JPH02275605A - Soft magnetic thin film - Google Patents

Soft magnetic thin film

Info

Publication number
JPH02275605A
JPH02275605A JP30481189A JP30481189A JPH02275605A JP H02275605 A JPH02275605 A JP H02275605A JP 30481189 A JP30481189 A JP 30481189A JP 30481189 A JP30481189 A JP 30481189A JP H02275605 A JPH02275605 A JP H02275605A
Authority
JP
Japan
Prior art keywords
thin film
soft magnetic
heat treatment
composition
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30481189A
Other languages
Japanese (ja)
Other versions
JPH0744108B2 (en
Inventor
Kanji Nakanishi
中西 寛次
Osamu Shimizu
治 清水
Satoshi Yoshida
敏 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to US07/470,662 priority Critical patent/US5117321A/en
Priority to EP90101621A priority patent/EP0380136B1/en
Priority to DE69015652T priority patent/DE69015652T2/en
Publication of JPH02275605A publication Critical patent/JPH02275605A/en
Priority to US07/878,624 priority patent/US5421915A/en
Priority to US08/178,441 priority patent/US6183568B1/en
Publication of JPH0744108B2 publication Critical patent/JPH0744108B2/en
Priority to US08/775,518 priority patent/US5772797A/en
Priority to US08/957,791 priority patent/US6238492B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/131Amorphous metallic alloys, e.g. glassy metals containing iron or nickel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To obtain a high-saturation magnetic flux density and high-frequency permeability by having a composition expression of Fea, Bb, and Nc (a, b, and c indicate atom%, respectively, and B indicates at least one type out of Zr, Hf, Ti, Nb, Ta, V, Mo, and W) and specifying the composition range. CONSTITUTION:The title item is shown by a composition expression of Fea, Bb, and Nc (a, b, and c indicates atom%, respectively, and B indicates at least one type of Zr, Hf, Ti, Nb, Ta, V, Mo, and W) and the composition range is 0<b<=20, and 0<c<=22 (excluding b<=7.5 and c<=5). When the added element B exceeds 20atom% or N exceeds 22atom%, no good soft magnetic properties can be obtained. When the composition range is 69<=a<=93, 2<=b<=15, and 5<c<=22 (preferably 5.5<c<=22), better soft magnetic properties can be shown. Thus, a high saturation magnetic flux density is achieved and magnetic distortion can be reduced to 0, thus obtaining a superb soft magnetic properties of low coercive force and high permeability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高飽和磁束密度と高周波透磁率を持ち、高密
度記録再生用磁気ヘッドのコア材料等に好適な軟磁性薄
膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a soft magnetic thin film that has high saturation magnetic flux density and high frequency permeability and is suitable as a core material of a magnetic head for high-density recording and reproduction.

〔発明の背景〕[Background of the invention]

例えばオーディオテープレコーダやVTR(ビデオテー
プレコーダ)等の磁気記録再生装置においては、記録信
号の高密度化や高品質化等が進められており、この高記
録密度化に対応して、磁気記録媒体として磁性粉にFe
、Co、Ni等ノ金属あるいは合金からなる粉末を用い
た。いわゆるメタルテープや1強磁性金属材料を真空薄
膜形成技術によりベースフィルム上に直接被着した。い
わゆる蒸着テープ等が開発され、各分野で実用化されて
いる。
For example, in magnetic recording and reproducing devices such as audio tape recorders and VTRs (video tape recorders), the density and quality of recording signals are increasing, and in response to this increase in recording density, magnetic recording media Fe in magnetic powder as
, Co, Ni, and other metals or alloys were used. A so-called metal tape or a ferromagnetic metal material was deposited directly onto the base film by vacuum thin film formation technology. So-called vapor deposition tapes have been developed and put into practical use in various fields.

〔従来の技術及び発明が解決しようとする課題〕ところ
で、このような所定の保磁力を有する磁気記録媒体の特
性を発揮せしめるためには、磁気ヘッドのコア材料の特
性として、高い飽和磁束密度を有するとともに、同一の
磁気ヘッドで再生を行なおうとする場合においては、高
透磁率を併せて有することが要求される。
[Prior art and problems to be solved by the invention] By the way, in order to exhibit the characteristics of a magnetic recording medium having a predetermined coercive force, the core material of the magnetic head must have a high saturation magnetic flux density. If the same magnetic head is to be used for reproduction, it is also required to have high magnetic permeability.

従来は、センダスト合金(Fe−Si−Ajj。Conventionally, sendust alloy (Fe-Si-Ajj.

B s z l0KG)や、Co系アモルファス合金な
どが用いられていたが、センダスト合金は、膜の内部応
力が大きく、また結晶粒が成長し易く厚膜化が難しい。
B s z 10 KG), Co-based amorphous alloys, etc. have been used, but Sendust alloy has a large internal stress in the film and crystal grains tend to grow, making it difficult to thicken the film.

また、飽和磁束密度Bsがl0KG程度で。Also, the saturation magnetic flux density Bs is about 10KG.

今以上の高密度記録には飽和磁束密度Bsが不充分であ
る。また、Co系アモルファス合金は特性も良く高飽和
磁束密度Bsのものも作製できるが、450℃程度で結
晶化してしまうため、ヘッド形成する際に高温でガラス
接合できず、充分な接合強度が得られないという難点が
あった。
The saturation magnetic flux density Bs is insufficient for higher density recording than now. In addition, Co-based amorphous alloys have good properties and can be manufactured with high saturation magnetic flux density Bs, but because they crystallize at about 450°C, glass bonding cannot be performed at high temperatures when forming heads, and sufficient bonding strength cannot be obtained. The problem was that it couldn't be done.

その他の軟磁性材料としては窒化鉄があり。Other soft magnetic materials include iron nitride.

般に、窒素含有雰囲気中で鉄をターゲットとしてイオン
ビーム蒸着あるいはスパッタリング等により薄膜状に形
成される。さらに、この薄膜は必要に応じて熱処理され
ることもあった。しかしながら、この軟磁性薄膜は、熱
処理又は加熱によって保磁力が大幅に上昇してしまい特
性の安定性が不充分であるという聞届があった。
Generally, it is formed into a thin film by ion beam evaporation or sputtering using iron as a target in a nitrogen-containing atmosphere. Furthermore, this thin film was sometimes heat-treated if necessary. However, it has been reported that the coercive force of this soft magnetic thin film is significantly increased by heat treatment or heating, resulting in insufficient stability of characteristics.

特開昭83−299219号公報には、このような問題
点を改良せんとした次の軟磁性薄膜が記載されている。
Japanese Unexamined Patent Publication No. 83-299219 describes the following soft magnetic thin film that attempts to improve these problems.

rFex Ny Az  (ただしr x+  Yr 
 Zは各々組成比を原子%として表し、AはSL、Aj
2゜Ta、B、Mg、Ca、Sr、Ba、Cr。
rFex Ny Az (However, r x+ Yr
Z represents the composition ratio as atomic %, A is SL, Aj
2゜Ta, B, Mg, Ca, Sr, Ba, Cr.

Mn、Z r、Nb、T t、Mo、V、W、Hf。Mn, Zr, Nb, Tt, Mo, V, W, Hf.

Ga、Ge、希土類元素の少なくとも1種を表す。)な
る組成式で示され、その組成範囲が0.5≦y≦ 5.
0 0.5≦2≦7,5 x+y+z−100 であることを特徴とする軟磁性薄膜。」しかし、特開昭
83−299219号公報に記載の軟磁性薄膜もまた熱
処理によって保磁力が上昇するのを避けられない。
Represents at least one of Ga, Ge, and rare earth elements. ), and the composition range is 0.5≦y≦5.
A soft magnetic thin film characterized in that 0 0.5≦2≦7,5 x+y+z−100. However, the coercive force of the soft magnetic thin film described in JP-A-83-299219 also inevitably increases due to heat treatment.

さらに−軸異方性を有していないため高周波における透
磁率を高くすることができないという欠点がある。
Furthermore, since it does not have -axis anisotropy, it has the disadvantage that magnetic permeability at high frequencies cannot be increased.

また、製膜条件にもよるが、一般的に結晶質材料は、膜
を付着する過程でセルフシャドウィング効果によって柱
状晶になり易く1粒界部にボイドが形成されるために磁
気的に不連続になり軟磁気特性が劣化してしまう傾向が
ある。このセルフシャドウィング効果は、磁気ヘッドを
作製する際の様に下地に段差がある場合や厚膜化する場
合に特に顕著となり、充分な特性が得られないという難
点があった。
Although it depends on the film forming conditions, crystalline materials generally tend to become columnar crystals due to self-shadowing effect during the film deposition process, and voids are formed at one grain boundary, making them magnetically inefficient. It tends to become continuous and the soft magnetic properties deteriorate. This self-shadowing effect becomes particularly noticeable when there are steps on the base or when the film is thick, such as when manufacturing a magnetic head, and there is a problem in that sufficient characteristics cannot be obtained.

本発明は、上記従来技術の問題点を改良した軟磁性薄膜
の提供を目的とする。
An object of the present invention is to provide a soft magnetic thin film that improves the problems of the prior art described above.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば次の軟磁性薄膜により上記目的を達成す
ることができる。
According to the present invention, the above object can be achieved with the following soft magnetic thin film.

Fe3 B、、Nc (但し、a、b、cは各々原子%
を示し、BはZr、Hf、Ti、Nb、Ta。
Fe3 B,, Nc (however, a, b, c are each atomic%
, B is Zr, Hf, Ti, Nb, Ta.

V、Mo、”Wの少なくとも1種以上を表わす。)なる
組成式で示され、その組成範囲は o<b≦20 0<C≦22 の範囲(但し、b≦ 7.5かっC60を除く)である
ことを特徴とする軟磁性薄膜。この組成範囲を点E、F
、G、H,I、Jにより第1図に示す。
Represents at least one of V, Mo, and W.), and its composition range is o<b≦20, 0<C≦22 (however, b≦7.5 and C60 are excluded). ).This composition range is defined as points E and F.
, G, H, I, J in FIG.

好ましくは、前記組成範囲は 69≦a≦93 2≦b≦15 5<c≦22 の範囲である。この組成範囲を点Q、に、L。Preferably, the composition range is 69≦a≦93 2≦b≦15 5<c≦22 is within the range of This composition range is defined as points Q, L, and L.

U、Mにより第1図に示す。It is shown in FIG. 1 by U and M.

また好ましくは、Fez B1.Nに  (但し1al
b、cは各々原子%を示し、BはZr、Hf。
Also preferably, Fez B1. to N (but 1al
b and c each indicate atomic %, and B is Zr and Hf.

Ti、Nb、Ta、V、Mo、Wの少なくとも1種以上
を表わす。)なる組成式で示され、その組成範囲は、前
記王者の三成分組成座標系(F e。
Represents at least one of Ti, Nb, Ta, V, Mo, and W. ), and its composition range is expressed by the above-mentioned three-component composition coordinate system (F e.

B、N)において P (91,2,7) Q (93,2,5) R(88,7,5) S (73,12,15) T (69,12,19) U (89,9,22) V (7B、  5.19) の7点を結ぶ線分で囲まれた範囲であることを特徴とす
る軟磁性薄膜である。この組成範囲を点P、Q、R,S
、T、U、Vl、:、にり第1図に示す。
B, N) P (91,2,7) Q (93,2,5) R (88,7,5) S (73,12,15) T (69,12,19) U (89,9 , 22) V (7B, 5.19) This is a soft magnetic thin film characterized by being in an area surrounded by line segments connecting seven points. This composition range is defined as points P, Q, R, S
, T, U, Vl, :, shown in FIG.

結晶粒径は、好ましくは300Å以下である。The crystal grain size is preferably 300 Å or less.

〔好適な実施態様及び作用〕[Preferred embodiment and operation]

本発明の軟磁性薄膜は、Fe及びNと、特定の添加元素
B、即ち、Zr、Hf、TL、Nb。
The soft magnetic thin film of the present invention contains Fe and N, and specific additive elements B, namely Zr, Hf, TL, and Nb.

Ta、V、Mo、Wの少なくとも1種以上の元素とから
成り、これらFeとNと特定の添加元素B(2種以上も
含む)の王者は、前記特定の組成範囲内にある。
It consists of at least one or more elements of Ta, V, Mo, and W, and the king of these Fe, N, and the specific additive element B (including two or more types) is within the specific composition range.

前記組成範囲が、0くb≦20かっ、0くc≦22の範
囲(但し、b≦ 7.5かつC≦5を除く)である場合
、好ましくは、b≧ 0.5かつC≧ 0.5とする。
When the composition range is in the range of 0 b≦20 and 0 c≦22 (excluding b≦7.5 and C≦5), preferably b≧0.5 and C≧0. .5.

b<o、s又はc<0.5の場合にはその存在による効
果が発揮されないことが多いからである。
This is because when b<o, s or c<0.5, the effect of its presence is often not exhibited.

前記添加元素Bが2e以下%を越えるか、又は。The additive element B exceeds 2e% or less, or.

Nが22原子%を越える場合には、良好な軟磁性が得ら
れない。
If N exceeds 22 atomic %, good soft magnetism cannot be obtained.

前記組成範囲が、69≦a≦93かつ2≦b≦15かつ
5<c≦22(より好ましくは5.5< c≦22)の
場合は、より良好な軟磁性を示す。
When the composition range is 69≦a≦93, 2≦b≦15, and 5<c≦22 (more preferably 5.5<c≦22), better soft magnetism is exhibited.

また、好ましくは、前記組成は、前記王者の三成分組成
座標系(Fe、B、N)において、前記特定の点P、Q
、R,S、T、U、Vの7点を結ぶ線分で囲まれた範囲
である。この組成範囲では保磁力が小さいので、特に磁
気ヘッドのコア材料等に好適である。最も好ましくは、
保磁力が1.50e以下(さらには10e以下)を示す
組成範囲である。
Preferably, the composition is determined at the specific points P, Q in the champion's three-component composition coordinate system (Fe, B, N).
, R, S, T, U, and V. This composition range has a small coercive force and is therefore particularly suitable for core materials of magnetic heads. Most preferably,
This is a composition range in which the coercive force is 1.50e or less (even 10e or less).

前記添加元素BがZrである場合、軟磁性薄膜の好まし
い組成範囲は。
When the additive element B is Zr, the preferable composition range of the soft magnetic thin film is as follows.

F ed  (Z re N、−e) +oo−d77
≦d≦88 0.3≦e≦0.38 で示される範囲である。この組成範囲を点W。
F ed (Z re N, -e) +oo-d77
The range is as follows: ≦d≦88 0.3≦e≦0.38. Point W represents this composition range.

x、y、zにより第1図に示す。これらの点W。It is shown in FIG. 1 by x, y, z. These points W.

x、y、zの座標は、はぼ次のとおりである。The x, y, and z coordinates are approximately as follows.

W (88,3,6,8,4) X (88,4,5& 、  7.44 )Y  (7
7、8,74、14,26)Z  (77、6,9,1
8,1) 即ち、この範囲では、Feを77〜88原子%含み、か
つ、Zrの含有率b(原子%)とNの含有率C(原子9
6)の比c / bがおよそ1.83〜2.33となり
ている。この組成範囲の軟磁性薄膜は、良好な軟磁性(
例えば、保磁力Ha<50e)を示す。
W (88,3,6,8,4) X (88,4,5& , 7.44)Y (7
7, 8, 74, 14, 26) Z (77, 6, 9, 1
8,1) That is, in this range, Fe is included in the range of 77 to 88 at.%, and the Zr content b (at.%) and the N content C (at.9
The ratio c/b of 6) is approximately 1.83 to 2.33. A soft magnetic thin film in this composition range has good soft magnetic properties (
For example, the coercive force Ha<50e) is shown.

前記添加元素は、一種又は二種以上にすることができる
。例えばZrのみ添加することができるが、その他の添
加元素でZrの一部(例えば添加されるZrのうちの3
0原子%)を置き換えることができる。
The additive elements may be one or more kinds. For example, only Zr can be added, but some of the Zr (for example, 3 of the added Zr) can be added with other additive elements.
0 atomic %).

また、FeはCo、Ni又はRuの一種以上で置き換え
ることができる。例えば軟磁性薄膜を構成するFeのう
ちの30原子%程度まで置き換えることができる。
Further, Fe can be replaced with one or more of Co, Ni, and Ru. For example, up to about 30 atomic % of Fe constituting the soft magnetic thin film can be replaced.

本発明の軟磁性薄膜は1例えばRFスパッタ法等の気相
析着法により前記特定組成の非晶質薄膜を得て、この非
晶質薄膜を例えば350−850℃で熱処理し前記非晶
質薄膜の一部ないし全部を結晶化させて製造することが
できる。好ましくは、前記熱処理時に磁界を印加して一
軸磁気異方性を誘導し前記非晶質薄膜の一部ないし全部
を結晶化させて製造することができる。
The soft magnetic thin film of the present invention is obtained by: 1 obtaining an amorphous thin film having the specific composition by a vapor deposition method such as RF sputtering; It can be manufactured by crystallizing part or all of the thin film. Preferably, the amorphous thin film may be manufactured by applying a magnetic field during the heat treatment to induce uniaxial magnetic anisotropy and crystallizing part or all of the amorphous thin film.

本発明の軟磁性薄膜を前記の方法により製造する場合、
形成される基板の種類により製造後の軟磁性薄膜の諸特
性に差が生じる場合があるので。
When manufacturing the soft magnetic thin film of the present invention by the method described above,
This is because the characteristics of the soft magnetic thin film after manufacturing may differ depending on the type of substrate on which it is formed.

適宜基板を選択して製造することが好ましい。It is preferable to select and manufacture the substrate appropriately.

〔実施例〕〔Example〕

(実施例1) F e、6@−y Z r7  cy ” 5.0.1
0.0.15.0(at%))の組成の合金ターゲット
を作製し、それぞれ2.5〜12.5モル%の窒素を含
む、窒素含有アルゴンガス雰囲気中で、ガス圧力0.8
Pa、投入電力200Wの条件で高周波スパッタリング
を行なった。これによらで得られた各薄膜の磁界中熱処
理後の飽和磁束密度Bs、保磁力Hcを測定した。Bs
およびHeの測定は交流BHトレーサー(印加磁界50
Hz、 250e、ただしHe>25の場合は、 90
0e)による(以下同様)。基板には結晶化ガラス基板
(PEG3130CHOYA製)及び単結晶サファイア
基板を用いた。また膜厚はいずれも 0.6Pa程度と
した。
(Example 1) F e,6@-y Z r7 cy ” 5.0.1
An alloy target having a composition of 0.0.15.0 (at%) was prepared, and the target was heated to a gas pressure of 0.8 in a nitrogen-containing argon gas atmosphere containing 2.5 to 12.5 mol% of nitrogen.
High frequency sputtering was performed under conditions of Pa and input power of 200 W. The saturation magnetic flux density Bs and coercive force Hc of each thin film thus obtained after heat treatment in a magnetic field were measured. Bs
and He measurements were made using an AC BH tracer (applied magnetic field 50
Hz, 250e, but if He > 25, 90
0e) (the same applies hereafter). A crystallized glass substrate (PEG3130 manufactured by CHOYA) and a single crystal sapphire substrate were used as the substrates. Further, the film thickness was approximately 0.6 Pa in all cases.

これらの結果を第1−A表に示す。なお、Hcは容易軸
方向の値で示す。また、一部の軟磁性薄膜については、
  5  MHzにおける透磁率μ及び磁歪について測
定した。磁歪は、膜に応力を加えた時のBH特性の変化
から磁歪の正負判定を行なった。この結果も第1−A表
に示す。
These results are shown in Table 1-A. Note that Hc is expressed as a value in the easy axis direction. In addition, for some soft magnetic thin films,
Magnetic permeability μ and magnetostriction at 5 MHz were measured. Magnetostriction was determined from the change in BH characteristics when stress was applied to the film. The results are also shown in Table 1-A.

一方、第1−B図には、スパッタ時の雰囲気中に窒素を
含有しない以外は前記実施例1と同様にして結晶化ガラ
ス基板上に得られた3種の熱処理薄膜(比較例1のNα
1,2.3)の組成、飽和磁束密度Bs及び保磁力Hc
の測定結果を示す。
On the other hand, FIG. 1-B shows three types of heat-treated thin films (Nα
1, 2.3) composition, saturation magnetic flux density Bs and coercive force Hc
The measurement results are shown below.

また、前記実施例の方法により製造した軟磁性薄膜の組
成と保磁力Heの関係及び磁歪の正負判定(結晶化ガラ
ス基板を用い550℃で熱処理した場合)を第2図に示
す。さらに、Fe−Zr合金ターゲット中のFe含有量
及びスパッタガス中のN2含冑量の軟磁性薄膜製造条件
と、保磁力Hcと、飽和磁歪λ、との関係(結晶化ガラ
ス基板を用い550℃で熱処理した場合)を第3図に示
す。
Further, FIG. 2 shows the relationship between the composition and coercive force He of the soft magnetic thin film manufactured by the method of the above-mentioned example, and the positive/negative determination of magnetostriction (when heat treated at 550° C. using a crystallized glass substrate). Furthermore, the relationship between the soft magnetic thin film manufacturing conditions such as Fe content in the Fe-Zr alloy target and N2 content in the sputtering gas, coercive force Hc, and saturation magnetostriction λ (using a crystallized glass substrate at 550°C Fig. 3 shows the case of heat treatment.

X線回折と電気抵抗率 前記実施例中F e 80.9 Z r 6.5 N1
2.6の組成について未熱処理(as depo)の薄
膜と、  250゜350、 450又は550℃で熱
処理した薄膜についてのX線回折の結果を第4図に示し
電気抵抗率の測定結果を、第2表に示す。第4図によれ
ば、550℃熱処理の薄膜の結晶粒径は半値幅から約1
30人であることがわかった。なお、 as depo
の薄膜及び250℃熱処理の薄膜はアモルファスであり
、350℃及び450℃熱処理の薄膜は微結晶から成り
X-ray diffraction and electrical resistivity In the above examples F e 80.9 Z r 6.5 N1
Figure 4 shows the results of X-ray diffraction for thin films that were not heat-treated (as depo) and those that were heat-treated at 250°C, 350°C, 450°C, or 550°C for composition 2.6. It is shown in Table 2. According to Figure 4, the crystal grain size of the thin film heat-treated at 550°C is about 1 from the half width.
It turned out that there were 30 people. In addition, as depo
The thin film and the thin film heat-treated at 250°C are amorphous, and the thin films heat-treated at 350°C and 450°C are composed of microcrystals.

550℃熱処理の薄膜はさらに成長した微結晶から成る
ことがわかった。これらの微結晶は薄膜の軟磁性に寄与
すると考えられ、このような微結晶の生成はN及びZr
の存在によるものと考えられる。第2表によれば熱処理
温度を高めることによって、この薄膜の抵抗率は低下し
ていくが。
It was found that the thin film heat-treated at 550° C. consisted of further grown microcrystals. These microcrystals are thought to contribute to the soft magnetic properties of the thin film, and the generation of such microcrystals is due to the presence of N and Zr.
This is thought to be due to the existence of According to Table 2, the resistivity of this thin film decreases by increasing the heat treatment temperature.

550℃まで温度を上げて熱処理した場合でも。Even when heat treated at temperatures up to 550℃.

その値は、純鉄、パーマロイなどよりはるかにt(、)
’e 3i合金、センダストとほぼ同等の値となってい
る。従って、磁気ヘッドのコアとして用いた場合には、
渦電流損失が小さく有利である。
Its value is much higher than that of pure iron, permalloy, etc.
The value is almost the same as 'e 3i alloy and Sendust. Therefore, when used as the core of a magnetic head,
Eddy current loss is small, which is advantageous.

ビッカース硬度 さらにF e 80.9 Z r 6.5 N 12.
8の組成の薄膜について、ビッカース硬度を測定した結
果Hvw−1000(kg/md、加重10g)の値が
得られた。この値は従来から磁気ヘッド材料として用い
られているセンダストやCo系アモルファス合金(Hv
−500〜650〉に比べてはるかに高く、耐摩耗性も
従来より充分高めることができる。
Vickers hardness further F e 80.9 Z r 6.5 N 12.
As a result of measuring the Vickers hardness of the thin film having composition No. 8, a value of Hvw-1000 (kg/md, weight 10 g) was obtained. This value is based on sendust and Co-based amorphous alloys (Hv
-500 to 650>, and the abrasion resistance can be sufficiently improved compared to conventional ones.

BH凸曲 線記実施例中のいくつかの薄膜の交流BHトレーサーに
よるBH凸曲線第5図に示した。
BH Convex Curves Figure 5 shows BH convex curves obtained by AC BH tracers for some of the thin films in the Examples.

第5図に示したサンプルは、製膜後1 koeの磁界中
、 10TorrN 2雰囲気中において550℃、6
0分間熱処理しである。この図から明らかな様に、磁界
中熱処理によって薄膜には明確な面内−軸異方性が誘導
されている。従って、この薄膜の困難軸、方向を磁化方
向とすることによって、  I  MHzより高い周波
数での透磁率を充分高くすることができ、この点からも
磁気ヘッド材料として有利である。また、この異方性磁
界Hkは1組成によって3〜180eと変化するため、
目標とする透磁率の大きさ、使用する周波数範囲によっ
て材料を選ぶことができる。例えば10 MHz以下に
おいて高い透磁率を得たい場合には、Hk−3〜50e
となる組成を用い、それ以上高い周波数でも透磁率を劣
化させないためには、Hkがもっと高い組成を用いるこ
ともできる。
The sample shown in FIG.
It was heat treated for 0 minutes. As is clear from this figure, clear in-plane-axial anisotropy is induced in the thin film by heat treatment in a magnetic field. Therefore, by setting the difficult axis or direction of this thin film as the magnetization direction, the magnetic permeability at frequencies higher than I MHz can be made sufficiently high, and from this point as well, it is advantageous as a magnetic head material. Also, since this anisotropic magnetic field Hk varies from 3 to 180e depending on the composition,
The material can be selected depending on the desired magnetic permeability and the frequency range used. For example, if you want to obtain high magnetic permeability below 10 MHz, use Hk-3 to 50e.
In order to prevent the magnetic permeability from deteriorating even at higher frequencies, a composition with a higher Hk can be used.

MH凸曲 線6図には、前記実施例1中のF’eso、eZr6.
、N1□、6の組成の薄膜についてVSMを用いて測定
したM H曲線の結果について示した。図中(a)は製
膜直後(as depo)の薄膜について。
MH convex curve 6 shows F'eso, eZr6.
The results of M H curves measured using VSM for thin films having compositions of , N1□, and 6 are shown. In the figure, (a) shows the thin film immediately after film formation (as depo).

(b)は550℃の磁界中熱処理後の薄膜についてのM
H凸曲線示している。(反磁界補正は行なっていない。
(b) is the M of the thin film after heat treatment in a magnetic field at 550°C.
The H convex curve is shown. (Demagnetizing field correction was not performed.

ただし、サンプル形状は、φ5 mm Xt 0.63
μmであった。)VSMを用いて測定した保磁力は、交
流BHトレーサーで求めた値より一桁以上小さく、(b
)より約50m0eと求まった。この値はセンダストや
Co系アモルファス合金とほぼ同等であり、軟磁気特性
が優れていることが解る。また、(b)より4πMs−
14,5KGと求まり。
However, the sample shape is φ5 mm Xt 0.63
It was μm. ) The coercive force measured using VSM is more than an order of magnitude smaller than the value determined using AC BH tracer, and (b
), it was determined to be approximately 50m0e. This value is almost the same as that of Sendust and Co-based amorphous alloys, and it can be seen that the soft magnetic properties are excellent. Also, from (b), 4πMs-
It is determined to be 14.5KG.

この値はセンダストやCo系アモルファス合金より充分
高く、高保磁力媒体に記録するための磁気ヘッド材料と
して有利である。
This value is sufficiently higher than sendust or Co-based amorphous alloys, and is advantageous as a magnetic head material for recording on high coercive force media.

熱処理前の薄膜の4πMsは13.0KGであり熱処理
後よりやや低い。また、垂直異方性(Hk;4000e
)をもっており、Hcも高く、軟磁気特性は悪い。
The 4πMs of the thin film before heat treatment is 13.0 KG, which is slightly lower than that after heat treatment. In addition, vertical anisotropy (Hk; 4000e
), Hc is high, and soft magnetic properties are poor.

耐食性 前記実施例1中のF e 801 Z r 6.5 N
+2.6の組成の薄膜について耐食性の評価を、水道水
に約−週間浸漬した後の表面状態の変化から行なった。
Corrosion resistance F e 801 Z r 6.5 N in Example 1 above
Corrosion resistance of the thin film having a composition of +2.6 was evaluated based on changes in surface condition after being immersed in tap water for about -1 week.

その結果1本サンプルの表面状態は鏡面のまま全く変化
しなかった。比較のために+  COaL 4N b 
8.。Zr3,6アモルファス合金膜及びFe−5i合
金([磁鋼板)についても同様の実験を行なった。その
結果Co−Nb−Zr合金も全く変化しなかったが、F
e−5i合金は全面に錆が発生した。以上より2本発明
の合金薄膜は耐食性にも優れていることが解った。
As a result, the surface condition of one sample remained mirror-like and did not change at all. For comparison + COaL 4N b
8. . Similar experiments were conducted on Zr3,6 amorphous alloy film and Fe-5i alloy (magnetic steel sheet). As a result, the Co-Nb-Zr alloy did not change at all, but F
Rust occurred on the entire surface of the e-5i alloy. From the above, it was found that the two alloy thin films of the present invention also have excellent corrosion resistance.

第 −A 表 (以下余白) 第1−B表 第  2 表 (実施例2) F e 92.5 Z r 7.5の組成の合金ターゲ
・ノドを用い、  2.5. 5.0. 7.5.10
.0又は12.5モル%の窒素を夫々含む窒素含有アル
ゴンガス雰囲気中で高周波スパッタリングを行ない1種
々の組成のFe−Zr−N非晶質薄膜をサファイア基板
(R面)上に形成した。
Table A (blank below) Table 1 B Table 2 (Example 2) Using an alloy target throat having a composition of F e 92.5 Z r 7.5, 2.5. 5.0. 7.5.10
.. Fe--Zr--N amorphous thin films having various compositions were formed on a sapphire substrate (R-plane) by high-frequency sputtering in a nitrogen-containing argon gas atmosphere containing 0 or 12.5 mol% of nitrogen, respectively.

前記基板上に形成した非晶質薄膜を350℃又は550
℃で1時間熱処理して9本発明のFe−Zr−N軟磁性
薄膜を得た。得られたFe−Zr−N軟磁性薄膜の組成
、飽和磁束密度Bs、保磁力Hcを第3表に示す。
The amorphous thin film formed on the substrate was heated to 350°C or 550°C.
A Fe--Zr--N soft magnetic thin film of the present invention was obtained by heat treatment at .degree. C. for 1 hour. Table 3 shows the composition, saturation magnetic flux density Bs, and coercive force Hc of the obtained Fe-Zr-N soft magnetic thin film.

(比較例2) スパッタ時の雰囲気中に窒素を含有しない以外は前記実
施例2と同様にして得た熱処理薄膜の組成、飽和磁束密
度Bs、保磁力Hcも第3表に示す。
(Comparative Example 2) Table 3 also shows the composition, saturation magnetic flux density Bs, and coercive force Hc of a heat-treated thin film obtained in the same manner as in Example 2 except that nitrogen was not contained in the atmosphere during sputtering.

(以下余白) 第  3 表 (実施例3) Feg。Z r 1o (at%)の組成のターゲット
を用い、6.0モル%の窒素を含有する窒素含有アルゴ
ンガス雰囲気中でガス圧力0.8P!l、投入電力40
0Wの条件で高周波スパッタリングを行ない、サファイ
ア基板(R面、  flTO21面)上にF e7s、
s Z r 7゜3N18.8非晶質薄膜を形成した。
(Margin below) Table 3 (Example 3) Feg. Using a target with a composition of Z r 1o (at%), a gas pressure of 0.8P in a nitrogen-containing argon gas atmosphere containing 6.0 mol% nitrogen! l, input power 40
High frequency sputtering was performed under 0W conditions to deposit Fe7s,
A s Z r 7°3N18.8 amorphous thin film was formed.

前記基板上に形成した非晶質薄膜を、250℃。The amorphous thin film formed on the substrate was heated to 250°C.

350℃、450℃、500℃又は550℃で60分間
60 minutes at 350°C, 450°C, 500°C or 550°C.

120分間、180分間、240分間7540分間、 
 1140分間、 2400分間又は4800分間等温
磁界(< ooto >方向に1.1kOe印加)中で
熱処理して2本発明の軟磁性薄膜を得た。得られたFe
−Zr−N軟磁性薄膜のBH特性(測定磁界Hm = 
25 (Oe))、保磁力Hc及び異方性磁界Hkを第
7図に示す。
120 minutes, 180 minutes, 240 minutes, 7540 minutes,
Two soft magnetic thin films of the present invention were obtained by heat treatment in an isothermal magnetic field (1.1 kOe applied in the <ooto> direction) for 1140 minutes, 2400 minutes, or 4800 minutes. Obtained Fe
-BH characteristics of Zr-N soft magnetic thin film (measured magnetic field Hm =
25 (Oe)), coercive force Hc, and anisotropic magnetic field Hk are shown in FIG.

第8図は、熱処理時間t [m1nlに対して得られた
Fe−Zr−N軟磁性薄膜の(a)保磁力Hc及び(b
)異方性磁界Hkの関係を夫々示す。また。
Figure 8 shows (a) coercive force Hc and (b
) shows the relationship between the anisotropic magnetic field Hk. Also.

第9図は、(a)熱処理時間t [min]と熱処理温
度と保磁力Haとの関係、及び、(b)熱処理時間t[
m1n]と熱処理温度と異方性磁界Hkとの関係を夫々
示す。
FIG. 9 shows (a) the relationship between the heat treatment time t [min], the heat treatment temperature, and the coercive force Ha, and (b) the heat treatment time t [
m1n], the heat treatment temperature, and the anisotropic magnetic field Hk.

これらより、熱処理温度によるBH特性の変化は、35
0〜500℃の範囲と、500℃を趣える範囲と、35
0℃未満の範囲の3つの温度域で異なることがわかる。
From these, the change in BH characteristics due to heat treatment temperature is 35
0 to 500℃ range, 500℃ range, and 35
It can be seen that there are differences in the three temperature ranges below 0°C.

また、前記F e 75.9 Z r 7.3 N16
.8非晶質薄膜を、250℃で4800分間、350℃
で240分間、450℃で 180分間、500℃で 
180分間又は550’Cで1140分間夫々熱処理し
て得られた5種類の軟磁性薄膜の組成(at%)、軟磁
性薄膜のZr含有率(at%)とFe含有率(at%)
との比Z r / F e 。
In addition, the above F e 75.9 Z r 7.3 N16
.. 8 Amorphous thin film was heated at 250°C for 4800 minutes at 350°C.
240 minutes at 450℃ 180 minutes at 500℃
Compositions (at%) of five types of soft magnetic thin films obtained by heat treatment for 180 minutes or 1140 minutes at 550'C, Zr content (at%) and Fe content (at%) of the soft magnetic thin films
The ratio Z r /F e .

N含有率(at%)とZr含有率(at%)との比N/
Zr、及びBH特性(測定磁界Hm −25(Oe))
を第4表に示す。下記各組成はr  Fe91.2  
(Zr・NX)8.8但しX−N/Z rテ表現できる
Ratio of N content (at%) to Zr content (at%) N/
Zr and BH characteristics (measured magnetic field Hm -25 (Oe))
are shown in Table 4. Each composition below is rFe91.2
(Zr・NX)8.8However, it can be expressed as X-N/Zrte.

第4表によれば、N/Zrの値は、熱処理温度250℃
までの範囲内と、350℃〜500℃の範囲内でほぼ一
定であり、熱処理温度約300℃付近と約500℃付近
にN/Zrの値が急に変化する熱処理温度が存在すると
いうことが推定できる。
According to Table 4, the value of N/Zr is determined at a heat treatment temperature of 250°C.
It is said that the N/Zr value is almost constant within the range of It can be estimated.

第  4  表 X線回折パターン 前記実施例3で得られたFe−Zr−N軟磁性薄膜と、
熱処理前のF e 75.9 Z r 7.3 N1a
、s非晶質薄膜(as depo)のX線回折パターン
(線源CuKa線40kV、 30mA、  λ−1,
5405人)を第10図に示す。以下、このX線回折パ
ターンについて述べる。
Table 4 X-ray diffraction pattern Fe-Zr-N soft magnetic thin film obtained in Example 3,
F e 75.9 Z r 7.3 N1a before heat treatment
, s X-ray diffraction pattern of amorphous thin film (as depo) (ray source CuKa ray 40 kV, 30 mA, λ-1,
5,405 people) are shown in Figure 10. This X-ray diffraction pattern will be described below.

as depoの薄膜の場合、典型的なハローパターン
を示しており、非晶質化していることを裏付けている。
In the case of the as-depo thin film, it shows a typical halo pattern, confirming that it is amorphous.

主ピークの位置は熱処理温度が高くなるにつれ広角側に
ずれ、550℃熱処理で最終的に2θ−44,8’ と
なりa F e (110) ピークと一致しティる。
The position of the main peak shifts to the wide-angle side as the heat treatment temperature increases, and finally becomes 2θ-44,8' after heat treatment at 550°C and coincides with the aFe (110) peak.

250℃X 4800分では2θ−43,7’となり。At 250℃ x 4800 minutes, it becomes 2θ-43.7'.

これはF e3Z r (440)  ピークと一致し
ている。
This coincides with the Fe3Z r (440) peak.

350℃から 500℃の熱処理では2θζ44°であ
り、これはa F e (110)とF e s Z 
r (440) ピークのほぼ中間の値に対応している
In heat treatment from 350°C to 500°C, 2θζ is 44°, which is a F e (110) and F e s Z
r (440) corresponds to a value approximately in the middle of the peak.

主ピークの半値幅から’3cherrerの式により求
めた結晶粒サイズは、250℃から450℃で約100
大、500℃×180分で約 120人、550℃X 
1140分で約170人(550℃×60分間では約1
30人(実施例1及び第4図参照))と温度X時間によ
り連続的に大きくなっている。
The grain size determined from the half-width of the main peak using the '3cherrer formula is approximately 100°C from 250°C to 450°C.
Large, approximately 120 people at 500℃ for 180 minutes, 550℃
Approximately 170 people in 1140 minutes (approximately 1 person at 550℃ x 60 minutes)
30 people (see Example 1 and FIG. 4)) and temperature x time.

550℃熱処理の時間と主ピークの位置、結晶粒サイズ
の関係は下記の様になっている。
The relationship between the time of heat treatment at 550°C, the position of the main peak, and the grain size is as follows.

このことから、550℃熱処理では比較的早く微細なα
Fe相が析出するが2時間とともにわずかながら結晶粒
の成長が生じていることが解る。
From this, heat treatment at 550°C shows that fine α is formed relatively quickly.
It can be seen that although the Fe phase precipitates, the crystal grains grow slightly over the course of 2 hours.

また、550℃熱処理では、αFe以外に新たにFe3
 Zr、ZrNと思われるピークが観測され、これらが
微細に析出してきていると考えられる。
In addition, in the heat treatment at 550°C, Fe3 was newly added in addition to αFe.
Peaks thought to be Zr and ZrN were observed, and it is thought that these were finely precipitated.

(実施例4) F e 9o Z r to (at%)の組成のター
ゲットを用い、5.0モル%の窒素を含有する窒素含有
アルゴンガス雰囲気中でガス圧力0.8Pa、投入電力
200Wの条件で高周波スパッタリングを行ないサファ
イア基板(R面)上にFe−Zr−N非晶質薄膜を形成
した。
(Example 4) Using a target with a composition of F e 9o Z r to (at%), conditions of gas pressure 0.8 Pa and input power 200 W in a nitrogen-containing argon gas atmosphere containing 5.0 mol% nitrogen. A Fe--Zr--N amorphous thin film was formed on the sapphire substrate (R surface) by high-frequency sputtering.

前記基板上に形成した非晶質薄膜(厚さ約0.8μm)
の磁化の温度変化(室温の磁化で規格化しである。)を
VSMにより測定した。その結果を第11図に示す。測
定は、室温から開始して約3℃/ff1Inで昇温しな
がら行ない、試料Bは340℃で120分間、試料りは
450℃で60分間、試料Eは500°Cで60分間、
試料Gは520℃で180分間、試料Fは550℃で 
120分間保持した。その後今度は、−3℃/1lin
で室温まで降温しながら測定した。第11図より、熱処
理前のFe−Zr−N非晶質薄膜(as depo)の
キュリー温度は、約250℃であり、少なくとも340
℃以上で温度保持すると磁化の値が上昇し、キュリー温
度が上昇していくことがわかる。550℃で 120分
間保持した場合。
Amorphous thin film (approximately 0.8 μm thick) formed on the substrate
The temperature change in magnetization (normalized to magnetization at room temperature) was measured by VSM. The results are shown in FIG. Measurements were performed starting from room temperature and increasing the temperature at approximately 3°C/ff1In, sample B at 340°C for 120 minutes, sample at 450°C for 60 minutes, sample E at 500°C for 60 minutes.
Sample G was heated at 520℃ for 180 minutes, and sample F was heated at 550℃.
It was held for 120 minutes. After that, -3℃/1lin
Measurements were taken while the temperature was lowered to room temperature. From FIG. 11, the Curie temperature of the Fe-Zr-N amorphous thin film (as depo) before heat treatment is about 250°C, and at least 340°C.
It can be seen that when the temperature is maintained above ℃, the magnetization value increases and the Curie temperature increases. When held at 550℃ for 120 minutes.

キュリー温度は700℃以上となり、熱処理によってα
Feのキュリー温度(770℃)に近づいていくことが
わかる。室温での磁化は、いずれの場合もas dep
oの非晶質薄膜より高いが、520〜550°C保持で
ほぼ飽和し、 as depoの非晶質薄膜の1.12
〜1.14倍となっている。
Curie temperature is over 700℃, and heat treatment increases α
It can be seen that the temperature approaches the Curie temperature of Fe (770°C). The magnetization at room temperature is in both cases as dep
1.12 of the as-depo amorphous thin film, but almost saturated at 520-550°C.
~1.14 times.

実施例3及び実施例4かられかったことを熱処理温度ご
とに述べる。
What was learned from Examples 3 and 4 will be described for each heat treatment temperature.

(a)熱処理前(as depo) 構造的には、非晶質である。軟磁性は得られておらず、
キュリー温度がαFeに比べかなり低く、磁気モーメン
トが熱処理後よりも低い。これらはFe系の非晶質合金
として、考え得る特性である。また、Nの含有量は18
.8%と多く。
(a) Before heat treatment (as depo) Structurally, it is amorphous. Soft magnetism has not been obtained,
The Curie temperature is considerably lower than that of αFe, and the magnetic moment is lower than that after heat treatment. These are possible characteristics for an Fe-based amorphous alloy. In addition, the N content is 18
.. As many as 8%.

N/Zr−2,3となっている。N/Zr-2,3.

(b) 250℃熱処理 BH特性はas depoよりはやや改善され、Heが
5〜70eを示していた。熱処理時間を長くすることに
より4800分で結晶化がX線的に確認され。
(b) 250°C heat treatment The BH properties were slightly improved compared to as deposit, with He ranging from 5 to 70e. By increasing the heat treatment time, crystallization was confirmed by X-rays after 4800 minutes.

また−軸異方性膜(Hc −1,40e)が得られた。In addition, a -axis anisotropic film (Hc -1, 40e) was obtained.

主ピークの位置は、  F e3 Z r (440)
 ピークに対応している。熱処理後のN含有量は、 a
s depoと変わらない。
The position of the main peak is F e3 Z r (440)
It corresponds to the peak. The N content after heat treatment is a
It is no different from s depo.

(c)350〜500℃熱処理 主ピークは、  F e3 Z r (400)とa 
F e (110)ピークの中間に位置するが、 Z 
r N (200)付近にもブロードな盛り上がりが見
られ、複雑な状態になっていると考えられる。BH特性
的には、 Hc= 0.7〜0.90e、 Hk −9
〜120eで熱処理時間×温度が大きくなるにつれHk
が大きくなる傾向にある。キュリー温度はこの範囲で連
続的に変化しているが、室温の磁化は、熱処理前の1.
06〜1.08倍とほぼ一定である。熱処理後のN含有
量は500℃では熱処理前よりもやや低下するが、N/
Zrz2の領域である。
(c) 350-500°C heat treatment The main peaks are F e3 Z r (400) and a
Located in the middle of the F e (110) peak, Z
A broad bulge is also seen near r N (200), indicating a complicated state. In terms of BH characteristics, Hc = 0.7 to 0.90e, Hk -9
~120e, as heat treatment time x temperature increases, Hk
tends to become larger. Although the Curie temperature changes continuously within this range, the magnetization at room temperature is 1.
It is approximately constant at 0.6 to 1.08 times. The N content after heat treatment is slightly lower at 500°C than before heat treatment, but N/
This is the region of Zrz2.

(d)  550℃熱処理 主ピークは、明らかにαF e (110)  ピーク
に対応しており、新たに、Fe3 Zr、ZrNと思わ
れるピークも出現してくる。このことから 550℃熱
処理後には(110)配向したαFeの微細結晶(粒径
100〜200人程度)とさらに微細なFe3Zr、Z
rN等が析出しているものと考えられる。しかし、キュ
リー温度は、αFeのキュリー温度770℃よりも低め
であり、これは結晶粒が微細なことと関係していると考
えられる。
(d) The main peak of heat treatment at 550° C. clearly corresponds to the αF e (110) peak, and new peaks that appear to be Fe3Zr and ZrN also appear. From this, after heat treatment at 550°C, fine crystals of (110) oriented αFe (grain size of about 100 to 200 grains) and even finer Fe3Zr, Z
It is thought that rN etc. were precipitated. However, the Curie temperature is lower than the Curie temperature of αFe, 770° C., and this is thought to be related to the fact that the crystal grains are fine.

Hcは長時間熱処理で低下し約400分で極小となり、
その後またわずかに増加する。Hkは時間とともに低下
し、約250分でほぼ等方的になる。
Hc decreases with long-term heat treatment and reaches a minimum after about 400 minutes.
After that, it increases slightly again. Hk decreases with time and becomes almost isotropic in about 250 minutes.

熱処理後のN含Kmは熱、処理時間に依存し、θσ分熱
処理ではN / Z r z L、8.1140分熱処
理ではN/ Z r z 1.1まで低下している。5
50℃熱処理により一部の窒素はN2ガスとして試料外
に放出されるものと考えられる。
The N-containing Km after heat treatment depends on the heat and treatment time, and decreases to N/Z r z L after heat treatment for θσ minutes and N/Z r z 1.1 after heat treatment for 8.1140 minutes. 5
It is thought that some nitrogen is released from the sample as N2 gas due to the 50° C. heat treatment.

このように、Fe−Zr−N非晶質薄膜を熱処理すると
、熱処理温度によって得られる軟磁性薄膜の構造及び性
質が異なる。このことは、実施例1の電気抵抗率を示す
第2表とも対応する。
As described above, when an Fe-Zr-N amorphous thin film is heat-treated, the structure and properties of the resulting soft magnetic thin film vary depending on the heat treatment temperature. This also corresponds to Table 2 showing the electrical resistivity of Example 1.

以上の内容を第12図に模式的に示した。The above contents are schematically shown in FIG.

(実施例5) Feg。Zr1゜の組成の合金ターゲットを用い。(Example 5) Feg. An alloy target with a composition of Zr1° was used.

6.0モル%の窒素を含有する窒素含有アルゴンガス雰
囲気中で高周波スパッタリングを行なうことにより+ 
 Fe 78.22’ ?、3N+6.5 とF’e7
s、sZ r 7.3 N+6.8の2種の組成の非晶
質薄膜を夫々サファイア基板(R面)上に形成した。た
だし前者はφ6インチターゲットを用い全圧0.15P
a、投入電力1kVで、後者はφ4インチターゲットを
用い全圧0.6Pa、投入電力400Wでスパッタリン
グした。
By performing high frequency sputtering in a nitrogen-containing argon gas atmosphere containing 6.0 mol% nitrogen, +
Fe 78.22'? , 3N+6.5 and F'e7
Amorphous thin films having two compositions, s and sZ r 7.3 N+6.8, were formed on sapphire substrates (R-plane), respectively. However, the former uses a φ6 inch target and the total pressure is 0.15P.
a. Sputtering was performed with an input power of 1 kV, and a total pressure of 0.6 Pa and an input power of 400 W using a φ4 inch target.

前記基板上に形成したF e 76.2 Z r 7.
3 N 16.5非晶質薄膜を550℃で60分間磁界
中熱処理してr  Fe77.11 Zr 7.6 N
 14.6軟磁性薄膜(膜厚は約141)を得た。また
、前記基板上に形成したF e 75.9 Z r 7
.3 N 16.8非晶質薄膜を550℃で磁界中熱処
理して2本発明の軟磁性薄膜を得た。
F e 76.2 Z r 7. formed on the substrate.
3 N 16.5 amorphous thin film was heat treated in a magnetic field at 550°C for 60 minutes to form r Fe77.11 Zr 7.6 N
A 14.6 soft magnetic thin film (film thickness: about 141 cm) was obtained. Further, F e 75.9 Z r 7 formed on the substrate
.. 3N 16.8 amorphous thin films were heat-treated in a magnetic field at 550° C. to obtain two soft magnetic thin films of the present invention.

軟磁性薄膜の組成は、熱処理時間が80分間の場合には
F e 79.2 Z r 7.5 N13.3であり
、 1140分間の場合にはF e 83.2 Z r
 m、o N s、sであった。得られたこれらの軟磁
性薄膜の組成、飽和磁束密度Bs、保磁力Hc及び異方
性磁界Hkを第5表に示す。
The composition of the soft magnetic thin film is F e 79.2 Z r 7.5 N13.3 when the heat treatment time is 80 minutes, and F e 83.2 Z r when the heat treatment time is 1140 minutes.
It was m, o N s, s. Table 5 shows the composition, saturation magnetic flux density Bs, coercive force Hc, and anisotropic magnetic field Hk of these soft magnetic thin films obtained.

第 表 本発明で特定する組成範囲内のFe−Hf−N軟磁性薄
膜(膜厚的1μm)を得た。得られたFe−Hf−N軟
磁性薄膜の組成、飽和磁束密度Bs。
Table 1 Fe--Hf--N soft magnetic thin films (1 μm in film thickness) within the composition range specified in the present invention were obtained. Composition and saturation magnetic flux density Bs of the obtained Fe-Hf-N soft magnetic thin film.

保磁力Hcを第6表に示す。The coercive force Hc is shown in Table 6.

(比較例3) スパッタ時の雰囲気中に窒素を含有しない以外は前記実
施例6と同様にして得た3種の熱処理薄膜の組成、飽和
磁束密度Bs、保磁力Hcも第6表に示す。
(Comparative Example 3) Table 6 also shows the composition, saturation magnetic flux density Bs, and coercive force Hc of three types of heat-treated thin films obtained in the same manner as in Example 6 except that nitrogen was not contained in the atmosphere during sputtering.

(以下余白) (実施例6) F e+atr−y Hf y  (y = 5.0.
10.0.15.0(at%))の組成の合金ターゲッ
トを用い、2,4,6゜8.10又は12モル%の窒素
を含む窒素含有アルゴンガス雰囲気中で高周波スパッタ
リングを行なうことにより1種々の組成のF e−Hf
−N非晶質薄膜をサファイア基板(R面)上に形成した
(Margin below) (Example 6) F e+atr-y Hf y (y = 5.0.
By performing high frequency sputtering in a nitrogen-containing argon gas atmosphere containing 2,4,6°8.10 or 12 mol% nitrogen using an alloy target with a composition of 10.0.15.0 (at%). 1 Fe-Hf of various compositions
A -N amorphous thin film was formed on a sapphire substrate (R surface).

前記基板上に形成した非晶質薄膜を350℃又は550
℃、  1.1koeの磁界中で1時間熱処理して。
The amorphous thin film formed on the substrate was heated to 350°C or 550°C.
℃, heat treated in a magnetic field of 1.1 koe for 1 hour.

第 表 (実施例7) F ewyo−y T a y  (Y −5,0,1
0,0,15,0(at%))の組成の合金ターゲット
を用い、2,4,68.10又は12モル%の窒素を含
む窒素含有アルゴンガス雰囲気中で高周波スパッタリン
グを行なうことにより1種々の組成のFe−Ta−N非
晶質薄膜をサファイア基板(R面)上に形成した。
Table (Example 7) F ewyo-y Ta y (Y -5,0,1
By performing high frequency sputtering in a nitrogen-containing argon gas atmosphere containing 2, 4, 68.10 or 12 mol % nitrogen using an alloy target with a composition of 0, 0, 15, 0 (at%)), various An Fe--Ta--N amorphous thin film having the composition was formed on a sapphire substrate (R surface).

前記基板上に形成した非晶質薄膜を350℃又は550
℃、  1.1koeの磁界中で1時間熱処理して。
The amorphous thin film formed on the substrate was heated to 350°C or 550°C.
℃, heat treated in a magnetic field of 1.1 koe for 1 hour.

本発明で特定する組成範囲内のFe−Ta−N軟磁性薄
膜(膜厚的1μm)を得た。得られたFe−Ta−N軟
磁性薄膜の組成、飽和磁束密度Bs。
A Fe--Ta--N soft magnetic thin film (1 μm in film thickness) within the composition range specified in the present invention was obtained. Composition and saturation magnetic flux density Bs of the obtained Fe-Ta-N soft magnetic thin film.

保磁力Hcを第7表に示す。The coercive force Hc is shown in Table 7.

(比較例4) スパッタ時の雰囲気中に窒素を含有しない以外は前記実
施例7と同様にして得た熱処理薄膜の組成、飽和磁束密
度Bs、保磁力Hcも第7表に示す。
(Comparative Example 4) Table 7 also shows the composition, saturation magnetic flux density Bs, and coercive force Hc of a heat-treated thin film obtained in the same manner as in Example 7 except that nitrogen was not contained in the atmosphere during sputtering.

(以下余白) (実施例8) F eloo−y Nby  (y−5,0,LO,0
,15,0(at%))の組成の合金ターゲットを用い
、2,4,6.8又は10モル%の窒素を含む窒素含有
アルゴンガス雰囲気中で高周波スパッタリングを行なう
ことにより1種々の組成のFe−Nb−N非晶質薄膜を
サファイア基板(R面)上に形成した。
(Left below) (Example 8) F eloo-y Nby (y-5,0,LO,0
, 15,0 (at%)), and by performing high-frequency sputtering in a nitrogen-containing argon gas atmosphere containing 2, 4, 6.8, or 10 mol % nitrogen. An Fe--Nb--N amorphous thin film was formed on a sapphire substrate (R surface).

前記基板上に形成した非晶質薄膜を350℃又は550
℃、  1.1kOeの磁界中で1時間熱処理して。
The amorphous thin film formed on the substrate was heated to 350°C or 550°C.
℃, heat treated in a magnetic field of 1.1 kOe for 1 hour.

本発明で特定する組成範囲内のFe−Nb−N軟磁性薄
膜(膜厚的1μm)を得た。得られたFe−Nb−N軟
磁性薄膜の組成、飽和磁束密度Bs。
A Fe-Nb-N soft magnetic thin film (1 μm in film thickness) within the composition range specified in the present invention was obtained. Composition and saturation magnetic flux density Bs of the obtained Fe-Nb-N soft magnetic thin film.

保磁力Hcを第8表に示す。The coercive force Hc is shown in Table 8.

(比較例5) スパッタ時の雰囲気中に窒素を含有しない以外は前記実
施例8と同様にして得た熱処理薄膜の組成、飽和磁束密
度Bs、保磁力Hcも第8表に示す。
(Comparative Example 5) Table 8 also shows the composition, saturation magnetic flux density Bs, and coercive force Hc of a heat-treated thin film obtained in the same manner as in Example 8 except that nitrogen was not contained in the atmosphere during sputtering.

(以下余白) (実施例9) F e gOZ r 1o (at%)の組成のターケ
ラトラ用い、6.0モル%の窒素を含む窒素含有アルゴ
ンガス雰囲気中で、高周波スパッタリングを行なうこと
により、Fe−Zr−N非晶質薄膜を基板上に形成した
。基板としては、フェライト基板上に5i02膜を製膜
して成る5i02膜彼覆フエライト基板を用いた。前記
非晶質薄膜は、前記5i02膜の表面に形成した。
(Left below) (Example 9) Fe- A Zr-N amorphous thin film was formed on a substrate. As a substrate, a 5i02 film-covered ferrite substrate was used, which was obtained by forming a 5i02 film on a ferrite substrate. The amorphous thin film was formed on the surface of the 5i02 film.

前記基板上に形成した非晶質薄膜を、550℃。The amorphous thin film formed on the substrate was heated to 550°C.

1時間磁界中(磁界強度1.1kOe)で熱処理して、
−軸磁気異方性を有する軟磁性薄膜(膜厚5.9μm)
を得た。得られた軟磁性薄膜の組成は。
Heat treated in a magnetic field (magnetic field strength 1.1 kOe) for 1 hour,
- Soft magnetic thin film with axial magnetic anisotropy (film thickness 5.9 μm)
I got it. What is the composition of the soft magnetic thin film obtained?

前記基板のかわりにサファイア基板を用いる以外は同一
の条件で得られた軟磁性薄膜の組成から。
From the composition of a soft magnetic thin film obtained under the same conditions except that a sapphire substrate was used instead of the above substrate.

Fe 77.1+ Z r ?、 6 N 14.6 
と推定した。
Fe 77.1+ Z r? , 6 N 14.6
estimated that.

得られた軟磁性薄膜の電気抵抗率ρは77tlQ−cm
であり、ビッカース硬度HvはlolOkg /−であ
った。また、得られた軟磁性薄膜の透磁率の周波数特性
を第13−A図に示し、B−Hカーブを第13−B図に
示す。
The electrical resistivity ρ of the obtained soft magnetic thin film was 77 tlQ-cm
The Vickers hardness Hv was loOkg/-. Further, the frequency characteristics of magnetic permeability of the obtained soft magnetic thin film are shown in Fig. 13-A, and the B-H curve is shown in Fig. 13-B.

(実施例10) Fe(、。Hf、。(ate)の組成のターゲットを用
い、4.0モル%の窒素を含む窒素含有アルゴンガス雰
囲気中で、高周波スパッタリングを行なうことにより、
Fe−Hf−N非晶質薄膜を基板上に形成した。基板と
しては、フェライト基板上に5in2膜を製膜して成る
5i02膜被覆フエライト基板を用いた。前記非晶質薄
膜は、前記5i02膜の表面に形成した。
(Example 10) By performing high-frequency sputtering in a nitrogen-containing argon gas atmosphere containing 4.0 mol% nitrogen using a target with a composition of Fe (.Hf,.(ate)),
A Fe-Hf-N amorphous thin film was formed on a substrate. As the substrate, a 5i02 film-coated ferrite substrate was used, which was formed by forming a 5in2 film on a ferrite substrate. The amorphous thin film was formed on the surface of the 5i02 film.

前記基板上に形成した非晶質薄膜の膜厚は4.7μmで
あった。これを550℃、  1.1 [keelの磁
界中で1時間熱処理し軟磁性薄膜を得た。そして。
The thickness of the amorphous thin film formed on the substrate was 4.7 μm. This was heat-treated at 550° C. for 1 hour in a magnetic field of 1.1 [keel] to obtain a soft magnetic thin film. and.

この薄膜の透磁率および異方性磁界Hkを測定してから
さらに2時間以外は前記と同様な条件で2時間の追加の
熱処理を行った(合計3時間の熱処理)。ここでまた透
磁率および異方性磁界を測定し、さらに時間以外は前記
と同様な条件で3時間の追加の熱処理(合計6時間の熱
処理)をして。
After measuring the magnetic permeability and anisotropic magnetic field Hk of this thin film, an additional heat treatment was performed for 2 hours under the same conditions as above except for another 2 hours (total heat treatment for 3 hours). Here, the magnetic permeability and anisotropic magnetic field were also measured, and an additional heat treatment was performed for 3 hours (total heat treatment for 6 hours) under the same conditions as above except for the time.

透磁率および異方性磁界Hkを測定した。得られた3種
の軟磁性薄膜の組成は、前記基板のかわりにサファイア
基板を用い膜厚を1μmとした以外は同一の条件で得ら
れた軟磁性薄膜の組成から、夫々+  F e 7?、
4 Hf 7.5 N+5.+  (1時間熱処理)。
Magnetic permeability and anisotropy field Hk were measured. The compositions of the three types of soft magnetic thin films obtained were +F e 7? ,
4 Hf 7.5 N+5. + (1 hour heat treatment).

及びF e12.6 Hf 7.7 N9.7  (6
時間熱処理)と推定した。
and F e12.6 Hf 7.7 N9.7 (6
time heat treatment).

得られた軟磁性薄膜(6時間熱処理)の電気抵抗率ρは
604・口であり、ビッカース硬度Hvは1l100)
c / dであった。また、得られた軟磁性薄膜の透磁
率の周波数特性を第14−A図に示し。
The electrical resistivity ρ of the obtained soft magnetic thin film (heat treated for 6 hours) is 604 mm, and the Vickers hardness Hv is 1l100).
It was c/d. Further, the frequency characteristics of magnetic permeability of the obtained soft magnetic thin film are shown in Fig. 14-A.

B−Hカーブを第14−B図に示す。The B-H curve is shown in Figure 14-B.

また、前記3種の熱処理段階の透磁率(I MHzで)
μIM□及び異方性磁界Hkを第14−0図に示す。第
14−0図は、Fe−Hf−N薄膜の熱処理時間に対す
る透磁率μIll Hz及び異方性磁界Hkの変化を示
している。
Also, the magnetic permeability (at I MHz) of the three heat treatment stages
μIM□ and anisotropic magnetic field Hk are shown in Fig. 14-0. FIG. 14-0 shows changes in the magnetic permeability μIll Hz and the anisotropy magnetic field Hk with respect to the heat treatment time of the Fe-Hf-N thin film.

(実施例11) F e ss T 815 (ate)の組成ノターゲ
ットヲ用い、6.0モル%の窒素を含む窒素含有アルゴ
ンガス雰囲気中で、高周波スパッタリングを行なうこと
により、Fe−Ta−N非晶質薄膜を基板上に形成した
。基板としては、フェライト基板上にS i 02膜を
製膜して成るSi○2膜被覆フェライト基板を用いた。
(Example 11) By performing high-frequency sputtering in a nitrogen-containing argon gas atmosphere containing 6.0 mol% nitrogen using a target with a composition of Fess T 815 (ate), Fe-Ta-N non-containing A crystalline thin film was formed on the substrate. As the substrate, a ferrite substrate coated with a Si02 film was used, which was formed by forming an Si02 film on a ferrite substrate.

前記非晶質薄膜は、前記SiO□膜の表面に形成した。The amorphous thin film was formed on the surface of the SiO□ film.

前記基板上に形成した非晶質薄膜を、550℃。The amorphous thin film formed on the substrate was heated to 550°C.

1時間磁界(磁界強度1.1koe)中で熱処理して、
−軸磁気異方性を有する軟磁性薄膜(膜厚5.6μra
)を得た。得られた軟磁性薄膜の組成は。
Heat treated in a magnetic field (magnetic field strength 1.1 koe) for 1 hour,
- Soft magnetic thin film with axial magnetic anisotropy (film thickness 5.6μra
) was obtained. What is the composition of the soft magnetic thin film obtained?

前記基板のかわりにサファイア基板を用いる以外は同一
の条件で得られた軟磁性薄膜の組成から。
From the composition of a soft magnetic thin film obtained under the same conditions except that a sapphire substrate was used instead of the above substrate.

F e 69.8 T a 11.5 N IL7 と
推定したO得られた軟磁性薄膜の電気抵抗率pは88t
!Q−cmであり、ビッカース硬度Hvは1220kg
 /−であった。また、得られた軟磁性薄膜の透磁率の
周波数特性を第15−A図に示し、B−Hカーブを第1
5−B図に示す。
F e 69.8 Ta 11.5 N IL7 The electric resistivity p of the obtained soft magnetic thin film is 88t
! Q-cm, Vickers hardness Hv is 1220 kg
It was /-. In addition, the frequency characteristics of magnetic permeability of the obtained soft magnetic thin film are shown in Figure 15-A, and the B-H curve is shown in Figure 15-A.
It is shown in Figure 5-B.

〔発明の効果〕〔Effect of the invention〕

本発明の軟磁性薄膜は、上述の説明からも明らかな様に
、センダスト合金やアモルファス軟磁性合金よりもはる
かに高い飽和磁束密度を有し、かつ、磁歪を零とするこ
とができ、低保磁力、高透磁率の優れた軟磁気特性を得
ることができる。
As is clear from the above description, the soft magnetic thin film of the present invention has a much higher saturation magnetic flux density than Sendust alloy or amorphous soft magnetic alloy, can reduce magnetostriction to zero, and has low retention. Excellent soft magnetic properties such as magnetic force and high magnetic permeability can be obtained.

また、電気抵抗率もセンダスト並に高く磁界中熱処理に
よって一軸異方性を持たせることができ、その大きさも
組成や熱処理時間によって制御することができるので、
目的に応じた高周波透磁率を得ることができる。さらに
650℃までの熱処理によっても特性が劣化しないこと
から、ガラスボンディングなどに対する耐熱性にも優れ
ており、あわせて高い硬度と耐食性を持つことから。
In addition, its electrical resistivity is as high as that of Sendust, and it can be given uniaxial anisotropy by heat treatment in a magnetic field, and its magnitude can be controlled by the composition and heat treatment time.
High-frequency magnetic permeability can be obtained depending on the purpose. Furthermore, since its properties do not deteriorate even after heat treatment up to 650°C, it has excellent heat resistance for glass bonding, etc., and also has high hardness and corrosion resistance.

耐摩耗性も高く、信頼性の高い材料となっている。It has high wear resistance and is a highly reliable material.

本発明の軟磁性薄膜は、製膜時には非晶質合金として形
成し熱処理によって後から微結晶化させることができる
ので、膜形成にあたってステップカバレッジが良好でか
つ鏡面が得られ易く多層膜化などの手段に依らなくても
結晶粒の粗大化を防ぐことができるので、厚膜化するこ
とが可能である。
The soft magnetic thin film of the present invention can be formed as an amorphous alloy at the time of film formation and then microcrystalized by heat treatment, so step coverage is good and a mirror surface can be easily obtained during film formation, making it possible to form a multilayer film. Since coarsening of crystal grains can be prevented without depending on any means, it is possible to increase the thickness of the film.

従って2本発明の軟磁性薄膜を例えば磁気ヘッドのコア
材料として用いることによって、高保磁力の磁気記録媒
体に対応することができ、高品質化、高帯域化、高記録
密度化を図ることができる。
Therefore, by using the soft magnetic thin film of the present invention, for example, as a core material of a magnetic head, it is possible to correspond to a magnetic recording medium with a high coercive force, and it is possible to achieve higher quality, higher bandwidth, and higher recording density. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明の軟磁性薄膜の組成範囲を示す図であ
る。第2図は、実施例で製造した軟磁性薄膜の組成と保
磁力Hcの関係、及び磁歪の正負判定を示す図である。 第3図は、軟磁性薄膜製造条件とそれにより製造された
軟磁性薄膜の保磁力Hcと飽和磁歪λ、との関係を示す
図である。第4図は、熱処理条件の異なる薄膜のX線回
折1ノ定結果を示す図である。第5図は1組成の異なる
薄膜の交流BH凸曲線示す図である。第6図は。 VSMより求めた熱処理前後の薄膜のIH曲線を示す図
である。 第7図は、Fe−Zr−N軟磁性薄膜のBH特性、保磁
力Hc及び異方性磁界Hkを示す図である。第8図は、
熱処理時間tに対して得られたFe−Zr−N軟磁性薄
膜の保磁力He及び異方性磁界Hkの関係を示す図であ
る。第9図は、熱処理時間tと熱処理温度と保磁力Hc
との関係。 及び熱処理時間tと熱処理温度と異方性磁界Hkとの関
係を夫々示す図である。第1O図は、Fe−Zr−N軟
磁性薄膜と、熱処理前の非晶質薄膜のX線回折パターン
を示す図である。第11図は。 Fe−Zr−N軟磁性薄膜の磁化の温度変化を示す図で
ある。第12図は、熱処理時間tと熱処理温度によって
得られる軟磁性薄膜の特性の推定を示す図である。第1
3−A図、第14−A図及び第15−A図は、夫々2本
発明の一実施例の軟磁性薄膜の透磁率の周波数特性を示
す図である。第13−B図、第14−B図及び第15−
B図は、夫々1本発明の一実施例の軟磁性薄膜の容易軸
方向(上段)及び困難軸方向(下段)の交流BH凸曲線
示す図であり、Bは任意単位である。第14−0図は。 F e−Hf −N非晶質薄膜の熱処理時間に対するF
e−Hf−N軟磁性薄膜の透磁率μm41 Hz及び異
方性磁界Hkの変化を示す図である。 第12図 熱処理時間 og 第13−A図 第14−0図 熱処理時間 [時間] 第14−A図 周波数 [MHz] 第15−A図 第14−B図 第15−B図 口 手続補正書(刀剣 平成2年3月22日
FIG. 1 is a diagram showing the composition range of the soft magnetic thin film of the present invention. FIG. 2 is a diagram showing the relationship between the composition of the soft magnetic thin film manufactured in the example and the coercive force Hc, and the determination of whether the magnetostriction is positive or negative. FIG. 3 is a diagram showing the relationship between the soft magnetic thin film manufacturing conditions and the coercive force Hc and saturation magnetostriction λ of the soft magnetic thin film manufactured thereby. FIG. 4 is a diagram showing the results of X-ray diffraction of thin films subjected to different heat treatment conditions. FIG. 5 is a diagram showing AC BH convex curves of thin films with one different composition. Figure 6 is. It is a figure which shows the IH curve of the thin film before and after heat treatment calculated|required by VSM. FIG. 7 is a diagram showing the BH characteristics, coercive force Hc, and anisotropic magnetic field Hk of a Fe-Zr-N soft magnetic thin film. Figure 8 shows
FIG. 3 is a diagram showing the relationship between the coercive force He and the anisotropic magnetic field Hk of the Fe-Zr-N soft magnetic thin film obtained with respect to the heat treatment time t. Figure 9 shows heat treatment time t, heat treatment temperature, and coercive force Hc.
relationship with. and FIG. 7 is a diagram showing the relationship between heat treatment time t, heat treatment temperature, and anisotropic magnetic field Hk, respectively. FIG. 1O is a diagram showing X-ray diffraction patterns of a Fe-Zr-N soft magnetic thin film and an amorphous thin film before heat treatment. Figure 11 is. FIG. 3 is a diagram showing temperature changes in magnetization of a Fe-Zr-N soft magnetic thin film. FIG. 12 is a diagram showing estimation of the characteristics of a soft magnetic thin film obtained by heat treatment time t and heat treatment temperature. 1st
FIG. 3-A, FIG. 14-A, and FIG. 15-A are diagrams showing frequency characteristics of magnetic permeability of two soft magnetic thin films according to an embodiment of the present invention. Figure 13-B, Figure 14-B and Figure 15-
Figure B is a diagram showing AC BH convex curves in the easy axis direction (upper stage) and hard axis direction (lower stage) of a soft magnetic thin film according to an embodiment of the present invention, respectively, and B is an arbitrary unit. Figure 14-0 is. F vs. heat treatment time of Fe-Hf-N amorphous thin film
FIG. 3 is a diagram showing changes in magnetic permeability μm41 Hz and anisotropic magnetic field Hk of an e-Hf-N soft magnetic thin film. Figure 12 Heat treatment time og Figure 13-A Figure 14-0 Heat treatment time [time] Figure 14-A Frequency [MHz] Figure 15-A Figure 14-B Figure 15-B Oral procedure amendment ( Sword March 22, 1990

Claims (4)

【特許請求の範囲】[Claims] (1)Fe_aB_bN_c(但し,a,b,cは各々
原子%を示し,BはZr,Hf,Ti,Nb,Ta,V
,Mo,Wの少なくとも1種以上を表わす。)なる組成
式で示され,その組成範囲は0<b≦20 0<c≦22 の範囲(但し,b≦7.5かつc≦5を除く)であるこ
とを特徴とする軟磁性薄膜。
(1) Fe_aB_bN_c (however, a, b, c each indicate atomic %, B is Zr, Hf, Ti, Nb, Ta, V
, Mo, and W. ), and the composition range is 0<b≦20 and 0<c≦22 (excluding b≦7.5 and c≦5).
(2)前記組成範囲は 69≦a≦93 2≦b≦15 5<c≦22 の範囲であることを特徴とする請求項1記載の軟磁性薄
膜。
(2) The soft magnetic thin film according to claim 1, wherein the composition range is 69≦a≦93 2≦b≦15 5<c≦22.
(3)Fe_aB_bN_c(但し,a,b,cは各々
原子%を示し,BはZr,Hf,Ti,Nb,Ta,V
,Mo,Wの少なくとも1種以上を表わす。)なる組成
式で示され,その組成範囲は,前記三者の三成分組成座
標系(Fe,B,N)において P (91,2,7) Q (93,2,5) R (88,7,5) S (73,12,15) T (69,12,19) U (69,9,22) V (76,5,19) の7点を結ぶ線分で囲まれた範囲であることを特徴とす
る軟磁性薄膜。
(3) Fe_aB_bN_c (however, a, b, c each indicate atomic %, B is Zr, Hf, Ti, Nb, Ta, V
, Mo, and W. ), and its composition range is P (91,2,7) Q (93,2,5) R (88, 7,5) S (73,12,15) T (69,12,19) U (69,9,22) V (76,5,19) This is the range surrounded by the line segment connecting the 7 points. A soft magnetic thin film characterized by:
(4)結晶粒径が300Å以下であることを特徴とする
請求項1〜3の一に記載の軟磁性薄膜。
(4) The soft magnetic thin film according to any one of claims 1 to 3, characterized in that the crystal grain size is 300 Å or less.
JP1304811A 1989-01-26 1989-11-27 Soft magnetic thin film Expired - Lifetime JPH0744108B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US07/470,662 US5117321A (en) 1989-01-26 1990-01-26 Soft magnetic thin film, method for preparing same and magnetic head
EP90101621A EP0380136B1 (en) 1989-01-26 1990-01-26 Soft magnetic thin film, method for preparing same and magnetic head
DE69015652T DE69015652T2 (en) 1989-01-26 1990-01-26 Soft magnetic thin film, process for its production and magnetic head.
US07/878,624 US5421915A (en) 1989-01-26 1992-05-05 Method for preparing same and magnetic head
US08/178,441 US6183568B1 (en) 1989-01-26 1994-01-06 Method for preparing a magnetic thin film
US08/775,518 US5772797A (en) 1989-01-26 1997-01-02 Soft magnetic thin film, method for preparing same and magnetic head
US08/957,791 US6238492B1 (en) 1989-01-26 1997-10-24 Soft magnetic thin film, method for preparing same and magnetic head

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1511289 1989-01-26
JP1-15112 1989-01-26

Publications (2)

Publication Number Publication Date
JPH02275605A true JPH02275605A (en) 1990-11-09
JPH0744108B2 JPH0744108B2 (en) 1995-05-15

Family

ID=11879744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1304811A Expired - Lifetime JPH0744108B2 (en) 1989-01-26 1989-11-27 Soft magnetic thin film

Country Status (1)

Country Link
JP (1) JPH0744108B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263306A (en) * 1990-02-02 1991-11-22 Nec Corp Magnetic film and magnetic head
JPH0546911A (en) * 1991-08-13 1993-02-26 Matsushita Electric Ind Co Ltd Magnetic head and manufacture thereof
JPH06295418A (en) * 1993-04-09 1994-10-21 Nec Corp Combined magnetic head and magnetic recording and reproducing device
US5452167A (en) * 1993-03-31 1995-09-19 Matsushita Electric Industrial Co., Ltd. Soft magnetic multilayer films for magnetic head
US5858548A (en) * 1994-08-12 1999-01-12 Hitachi, Ltd. Soft magnetic thin film, and magnetic head and magnetic recording device using the same
US5873955A (en) * 1994-08-12 1999-02-23 Hitachi, Ltd. Soft magnetic thin film, and magnetic head and magnetic recording device using the same
US6033792A (en) * 1995-02-02 2000-03-07 Hitachi, Ltd. Soft magnetic thin film, and magnetic head and magnetic recording device using the same
KR20020078705A (en) * 2001-04-09 2002-10-19 한국과학기술연구원 FeTiN based soft magnetic thin films compositions
KR100818994B1 (en) * 2006-01-24 2008-04-02 삼성전자주식회사 Fabricating method for semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158306A (en) * 1986-01-07 1987-07-14 Hitachi Ltd High density iron system magnetic material film and manufacture thereof
JPS62210607A (en) * 1986-03-12 1987-09-16 Matsushita Electric Ind Co Ltd Magnetic alloy film
JPS6357758A (en) * 1986-08-26 1988-03-12 Matsushita Electric Ind Co Ltd Nitriding magnetic alloy film
JPS63236304A (en) * 1987-03-25 1988-10-03 Hitachi Ltd Corrosion-resistant ferromagnetic film
JPS63254708A (en) * 1987-04-10 1988-10-21 Matsushita Electric Ind Co Ltd Magnetic alloy film containing nitrogen
JPS63299219A (en) * 1987-05-29 1988-12-06 Sony Corp Magnetically soft thin film
JPS6415112A (en) * 1987-07-10 1989-01-19 Toshiba Corp Air cleaning filter
JPS6417205A (en) * 1987-07-10 1989-01-20 Matsushita Electric Ind Co Ltd Heat treatment of nitrided alloy film
JPH02290004A (en) * 1989-02-03 1990-11-29 Matsushita Electric Ind Co Ltd Soft magnetic alloy film and its manufacture

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158306A (en) * 1986-01-07 1987-07-14 Hitachi Ltd High density iron system magnetic material film and manufacture thereof
JPS62210607A (en) * 1986-03-12 1987-09-16 Matsushita Electric Ind Co Ltd Magnetic alloy film
JPS6357758A (en) * 1986-08-26 1988-03-12 Matsushita Electric Ind Co Ltd Nitriding magnetic alloy film
JPS63236304A (en) * 1987-03-25 1988-10-03 Hitachi Ltd Corrosion-resistant ferromagnetic film
JPS63254708A (en) * 1987-04-10 1988-10-21 Matsushita Electric Ind Co Ltd Magnetic alloy film containing nitrogen
JPS63299219A (en) * 1987-05-29 1988-12-06 Sony Corp Magnetically soft thin film
JPS6415112A (en) * 1987-07-10 1989-01-19 Toshiba Corp Air cleaning filter
JPS6417205A (en) * 1987-07-10 1989-01-20 Matsushita Electric Ind Co Ltd Heat treatment of nitrided alloy film
JPH02290004A (en) * 1989-02-03 1990-11-29 Matsushita Electric Ind Co Ltd Soft magnetic alloy film and its manufacture

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263306A (en) * 1990-02-02 1991-11-22 Nec Corp Magnetic film and magnetic head
JPH0546911A (en) * 1991-08-13 1993-02-26 Matsushita Electric Ind Co Ltd Magnetic head and manufacture thereof
US5452167A (en) * 1993-03-31 1995-09-19 Matsushita Electric Industrial Co., Ltd. Soft magnetic multilayer films for magnetic head
JPH06295418A (en) * 1993-04-09 1994-10-21 Nec Corp Combined magnetic head and magnetic recording and reproducing device
US5858548A (en) * 1994-08-12 1999-01-12 Hitachi, Ltd. Soft magnetic thin film, and magnetic head and magnetic recording device using the same
US5873955A (en) * 1994-08-12 1999-02-23 Hitachi, Ltd. Soft magnetic thin film, and magnetic head and magnetic recording device using the same
US6033792A (en) * 1995-02-02 2000-03-07 Hitachi, Ltd. Soft magnetic thin film, and magnetic head and magnetic recording device using the same
KR20020078705A (en) * 2001-04-09 2002-10-19 한국과학기술연구원 FeTiN based soft magnetic thin films compositions
KR100818994B1 (en) * 2006-01-24 2008-04-02 삼성전자주식회사 Fabricating method for semiconductor device
US7923814B2 (en) 2006-01-24 2011-04-12 Samsung Electronics Co., Ltd. Semiconductor device including an inductor having soft magnetic thin film patterns and a fabricating method of the same
US8216860B2 (en) 2006-01-24 2012-07-10 Samsung Electronics Co., Ltd. Method of fabricating semiconductor device

Also Published As

Publication number Publication date
JPH0744108B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
EP0380136B1 (en) Soft magnetic thin film, method for preparing same and magnetic head
US6238492B1 (en) Soft magnetic thin film, method for preparing same and magnetic head
US5439754A (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JPH02275605A (en) Soft magnetic thin film
JP2963003B2 (en) Soft magnetic alloy thin film and method of manufacturing the same
US5421915A (en) Method for preparing same and magnetic head
JPH07116563B2 (en) Fe-based soft magnetic alloy
JP2508489B2 (en) Soft magnetic thin film
JP2950917B2 (en) Soft magnetic thin film
JP2866911B2 (en) Magnetic head
JPH0484403A (en) Soft magnetic thin film
JPH031513A (en) Manufacture of soft magnetic thin film
JPH03263306A (en) Magnetic film and magnetic head
JP2508479B2 (en) Soft magnetic ferrite thin film
JP2808547B2 (en) Composite magnetic head
JP2570337B2 (en) Soft magnetic laminated film
JPH02263416A (en) Manufacture of soft magnetic alloy film
JP2698864B2 (en) Method for manufacturing soft magnetic thin film
JP2784105B2 (en) Soft magnetic thin film
US6183568B1 (en) Method for preparing a magnetic thin film
JP2657710B2 (en) Method for manufacturing soft magnetic thin film
JPH0636928A (en) Soft magnetic material
JP2584687B2 (en) Method for manufacturing soft magnetic thin film
JPH0393011A (en) Composite magnetic head
JP3639333B2 (en) MIG head

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080515

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 15