JPH03263306A - Magnetic film and magnetic head - Google Patents

Magnetic film and magnetic head

Info

Publication number
JPH03263306A
JPH03263306A JP26432190A JP26432190A JPH03263306A JP H03263306 A JPH03263306 A JP H03263306A JP 26432190 A JP26432190 A JP 26432190A JP 26432190 A JP26432190 A JP 26432190A JP H03263306 A JPH03263306 A JP H03263306A
Authority
JP
Japan
Prior art keywords
film
magnetic
heat treatment
nitrogen
femn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26432190A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ishiwata
延行 石綿
Chizuko Wakabayashi
若林 千鶴子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPH03263306A publication Critical patent/JPH03263306A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic film having large saturation magnetic flux density (Bs) of 16-18kG, excellent soft magnetic characteristics, and corrosion resistance and hardness superior to FeMC alloy film, by using a magnetic film of specified constituent FexMyNz. CONSTITUTION:The title magnetic film is constituted of FexMyNz composition. M is at least one kind of metal selected from a group constituted of Zr, Nb, Hf, Ta, Mo and Ti. N is nitrogen. When x, y, and z are represented by atomic percentage, the following hold; 70.5<=x<=84, 7<=y<=14, 9<=z<=15.5, and x+y+z=100. The FeMN film in this invention is formed by physical vapor growth method such as sputtering method and vacuum deposition method. Nitrogen can be supplied from the atmospheric gas or the matrix of the film. The FeMN film just after it has been formed contains amorphous phase, and Bs is lower than or equal to 15kG. By suitable heat treatment, the whole part of the film is turned into fine crystal grain texture, and the soft magnetic characteristics is improved, thereby obtaining Bs of 16-18kG. Heat treatment is performed in vacuum, or nitrogen gas or inert gas like argon.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁性体膜および磁気ヘッドに関し特に、デジ
タルVTR、ハイビジョンVTR等で要求される、高密
度磁気記録、再生に優れた特性を有する磁気ヘッドと磁
気コア材に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a magnetic film and a magnetic head, and particularly has excellent characteristics for high-density magnetic recording and reproduction required for digital VTRs, high-definition VTRs, etc. Regarding magnetic heads and magnetic core materials.

(従来の技術) 従来、磁気へラドコア材としては、フェライト、パーマ
ロイ、センダスト、Co系アモルファス等が用いられて
来た。しかしながら、これらの材料は、飽和磁束密度(
Bs)がフェライトで5kG程度、パーマロイで6〜8
kG、センダストで10kG程度、G。
(Prior Art) Conventionally, ferrite, permalloy, sendust, Co-based amorphous, etc. have been used as magnetic herad core materials. However, these materials have a low saturation magnetic flux density (
Bs) is about 5kG for ferrite and 6 to 8 for permalloy.
kG, about 10kG with Sendust, G.

系アモルファスで8kG程度であり、高密度な磁気記録
、再生の特性を向上させるためには、Bsを増大させる
必要があった。
It is about 8 kG for an amorphous type, and in order to improve the characteristics of high-density magnetic recording and reproduction, it was necessary to increase Bs.

これらに対し、最近FeMC(MはZr、Ti、 Hf
、 Ta、 Nbのうち一種以上)なる組成を持つ合金
において、16kG程度のBsを有する、良好な軟磁性
膜が報告されている(信学技報MR89−12(198
9))。
On the other hand, recently FeMC (M is Zr, Ti, Hf
, Ta, and Nb), a good soft magnetic film with a Bs of about 16 kG has been reported (IEICE Technical Report MR89-12 (1988)).
9)).

(発明が解決しようとする課題) しかし、このFeMC(MはZr、 Ti、 Hf、 
Ta、 Nb)の組成より戊る軟磁性膜は、以下の様な
問題点を有している。
(Problem to be solved by the invention) However, this FeMC (M is Zr, Ti, Hf,
Soft magnetic films having a composition of Ta, Nb) have the following problems.

第1に、炭素(C)を多く含むため、さび易い点である
。80°090%RH11200時間の腐食テストでは
Bsで30%の低下が認められ、さびの進行が認められ
たく第5図参照)。
First, since it contains a large amount of carbon (C), it is susceptible to rust. In a corrosion test at 80°090%RH for 11,200 hours, a 30% decrease in Bs was observed, indicating the progress of rust (see Figure 5).

第2に高度が低い点である。FeMC膜のビッカース硬
度Hvは高々400程度であり、現在ビデオヘッド等で
実用化されているセンダストのHv600に比べても小
さい。現行のセンダストであっても磨耗が問題となって
いることからも今後、デジタル画像、ハイビジョン画像
を得るためにさらにテープとヘッドの相対速度が大きく
なり、またテープテンションも増大するVTRにおいて
は、磨耗条件の厳しくなる事は必至であり、FeMC膜
の実用化は困難である。
Second, the altitude is low. The Vickers hardness Hv of the FeMC film is about 400 at most, which is smaller than Hv600 of Sendust, which is currently in practical use in video heads and the like. Wear is a problem even with the current Sendust, so in the future VTRs, where the relative speed between the tape and the head will increase further to obtain digital images and high-definition images, and the tape tension will also increase, wear will become a problem. It is inevitable that the conditions will become stricter, making it difficult to put FeMC films into practical use.

第3に、良好な軟磁気特性を示す組成領域でのBsは高
々16kGであり、たとえば17kGを越えるBsを持
つ組成では、良好な軟磁気特性の得られない点である。
Thirdly, the Bs in the composition range exhibiting good soft magnetic properties is at most 16 kG, and for example, compositions with Bs exceeding 17 kG will not provide good soft magnetic properties.

(信学技報MR89−12(1989))。磁気記録の
分野では、記録の高密度化に伴い、益々大きなりsを持
つコア材が求められており、この点でもFeMC系の材
料は問題があった。
(IEICE Technical Report MR89-12 (1989)). In the field of magnetic recording, as recording density increases, core materials with increasingly larger s are required, and FeMC-based materials have had problems in this respect as well.

(課題を解決するための手段) 本発明は、上記の問題点を解決するものである。Fex
MyNzの組成から成ることを特徴とする磁性体膜であ
り、MはZr、 Nb、 Hf、 Ta、 Mo、 T
iより成る群から選択された少なくとも1種の金属であ
りNは窒素であって、x、 y、 zを原子パーセント
とするとそれぞれ 70.5<x<84 79ニ14 9<z<15.5 x+y+z=100 の範囲にあることを特徴とする磁性体膜およびこれを用
いた磁気ヘッドである。
(Means for Solving the Problems) The present invention solves the above problems. Fex
A magnetic film characterized by having a composition of MyNz, where M is Zr, Nb, Hf, Ta, Mo, T.
at least one metal selected from the group consisting of i, where N is nitrogen, and where x, y, and z are atomic percents, respectively, 70.5<x<84 79d149<z<15.5 A magnetic film characterized in that x+y+z=100 and a magnetic head using the same.

後に示すように本発明において、Zr、 Nb、 Hf
、 Ta。
As shown later, in the present invention, Zr, Nb, Hf
, Ta.

Mo、Tiより成る群から選択された少なくとも1種類
の金属の含有量yは7〜14原子%の範囲である。また
窒素の含有量2は9〜15.5原子%の範囲である。こ
のy、zを満たし、残りの取分をFeとする時、優れた
軟磁気特性が得られる。本発明によるFeMN膜はスパ
ッタ法、真空蒸着法等の物理的気相成長法により成膜さ
れる。この際窒素は、雰囲気ガスから供給されることも
、また、膜の母材から供給されることも、どちらも可能
である。成膜直後のFeMN膜は本発明組成内では非晶
質相を含む構造でありBsは15kG以下である。これ
に適当な熱処理を施すことにより膜全体が微結晶粒組織
となり、軟磁気特性が改善されるとともにBsも16〜
18kGとなる。熱処理は通常、真空中、窒素ガス中、
アルゴンガス等の不活性ガス中にて行われる。
The content y of at least one metal selected from the group consisting of Mo and Ti is in the range of 7 to 14 at.%. Further, the nitrogen content 2 is in the range of 9 to 15.5 at%. When these y and z are satisfied and the remaining portion is Fe, excellent soft magnetic properties can be obtained. The FeMN film according to the present invention is formed by a physical vapor deposition method such as a sputtering method or a vacuum evaporation method. At this time, nitrogen can be supplied either from the atmospheric gas or from the base material of the membrane. The FeMN film immediately after deposition has a structure including an amorphous phase within the composition of the present invention, and Bs is 15 kG or less. By applying appropriate heat treatment to this film, the entire film becomes a microcrystalline structure, and the soft magnetic properties are improved and the Bs is also reduced to 16~16.
It becomes 18kG. Heat treatment is usually carried out in vacuum, nitrogen gas,
It is carried out in an inert gas such as argon gas.

熱処理温度及び時間は、膜厚及び組成により異なるが、
一般的に結晶化温度より高い450’C〜550°Cで
5分から25時間程度が望ましい。
The heat treatment temperature and time vary depending on the film thickness and composition, but
Generally, it is desirable that the temperature be 450'C to 550C, which is higher than the crystallization temperature, for about 5 minutes to 25 hours.

熱処理の際の昇温や冷却の条件は条件に応じて任意に変
えることができる。また同一温度または異なる温度で複
数回にわけ熱処理を行ったり、多段の熱処理パターンで
熱処理を行うこともてきる。更には、本合金は熱処理を
直接あるいは交流の磁場中で行うこともできる。磁場中
熱処理により本合金に磁気異方性を生じさせることがで
きる。本合金膜からなる磁心の磁路方向の磁場を印加し
熱処理した場合は、特に高角形比の特性が得られ、磁路
と垂直方向に磁場を印加し熱処理した場合は低角形で高
透磁率の特性となる。
Conditions for heating and cooling during heat treatment can be arbitrarily changed depending on the conditions. Further, the heat treatment can be carried out multiple times at the same temperature or different temperatures, or the heat treatment can be carried out in a multi-stage heat treatment pattern. Furthermore, the present alloy can be heat treated directly or in an alternating magnetic field. Magnetic anisotropy can be produced in this alloy by heat treatment in a magnetic field. When a magnetic core made of this alloy film is heat-treated by applying a magnetic field in the direction of the magnetic path, a particularly high squareness ratio can be obtained, and when a magnetic field is applied perpendicular to the magnetic path and heat-treated, it has a low squareness and high magnetic permeability. It is a characteristic of

磁場は熱処理の間中かける必要はなく、本発明に係る合
金のキュリー温度Tcより低い温度だけ印加すれば十分
効果が得られる。本発明に係る合金のTcはスパッタ成
膜直後の非晶質的な場合より熱処理により形成される微
結晶相のTcが上昇しており、非晶質相のTcより高い
温度でも磁場中熱処理が適用できる。また回転磁場中熱
処理を熱処理工程の1部で行っても良い。また熱処理を
2段階以上で行うことができる。また、張力や圧縮力を
加えながら熱処理を行い磁気特性を調整することもでき
る。
It is not necessary to apply a magnetic field throughout the heat treatment, and a sufficient effect can be obtained by applying it only at a temperature lower than the Curie temperature Tc of the alloy according to the present invention. The Tc of the alloy according to the present invention is higher in the microcrystalline phase formed by heat treatment than in the amorphous case immediately after sputtering, and heat treatment in a magnetic field is possible even at a higher temperature than the Tc of the amorphous phase. Applicable. Further, heat treatment in a rotating magnetic field may be performed as part of the heat treatment process. Further, the heat treatment can be performed in two or more stages. Furthermore, the magnetic properties can be adjusted by performing heat treatment while applying tension or compression.

(作用) FeMN膜の軟磁性発生原因は以下の様に考えられる。(effect) The cause of soft magnetism in the FeMN film is considered to be as follows.

すなわち、物理的気相成長法により成膜されたFeMN
膜は上記の熱処理によりbccFe固容体結固粒体結晶
粒れる。この時同時に窒素と化合物を生成し易いM原子
が選択時に窒化物を生成し、結晶粒の成長を抑制する。
That is, FeMN film formed by physical vapor deposition method
The bccFe solid solidified grains of the film are formed by the heat treatment described above. At the same time, M atoms, which tend to form compounds with nitrogen, form nitrides when selected, thereby suppressing the growth of crystal grains.

結果として、微結晶粒組織となり、良好な軟磁性を示す
As a result, it has a microcrystalline structure and exhibits good soft magnetism.

なお、O,P、 S、 H等の不可避的不純物やCa、
 Sr。
In addition, unavoidable impurities such as O, P, S, and H, Ca,
Sr.

Ba、Mg等については所望の特性が劣化しない程度に
含有しても本発明合金と同一とみなすことができるのも
もちろんである。
Of course, even if Ba, Mg, etc. are contained to such an extent that the desired properties are not deteriorated, the alloy can be considered to be the same as the alloy of the present invention.

(実施例) スパッタ法により、結晶化ガラス基板上に2〜6□mの
膜厚でいろいろな組成のFeMN膜を成膜した。Nはス
パッタ中にN2ガスを添加することにより供給した。ス
パッタ成膜後、lXl0−5Torr以下の真空中50
0〜550’Cで1時間の熱処理を施した。第1図は、
FeMN組成膜においてMをTaとした時の種々の組成
での保磁力Heである。Taが7〜14at%で、かつ
、Nが9〜15.5at%の領域でHeは1(Oe)以
下となり良好な軟磁気特性を示した。
(Example) FeMN films of various compositions were formed with a film thickness of 2 to 6 □m on a crystallized glass substrate by sputtering. N was supplied by adding N2 gas during sputtering. After sputtering film formation, 50°C in vacuum below lXl0-5 Torr.
Heat treatment was performed at 0-550'C for 1 hour. Figure 1 shows
This is the coercive force He at various compositions when M is Ta in the FeMN composition film. In the region where Ta was 7 to 14 at% and N was 9 to 15.5 at%, He was 1 (Oe) or less, showing good soft magnetic properties.

第2図は、FeMN組成膜において、MをTaとした時
の種々の組成での飽和磁束密度Bsを示す。第1図で良
好な軟磁気特性を示した領域でBsがおよそ16〜18
kGと大きな値を示した。なお本作製方法による場合、
より良好な磁気特性を得るためには膜厚が2pm以上で
あることが望ましい。
FIG. 2 shows the saturation magnetic flux density Bs at various compositions when M is Ta in a FeMN composition film. In the region showing good soft magnetic properties in Figure 1, Bs is approximately 16 to 18.
It showed a large value of kG. In addition, when using this production method,
In order to obtain better magnetic properties, it is desirable that the film thickness is 2 pm or more.

第3図は、Ta:8.Oat%、N:13.Oat%、
残余Feから成るFeTaN膜の磁化曲線を、第4図は
、第3図と同じ膜の透磁率の周波数特性を示す。Heが
0.130eと小さく、かつ、Bsは18kGと大きい
、また、透磁率はIMHzで6440.20MHzでも
1650と高く、極めて良好な軟磁気特性を持つ膜であ
った。
FIG. 3 shows Ta: 8. Oat%, N: 13. Oat%,
FIG. 4 shows the magnetization curve of the FeTaN film made of residual Fe, and FIG. 4 shows the frequency characteristics of magnetic permeability of the same film as in FIG. The film had a low He value of 0.130e, a high Bs value of 18 kG, and a high magnetic permeability of 1650 even at IMHz of 6440.20 MHz, and had extremely good soft magnetic properties.

第3図、第4図はFeTaN膜の代表的な特性を示すも
のであり、第1図、第2図に示した組成領域内であれば
、はぼこれと同等の特性を有する。
FIGS. 3 and 4 show typical characteristics of FeTaN films, and within the composition range shown in FIGS. 1 and 2, the FeTaN film has almost the same characteristics.

第3図においてFeTaN膜で18kGの大きなりsが
実現している。これは、従来のFeMC(M:Zr、 
Ti、 Hf。
In FIG. 3, a large force of 18 kG is achieved with the FeTaN film. This is a conventional FeMC (M:Zr,
Ti, Hf.

Ta、 Nb)膜では再現しなかった値である。また第
4図中に従来例としてFe79.lHf7.6C13,
3(数値は原子パーセント)膜の透磁率を破線で示す。
This value was not reproduced with the Ta, Nb) films. Also, in FIG. 4, Fe79. lHf7.6C13,
3 (values are in atomic percent) The magnetic permeability of the film is shown by the broken line.

本発明による磁性体膜がFeMC膜に対し透磁率でも優
れていることが分かる。
It can be seen that the magnetic film according to the present invention is also superior in magnetic permeability to the FeMC film.

以上のような、優れた軟磁気特性は、膜中のTaが活性
であり、膜中のNと選択的に窒化することに起因する。
The excellent soft magnetic properties as described above are due to the fact that Ta in the film is active and selectively nitrides with N in the film.

すなわち、本発明による膜はスパッタ成膜後適度な熱処
理を施すと、bccFe固溶体結晶相が析出するととも
に、Taが選択的にNと結び付き、TaN等の窒化物が
生成される。この窒化物が結晶粒の成長を著しく制御し
、熱処理後の膜は極微結晶粒から成る膜となり良好な軟
磁性を示す。第5図に本発明によるFeTaN膜、従来
例としてのFeZrC膜の80°C90%RH雰囲気中
での腐食(さび)によるBsの経時変化を示す。FeZ
rC膜は、Cを含むことから腐食が進行し、1200時
間経過後、Bsは約%70に減少した。それに対し、F
eTaN膜は、1200時間経過後もBsの減少は認め
られなかった。また、本発明によるFeTaN膜のビッ
カース硬度Hvを測定したところ、Hv=600−80
0が得られ、従来のFeMCのHv<400に比べ大き
くまた、センダスト並み、あるいは、それ以上の硬度を
持つことが判った。
That is, when the film according to the present invention is subjected to an appropriate heat treatment after being sputtered, a bccFe solid solution crystal phase precipitates, and Ta selectively combines with N to generate nitrides such as TaN. This nitride significantly controls the growth of crystal grains, and the film after heat treatment becomes a film consisting of ultrafine crystal grains and exhibits good soft magnetism. FIG. 5 shows the change in Bs over time due to corrosion (rust) of the FeTaN film according to the present invention and the conventional FeZrC film in an atmosphere of 80° C. and 90% RH. FeZ
Since the rC film contains C, corrosion progresses, and Bs decreased to about 70% after 1200 hours. On the other hand, F
In the eTaN film, no decrease in Bs was observed even after 1200 hours. Furthermore, when the Vickers hardness Hv of the FeTaN film according to the present invention was measured, Hv=600-80
It was found that the hardness was larger than that of conventional FeMC, which had Hv<400, and had a hardness comparable to or even higher than that of Sendust.

Mとして、Ta以外のZr、 Nb、 Mo、 Hf、
 Tiを用いた場合もTaと同様な結果が得られた。こ
れは前述したとおりTaと同様にZr、 Nb、 Hf
、 Tiが活性であり熱処理により、膜中で選択的にN
と結び付き、膜がTaの場合と同様微結晶組織化するこ
とからその磁気特性は説明される。また、Taの場合と
同様に、耐食性、高度が向上した結果が得られた。
As M, Zr other than Ta, Nb, Mo, Hf,
Similar results were obtained when using Ti. As mentioned above, this applies to Zr, Nb, Hf as well as Ta.
, Ti is active and N is selectively released in the film by heat treatment.
Its magnetic properties are explained by the fact that the film has a microcrystalline structure similar to that of Ta. Further, as in the case of Ta, improved corrosion resistance and height were obtained.

次に、セラミック基板上に、スパッタ法によりFe(7
9,7at%)−N(11,0)−Ta(9,3)なる
組成の膜を5μm厚、中間層としてAl2O3膜0.1
μm厚を介して、4層威膜し、膜厚がトラック巾となる
第6図に示す構造の磁気ヘッドを作製した。FeTaN
膜の磁気特性は、飽和磁束密度4πMs 17kG、透
磁率、約2000(20MHzにて)であった。第7図
に、メタルテープ(保磁力15000e)を使用、テー
プヘッド相対速度21m/seeの時の、本ヘッドの規
格化出力の周波数依存性を示す。併せて、Fe5iAl
系合金膜を用いた従来ヘッドの特性を示す。Fe5iA
1膜の磁気特性は4πMs 10kG、μは約1001
000(20にて)であった。
Next, Fe (7
A film with a composition of
A magnetic head having the structure shown in FIG. 6 was manufactured by forming a four-layer film with a thickness of μm and having a film thickness equal to the track width. FeTaN
The magnetic properties of the film were a saturation magnetic flux density of 4πMs 17 kG and a magnetic permeability of about 2000 (at 20 MHz). FIG. 7 shows the frequency dependence of the normalized output of this head when a metal tape (coercive force 15000e) is used and the tape head relative speed is 21 m/see. In addition, Fe5iAl
The characteristics of the conventional head using the alloy film are shown below. Fe5iA
The magnetic properties of one film are 4πMs 10kG, μ is approximately 1001
000 (at 20).

FeTaN膜の高4πMs、高□特性により、従来ヘッ
ドを越える大きな出力が高周波でも得られている。
Due to the high 4πMs and high □ characteristics of the FeTaN film, a greater output than conventional heads can be obtained even at high frequencies.

FeTaN膜のみならず、前述の他の組成を有する金属
軟磁性体膜を使用した場合、4πMsが大きく、μの高
い膜はと゛、高出力はヘッドが得られた。
When not only the FeTaN film but also a soft magnetic metal film having the other compositions mentioned above was used, a film with a large 4πMs and a high μ could produce a head with a high output.

(発明の効果) 以上の通り、本発明により16〜18kGの大きなりs
と良好な軟磁気特性を持ち、さらに従来より知られてい
るFeMC(MはZr、 Hf、 Ti、 Ta、 N
b)合金膜に優る耐食性、硬度を持つ磁気ヘッド磁気コ
ア用の磁性体膜を得ることができる。また、大きな出力
が高周波でも得られる磁気ヘッドが実現した。
(Effect of the invention) As described above, the present invention provides a large load s of 16 to 18 kG.
FeMC has good soft magnetic properties, and is also composed of conventionally known FeMC (M is Zr, Hf, Ti, Ta, N
b) A magnetic film for a magnetic core of a magnetic head having corrosion resistance and hardness superior to alloy films can be obtained. In addition, a magnetic head that can obtain large output even at high frequencies has been realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、FeTaN組戒膜の組成の組成でのHeの値
を示す図、第2図は、FeTaN組戒膜の組成の組成で
のBsの値を示す図、第3図はFeTaN膜の代表的な
磁化曲線図、第4図はFeTaN膜の代表的な透磁率周
波数特性図、第5図は80°C90%RH環境中にFe
TaN膜、FeZrC膜を放置した時のBsの経時変化
を示す図。、第6図は本発明による磁気ヘッドの外観図
であり、1はセラミック製、成るいはガラス製の基板、
2は金属軟磁性体膜、第7図は、本発明による磁気ヘッ
ドの出力の周波数特性を示す図。
Fig. 1 is a diagram showing the He value depending on the composition of the FeTaN composite film, Fig. 2 is a diagram showing the Bs value depending on the composition of the FeTaN composite film, and Fig. 3 is a diagram showing the value of Bs depending on the composition of the FeTaN composite film. Figure 4 is a typical permeability frequency characteristic diagram of FeTaN film, Figure 5 is a typical magnetization curve diagram of FeTaN film, and Figure 5 is a typical magnetization curve diagram of FeTaN film.
FIG. 3 is a diagram showing changes in Bs over time when a TaN film and a FeZrC film are left as they are. , FIG. 6 is an external view of the magnetic head according to the present invention, in which 1 is a ceramic or glass substrate;
2 is a metal soft magnetic film, and FIG. 7 is a diagram showing the frequency characteristics of the output of the magnetic head according to the present invention.

Claims (1)

【特許請求の範囲】 (1)Fe_xM_yN_zの組成から成ることを特徴
とする磁性体膜であり、MはZr,Nb,Hf,Ta,
Mo,Tiより成る群から選択された少なくとも1種の
金属でありNは窒素であって、x,y,zを原子パーセ
ントとするとそれぞれ 70.5<x<84 7≦y≦14 9<z<15.5 x+y+z=100 の範囲にあることを特徴とする磁性体膜。 (2)特許請求の範囲第1項記載の磁性体膜を磁気コア
としたことを特徴とする磁気ヘッド。
[Claims] (1) A magnetic film characterized by having a composition of Fe_xM_yN_z, where M is Zr, Nb, Hf, Ta,
At least one metal selected from the group consisting of Mo and Ti, where N is nitrogen, and where x, y, and z are atomic percent, respectively 70.5<x<84 7≦y≦14 9<z <15.5 x+y+z=100. (2) A magnetic head characterized in that the magnetic film according to claim 1 is used as a magnetic core.
JP26432190A 1990-02-02 1990-10-01 Magnetic film and magnetic head Pending JPH03263306A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2368690 1990-02-02
JP2-23686 1990-02-02

Publications (1)

Publication Number Publication Date
JPH03263306A true JPH03263306A (en) 1991-11-22

Family

ID=12117331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26432190A Pending JPH03263306A (en) 1990-02-02 1990-10-01 Magnetic film and magnetic head

Country Status (1)

Country Link
JP (1) JPH03263306A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489607A (en) * 1990-07-26 1992-03-23 Fuji Photo Film Co Ltd Production of soft magnetic thin film
JPH06295418A (en) * 1993-04-09 1994-10-21 Nec Corp Combined magnetic head and magnetic recording and reproducing device
US5404259A (en) * 1991-10-25 1995-04-04 Nec Corporation Magnetic head having high wear resistance and non-magnetic substrate used in the magnetic head
JPH07110915A (en) * 1993-10-15 1995-04-25 Nec Kansai Ltd Magnetic head and magnetic head structural body
US5473492A (en) * 1993-03-03 1995-12-05 Tdk Corporation Magnetic head including a reproducing head utilizing a magnetoresistance effect and having a magnetic shielding film containing nitrogen

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599905A (en) * 1982-07-09 1984-01-19 Hitachi Ltd Magnetic substance film
JPS6357758A (en) * 1986-08-26 1988-03-12 Matsushita Electric Ind Co Ltd Nitriding magnetic alloy film
JPS63299219A (en) * 1987-05-29 1988-12-06 Sony Corp Magnetically soft thin film
JPH01287811A (en) * 1988-02-25 1989-11-20 Nippon Mining Co Ltd Nonmagnetic substrate for magnetic head and magnetic head
JPH0254405A (en) * 1988-08-18 1990-02-23 Matsushita Electric Ind Co Ltd Magnetic head
JPH02154405A (en) * 1988-12-07 1990-06-13 Hitachi Ltd Multilayer magnetic film and magnetic head using same
JPH02205310A (en) * 1989-02-03 1990-08-15 Nippon Telegr & Teleph Corp <Ntt> Method of forming magnetic multilayer film
JPH02275605A (en) * 1989-01-26 1990-11-09 Fuji Photo Film Co Ltd Soft magnetic thin film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599905A (en) * 1982-07-09 1984-01-19 Hitachi Ltd Magnetic substance film
JPS6357758A (en) * 1986-08-26 1988-03-12 Matsushita Electric Ind Co Ltd Nitriding magnetic alloy film
JPS63299219A (en) * 1987-05-29 1988-12-06 Sony Corp Magnetically soft thin film
JPH01287811A (en) * 1988-02-25 1989-11-20 Nippon Mining Co Ltd Nonmagnetic substrate for magnetic head and magnetic head
JPH0254405A (en) * 1988-08-18 1990-02-23 Matsushita Electric Ind Co Ltd Magnetic head
JPH02154405A (en) * 1988-12-07 1990-06-13 Hitachi Ltd Multilayer magnetic film and magnetic head using same
JPH02275605A (en) * 1989-01-26 1990-11-09 Fuji Photo Film Co Ltd Soft magnetic thin film
JPH02205310A (en) * 1989-02-03 1990-08-15 Nippon Telegr & Teleph Corp <Ntt> Method of forming magnetic multilayer film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489607A (en) * 1990-07-26 1992-03-23 Fuji Photo Film Co Ltd Production of soft magnetic thin film
US5404259A (en) * 1991-10-25 1995-04-04 Nec Corporation Magnetic head having high wear resistance and non-magnetic substrate used in the magnetic head
US5473492A (en) * 1993-03-03 1995-12-05 Tdk Corporation Magnetic head including a reproducing head utilizing a magnetoresistance effect and having a magnetic shielding film containing nitrogen
JPH06295418A (en) * 1993-04-09 1994-10-21 Nec Corp Combined magnetic head and magnetic recording and reproducing device
JPH07110915A (en) * 1993-10-15 1995-04-25 Nec Kansai Ltd Magnetic head and magnetic head structural body

Similar Documents

Publication Publication Date Title
US5587026A (en) Ferromagnetic film
US5439754A (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JPH07302711A (en) Soft magnetic alloy thin film and its manufacture
US5475554A (en) Magnetic head using specified Fe Ta N Cu or Fe Ta N Ag alloy film
JPH03263306A (en) Magnetic film and magnetic head
JPH02275605A (en) Soft magnetic thin film
JPH07116563B2 (en) Fe-based soft magnetic alloy
JPH0484403A (en) Soft magnetic thin film
US6303240B1 (en) Soft magnetic thin film
JPH02263416A (en) Manufacture of soft magnetic alloy film
JP2657710B2 (en) Method for manufacturing soft magnetic thin film
JP2866911B2 (en) Magnetic head
JP2784105B2 (en) Soft magnetic thin film
Katori et al. Soft magnetic properties for Fe-Al-Nb-NO films
JP2584687B2 (en) Method for manufacturing soft magnetic thin film
JPH031513A (en) Manufacture of soft magnetic thin film
JP2551008B2 (en) Soft magnetic thin film
JP2698864B2 (en) Method for manufacturing soft magnetic thin film
JP2771664B2 (en) Soft magnetic alloy film
JP2979557B2 (en) Soft magnetic film
JPH0416517A (en) Soft magnetic thin film
JPH0489606A (en) Production of soft magnetic thin film
JPH02262306A (en) Soft magnetic thin film and its manufacture
JPH04214831A (en) Soft magnetic film
JPH05217746A (en) Ferromagnetic film