisotropy and removal of internal stress.

【0012】<実施例9>合金組成が(Co0.96F
e0.04)77Mn2Si10B11の直径50mm
,厚さ約1mmのターゲットを用い、約3mTorrの
アルゴン圧力下で基板面に平行に約100Oeの磁場を
印加し、基板を回転しながらスパッタ蒸着することによ
り上記組成の非晶質薄膜を作製した。得られた非晶質磁
性薄膜の保磁力は90mOeと低く、透磁率も1kHz
で7000という高い値が得られ、通常の作製法と比べ
て顕著な差が認められた。
<Example 9> The alloy composition is (Co0.96F
e0.04) 77Mn2Si10B11 diameter 50mm
Using a target with a thickness of about 1 mm, a magnetic field of about 100 Oe was applied parallel to the substrate surface under an argon pressure of about 3 mTorr, and an amorphous thin film with the above composition was fabricated by sputter deposition while rotating the substrate. . The coercive force of the obtained amorphous magnetic thin film is as low as 90 mOe, and the magnetic permeability is also 1 kHz.
A high value of 7,000 was obtained for this method, and a significant difference was observed compared to the normal production method.

【0013】[0013]

【発明の効果】以上の説明から明らかなように、本発明
の非晶質薄膜は、従来の非晶質合金薄膜の合金組成とは
異なった新規な合金組成よりなり、高い熱安定性をもつ
とともに磁性薄膜においてはすぐれた磁気特性、すなわ
ち、低い保磁力と高い透磁率を示し、磁気コア材等の電
気音響変換素子材料、磁歪素子材料、インバー、エリン
バー材料等に有効に用いることができる。
[Effects of the Invention] As is clear from the above description, the amorphous thin film of the present invention has a new alloy composition different from that of conventional amorphous alloy thin films, and has high thermal stability. At the same time, magnetic thin films exhibit excellent magnetic properties, that is, low coercive force and high magnetic permeability, and can be effectively used for electroacoustic transducer materials such as magnetic core materials, magnetostrictive element materials, Invar, Elinvar materials, etc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基板上に、強磁性の非晶質薄膜を形成する
方法において、上記基板上に形成させる非晶質薄膜に対
して、相対的に回転する磁場を印加しながらスパッタ蒸
着法により成膜することを特徴とする非晶質薄膜の製造
方法。
1. A method for forming a ferromagnetic amorphous thin film on a substrate, wherein the amorphous thin film is formed on the substrate by sputter deposition while applying a relatively rotating magnetic field. A method for producing an amorphous thin film, characterized by forming a film.
【請求項2】請求項1記載の非晶質薄膜の製造方法にお
いて、基板上に形成させる非晶質薄膜に印加する磁場の
方向が、上記基板上に形成させる非晶質薄膜面に対して
ほぼ平行であることを特徴とする非晶質薄膜の製造方法
2. The method for producing an amorphous thin film according to claim 1, wherein the direction of the magnetic field applied to the amorphous thin film formed on the substrate is relative to the surface of the amorphous thin film formed on the substrate. A method for producing an amorphous thin film characterized by being substantially parallel.
【請求項3】請求項1または請求項2記載の非晶質薄膜
の製造方法において、基板上に形成させる非晶質薄膜に
印加する磁場の大きさが10Oe以上であることを特徴
とする非晶質薄膜の製造方法。
3. The method for manufacturing an amorphous thin film according to claim 1 or 2, wherein the magnitude of the magnetic field applied to the amorphous thin film formed on the substrate is 10 Oe or more. Method for producing crystalline thin films.
【請求項4】請求項1、請求項2または請求項3のいず
れか1項に記載の非晶質薄膜の製造方法において、強磁
性の非晶質薄膜は、Fe,Ni,Co元素よりなる群か
ら選択された少なくとも1種の元素を主成分とする非晶
質合金からなることを特徴とする非晶質薄膜の製造方法
4. In the method of manufacturing an amorphous thin film according to claim 1, 2, or 3, the ferromagnetic amorphous thin film is made of Fe, Ni, and Co elements. A method for producing an amorphous thin film, characterized in that the film is made of an amorphous alloy whose main component is at least one element selected from the group consisting of:
JP3136315A 1991-06-07 1991-06-07 Method for producing amorphous thin film Expired - Lifetime JPH072990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3136315A JPH072990B2 (en) 1991-06-07 1991-06-07 Method for producing amorphous thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3136315A JPH072990B2 (en) 1991-06-07 1991-06-07 Method for producing amorphous thin film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56125800A Division JPH06104870B2 (en) 1981-08-11 1981-08-11 Method for producing amorphous thin film

Publications (2)

Publication Number Publication Date
JPH04228568A true JPH04228568A (en) 1992-08-18
JPH072990B2 JPH072990B2 (en) 1995-01-18

Family

ID=15172339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3136315A Expired - Lifetime JPH072990B2 (en) 1991-06-07 1991-06-07 Method for producing amorphous thin film

Country Status (1)

Country Link
JP (1) JPH072990B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045173A (en) * 2006-08-16 2008-02-28 Sanyo Special Steel Co Ltd FeCoB-BASED TARGET MATERIAL TO WHICH Cr IS ADDED

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045173A (en) * 2006-08-16 2008-02-28 Sanyo Special Steel Co Ltd FeCoB-BASED TARGET MATERIAL TO WHICH Cr IS ADDED

Also Published As

Publication number Publication date
JPH072990B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
Hasegawa et al. Soft magnetic properties of microcrystalline Fe-MC (M= V, Nb, Ta) films with high thermal stability
JPS5827941A (en) Manufacture of amorphous thin film
JP2552274B2 (en) Glassy alloy with perminer characteristics
JPS6133058B2 (en)
JP2694110B2 (en) Magnetic thin film and method of manufacturing the same
JPH04228568A (en) Production of amorphous thin film
JP2554444B2 (en) Uniaxial magnetic anisotropic thin film
JPH03265104A (en) Soft magnetic alloy film
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JP2842683B2 (en) Soft magnetic thin film material
JP2554445B2 (en) Magnetic thin film and method of manufacturing the same
JPH0192359A (en) Manufacture of thin amorphous film
JPH031513A (en) Manufacture of soft magnetic thin film
JPS6151028B2 (en)
JP2784105B2 (en) Soft magnetic thin film
JPS5937734B2 (en) Temperature-sensitive amorphous magnetic alloy
JPS6252907A (en) Magnetically soft thin film
JP2727274B2 (en) Soft magnetic thin film
WO1992009091A1 (en) Amorphous soft magnetic material
JPH04275407A (en) Soft magnetic film high in saturation magnetic flux density and its manufacture
JPS6044383B2 (en) Amorphous alloy for magnetic heads
JPS6242981B2 (en)
JPH0518901B2 (en)
JPH03138911A (en) Microcrystalline magnetic alloy and manufacture thereof
JPH0192358A (en) Manufacture of thin amorphous film