JP2570337B2 - Soft magnetic laminated film - Google Patents

Soft magnetic laminated film

Info

Publication number
JP2570337B2
JP2570337B2 JP62302054A JP30205487A JP2570337B2 JP 2570337 B2 JP2570337 B2 JP 2570337B2 JP 62302054 A JP62302054 A JP 62302054A JP 30205487 A JP30205487 A JP 30205487A JP 2570337 B2 JP2570337 B2 JP 2570337B2
Authority
JP
Japan
Prior art keywords
soft magnetic
thin film
magnetic
film
laminated film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62302054A
Other languages
Japanese (ja)
Other versions
JPH01143311A (en
Inventor
和彦 林
健二 香取
正俊 早川
興一 阿蘇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62302054A priority Critical patent/JP2570337B2/en
Publication of JPH01143311A publication Critical patent/JPH01143311A/en
Application granted granted Critical
Publication of JP2570337B2 publication Critical patent/JP2570337B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は軟磁性積層膜に関し、特に高密度記録に好適
な性能を発揮する磁気ヘッドのコア等として使用される
軟磁性積層膜に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft magnetic laminated film, and more particularly, to a soft magnetic laminated film used as a core of a magnetic head exhibiting performance suitable for high-density recording.

〔発明の概要〕[Summary of the Invention]

本発明は、磁気ヘッドのコア等として使用される軟磁
性積層膜において、純FeあるいはFeを主成分とする結晶
質磁性合金薄膜からなる主磁性層と、非晶質非磁性合金
薄膜からなる中間層とを積層することにより、飽和磁束
密度が高く、耐熱性に優れる軟磁性積層膜を提供するも
のである。
The present invention relates to a soft magnetic laminated film used as a core of a magnetic head and the like, in which a main magnetic layer made of pure Fe or a crystalline magnetic alloy thin film containing Fe as a main component and an intermediate film made of an amorphous nonmagnetic alloy thin film are used. By laminating the layers, a soft magnetic laminated film having a high saturation magnetic flux density and excellent heat resistance is provided.

〔従来の技術〕[Conventional technology]

たとえばオーディオテープレコーダーやVTR(ビデオ
テープレコーダー)等の磁気記録再生装置においては、
記録信号の高密度化や高品質化が進行しており、鉄等の
強磁性金属粉末を磁性粉とするいわゆるメタルテープ
や、強磁性金属材料を真空薄膜形成技術によりベースフ
ィルネ上に直接被着した、いわゆる蒸着テープ等が実用
化されている。
For example, in a magnetic recording / reproducing device such as an audio tape recorder or a VTR (video tape recorder),
Higher density and higher quality of recording signals are progressing, and so-called metal tape using ferromagnetic metal powder such as iron as magnetic powder, or ferromagnetic metal material is directly coated on base film by vacuum thin film forming technology. A so-called deposited tape or the like that has been put on the market has been put to practical use.

ところで、このような高保磁力を有する磁気記録媒体
の特性を十分に活かして良好な記録再生を行うために
は、磁気ヘッドのコア材料の特性として、高い飽和磁束
密度を有するとともに、同一の磁気ヘッドで再生を行お
うとする場合においては高透磁率を併せて有することが
要求される。
By the way, in order to make good use of the characteristics of a magnetic recording medium having such a high coercive force to perform good recording and reproduction, the core material of the magnetic head must have a high saturation magnetic flux density and the same magnetic head. In the case where reproduction is to be performed, it is required to additionally have high magnetic permeability.

このような要求に応える材料として、各種の軟磁性積
層膜が提案されている。このうちの典型的な例として、
Fe基結晶質層とCo基非晶質層とを積層した軟磁性積層薄
膜が知られている。これらは各々が軟磁性材料である
が、Fe基結晶質層のもつ高飽和磁束密度とCo基非晶質層
のもつ高透磁率の特性を組み合わせてより一層の軟磁気
特性の向上を狙ったものである。
Various soft magnetic laminated films have been proposed as materials meeting such demands. As a typical example,
A soft magnetic laminated thin film in which an Fe-based crystalline layer and a Co-based amorphous layer are laminated has been known. Each of these is a soft magnetic material, but we aimed to further improve the soft magnetic properties by combining the high saturation magnetic flux density of the Fe-based crystalline layer and the high magnetic permeability of the Co-based amorphous layer. Things.

また、金属磁性薄膜と酸化物系非磁性薄膜とを積層し
た軟磁性積層膜も提案されている。
Also, a soft magnetic laminated film in which a metal magnetic thin film and an oxide-based non-magnetic thin film are laminated has been proposed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上述のFe基結晶質層とCo基非晶質層と
を積層した軟磁性積層膜には、以下のような問題点があ
る。第一に、この軟磁性積層膜の耐熱性はCo基非晶質層
の結晶化温度で決定され、多くの場合500℃程度が限界
である。第二に、Co基非晶質層に軟磁性をもたせるため
にはこの層をある程度厚く形成することが必要である
が、このために相対的にFe基結晶質層の厚さが減少し、
積層膜とされた際の飽和磁束密度をあまり高くすること
ができない。第三に、Co基非晶質層に誘導磁気異方性が
存在し、積層膜とされた際の軟磁気特性に悪影響を及ぼ
す。
However, the soft magnetic laminated film in which the Fe-based crystalline layer and the Co-based amorphous layer are laminated has the following problems. First, the heat resistance of the soft magnetic laminated film is determined by the crystallization temperature of the Co-based amorphous layer, and the limit is about 500 ° C. in many cases. Secondly, in order to impart soft magnetism to the Co-based amorphous layer, it is necessary to form this layer to a certain thickness, but for this reason, the thickness of the Fe-based crystalline layer relatively decreases,
The saturation magnetic flux density when formed as a laminated film cannot be increased so much. Third, induced magnetic anisotropy is present in the Co-based amorphous layer, which adversely affects the soft magnetic properties of the laminated film.

また、金属磁性薄膜と酸化物系非磁性薄膜とを積層し
た軟磁性積層膜では、これら両方の薄膜の熱膨張係数や
エッチング速度等の特性が異なりすぎ、各薄膜間におけ
る剥離や加工性の低さの原因となっている。
Further, in a soft magnetic laminated film in which a metal magnetic thin film and an oxide-based non-magnetic thin film are laminated, characteristics such as a thermal expansion coefficient and an etching rate of both the thin films are too different, and peeling and workability between the thin films are low. It is the cause of that.

そこで本発明は、耐熱性と軟磁気特性を向上させた軟
磁性積層膜の提供を目的とする。
Therefore, an object of the present invention is to provide a soft magnetic laminated film having improved heat resistance and soft magnetic characteristics.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明にかかる軟磁性積層膜は上述の目的を達成する
ために提案されたものであり、純FeあるいはFeを主成分
とする結晶質磁性合金薄膜からなる主磁性層と、非晶質
非磁性合金薄膜からなる中間層とを積層したことを特徴
とするものである。
The soft magnetic laminated film according to the present invention has been proposed in order to achieve the above-mentioned object, and comprises a main magnetic layer comprising pure Fe or a crystalline magnetic alloy thin film containing Fe as a main component, and an amorphous non-magnetic layer. An intermediate layer comprising an alloy thin film is laminated.

ここで、主磁性層の材料は純Feの他、Feを主成分とす
る結晶質磁性合金薄膜である。後者の材料として使用で
きる合金は、たとえばFeSi,センダスト,FeGaSi,FeAlGe,
FeCoSi,FeCoSiAl等である。膜厚は10〜10000Åの範囲に
選ばれ、より好ましくは50〜5000Åである。
Here, the material of the main magnetic layer is not only pure Fe but also a crystalline magnetic alloy thin film containing Fe as a main component. Alloys that can be used as the latter materials include, for example, FeSi, Sendust, FeGaSi, FeAlGe,
FeCoSi, FeCoSiAl and the like. The film thickness is selected in the range of 10 to 10,000 °, more preferably 50 to 5000 °.

また、上記中間層の材料は非晶質非磁性合金薄膜であ
り、この材料として使用できる合金はたとえばCoZr,CoH
f,CoTa,CoNb,NiZr,NiHf,CuZr,CuHf等である。膜厚は3
〜1000Åの範囲に選ばれ、より好ましくは5〜50Åであ
る。
The material of the intermediate layer is an amorphous nonmagnetic alloy thin film, and alloys that can be used as the material include, for example, CoZr, CoH
f, CoTa, CoNb, NiZr, NiHf, CuZr, CuHf and the like. The film thickness is 3
It is selected in the range of Å1000Å, more preferably 5Å50Å.

なお、上述の主磁性層および中間層の各膜厚の範囲は
得られる軟磁性積層膜の軟磁気特性を最適化する観点か
ら設定されたものであり、これらのいずれの範囲外でも
良好な軟磁気特性は期待できない。
The above ranges of the thicknesses of the main magnetic layer and the intermediate layer are set from the viewpoint of optimizing the soft magnetic characteristics of the obtained soft magnetic laminated film. Magnetic properties cannot be expected.

また、主磁性層および中間層の積層枚数は、軟磁性積
層膜の所望の特性に応じて適宜設定することができる。
The number of layers of the main magnetic layer and the intermediate layer can be appropriately set according to the desired characteristics of the soft magnetic laminated film.

上述のような軟磁性積層膜を作成するためには通常ス
パッタリングが行われ、高周波マグネトロン・スパッタ
リング、直流スパッタリング、対向ターゲット・スパッ
タリング、イオンビーム・スパッタリング等の種々の方
式が適用可能であり、いずれも通常の条件で行うことが
できる。このときの蒸発源としては、合金ターゲット、
各成分元素別の独立のターゲット、あるいは主成分とな
る元素のターゲットの上に少量成分の元素のチップを載
置したもの等を使用することできる。
Sputtering is usually performed to create a soft magnetic laminated film as described above, and various methods such as high-frequency magnetron sputtering, DC sputtering, facing target sputtering, ion beam sputtering, etc. can be applied. It can be performed under normal conditions. At this time, as an evaporation source, an alloy target,
An independent target for each component element, a target in which a small amount of element chips are mounted on a target of an element serving as a main component, or the like can be used.

また、上記Feを主成分とする結晶質磁性合金薄膜およ
び非晶質非磁性合金薄膜のいずれか一方もしくは両方
に、0.1〜10原子%の窒素あるいは酸素が含有されてい
ても良い。窒素あるいは酸素を導入するには、アルゴン
等を主体とするスパッタリング雰囲気中にこれらの気体
を適当な分圧にて混合すれば良い。
One or both of the crystalline magnetic alloy thin film and the amorphous non-magnetic alloy thin film containing Fe as a main component may contain 0.1 to 10 atomic% of nitrogen or oxygen. In order to introduce nitrogen or oxygen, these gases may be mixed at an appropriate partial pressure in a sputtering atmosphere mainly composed of argon or the like.

〔作用〕[Action]

本発明にかかる軟磁性積層膜は、Feを主成分とする結
晶質磁性合金薄膜と非晶質非磁性合金薄膜とが積層され
たものである。このような軟磁性積層膜の耐熱性は非晶
質非磁性合金薄膜の結晶化温度で決定され、該非晶質非
磁性合金薄膜が結晶質に変化した場合に結晶質磁性合金
薄膜との間で拡散が生じて軟磁気特性が劣化する。しか
し、ここで使用されている非晶質非磁性合金薄膜は結晶
化温度が高いため、非晶質状態を保ち、結晶質磁性合金
薄膜との間の拡散を防止するには有利である。このよう
な構成により、高い飽和磁束密度が得られる。さらに、
本軟磁性積層膜は金属同士の接合により構成されること
から熱による層間剥離が生じにくく、このような観点か
らも軟磁性積層膜の耐熱性が向上する。
The soft magnetic laminated film according to the present invention is formed by laminating a crystalline magnetic alloy thin film containing Fe as a main component and an amorphous nonmagnetic alloy thin film. The heat resistance of such a soft magnetic laminated film is determined by the crystallization temperature of the amorphous non-magnetic alloy thin film, and when the amorphous non-magnetic alloy thin film changes to crystalline, the heat resistance between the amorphous magnetic thin film and the crystalline magnetic alloy thin film is reduced. Diffusion occurs and soft magnetic characteristics deteriorate. However, since the amorphous nonmagnetic alloy thin film used here has a high crystallization temperature, it is advantageous to keep the amorphous state and prevent diffusion between the amorphous magnetic thin film and the crystalline magnetic alloy thin film. With such a configuration, a high saturation magnetic flux density can be obtained. further,
Since the soft magnetic laminated film is formed by joining metals, delamination due to heat hardly occurs, and from such a viewpoint, the heat resistance of the soft magnetic laminated film is improved.

〔実施例〕〔Example〕

以下、本発明の好適な実施例を図面を参照しながら説
明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

まず純Feを主磁性層、Co50Zr50(数字は原子%を表
す。以下同じ。)を中間層とする軟磁性積層膜の軟磁気
特性を調べた。まず、純FeとCo50Zr50合金の各ターゲッ
トを使用し、流速20SCCM,ガス圧2.5mTorrの純アルゴン
雰囲気中で同時二元スパッタリングにより純Fe薄膜とCo
50Zr50合金薄膜の各膜厚を種々に変えながらガラス基板
の上に交互に積層し、全厚1.8μmの軟磁性積層膜を作
成した。このとき各薄膜の膜厚は、ガラス基板の回転数
あるいは各ターゲットに対する投入電力を種々に選ぶこ
とにより変化させた。このようにして得られた各軟磁性
積層膜の軟磁気特性をスパッタリング直後において測定
した結果を第1図に示す。この図において、縦軸は純Fe
薄膜の膜厚(Å)を、横軸はCo50Zr50合金薄膜の膜厚
(Å)をそれぞれ示す。図中の各点は測定された各軟磁
性積層膜の膜厚の組合せを示し、これらを略円弧状に結
ぶ実線は保磁力Hcの等しい点を結ぶ等Hc線である。また
点線は飽和磁束密度Bsの等しい点を結ぶ等Bs線である。
この図より、Fe薄膜の膜厚がCo50Zr50合金薄膜の膜厚の
約10倍となる組合せにおいて約20kGという極めて高い飽
和磁束密度が得られていることがわかる。また、飽和磁
束密度Bsが20kG以上の領域では保磁力も高く、あるもの
は10kGのレベルにも達している。
First, the soft magnetic properties of a soft magnetic laminated film having pure Fe as the main magnetic layer and Co 50 Zr 50 (the number represents atomic%; the same applies hereinafter) were examined. First, using a target of pure Fe and a Co 50 Zr 50 alloy, a pure Fe thin film and Co were simultaneously subjected to dual sputtering in a pure argon atmosphere at a flow rate of 20 SCCM and a gas pressure of 2.5 mTorr.
Each film thickness of 50 Zr 50 alloy thin film are alternately laminated on the glass substrate while changing variously to prepare a soft magnetic multilayer film of total thickness 1.8 .mu.m. At this time, the thickness of each thin film was changed by variously selecting the number of revolutions of the glass substrate or the input power to each target. FIG. 1 shows the results of measuring the soft magnetic characteristics of each soft magnetic laminated film thus obtained immediately after sputtering. In this figure, the vertical axis is pure Fe
Thin film having a film thickness of a (Å), the horizontal axis represents Co 50 Zr 50 alloy thin film thickness (Å), respectively. Each point in the drawing indicates a combination of the measured film thicknesses of the respective soft magnetic laminated films, and solid lines connecting these in a substantially arc shape are iso-Hc lines connecting points having the same coercive force Hc. The dotted line is an iso-Bs line connecting points having the same saturation magnetic flux density Bs.
From this figure, it can be seen that an extremely high saturation magnetic flux density of about 20 kG was obtained in a combination in which the thickness of the Fe thin film was about 10 times the thickness of the Co 50 Zr 50 alloy thin film. Further, in the region where the saturation magnetic flux density Bs is 20 kG or more, the coercive force is high, and some of them reach the level of 10 kG.

次に、上述の軟磁性積層膜について、膜厚の組合せと
室温における比抵抗の関係を調べた結果を第2図に示
す。この図において、縦軸は純Fe薄膜の膜厚(Å)を、
横軸はCo50Zr50合金薄膜の膜厚(Å)をそれぞれ示す。
図中の各点は測定された各軟磁性積層膜の膜厚の組合せ
を示し、実線は比抵抗ρ(μΩ・cm)の等しい点を結ぶ
等ρ線である。この図より、相対的にCo50Zr50合金薄膜
の膜厚に対して純Fe薄膜の膜厚が大きくなる程、比抵抗
は低下する傾向にあることがわかる。
Next, FIG. 2 shows the result of examining the relationship between the combination of film thicknesses and the specific resistance at room temperature for the above-described soft magnetic laminated film. In this figure, the vertical axis represents the thickness (Å) of the pure Fe thin film,
The horizontal axis indicates the thickness (Å) of the Co 50 Zr 50 alloy thin film.
Each point in the drawing indicates a combination of the measured film thicknesses of the respective soft magnetic laminated films, and a solid line is an iso ρ line connecting points having the same specific resistance ρ (μΩ · cm). From this figure, relatively Co 50 Zr 50 enough to the thickness of the pure Fe thin relative to the thickness of the alloy thin film increases, the specific resistance is seen that tends to decrease.

次に、純Feを主磁性層、Ni50Zr50を中間層とする軟磁
性積層膜を作成し、その軟磁性特性を調べた。作成に際
してのスパッタリング条件は、中間層のターゲットを変
えた他は、上述のCo50Zr50を中間層とする軟磁性積層膜
を作成した場合と同様である。この結果を第3図に示
す。この図において、縦軸は純Fe薄膜の膜厚(Å)を、
横軸はNi50Zr50合金薄膜の膜厚(Å)をそれぞれ示す。
その他の記載事項も前述の各図と同様である。この場合
も、前述の第1図に示した結果と類似した傾向が認めら
れた。
Next, a soft magnetic laminated film having pure Fe as a main magnetic layer and Ni 50 Zr 50 as an intermediate layer was prepared, and the soft magnetic properties thereof were examined. The sputtering conditions at the time of formation are the same as in the case of forming the above-described soft magnetic laminated film using Co 50 Zr 50 as the intermediate layer, except that the target of the intermediate layer is changed. The result is shown in FIG. In this figure, the vertical axis represents the thickness (Å) of the pure Fe thin film,
The horizontal axis indicates the thickness (Å) of the Ni 50 Zr 50 alloy thin film.
Other items to be described are the same as those in the above-described respective drawings. Also in this case, a tendency similar to the result shown in FIG. 1 was observed.

次に、主磁性層として純Fe薄膜の代わりにFeを主成分
とする結晶質磁性合金薄膜を用いた例について述べる。
すなわち、前述の第1図に示した軟磁性薄膜の主磁性層
をFe98Ti2合金薄膜とした他は同様に軟磁性積層膜を作
成し、その軟磁気特性を測定した。この結果を第4図に
示す。この図において、縦軸はFe98Ti2合金薄膜の膜厚
(Å)を、横軸にはCo50Zr50合金薄膜の膜厚(Å)をそ
れぞれ示す。この図より、飽和磁束密度が20kGとなる各
薄膜の組合せはFe98Ti2合金薄膜の膜厚がCo50Zr50合金
薄膜の膜厚の約20倍となる場合であり、保磁力は前述の
いずれの軟磁性積層膜よりもやや低くなる傾向がみられ
る。
Next, an example in which a crystalline magnetic alloy thin film containing Fe as a main component is used as the main magnetic layer instead of the pure Fe thin film will be described.
That is, except that the main magnetic layer of the soft magnetic thin film shown in FIG. 1 was an Fe 98 Ti 2 alloy thin film, a soft magnetic laminated film was prepared in the same manner, and its soft magnetic characteristics were measured. The result is shown in FIG. In this figure, the vertical axis represents the film thickness (Å) of the Fe 98 Ti 2 alloy thin film, and the horizontal axis represents the film thickness (Å) of the Co 50 Zr 50 alloy thin film. From this figure, the combination of each thin film whose saturation magnetic flux density is 20 kG is the case where the film thickness of the Fe 98 Ti 2 alloy thin film is about 20 times the film thickness of the Co 50 Zr 50 alloy thin film, and the coercive force is as described above. It tends to be slightly lower than any of the soft magnetic laminated films.

以上は、スパッタリング雰囲気が純アルゴンの場合で
あるが、次にこの雰囲気中に酸素あるいは窒素を導入し
た例について述べる。
The above is the case where the sputtering atmosphere is pure argon. Next, an example in which oxygen or nitrogen is introduced into this atmosphere will be described.

まず、前述の第4図に示した軟磁性積層膜のスパッタ
リング時のアルゴン雰囲気中に0.4SCCMの酸素を導入
し、全ガス圧を2.5mTorrとして軟磁性積層膜を作成し、
軟磁気特性を測定した。この結果を第5図に示す。この
図において、縦軸はFe96Ti2O2薄膜の膜厚(Å)を、横
軸にはCo50Zr50合金薄膜の膜厚(Å)をそれぞれ示す。
この図より、保磁力は第4図に示した結果よりさらに低
下し、膜厚の変化に対する保磁力の変化も緩やかになる
傾向が認められる。
First, 0.4 SCCM oxygen was introduced into the argon atmosphere at the time of sputtering the soft magnetic laminated film shown in FIG. 4 described above, and a soft magnetic laminated film was prepared at a total gas pressure of 2.5 mTorr.
The soft magnetic properties were measured. The result is shown in FIG. In this figure, the vertical axis represents the film thickness (Å) of the Fe 96 Ti 2 O 2 thin film, and the horizontal axis represents the film thickness (Å) of the Co 50 Zr 50 alloy thin film.
From this figure, it can be seen that the coercive force is further reduced than the result shown in FIG. 4, and the change in the coercive force with the change in the film thickness tends to be gentle.

さらに、上述の実験における酸素を窒素に替えた例に
ついて検討した。すなわち、前述の第4図に示した軟磁
性積層膜のスパッタリング時のアルゴン雰囲気中に0.3S
CCMの酸素を導入し、全ガス圧を2.5mTorrとして軟磁性
積層膜を作成し、軟磁気特性を測定した。この結果を第
6図に示す。この図において、縦軸はFe96Ti2N2薄膜の
膜厚(Å)を、横軸にはCo50Zr50合金薄膜の膜厚(Å)
をそれぞれ示す。この図より、前述の第5図と類似した
傾向がみられるが、保磁力はさらに低下し、膜厚の変化
に対する保磁力の変化もさらに緩やかになっている。
Further, an example in which oxygen was replaced with nitrogen in the above experiment was examined. That is, 0.3 S is applied in the argon atmosphere at the time of sputtering the soft magnetic laminated film shown in FIG.
Oxygen of CCM was introduced, the total gas pressure was set to 2.5 mTorr, a soft magnetic laminated film was formed, and the soft magnetic characteristics were measured. The result is shown in FIG. In this figure, the vertical axis represents the film thickness (Å) of the Fe 96 Ti 2 N 2 thin film, and the horizontal axis represents the film thickness (Å) of the Co 50 Zr 50 alloy thin film.
Are respectively shown. This figure shows a tendency similar to that of FIG. 5, but the coercive force is further reduced, and the change of the coercive force with respect to the change of the film thickness is further gentle.

次に、中間層の膜厚を一定にした場合の主磁性層の膜
厚の変化に対する保磁力の変化を調べた。本実験では、
種々の膜厚に作成されたFe86Si14合金薄膜を主磁性層,
膜厚9ÅのNi50Zr50合金薄膜を中間層とする軟磁性積層
膜(以下、FeSi−NiZr系軟磁性積層膜と称する。)、お
よび種々の膜厚に作成されたFe70Ru5Ga10Si15合金薄膜
と膜厚13ÅのCo50Zr50合金薄膜を中間層とする軟磁性積
層膜(以下、FeRuGaSi−CoZr系軟磁性積層膜と称す
る。)を使用した。この結果を第7図に示す。この図に
おいて、縦軸は保磁力(Oe)、横軸は主磁性層の膜厚
(Å)をそれぞれ示し、黒丸のプロットはFeSi−NiZr系
軟磁性積層膜、白丸のプロットはFeRuGaSi−CoZr系軟磁
性積層膜の特性にそれぞれ対応する。いずれの軟磁性積
層膜においても相対的に主磁性層の膜厚が中間層の膜厚
よりも大きくなるにつれて保磁力が向上するが、特に、
FeRuGaSi−CoZr系軟磁性積層膜の場合にその傾向は顕著
である。
Next, a change in coercive force with respect to a change in the thickness of the main magnetic layer when the thickness of the intermediate layer was made constant was examined. In this experiment,
Fe 86 Si 14 alloy thin films of various thicknesses were deposited on the main magnetic layer,
A soft magnetic laminated film (hereinafter, referred to as a FeSi-NiZr-based soft magnetic laminated film) having a 9 層 thick Ni 50 Zr 50 alloy thin film as an intermediate layer, and Fe 70 Ru 5 Ga 10 formed in various film thicknesses A soft magnetic laminated film (hereinafter, referred to as a FeRuGaSi-CoZr-based soft magnetic laminated film) having an intermediate layer of a Si 15 alloy thin film and a Co 50 Zr 50 alloy thin film having a thickness of 13 ° was used. The result is shown in FIG. In this figure, the ordinate indicates the coercive force (Oe), the abscissa indicates the thickness (Å) of the main magnetic layer, the black circle plot indicates the FeSi—NiZr-based soft magnetic laminated film, and the white circle plot indicates the FeRuGaSi—CoZr-based. It corresponds to the characteristics of the soft magnetic laminated film. In any soft magnetic laminated film, the coercive force is improved as the thickness of the main magnetic layer becomes larger than the thickness of the intermediate layer.
The tendency is remarkable in the case of the FeRuGaSi-CoZr-based soft magnetic laminated film.

ところで、以上の軟磁気特性はすべてスパッタリング
終了直後に測定したものであるが、磁気ヘッド等の製造
工程においてはガラス融着等のための熱処理を経るた
め、熱処理後の軟磁気特性の安定性も軟磁性積層膜に要
求される重要な性能のひとつである。そこで、膜厚100
ÅのFe98Ti2と膜厚10ÅのCo50Zr50を交互に積層して全
厚を1.2μmとした軟磁性積層膜を500℃にて熱処理し、
その透磁率の周波数依存性を調べた。この結果を第8図
に示す。この図において、縦軸は透磁率、横軸は周波数
(MHz)をそれぞれ示す。この図より、実用上必要な周
波数領域において良好な平坦性が得られていることがわ
かる。
By the way, the above soft magnetic properties are all measured immediately after the end of sputtering. However, in the manufacturing process of the magnetic head and the like, the stability of the soft magnetic properties after the heat treatment is also increased because the heat treatment for glass fusing or the like is performed. This is one of the important performances required for the soft magnetic laminated film. Therefore, the film thickness 100
Fe Fe 98 Ti 2 and 10 Co Co 50 Zr 50 are alternately laminated, and a soft magnetic laminated film having a total thickness of 1.2 μm is heat-treated at 500 ° C.
The frequency dependence of the magnetic permeability was investigated. The result is shown in FIG. In this figure, the vertical axis indicates the magnetic permeability, and the horizontal axis indicates the frequency (MHz). From this figure, it can be seen that good flatness is obtained in a frequency region necessary for practical use.

〔発明の効果〕〔The invention's effect〕

以上の説明からも明らかなように、本発明にかかる軟
磁性積層膜においては、いずれも飽和磁束密度が極めて
高いことが大きな長所となっている。また、中間層とし
て結晶化温度の高い非晶質非磁性合金が使用されている
ため、従来のCo基非晶質層を使用した場合のように得ら
れる積層膜の特性が比較的低い温度領域において劣化す
ることがない。さらに、積層される層がいずれも金属で
あるため、金属と酸化物系の非磁性体を積層する場合の
ような層間の剥離の問題が回避される。
As is clear from the above description, the soft magnetic laminated film according to the present invention has a great advantage that the saturation magnetic flux density is extremely high. Further, since an amorphous non-magnetic alloy having a high crystallization temperature is used as the intermediate layer, the characteristics of the laminated film obtained as in the case of using the conventional Co-based amorphous layer are relatively low. Does not deteriorate. Further, since all of the layers to be laminated are made of metal, the problem of delamination between layers as in the case of laminating a metal and an oxide-based nonmagnetic material is avoided.

このような軟磁気特性を有する軟磁性薄膜を磁気ヘッ
ド等に搭載すれば、磁気ヘッドの帯磁が防止され、S/N
比の高い良好な記録・再生が可能となる。
If a soft magnetic thin film having such soft magnetic properties is mounted on a magnetic head or the like, magnetization of the magnetic head is prevented, and S / N
Good recording / reproducing with a high ratio becomes possible.

【図面の簡単な説明】 第1図は純Fe薄膜を主磁性層、Co50Zr50合金薄膜を中間
層とする軟磁性積層膜の軟磁気特性を示す特性図、第2
図は同じ軟磁性積層膜について、膜厚の組合せと室温に
おける比抵抗の関係を調べた特性図である。第3図は純
Fe薄膜を主磁性層、Ni50Zr50合金薄膜を中間層とする軟
磁性積層膜の軟磁気特性を示す特性図である。第4図は
Fe98Ti2合金薄膜を主磁性層、Co50Zr50合金薄膜を中間
層とする軟磁性積層膜の軟磁気特性を示す特性図であ
る。第5図はFe96Ti2O2薄膜を主磁性層、Co50Zr50合金
薄膜を中間層とする軟磁性積層膜の軟磁気特性を示す特
性図である。第6図はFe96Ti2N2薄膜を主磁性層、Co50Z
r50合金薄膜を中間層とする軟磁性積層膜の軟磁気特性
を示す特性図である。第7図は中間層の膜厚を一定にし
た場合の代表的な主磁性層の膜厚の変化に対する保磁力
の変化を示す特性図である。第8図はFe98Ti2合金薄膜
を主磁性層、Co50Zr50合金薄膜を中間層とする軟磁性積
層膜の熱処理後における透磁率の周波数依存性を示す特
性図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a characteristic diagram showing soft magnetic characteristics of a soft magnetic laminated film having a pure Fe thin film as a main magnetic layer and a Co 50 Zr 50 alloy thin film as an intermediate layer.
The figure is a characteristic diagram obtained by examining the relationship between the combination of film thicknesses and the specific resistance at room temperature for the same soft magnetic laminated film. Figure 3 is pure
FIG. 4 is a characteristic diagram showing soft magnetic characteristics of a soft magnetic laminated film having an Fe thin film as a main magnetic layer and a Ni 50 Zr 50 alloy thin film as an intermediate layer. Fig. 4
FIG. 4 is a characteristic diagram showing soft magnetic characteristics of a soft magnetic laminated film having a Fe 98 Ti 2 alloy thin film as a main magnetic layer and a Co 50 Zr 50 alloy thin film as an intermediate layer. FIG. 5 is a characteristic diagram showing soft magnetic characteristics of a soft magnetic laminated film having a Fe 96 Ti 2 O 2 thin film as a main magnetic layer and a Co 50 Zr 50 alloy thin film as an intermediate layer. FIG. 6 shows that the Fe 96 Ti 2 N 2 thin film is composed of a main magnetic layer and Co 50 Z
The r 50 alloy thin film is a characteristic diagram showing the soft magnetic properties of the soft magnetic multilayer film as an intermediate layer. FIG. 7 is a characteristic diagram showing a change in coercive force with respect to a change in thickness of a typical main magnetic layer when the thickness of the intermediate layer is constant. FIG. 8 is a characteristic diagram showing the frequency dependence of the magnetic permeability after heat treatment of a soft magnetic laminated film having a Fe 98 Ti 2 alloy thin film as a main magnetic layer and a Co 50 Zr 50 alloy thin film as an intermediate layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿蘇 興一 東京都品川区北品川6丁目7番35号 ソ ニー株式会社内 (56)参考文献 特開 昭62−93367(JP,A) 特開 昭63−113907(JP,A) 特開 昭63−254709(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Aso 6-35, Kita-Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation (56) References JP-A-62-93367 (JP, A) JP-A-63-113907 (JP, A) JP-A-63-254709 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】純FeあるいはFeを主成分とする結晶質磁性
合金薄膜からなる主磁性層と、非晶質非磁性合金薄膜か
らなる中間層とを積層したことを特徴とする軟磁性積層
膜。
1. A soft magnetic laminated film comprising a main magnetic layer made of pure Fe or a crystalline magnetic alloy thin film containing Fe as a main component, and an intermediate layer made of an amorphous non-magnetic alloy thin film. .
JP62302054A 1987-11-30 1987-11-30 Soft magnetic laminated film Expired - Lifetime JP2570337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62302054A JP2570337B2 (en) 1987-11-30 1987-11-30 Soft magnetic laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62302054A JP2570337B2 (en) 1987-11-30 1987-11-30 Soft magnetic laminated film

Publications (2)

Publication Number Publication Date
JPH01143311A JPH01143311A (en) 1989-06-05
JP2570337B2 true JP2570337B2 (en) 1997-01-08

Family

ID=17904355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62302054A Expired - Lifetime JP2570337B2 (en) 1987-11-30 1987-11-30 Soft magnetic laminated film

Country Status (1)

Country Link
JP (1) JP2570337B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356419B1 (en) 1999-07-23 2002-03-12 International Business Machines Corporation Antiparallel pinned read sensor with improved magnetresistance
US6735058B2 (en) 2002-02-04 2004-05-11 International Business Machines Corporation Current-perpendicular-to-plane read head with an amorphous magnetic bottom shield layer and an amorphous nonmagnetic bottom lead layer
CN112239817B (en) * 2020-10-30 2021-07-27 南京佑天金属科技有限公司 Preparation system and preparation method of nickel-hafnium intermediate alloy

Also Published As

Publication number Publication date
JPH01143311A (en) 1989-06-05

Similar Documents

Publication Publication Date Title
JP2550996B2 (en) Soft magnetic thin film
US5439754A (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
US6238492B1 (en) Soft magnetic thin film, method for preparing same and magnetic head
JPH07302711A (en) Soft magnetic alloy thin film and its manufacture
JP2570337B2 (en) Soft magnetic laminated film
JP2692088B2 (en) Soft magnetic laminated film
JP2508489B2 (en) Soft magnetic thin film
JP2993686B2 (en) Soft magnetic multilayer coating and magnetic head having such soft magnetic multilayer coating
JPS58100412A (en) Manufacture of soft magnetic material
JPS60132305A (en) Iron-nitrogen laminated magnetic film and magnetic head using the same
US5786103A (en) Soft magnetic film and magnetic head employing same
JP2775770B2 (en) Method for manufacturing soft magnetic thin film
JPH03106003A (en) Soft magnetic amorphous alloy thin film
JP3200787B2 (en) Manufacturing method of magnetic recording medium
JPH01143312A (en) Amorphous soft magnetic laminated film
US6183568B1 (en) Method for preparing a magnetic thin film
JP2550995B2 (en) Soft magnetic laminated thin film
JP2979557B2 (en) Soft magnetic film
JPH0485716A (en) Thin magnetic film for magnetic head
KR950001603B1 (en) Magnetic head for multi-layer
JP2551008B2 (en) Soft magnetic thin film
JPH03203008A (en) Production of laminated film of fe-si-al ferromagnetic alloy for magnetic head
JP3639333B2 (en) MIG head
JP2519554B2 (en) MIG type magnetic head
JP2657710B2 (en) Method for manufacturing soft magnetic thin film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12