JPH0192358A - Manufacture of thin amorphous film - Google Patents

Manufacture of thin amorphous film

Info

Publication number
JPH0192358A
JPH0192358A JP19805788A JP19805788A JPH0192358A JP H0192358 A JPH0192358 A JP H0192358A JP 19805788 A JP19805788 A JP 19805788A JP 19805788 A JP19805788 A JP 19805788A JP H0192358 A JPH0192358 A JP H0192358A
Authority
JP
Japan
Prior art keywords
thin film
amorphous thin
substrate
magnetic
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19805788A
Other languages
Japanese (ja)
Inventor
Shinji Takayama
高山 新司
Kazuo Shiiki
椎木 一夫
Yasuo Tsukuda
佃 康夫
Sanehiro Kudo
工藤 実弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP56125800A external-priority patent/JPH06104870B2/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19805788A priority Critical patent/JPH0192358A/en
Publication of JPH0192358A publication Critical patent/JPH0192358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To manufacture a thin amorphous film reduced in magnetic anisotropy and combining low coercive force with high magnetic permeability by carrying out sputtering in a rotary magnetic field to which magnetic field of the prescribed magnitude is applied at the time of forming a thin amorphous film composed principally of Fe, Ni, Co, etc., by a sputter vapor deposition method. CONSTITUTION:A target formed of an alloy containing at least one kind among ferromagnetic elements such as Fe, Ni, and Co is used and a magnetic field of >=10Oe is impressed in parallel with a substrate in a low-pressure Ar-gas atmosphere, and then, while rotating the substrate, the sputter vapor deposition of target material is applied to the substrate surface. By this method, the thin amorphous film reduced in magnetic anisotropy, having low coercive force and high magnetic permeability, and suitable for magnetic core material, etc., can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はスパッタ蒸着法により作製する非晶質薄膜の製
造方法に関し、特に回転磁場中でスパッタ蒸着すること
により、磁気異方性が小さく、低保磁力で高初期透磁率
を有する非晶質薄膜の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an amorphous thin film by sputter deposition, and in particular, by sputter deposition in a rotating magnetic field, magnetic anisotropy is small. The present invention relates to a method for producing an amorphous thin film having low coercive force and high initial magnetic permeability.

〔従来の技術1 ある種の金属あるいは合金をスパッタ蒸着することによ
り、原子構造で長範囲規則度のない非晶質構造を得るこ
とができる。この方法により得られる従来の非晶質薄膜
は、主にB、C,Siなどの非金属元素を基とする金属
−非金属系合金またはバブル磁性材料や光磁気磁性材料
に有用な希土類元素を基とする合金系薄膜よりなってい
る。しかし、これらの非晶質合金系薄膜は機械的、磁気
的、電気的特性の劣化をもたらす熱安定性の点でいまだ
実用上十分とはいえない。さらに、非晶質化元素である
B、C,Siなどの非金属元素を基とする金属−非金属
系合金薄膜はスパッタ蒸着時に導入される磁気異方性の
ために、高い保磁力と低い透磁率を示し実用上問題があ
った。
[Prior Art 1] By sputter-depositing a certain metal or alloy, an amorphous structure with no long-range regularity in atomic structure can be obtained. Conventional amorphous thin films obtained by this method mainly contain metal-nonmetal alloys based on nonmetallic elements such as B, C, and Si, or rare earth elements useful for bubble magnetic materials and magneto-optical magnetic materials. It consists of a base alloy thin film. However, these amorphous alloy thin films are still insufficient for practical use in terms of thermal stability, which causes deterioration of mechanical, magnetic, and electrical properties. Furthermore, metal-nonmetal alloy thin films based on nonmetallic elements such as B, C, and Si, which are amorphous elements, have a high coercive force and a low It exhibited magnetic permeability, which was a practical problem.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したごとく、従来の非晶質磁性薄膜をスパッタ蒸着
法で製造する方法において、磁気異方性が小さく、低保
磁力で高透磁率の非晶質磁性薄膜を得ることができなか
った。
As described above, in the conventional method of manufacturing an amorphous magnetic thin film by sputter deposition, it was not possible to obtain an amorphous magnetic thin film with small magnetic anisotropy, low coercive force, and high magnetic permeability.

本発明者らは、従来技術における問題点を解消するため
に、非晶質薄膜のガラス化(非晶質化)元素として従来
の非晶質合金系薄膜の構成元素である非金属元素および
希土類元素の少なくとも一部をTi、Zr、Hf、Yt
 Get Sb、Bi、Teなどの高い熱安定性を示す
金属元素に置き換え、他は主として遷移金属元素を主成
分とし、必要に応じてP、B、C,SLt Nなどの元
素を少量添加して、スパッタ蒸着法による非晶質合金薄
膜の作製を容易にすると共に熱安定性の改善をはかった
り、さらに金属−非金属系合金薄膜では2強磁性元素で
あるFe、NiまたはGoの添加量によって磁歪、飽和
磁化の値を調整しy Vy Crg Mn+Nb、Mo
、Wまたは希土類元素を少量添加して結晶化温度ならび
に硬度を向上させることにより。
In order to solve the problems in the prior art, the present inventors have discovered that nonmetallic elements and rare earth elements, which are constituent elements of conventional amorphous alloy thin films, are used as elements for vitrification (amorphization) of amorphous thin films. At least a part of the elements are Ti, Zr, Hf, Yt
Replace with metal elements that exhibit high thermal stability such as Sb, Bi, and Te, and other elements are mainly transition metal elements, with small amounts of elements such as P, B, C, and SLt N added as necessary. In addition, it facilitates the production of amorphous alloy thin films by sputter deposition and improves thermal stability.Furthermore, metal-nonmetal alloy thin films can be fabricated by adjusting the amount of two ferromagnetic elements Fe, Ni, or Go. Adjust the magnetostriction and saturation magnetization values y Vy Crg Mn+Nb, Mo
, by adding a small amount of W or rare earth elements to improve the crystallization temperature and hardness.

磁歪を小さくシ、熱安定性および耐摩耗性の改善をはか
ってきた。
Efforts have been made to reduce magnetostriction and improve thermal stability and wear resistance.

しかしながら、磁気異方性が小さく、低保磁力で高透磁
率の非晶質磁性薄膜とするにはいまだ不十分であった。
However, it was still insufficient to produce an amorphous magnetic thin film with small magnetic anisotropy, low coercive force, and high magnetic permeability.

本発明の目的は、上記従来技術の欠点を解消し。The object of the present invention is to eliminate the drawbacks of the above-mentioned prior art.

磁気異方性が小さく、低保磁力、高透磁率の非晶質薄膜
をスパッタ蒸着法により製造する方法を提供することに
ある。
It is an object of the present invention to provide a method for manufacturing an amorphous thin film having small magnetic anisotropy, low coercive force, and high magnetic permeability by sputter deposition.

〔課題を解決するための手段〕[Means to solve the problem]

上記本発明の目的は2強磁性を有する非晶質薄膜の製造
方法において、所定の大きさの磁場を印加した回転磁場
中で、スパッタ蒸着法により非晶質薄膜を作製すること
により、達成される。
The above object of the present invention is achieved by producing an amorphous thin film by sputter deposition in a rotating magnetic field to which a magnetic field of a predetermined magnitude is applied in a method for producing an amorphous thin film having two ferromagnetic properties. Ru.

本発明は、基板上に2例えばFe、Ni、Go元素より
なる群から選択された少なくとも1種の元素を主成分と
する強磁性の非晶質薄膜を形成する方法において、上記
基板上に形成させる非晶質薄膜に対して、相対的に回転
する磁場を印加しながらスパッタ蒸着により成膜する方
法である。そして、基板上に形成させる非晶質薄膜に対
して、印加する磁場の方向は、上記基板上に形成させる
非晶質薄膜面に対してほぼ平行であることが望ましく、
また、印加する磁場の大きさは、10Oe以上であるこ
とが好ましい。上記印加する磁場の大きさがl0C)e
未満であると9本発明の磁気特性向上効果が低減するの
で好ましくない。
The present invention provides a method for forming a ferromagnetic amorphous thin film containing at least one element selected from the group consisting of, for example, Fe, Ni, and Go elements on a substrate. This is a method of forming an amorphous thin film by sputter deposition while applying a relatively rotating magnetic field to the amorphous thin film. The direction of the magnetic field applied to the amorphous thin film to be formed on the substrate is preferably approximately parallel to the surface of the amorphous thin film to be formed on the substrate,
Further, the magnitude of the applied magnetic field is preferably 10 Oe or more. The magnitude of the magnetic field applied above is l0C)e
If it is less than 9, the effect of improving magnetic properties of the present invention will be reduced, which is not preferable.

〔実施例〕〔Example〕

以下に本発明の一実施例を挙げ、さらに詳細に説明する
An example of the present invention will be described below in more detail.

(実施例1) −合金組成がCo、。Mo5Zr、□の母合金をアーク
溶解により作製し、直径50mm 、厚さ約1mmのタ
ーゲットを作製した。このターゲットを用い、約3mT
orrのAr圧力下で、基板面に平行に50Oe以上の
磁場を印加し、基板を回転しながら、スパッタ蒸着する
ことにより非晶質薄膜を作製した。得られた非晶質薄膜
の磁気特性は膜によってバラツキはあるが、その保磁力
は0.1Oe以下、初透磁率(20kHz)は6100
以上の実用に適した磁気特性が得られた。このことは2
本実施例の方法により作製した非晶質薄膜は、誘導磁気
異方性が小さくなったことを示している。
(Example 1) - Alloy composition is Co. A mother alloy of Mo5Zr, □ was produced by arc melting, and a target with a diameter of 50 mm and a thickness of about 1 mm was produced. Using this target, approximately 3 mT
An amorphous thin film was produced by sputter deposition under an Ar pressure of orr, applying a magnetic field of 50 Oe or more parallel to the substrate surface, and rotating the substrate. Although the magnetic properties of the obtained amorphous thin film vary depending on the film, its coercive force is less than 0.1 Oe, and its initial magnetic permeability (20 kHz) is 6100.
The above magnetic properties suitable for practical use were obtained. This is 2
The amorphous thin film produced by the method of this example shows that the induced magnetic anisotropy is reduced.

(比較例1) 合金組成がそれぞれ、 Co、5.、MO,Zr、、5
゜G o、、Mo、 、Zr、、、、 Go、S、gM
ol、、Zr、、、になるように、直径50mmのコバ
ルト円板上に、 Mo、 Zrの小塊を均一に配置した
複合ターゲットを用い。
(Comparative Example 1) The alloy compositions are Co, 5. ,MO,Zr,,5
゜Go, , Mo, , Zr, , Go, S, gM
A composite target was used in which Mo and Zr small lumps were uniformly arranged on a cobalt disk with a diameter of 50 mm so that Zr,...

二極高周波スパッタ装置を使用して、約1〜Sm T 
orrのアルゴン圧力下で、上記複合ターゲットと基板
との間隔を5〜10cmとして、スパッタ蒸着を行い非
晶質薄膜を作製した。これらの組成の非品質薄膜は、い
ずれも保磁力が約1〜5Oeを示し、上記実施例1と比
較して高い保磁力を示した。
Using a two-pole high frequency sputtering device, approximately 1~Sm T
An amorphous thin film was fabricated by sputter deposition under an argon pressure of 5 to 10 cm between the composite target and the substrate. The non-quality thin films with these compositions all exhibited a coercive force of about 1 to 5 Oe, which was higher than that of Example 1 above.

(実施例2) 合金組成が(Go、、 I@ F eo、o4)7□M
n25 lta B 11の直径50mn+ 、厚さ約
1mmのターゲットを用い、約3 m T orrのア
ルゴン圧力下で基板面に平行に約100Oeの磁場を印
加し、基板を回転しながらスパッタ蒸着することにより
上記組成の非晶質薄膜を作製した。得られた非晶質磁性
薄膜の保磁力は90oboeと低く、透磁率も1kHz
で7000という高い値が得られた。これに対し2回転
磁場を与えないでスパッタ蒸着した従来の非晶質薄膜は
、飽和磁化が1010Oe/gy保磁力が約1008も
あり9本発明の非晶質薄膜の作製法と比較して顕著な差
が認められた。
(Example 2) Alloy composition is (Go,, I@F eo, o4)7□M
Using a n25 lta B 11 target with a diameter of 50 mn+ and a thickness of about 1 mm, a magnetic field of about 100 Oe was applied parallel to the substrate surface under an argon pressure of about 3 m Torr, and sputter deposition was performed while rotating the substrate. An amorphous thin film having the above composition was produced. The obtained amorphous magnetic thin film has a low coercive force of 90 oboe and a magnetic permeability of 1 kHz.
A high value of 7000 was obtained. On the other hand, the conventional amorphous thin film deposited by sputtering without applying a two-rotation magnetic field has a saturation magnetization of 1010 Oe/gy and a coercive force of about 1008, which is remarkable compared to the method for producing an amorphous thin film of the present invention. A significant difference was observed.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごとく2本発明の回転磁場中でスパ
ッタ蒸着を行うことにより作製した非晶質薄膜は、従来
のスパッタ蒸着法により作製した非晶質薄膜と比較して
極めて優れた磁気特性を有するものであって、磁気異方
性が小さく、低い保磁力で、高い透磁率を示し、磁気コ
ア材などの電気音響変換素子材料、磁歪素子材料、イン
バー。
As explained in detail above, the amorphous thin film produced by sputter deposition in a rotating magnetic field according to the present invention has extremely superior magnetic properties compared to the amorphous thin film produced by the conventional sputter deposition method. It has small magnetic anisotropy, low coercive force, and high magnetic permeability, and has electroacoustic transducer materials such as magnetic core materials, magnetostrictive element materials, and invar.

エリンバ−材料などに極めて有効に用いることができる
It can be used extremely effectively for Elinvar materials and the like.

代理人弁理士  中 村 純之助Representative Patent Attorney Junnosuke Nakamura

Claims (4)

【特許請求の範囲】[Claims] 1.基板上に,強磁性の非晶質薄膜を形成する方法にお
いて,上記基板上に形成させる非晶質薄膜に対して,相
対的に回転する磁場を印加しながらスパッタ蒸着法によ
り成膜することを特徴とする非晶質薄膜の製造方法。
1. A method for forming a ferromagnetic amorphous thin film on a substrate includes forming the film by sputter deposition while applying a relatively rotating magnetic field to the amorphous thin film formed on the substrate. Characteristic method for producing amorphous thin film.
2.特許請求の範囲第1項記載の非晶質薄膜の製造方法
において,基板上に形成させる非晶質薄膜に印加する磁
場の方向が,上記基板上に形成させる非晶質薄膜面に対
してほぼ平行であることを特徴とする非晶質薄膜の製造
方法。
2. In the method for manufacturing an amorphous thin film according to claim 1, the direction of the magnetic field applied to the amorphous thin film formed on the substrate is approximately parallel to the surface of the amorphous thin film formed on the substrate. A method for producing an amorphous thin film characterized by being parallel.
3.特許請求の範囲第1項または第2項に記載の非晶質
薄膜の製造方法において,基板上に形成させる非晶質薄
膜に印加する磁場の大きさが10Oe以上であることを
特徴とする非晶質薄膜の製造方法。
3. In the method for manufacturing an amorphous thin film according to claim 1 or 2, the magnetic field applied to the amorphous thin film formed on the substrate has a magnitude of 10 Oe or more. Method for producing crystalline thin films.
4.特許請求の範囲第1項,第2項または第3項記載の
非晶質薄膜の製造方法において,強磁性の非晶質薄膜は
,Fe,Ni,Co元素よりなる群から選択された少な
くとも1種の元素を主成分とする非晶質合金からなるこ
とを特徴とする非晶質薄膜の製造方法。
4. In the method for manufacturing an amorphous thin film according to claim 1, 2, or 3, the ferromagnetic amorphous thin film contains at least one element selected from the group consisting of Fe, Ni, and Co elements. 1. A method for producing an amorphous thin film, characterized in that it is made of an amorphous alloy containing seed elements as main components.
JP19805788A 1981-08-11 1988-08-10 Manufacture of thin amorphous film Pending JPH0192358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19805788A JPH0192358A (en) 1981-08-11 1988-08-10 Manufacture of thin amorphous film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP56125800A JPH06104870B2 (en) 1981-08-11 1981-08-11 Method for producing amorphous thin film
JP19805788A JPH0192358A (en) 1981-08-11 1988-08-10 Manufacture of thin amorphous film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56125800A Division JPH06104870B2 (en) 1981-08-11 1981-08-11 Method for producing amorphous thin film

Publications (1)

Publication Number Publication Date
JPH0192358A true JPH0192358A (en) 1989-04-11

Family

ID=26462120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19805788A Pending JPH0192358A (en) 1981-08-11 1988-08-10 Manufacture of thin amorphous film

Country Status (1)

Country Link
JP (1) JPH0192358A (en)

Similar Documents

Publication Publication Date Title
JPS5827941A (en) Manufacture of amorphous thin film
JPS60214417A (en) Vertical magnetic recording medium
JP2789806B2 (en) Fabrication method of soft magnetic nitride alloy film
JPH0635654B2 (en) Target material with high stability of thin-film magnetic properties against atmospheric changes
JPH0192358A (en) Manufacture of thin amorphous film
JP2710441B2 (en) Soft magnetic laminated film
JPH07192244A (en) Perpendicular magnetic recording medium and its production
JPH0519967B2 (en)
JPH03263306A (en) Magnetic film and magnetic head
JPS6056414B2 (en) Co-based alloy for magnetic recording media
JPH0192359A (en) Manufacture of thin amorphous film
JPH072990B2 (en) Method for producing amorphous thin film
JPH04139707A (en) Soft magnetic thin film having high saturation magnetic flux density
JPS6313256B2 (en)
JP2784105B2 (en) Soft magnetic thin film
JPS60218820A (en) Manufacture of fe-al-si system alloy thin film
JP2551008B2 (en) Soft magnetic thin film
JP2842683B2 (en) Soft magnetic thin film material
JPS62260056A (en) Chromium target member
JPS61252617A (en) Material for soft-magnetic thin film
JPH04214831A (en) Soft magnetic film
JPH03246913A (en) Forming method of thin soft magnetic film
JPS63146417A (en) Soft magnetic thin film
JPH079864B2 (en) Method for producing Co-based amorphous magnetic film
JPS5975610A (en) Iron base magnetic alloy thin film and manufacture thereof