JP3639333B2 - MIG head - Google Patents

MIG head Download PDF

Info

Publication number
JP3639333B2
JP3639333B2 JP31476094A JP31476094A JP3639333B2 JP 3639333 B2 JP3639333 B2 JP 3639333B2 JP 31476094 A JP31476094 A JP 31476094A JP 31476094 A JP31476094 A JP 31476094A JP 3639333 B2 JP3639333 B2 JP 3639333B2
Authority
JP
Japan
Prior art keywords
magnetic
thin film
magnetic thin
tesla
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31476094A
Other languages
Japanese (ja)
Other versions
JPH08171705A (en
Inventor
雅祥 平本
修 井上
賢二 飯島
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP31476094A priority Critical patent/JP3639333B2/en
Publication of JPH08171705A publication Critical patent/JPH08171705A/en
Application granted granted Critical
Publication of JP3639333B2 publication Critical patent/JP3639333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Magnetic Heads (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Description

【0001】
【産業上の利用分野】
本発明は磁性体薄膜デバイスを利用したMIGヘッドに関する。さらに詳細には、フェライト上にフェライトよりも高飽和磁束密度をもつ軟磁性薄膜を形成した磁気ヘッド等の磁気回路部品として用いる磁性体薄膜デバイスを利用したMIGヘッドに関する。
【0002】
【従来の技術】
高転送レ−トを要求されるHDTV用磁気ヘッドや、小型化が進む磁気回路部品には、数十MHzで軟磁気特性の優れた磁性体薄膜デバイスが望まれている。
【0003】
このなかでフェライトコア上に数nmの非磁性層と数μmの高飽和磁束密度を有する軟磁性薄膜を形成した、いわゆるメタルインギャップヘッド(以下MIGヘッドと略)が広く検討されてきた。
【0004】
【発明が解決しようとする課題】
しかしながら従来、フェライトコア上に形成する磁性体薄膜の透磁率と再生出力の間には、十分な相関関係が得られず、磁性体薄膜の優れた軟磁気特性に値する再生効率を得ることが困難であった。この原因の一つにフェライトコアの飽和磁束密度と磁性体薄膜の飽和磁束密度の格差が大きいために磁性体薄膜内、特にフェライト界面近傍に蓄積される反磁界エネルギ−等の静磁エネルギ−や、磁化の回転にともなう交換エネルギ−の和が大きくなり、フェライトコアから磁性体薄膜への磁束変化、あるいは磁性体薄膜からフェライトコアへの磁束の変化の伝搬効率が悪くなり、フェライトからの漏れ磁界が大きくなっていることがあげられる。
【0005】
また、磁性体膜内に伝搬した磁束の変化は、磁気ギャップを介して相対する磁性薄膜間での静磁結合による漏れ磁界によりテ−プ、磁性薄膜間の磁束の伝搬を損なうことがあげられる。
【0006】
本発明は、上記問題点を解決し、フェライトとフェライト上に形成された軟磁性薄膜のフェライト、磁性体薄膜間および磁性体薄膜、テ−プ間の磁気的結合を良好にし、MIGヘッドの出力を向上できる磁性体薄膜デバイスを利用したMIGヘッドを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の課題を解決するため本発明のMIGヘッドは、B1(テスラ)なる飽和磁束密度を有するフェライト基板上に第1の磁性薄膜および第2の磁性薄膜とが順に積層されてなる磁性体薄膜が形成されているメタルインギャップ(MIG)ヘッドであって、前記第1の磁性薄膜の飽和磁束密度と前記第2の磁性薄膜の飽和磁束密度とが異なり、第1の磁性薄膜の平均飽和磁束密度をB2(テスラ)、前記磁性体薄膜の平均飽和磁束密度をB3(テスラ)とすると、B1≦B2≦B3−0.1(テスラ)の関係が成立し、前記磁性体薄膜は、磁性結晶粒子からなり、前記磁性体薄膜内には、膜面に垂直方向に少なくとも2種以上の同一元素が含まれ、第1の磁性薄膜は、磁性層と非磁性層とが交互に積層されてなり、第2の磁性薄膜は、磁性層と非磁性層とが交互に積層されてなり、第1の磁性薄膜が有する磁性層LA1がA1(テスラ)なる飽和磁束密度を有すると共にdA1(nm)の厚みを有し、第2の磁性薄膜が有する磁性層LA2がA2(テスラ)なる飽和磁束密度を有すると共にdA2(nm)の厚みを有するとすると、0.6×A2×dA2<A1×dA1<1.7×A2×dA2なる関係を満たす
【0008】
【作用】
本発明のMIGヘッドを構成する磁性体薄膜デバイスは、上記のように、B1(テスラ)の飽和磁束密度を有するフェライト基板上に形成された磁性体薄膜の内、基板側から膜面に垂直方向に10nmの厚みの範囲にある磁性体の平均飽和磁束密度をB2(テスラ)、磁性体薄膜全体の平均飽和磁束密度をB3(テスラ)とすると、B1、B2、B3がB1≦B2≦B3−0.1(テスラ)の関係で表されてなる。そのため、フェライト上に形成した高飽和磁束密度の磁性薄膜内の反磁界エネルギ−をフェライトと磁性体薄膜界面で効果的に下げることができ、膜内の磁気エネルギ−を減少することでフェライト、磁性体薄膜間の磁束の伝達効率を効果的に高めることができ、ヘッドの再生効率を向上させることができる。
【0009】
また上記構成の磁性体薄膜デバイスで、磁性体薄膜内に形成された磁性体積層膜のA1(テスラ)なる飽和磁束密度を有する磁性層LA1の厚みをdA1、A2(テスラ)なる飽和磁束密度を有する磁性層LA2の厚みdA2とすると、LA1とLA2が相対して少なくとも1層以上積層されるとき、0.6×A2×dA2<A1×dA1<1.7×A2×dA2 なる関係をほぼ満たすように選ばれた好ましい積層構造を有することで、飽和磁束密度がことなる磁性層間がもつ磁化量を同程度にすることができ、磁性層から発生する漏れ磁束を効果的に抑えることができる。
【0010】
【実施例】
本発明の磁性体薄膜デバイスは、図1に示す実施例のように、B1(テスラ)の飽和磁束密度を有するフェライト基板1上に磁性体薄膜2が形成されており、前記磁性体薄膜2は前記基板1側からみて、膜面に垂直方向に10nmの厚みまでの磁性体が平均飽和磁束密度をB2(テスラ)の第1の磁性薄膜2aと、この第1の磁性薄膜2a上に形成された第2の磁性薄膜2bとからなり、前記磁性体薄膜2の平均飽和磁束密度をB3(テスラ)とすると、B1、B2、B3が、
B1≦B2≦B3−0.1(テスラ) (1)
の関係で表される。ここでB2がB1よりも小さい場合、記録時に十分な飽和磁束密度が得られず、またB3とB2の差が0.1T(テスラ)よりも小さい場合顕著な再生出力の向上がみられない。
【0011】
本発明の磁性体薄膜デバイスは膜面に垂直方向に少なくとも2種以上の同一元素が磁性体薄膜内に含まれて構成される。特にこれらの元素がFe、Co、Niの磁性金属元素およびAl、Si、Crを始めとする磁性金属元素に固容する元素である場合、相互拡散により飽和磁束密度を始め磁性パラメ−タの膜面に垂直方向の変化分が急峻でなくなるために望ましい。
【0012】
本発明の磁性体薄膜デバイスは、また図2に示す実施例のように、第1の磁性薄膜2aとフェライト1の界面に、膜面に略平行な非磁性層3を含んで構成される。なおこの非磁性層3は第1の磁性薄膜2aと第2の磁性薄膜2b間、または磁性体薄膜2内、即ち各磁性薄膜2aまたは2b内、に設けたものであってもよい。特に非磁性層の厚みが2nm以上であれば、磁性体薄膜とフェライト、または異なる飽和磁束密度を有する磁性薄膜間の界面反応による磁気劣化層の形成を抑制でき、また磁性薄膜が結晶質であるときには結晶配向性の高い磁性薄膜を形成でき、また10nm以下であれば磁性薄膜層同士の静磁結合の効果により、磁性体薄膜全体の軟磁気特性を向上することができる。
【0013】
本発明の磁性体薄膜デバイスは、上記と同様に磁性薄膜から形成された磁性体薄膜からなり、この磁性体薄膜の基板側からみて少なくとも100nm以上の磁性薄膜が、3nm≦D≦50nmの範囲の平均結晶粒径Dを持つ磁性結晶粒子を母相とする微結晶磁性体、もしくはアモルファス磁性体から構成されている。このような磁性体の構成であれば、交換結合により膜面内、膜に垂直方向の結晶磁気異方性が減少し、フェライト界面付近の膜面に垂直方向の磁化回転が容易になる。とくに少なくとも基板側の磁性体薄膜の100nm以上が上記の微結晶磁性体あるいはアモルファス磁性体であることが望ましい。
【0014】
本発明の磁性体薄膜デバイスは、磁性体薄膜の一部が磁性体の磁性層と非磁性体の非磁性層とが積層されてなり、この部分の厚さは表面から少なくとも100nm以上に形成される。このように、磁性体と非磁性体が交互に積層されてなる積層磁性体薄膜であるので、表面からの漏れ磁界を減少させ、MIGヘッドの出力特性を向上させることができる。
【0015】
とくに上記磁性層が柱状構造を持つ結晶粒子で構成されおり、磁性層の厚みdが、3nm≦d≦100nmの範囲であるので、膜面に垂直方向の漏れ磁束が少なくなる。この柱状構造の磁性層の厚みdが3nmより小さくなると、非磁性層の拡散距離に等しくなるため、積層構造を維持できなくなり、垂直方向に漏れ磁束が発生する。またこの柱状構造の磁性層厚みdが100nmよりも厚くなると、垂直磁気異方性が生じ、積層効果が無くなる。
【0016】
また例えば上記磁性層がアモルファスあるいは磁性結晶粒子の平均サイズDが3nm≦D≦50nmの微結晶材料であり、積層される磁性層厚みdは100nm≦d≦2000nm以下としている。この場合磁性層厚みdが2000nm以上になると、磁性体薄膜表面からの漏れ磁界が発生する。また100nmより薄くなると、垂直方向の交換結合が弱まり、微結晶あるいはアモルファス磁性体の軟磁気特性が劣化する。
【0017】
本発明の磁性体薄膜デバイスは、磁性層と非磁性層が積層されてなる磁性体薄膜からなっている。この磁性体薄膜内に設けられた積層膜では、非磁性層の厚みを0.5〜10nmの範囲としている。そのため非磁性層が良好な静磁結合を保ちつつ、磁性体薄膜表面からの漏れ磁束を最小にすることができる。なお非磁性層が0.5nmよりも薄くなると、磁性層同士の直接結合がおこり、磁性体表面からの漏れ磁束が生じる。また10nmより厚くなると、静磁結合が弱まるために、ヘッドにした場合、出力特性が減じてしまう。
【0018】
本発明の磁性体薄膜デバイスは、また図3に示す実施例のように、フェライト基板上1 に、非磁性層3を介し、第1の磁性薄膜2aとして、A1(テスラ)なる飽和磁束密度を有する磁性層LA1と非磁性層が交互に積層されてなり、続いて、第2の磁性薄膜2bとしてA2(テスラ)なる飽和磁束密度を有する磁性層LA2と非磁性層が積層されてなる。そして磁性層LA1の厚みをdA1、磁性層LA2の厚みdA2とすると、各磁性層間の磁化量が同程度になり発生する漏れ磁束を最小にできるために、式
0.6×A2×dA2<A1×dA1<1.7×A2×dA2 (2)なる関係をほぼ満たすように選ばれた積層構造を形成している。特に
A1×dA1=A2×dA2 (3)なる関係をほぼ満たすように選ばれた積層構造とすることが好ましい。
【0019】
また上記磁性体薄膜デバイスは、図4に示す例のように、磁性体薄膜2bは、A1(テスラ)なる飽和磁束密度を有する磁性層LA1とA2(テスラ)なる飽和磁束密度を有する磁性層LA2とを非磁性層3を介してそれぞれ複数層を交互に積層してなっている。そして磁性層LA1の厚みをdA1、磁性層LA2の厚みdA2とすると、LA1とLA2が、式(2)(3)なる関係を満たすことにより、各磁性層間の磁化量が同程度になり発生する漏れ磁束を最小にできる。
【0020】
本発明の磁性体薄膜デバイスは非磁性層を形成する非磁性体が酸化物または炭化物または窒化物で、化学量論比よりも酸素または炭素または窒素が少ないと、金属磁性体を主成分とする磁性体薄膜または磁性層との界面自由エネルギが減少し、膜全体の強度が向上するために望ましく、とくに化学両論比よりも1〜50%程度少なくしている。
【0021】
本発明の磁性体薄膜デバイスはMIGヘッドとして用いると特に効果がある。以下の実施例中では、とくに断りがない限り1MHzの初透磁率が2000、飽和磁束密度が0.53(テスラ)の単結晶フェライト基板を準備し、この上に真空蒸着法により、磁性体薄膜を5μm形成した後加工したMIGヘッドの5MHzでの自己録再による相対再生出力により本発明の効果を確認した。ここでMIGヘッドは特に断らない限り、ギャップ長0.3μm、タ−ン数20で構成している。また相対出力は、初透磁率、飽和磁束密度がそれぞれの実施例中で異なるものを用いているためにそれぞれの実施例中、最大出力を持つ磁性体薄膜デバイスを0dBとして表記している。テ−プは市販のテ−プを用いた。
【0022】
参考例1〜6)
RF(radio frequency)マグネトロンスパッタで、フェライト基板上に飽和磁束密度の異なる2種類の軟磁性薄膜を合計5μmになるように連続成膜し、それぞれの膜厚を変えることで、基板近傍の10nmでの飽和磁束密度B2と、全磁性体薄膜の飽和磁束密度B3が異なるMIGヘッドを作製した。ギャップ形成には、フェライトと軟磁性薄膜間の相互拡散を防ぐために、低融点ガラス用いて、400℃で形成した。軟磁体薄膜はすべて初透磁率が3000〜4000である。形成した磁性体薄膜とB2、B3値、およびMIGヘッドでの相対出力を表1に示す。なお表中、( )内の数値は磁性体薄膜を構成する磁性薄膜の膜厚をμm単位で記したものである。
【0023】
【表1】

Figure 0003639333
【0024】
表1に示すように、B1(テスラ)なる飽和磁束密度を有するフェライト基板上に形成した磁性体薄膜の、基板側からみて、膜面に垂直方向に10nmの厚みまでの磁性体の平均飽和磁束密度をB2(テスラ)、前記磁性体薄膜の平均飽和磁束密度をB3(テスラ)とすると、B1、B2、B3がB1≦B2≦B3−0.1(テスラ)の関係で表せられるMIGヘッドは録再性特性がよかった。さらに参考例3〜6は膜面に垂直方向に2あるいは3種以上の同一元素が磁性体薄膜内に含まれる例を示すが、このように構成された磁性体薄膜を持つMIGヘッドにおいてはさらに優れた出力特性を持つことが分かった。
【0025】
なお、参考例1〜6では飽和磁束密度の異なる2種類の軟磁性薄膜を連続成膜することで構成した磁性体薄膜について記したが、3種類以上でも同様の効果がみられる。またこのB1、B2、B3の関係を満足するMIGヘッドでは、磁性体薄膜の種類によらず、出力特性の向上がみられた。
【0026】
参考例7〜12)
上記参考例1〜6では磁性体薄膜の総膜厚が5μmのものについて示したが、この参考例7〜12では磁性体薄膜の膜厚構成比のまま、即ちB1、B2、B3の関係を一定に保ったまま、総膜厚のみを3μmに変えた場合の出力特性の変化を表2に示す。
【0027】
【表2】
Figure 0003639333
【0028】
参考例7〜12より分かるように、B1、B2、B3の関係がB1≦B2≦B3−0.1(テスラ)であるMIGヘッドは、磁性体膜厚の膜厚に関係なく、優れた出力特性を示す。
【0029】
参考例13〜17)
RFマグネトロンスパッタで、フェライト基板上に0〜15nmのSiO2を形成した後、0.8(テスラ)のNiFeを2.5μm形成し、次に、0.3nmから15nmのSiO2を形成し、引き続き1(テスラ)のFeAlSiを2.5μm形成し、磁性体薄膜の合計が5μmとしMIGヘッドを作製した。熱処理温度は550℃で行った。なお軟磁性体薄膜はB2が0.8(テスラ)、B3が0.9(テスラ)で、組成、膜厚とも同じものを用いている。表3に非磁性基板上に作製したヘッドの相対出力を示す。
【0030】
【表3】
Figure 0003639333
【0031】
比較例9、10及び参考例13〜17と同一の磁性体薄膜および非磁性層を非磁性基板上に形成し、XRD(X-ray diffract meter エックスレイ ディフラクト メータ)で配向性、また透磁率 を調べた。この参考例13〜17においてはNiFeおよびFeAlSiとも細密面配向をし、結晶配向性に優れていたが、比較例においては配向性、透磁率とも低い値を示した。また比較例9〜11すべてにおいてフェライト/NiFe、NiFe/FeAlSi界面で疑似ギャップノイズが観測された。
【0032】
従って磁性体薄膜とフェライトの界面または異なる飽和磁束密度を持つ磁性体薄膜間の界面に、膜面に略平行な2nm以上10nm以下の非磁性層を含む磁性体薄膜デバイスはヘッドの出力特性を向上させる効果があることが分かる。なお参考例に示した他、アモルファス磁性薄膜や微結晶磁性薄膜においても同様な効果があることが分かった。
【0033】
また非磁性層を形成する非磁性体が酸化物または炭化物または窒化物で、化学量論比よりも酸素または炭素または窒素が少ないとき出力特性を損なうこと無く膜はがれ等が抑えられることを確認した。
【0034】
参考例18〜21)
RFマグネトロンスパッタで、フェライト基板上に5nmのSiO2を形成した後、参考例18〜20として1(テスラ)のFeTaAlSiN微結晶磁性薄膜をそれぞれ100、1000、2000nm形成した後、磁性体薄膜全体がそれぞれ5μmになるように1.6(テスラ)のFeAlSiNiを形成したMIGヘッドを作製した。
【0035】
また参考例21として1(テスラ)FeTaAlSiN微結晶磁性薄膜を100nm形成した後、1.6(テスラ)の微結晶磁性薄膜であるFeAlSiNを形成したMIGヘッドを作製した。
【0036】
次に比較例12としてRFマグネトロンスパッタで、フェライト基板上に5nmのSiO2を形成した後、1(テスラ)のFeTaAlSiN微結晶磁性薄膜を50nm形成した後、磁性体薄膜全体が5μmになるように1.6(テスラ)のFeAlSiNiを形成したMIGヘッドを作製した。
【0037】
比較例13〜15として同様にフェライト基板上に5nmのSiO2を形成した後、1(テスラ)のFeAlSi磁性薄膜をそれぞれ100、1000、2000nm形成した後、磁性体薄膜全体が5μmになるように1.6(テスラ)のFeAlSiNiを形成したMIGヘッドを作製した。
【0038】
上記比較例12〜15及び参考例18〜21からなるMIGヘッドの相対出力を測定した結果を表4に示す。また非磁性基板上に成膜した上記、参考例および比較例に用いた数種類の磁性体薄膜の透磁率は約3000とほぼ一定の値を示した。
【0039】
【表4】
Figure 0003639333
【0040】
透過型電子顕微鏡(TEM)によりFeTaAlSiNおよびFeAlSiN磁性薄膜の断面を観察すると結晶粒径が3〜50nm程度の柱状晶でない微結晶を母相としており、一方FeAlSiおよびFeAlSiNiは柱状の磁性結晶粒子よりなっていることが分かった。
【0041】
比較例12および参考例18を比べると磁性体薄膜内の飽和磁束密度の分布及び初透磁率の値はほぼ同じであるが、明らかに参考例の出力が高い。これは膜全体の見かけの初透磁率には現れていないが、比較例12の50nmの微結晶薄膜内では垂直方向に十分な交換結合距離が取れないために磁気劣化層となったが故と考えられる。
【0042】
また比較例13と参考例18、比較例14と参考例20、比較例15と参考例21をそれぞれ比べると、初透磁率および磁性体薄膜の飽和磁束密度の分布が同じであるのに参考例の出力が高いことが分かる。これは比較例の柱状構造を持った磁性薄膜では、膜面に対して垂直方向の形状異方性が、フェライト界面近傍での垂直方向の磁化回転に有利に働く一方、結晶磁気異方性エネルギ−が、磁化変化方向に対して特定方位で容易軸となるために、垂直方向での初透磁率が制御が困難になると考えられる。これに対して、参考例の3〜50nmの範囲で表される結晶粒径を持つ磁性結晶粒子を母相とする微結晶磁性体においては、膜面内から膜に垂直方向の結晶磁気異方性までが方位依存性が小さく、その値も同程度に小さいために、フェライト界面付近の膜面に垂直方向の初透磁率が高いためと考えられる。
【0043】
これらの参考例より磁性体薄膜の基板側からみて、100nm以上の範囲に、3〜50nmの結晶粒径を持つ磁性結晶粒子を母相とする磁性体を持つ磁性体薄膜デバイスでは優れた出力特性を示すことが分かる。また上記微結晶磁性材料の代わりにアモルファス磁性体の場合も同様の範囲内で優れた出力特性を示すことがその他の実験から分かった。
【0044】
参考例22〜24)
RFマグネトロンスパッタで、フェライト基板上に7nmのSiO2を形成した後、1.3(テスラ)のFeAlSi磁性薄膜1μmを形成し、その上に1.6テスラのFeAlSi磁性薄膜4μmをArガス中で成膜途中に間欠的に酸素を導入することで、磁性体薄膜の表面近傍のみ、または全体に、0.3nmのFeAlSiO非磁性層と20nmのFeAlSi磁性層が交互に積層された磁性体薄膜を形成した。
【0045】
磁性体薄膜の表面からみて、FeAlSiO非磁性層で積層された積層膜の範囲を0nmから5μmまで変化させた数種類のMIGヘッドを形成し、相対出力を測定した。これらの結果を表5に示す。なおFeAlSi磁性層また薄膜は同一のタ−ゲットを用い放電圧力を変化させることで飽和磁束密度を調整している。また非磁性基板上に成膜した上記数種類の磁性体薄膜の透磁率は約1000とほぼ一定の値を示した。
【0046】
【表5】
Figure 0003639333
【0047】
VSM(残留側波帯変調)により垂直磁気異方性を測定すると、積層化範囲が広がるほど垂直磁気異方性が小さく、面内がより容易磁区方向に変化していた。これらのことから、この参考例での0.3nmのFeAlSiO非磁性層による積層化により、静磁結合が不十分で初透磁率の向上がないものの積層膜内では磁化が面内方向に制御されていることがわかる。上記の参考例の結果は、特に磁性体薄膜表面近傍の磁性層が積層された場合、出力特性がより向上しており、磁気ギャップを介した漏れ磁束が減少した効果であると考えられる。また磁性体薄膜全体を積層化した場合、フェライト近傍の磁性体薄膜の反磁界エネルギ−が増加するものの、本参考例のように、磁性体薄膜の飽和磁束密度がフェライト側において比較的低い値を示しているために優れた出力特性を示したものと考えられる。また非磁性層を形成する非磁性体が酸化物または炭化物または窒化物で、化学量論比よりも酸素または炭素または窒素が少ないとき出力特性を損なうこと無く膜はがれ等が抑えられることを確認した。
【0048】
参考例25〜27)
RFマグネトロンスパッタで、フェライト基板上に7nmのSiO2を形成した後、1(テスラ)のFeAlSi磁性薄膜1μmを形成した後、比較例19として1.8テスラのFeAlSi磁性薄膜2nmと1nmのFeAlSiO非磁性層を交互に積層した磁性体積層膜を形成した。
【0049】
参考例25として、上記同様にフェライト基板上に7nmのSiO2を形成した後、1(テスラ)のFeAlSi磁性薄膜1μmを形成した後、1.6テスラのFeAlSi磁性薄膜3nmと1nmのFeAlSiO非磁性層を交互に積層した磁性体積層膜を形成した。
【0050】
上記同様にフェライト基板上に7nmのSiO2を形成した後、1(テスラ)のFeAlSi磁性薄膜1μmを形成した後、参考例26として1.3テスラのFeAlSi磁性薄膜60nmと5nmのFeAlSiO非磁性層を交互に積層した磁性体積層膜を、また参考例27として1.3テスラのFeAlSi磁性薄膜100nmと8nmのFeAlSiO非磁性層を交互に積層した磁性体積層膜をそれぞれ形成した。
【0051】
比較例20として1.26テスラのFeAlSi磁性薄膜150nmと8nmのFeAlSiO非磁性層を交互に積層した磁性体積層膜をそれぞれ形成し磁性薄膜全体が5μmになるようにした数種類のMIGヘッドを形成し、相対出力を測定した。これらの結果を表6に示す。また非磁性基板上に成膜した上記数種類の磁性体薄膜の透磁率は約3000とほぼ一定の値を示した。
【0052】
【表6】
Figure 0003639333
【0053】
VSMにより垂直磁気異方性を測定すると、参考例25〜27においては、比較例19及び20よりも垂直磁気異方性が小さく、またTEMによる膜断面構造を観察した結果、参考例、比較例とも磁性層内では柱状構造と見なせる磁性結晶粒子が母相となっており、特に比較例19の磁性層は、粒界に非磁性層物質が拡散し、事実上、明確な層状構造をなしていなかった。
【0054】
以上から、フェライト上に形成した磁性体薄膜の膜表面近傍100nm以上が磁性体積層膜で構成されさらに磁性層が柱状構造をもつ磁性体を母相とするとき、磁性層厚みdが3nm≦d≦100nmの範囲であれば、薄膜表面の漏れ磁界を抑制し、優れた出力特性を示すことが分かる。
【0055】
この参考例中に示したFeAlSi系積層膜以外でも、NiFe系、CoFe系などの柱状構造を持つ磁性層を持つ場合も、磁性層厚みが同様の範囲で優れた出力特性を示すことが分かった。また非磁性層を形成する非磁性体が酸化物または炭化物または窒化物で、化学量論比よりも酸素または炭素または窒素が少ないとき、出力特性を損なうことが無く、膜はがれ等が抑えられることを確認した。
【0056】
参考例28〜30)
RFマグネトロンスパッタで、フェライト基板上に7nmのSiO2を形成した後、1(テスラ)のFeAlSi磁性薄膜500nmを形成した。その上に、参考例と比較例のそれぞれ以下のような層を形成した
【0057】
比較例21として1.65(テスラ)のFeTaAlSiC磁性薄膜50nmと4nmのFeTaAlSiCO非磁性層を交互に積層した磁性体積層膜を形成する。
【0058】
参考例28として1.65(テスラ)のFeTaAlSiC磁性薄膜100nmと8nmのFeTaAlSiCO非磁性層を交互に積層した磁性体積層膜を形成する。
【0059】
参考例29として1.5(テスラ)のFeTaAlSiC磁性薄膜1000nmと8nmのFeTaAlSiCO非磁性層を交互に積層した磁性体積層膜を形成する。
【0060】
参考例30として1.5(テスラ)のFeTaAlSiC磁性薄膜2000nmと8nmのFeTaAlSiCO非磁性層を交互に積層した磁性体積層膜を形成する。
【0061】
比較例22として1.5(テスラ)のFeTaAlSiC磁性薄膜2500nmと8nmのFeTaAlSiCO非磁性層を交互に積層した磁性体積層膜を形成する。
【0062】
比較例23として1.5(テスラ)のFeTaAlSiC磁性薄膜5000nmを形成する。
【0063】
そして、磁性薄膜全体が5.5μmである数種類のMIGヘッドを形成し、相対出力を測定した。なお非磁性基板上に成膜した3μmの1.65(テスラ)のFeTaAlSiC及び1.5(テスラ)のFeTaAlSiC単層膜は共に約2000の初透磁率を示した。一方、非磁性基板上に成膜した上記数種類の磁性体薄膜の透磁率は参考例28〜30及び比較例22及び23では約2000とほぼ一定の値を示したのに対し、比較例21においては約1000と軟磁気特性の劣化が見られた。
【0064】
【表7】
Figure 0003639333
【0065】
TEMによる膜断面構造を観察した結果、参考例28〜30及び比較例22、23とも磁性層内では3〜50nm程度の結晶粒径をもつ微結晶材料からできており、VSMにより垂直磁気異方性を測定すると、参考例28〜30においては、比較例22及び23よりも垂直磁気異方性が小さかった。
【0066】
以上から、フェライト上に形成した磁性体薄膜の膜表面近傍100nm以上が結晶粒径3〜50nmの微結晶材料を母相とする磁性体積層膜で構成されるとき、磁性層厚みが100nm以上2000nmの範囲であれば、薄膜表面の漏れ磁界を抑制し、また微結晶磁性体の軟磁気特性を損なうこと無く優れた出力特性を示すことが分かる。
【0067】
また磁性層がCoZrNbのようなアモルファス磁性体の場合も、上記の磁性層厚みの範囲において優れた出力特性を示した。また非磁性層を形成する非磁性体が酸化物または炭化物または窒化物で、化学量論比よりも酸素または炭素または窒素が少ないとき、出力特性を損なうことが無く、膜はがれ等が抑えられることを確認した。
【0068】
参考例31〜34)
RFマグネトロンスパッタで、フェライト基板上に7nmのSiO2を形成した後、1(テスラ)のFeAlSi磁性薄膜70nmとFeAlSiO非磁性層 d-ox(nm)を交互に積層し約700nm成膜した後、さらに1.7(テスラ)のFeAlSi磁性薄膜70nmとFeAlSiO非磁性層 d-ox(nm)を交互に積層し合計の膜厚を約5μmとし、MIGヘッドを作製した。ここで非磁性層 d-oxは0.3〜15nmの範囲の何れかの値とし、MIGヘッドにおける最適な非磁性層厚みを調べた。相対出力結果を表8に示す。
【0069】
【表8】
Figure 0003639333
【0070】
表8に示すように、フェライト上に形成した磁性体薄膜が積層膜で構成されているとき、非磁性層の厚みが0.5〜10nmの範囲であれば相対出力特性は優れた値を示す。またこの例31〜34では、磁性体薄膜全体が積層磁性体薄膜である場合を示したが、磁性体薄膜の一部が積層薄膜である場合も同様の非磁性層膜厚範囲で優れた特性を示す。
【0071】
(実施例1〜9
RFマグネトロンスパッタで、フェライト基板上に7nmのSiO2を形成した後、1(テスラ)のFeAlSi磁性薄膜70nmとFeAlSiO非磁性層5nmを交互に積層し約700nm成膜した。さらに1.4(テスラ)のdなる厚みを持つFeAlSi磁性薄膜をFeAlSiO非磁性層5nmと交互に積層し合計の膜厚を約5μmとし、MIGヘッドを作製した。ここで磁性層厚みdは20〜100nmの範囲の何れかの値とし、異なる飽和磁束密度を有する磁性層で形成された磁性体積層薄膜がMIGヘッドにおける磁性体薄膜として用いられた場合の最適な積層条件について調べた。相対出力結果を表9に示す。
【0072】
【表9】
Figure 0003639333
【0073】
次にRFマグネトロンスパッタで、フェライト基板上に7nmのSiO2を形成した後、1.2(テスラ)のFeAlSiN磁性薄膜50nmとFeAlSiO非磁性層2nmを交互に積層し約500nm成膜した後、さらに1.5(テスラ)の厚みdを持つFeAlSi磁性薄膜をFeAlSiO非磁性層2nmと交互に積層し合計の膜厚を約5μmとし、MIGヘッドを作製した。ここで磁性層厚みdは20〜100nmの範囲の何れかの値とし、なる飽和磁束密度を有する磁性層で形成された磁性体積層薄膜がMIGヘッドにおける磁性体薄膜として用いられた場合の最適な積層条件について調べた。その相対出力結果を表10に示す。
【0074】
【表10】
Figure 0003639333
【0075】
表9では磁性層厚みdが30〜80nm、また表10では磁性層厚みdが30〜60nmの範囲で最も優れた出力特性を示している。これらの結果を考慮すると、A1なる飽和磁束密度を有する磁性層と非磁性層が交互に積層された第1の磁性薄膜と、A2(テスラ)なる飽和磁束密度を有する磁性層と非磁性層が交互に積層された第2の磁性薄膜が連続的に成膜された構成を持つ磁性体薄膜において、A1(テスラ)なる飽和磁束密度を有する磁性層LA1の厚みをdA1(nm)、A2(テスラ)なる飽和磁束密度を有する磁性層LA2の厚みdA2(nm)とすると、LA1とLA2が積層されるとき、式が
0.6×A2×dA2<A1×dA1<1.7×A2×dA2
なる関係をほぼ満すように作製されれば、MIGヘッドとして優れた出力特性を示すことが分かる。なおこの関係は上記表より明らかなように式が
A1×dA1=A2×dA2
の関係を満足するとき特に優れた特性を示すことが分かる。またこの実施例1〜9では磁性体薄膜中、飽和磁束密度が異なる2種類の積層膜について示したが、3種類以上の異なる飽和磁束密度を有する積層膜より構成された磁性体薄膜デバイスに付いても、上記の関係を満たすとき優れた出力特性を示す。
【0076】
参考例35〜42)
RFマグネトロンスパッタで、フェライト基板上に12種類の中から選ばれた何れかの非磁性層を7nm形成した後、1(テスラ)のFeAlSi磁性薄膜2μmを形成した後、1.6テスラのFeAlSi磁性薄膜60nmと9nmの非磁性層を交互に積層した磁性体薄膜層膜を形成した。ここで同一磁性体薄膜中に用いた非磁性層は、同一物質を用いた。また非磁性物質の組成はAES(オージェ電子分光分析)により調べた。作製した磁性体薄膜を90%の湿度、60℃の環境下で放置した後、市販のセロハンテ−プにはりつけ引き剥すことを10回繰り返すことで、磁性体薄膜の強度を調べた。この結果を表11に示す。表中の×印はわずかでもセロハンテ−プに磁性薄膜が付着したものを、また○印は剥がれなかった磁性体薄膜を示す。
【0077】
【表11】
Figure 0003639333
【0078】
この参考例35〜42のフェライト上に形成された磁性体薄膜でMIGヘッドを作製し、出力特性を測定したところ、ほぼ同じ特性が得られ、非磁性層の物質による明確な差を見いだせなかった。表11の結果から、磁性体薄膜内に設ける非磁性層として化学量論比よりも酸素または炭素または窒素が少ない酸化物、炭化物、窒化物を用いることで膜界面の付着強度が向上し、デバイスとしての信頼性、加工し易さなどが向上することが分かる。
【0079】
【発明の効果】
本発明のフェライト上に形成した磁性体薄膜内の飽和磁束密度の分布を特定の範囲に限定したMIGヘッドによれば、フェライト上に形成したフェライトより高飽和磁束密度の磁性体薄膜内の、特にフェライト基板界面近傍の磁気エネルギ−の総値を下げることができ、フェライト、磁性体薄膜間の磁束の伝達効率を高めることができる。そのため、例えばMIGヘッドのようにフェライトと磁性体薄膜間の磁束の流れが平行でないデバイスに用いれば、再生出力を向上させることができる。
【0080】
また本発明のMIGヘッドの磁性体薄膜内に2種以上の元素が共有されると、膜面に垂直方向の飽和磁束密度の変化率を小さくすることができ、フェライト、磁性体薄膜間の磁束の伝達効率をさらに高めることができる。
【0081】
本発明のMIGヘッドの磁性体薄膜中に形成された磁性体薄膜のA1(テスラ)なる飽和磁束密度を有する磁性層LA1の厚みをdA1、A2(テスラ)なる飽和磁束密度を有する磁性層LA2の厚みdA2とすると、LA1とLA2が、
0.6×A2×dA2<A1×dA1<1.7×A2×dA2
なる関係をほぼ満たすように選ばれた積層構造を有することで、磁性体薄膜の漏れ磁束をさらに抑制し、MIGヘッドの出力を向上させることができる。
【図面の簡単な説明】
【図1】 本発明のMIGヘッドの1実施例の要部を示す断面図である。
【図2】 本発明のMIGヘッドの他の実施例の要部を示す断面図である。
【図3】 本発明のMIGヘッドのさらに他の実施例の要部を示す断面図である。
【図4】 本発明のMIGヘッドのさらに他の実施例の要部を示す断面図である。
【符号の説明】
1 フェライト基板
2 磁性体薄膜
2a 第1の磁性薄膜
2b 第2の磁性薄膜
3 非磁性層[0001]
[Industrial application fields]
  The present invention relates to an MIG head using a magnetic thin film device. More specifically, the present invention relates to a MIG head using a magnetic thin film device used as a magnetic circuit component such as a magnetic head in which a soft magnetic thin film having a higher saturation magnetic flux density than ferrite is formed on ferrite.The
[0002]
[Prior art]
  For magnetic heads for HDTVs that require high transfer rates and magnetic circuit components that are becoming smaller in size, magnetic thin film devices having excellent soft magnetic characteristics at several tens of MHz are desired.
[0003]
  Among these, a so-called metal-in-gap head (hereinafter abbreviated as MIG head) in which a nonmagnetic layer of several nm and a soft magnetic thin film having a high saturation magnetic flux density of several μm are formed on a ferrite core has been widely studied.
[0004]
[Problems to be solved by the invention]
  Conventionally, however, a sufficient correlation cannot be obtained between the magnetic permeability of the magnetic thin film formed on the ferrite core and the reproduction output, and it is difficult to obtain the reproduction efficiency deserving the excellent soft magnetic properties of the magnetic thin film. Met. One of the causes is that the difference between the saturation magnetic flux density of the ferrite core and the saturation magnetic flux density of the magnetic thin film is so large that magnetostatic energy such as demagnetizing field energy accumulated in the magnetic thin film, particularly near the ferrite interface, , The sum of exchange energies with the rotation of magnetization increases, the propagation efficiency of the change in magnetic flux from the ferrite core to the magnetic thin film, or the change in magnetic flux from the magnetic thin film to the ferrite core deteriorates, and the leakage magnetic field from the ferrite Is increasing.
[0005]
  Further, the change in the magnetic flux propagated in the magnetic film may impair the propagation of the magnetic flux between the tape and the magnetic thin film due to a leakage magnetic field due to magnetostatic coupling between the magnetic thin films facing each other through the magnetic gap. .
[0006]
  The present invention solves the above-mentioned problems, improves the magnetic coupling between ferrite, soft magnetic thin film formed on ferrite and ferrite, magnetic thin film, magnetic thin film, and tape, and the output of the MIG head An object of the present invention is to provide a MIG head using a magnetic thin film device that can improve the above.
[0007]
[Means for Solving the Problems]
  In order to solve the above problems, the MIG head of the present invention has a magnetic thin film in which a first magnetic thin film and a second magnetic thin film are sequentially laminated on a ferrite substrate having a saturation magnetic flux density of B1 (Tesla). In the metal-in-gap (MIG) head formed, the saturation magnetic flux density of the first magnetic thin film is different from the saturation magnetic flux density of the second magnetic thin film, and the average saturation magnetic flux density of the first magnetic thin film is different. Is B2 (Tesla) and the average saturation magnetic flux density of the magnetic thin film is B3 (Tesla), the relationship of B1 ≦ B2 ≦ B3-0.1 (Tesla) is established. The magnetic thin film contains at least two kinds of the same element in the direction perpendicular to the film surface,The first magnetic thin film is formed by alternately laminating magnetic layers and non-magnetic layers, and the second magnetic thin film is formed by alternately laminating magnetic layers and non-magnetic layers. The magnetic layer LA1 has a saturation magnetic flux density of A1 (Tesla) and has a thickness of dA1 (nm), the magnetic layer LA2 of the second magnetic thin film has a saturation magnetic flux density of A2 (Tesla) and dA2 ( nm), the relationship of 0.6 × A2 × dA2 <A1 × dA1 <1.7 × A2 × dA2 is satisfied..
[0008]
[Action]
  As described above, the magnetic thin film device constituting the MIG head of the present invention is perpendicular to the film surface from the substrate side among the magnetic thin films formed on the ferrite substrate having a saturation magnetic flux density of B1 (Tesla). If the average saturation magnetic flux density of the magnetic material in the thickness range of 10 nm is B2 (Tesla) and the average saturation magnetic flux density of the entire magnetic thin film is B3 (Tesla), B1, B2, and B3 are B1 ≦ B2 ≦ B3−. It is expressed by a relationship of 0.1 (Tesla). For this reason, the demagnetizing field energy in the magnetic thin film with high saturation magnetic flux density formed on the ferrite can be effectively reduced at the interface between the ferrite and the magnetic thin film, and the magnetic energy in the film can be reduced to reduce the ferrite and magnetic properties. The transmission efficiency of the magnetic flux between the body thin films can be effectively increased, and the reproduction efficiency of the head can be improved.
[0009]
  In the magnetic thin film device having the above configuration, the magnetic layer LA1 having a saturation magnetic flux density A1 (Tesla) of the magnetic laminated film formed in the magnetic thin film has a thickness of dA1 and a saturation magnetic flux density A2 (Tesla). Assuming that the thickness dA2 of the magnetic layer LA2 has, LA1 and LA2Is a phaseOn the other hand, when at least one layer is laminated, it has a preferable laminated structure selected so as to substantially satisfy the relationship of 0.6 × A2 × dA2 <A1 × dA1 <1.7 × A2 × dA2. The amount of magnetization of magnetic layers having different densities can be made substantially the same, and the leakage magnetic flux generated from the magnetic layer can be effectively suppressed.
[0010]
【Example】
  In the magnetic thin film device of the present invention, a magnetic thin film 2 is formed on a ferrite substrate 1 having a saturation magnetic flux density of B1 (Tesla) as in the embodiment shown in FIG. When viewed from the substrate 1 side, a magnetic material up to a thickness of 10 nm in the direction perpendicular to the film surface is formed on the first magnetic thin film 2a having an average saturation magnetic flux density of B2 (Tesla) and on the first magnetic thin film 2a. Second magnetic thin film 2b, and assuming that the average saturation magnetic flux density of the magnetic thin film 2 is B3 (Tesla), B1, B2, B3 are:
      B1 ≦ B2 ≦ B3-0.1 (Tesla) (1)
It is expressed by the relationship. Here, when B2 is smaller than B1, a sufficient saturation magnetic flux density cannot be obtained at the time of recording, and when the difference between B3 and B2 is smaller than 0.1T (Tesla), no significant improvement in reproduction output is observed.
[0011]
  The magnetic thin film device of the present invention is configured such that at least two or more of the same elements are included in the magnetic thin film in a direction perpendicular to the film surface. In particular, when these elements are magnetic metal elements such as Fe, Co, and Ni and magnetic metal elements such as Al, Si, and Cr, films of magnetic parameters such as saturation magnetic flux density by mutual diffusion are used. This is desirable because the change in the direction perpendicular to the surface is not steep.
[0012]
  The magnetic thin film device of the present invention includes a nonmagnetic layer 3 substantially parallel to the film surface at the interface between the first magnetic thin film 2a and the ferrite 1 as in the embodiment shown in FIG. The nonmagnetic layer 3 may be provided between the first magnetic thin film 2a and the second magnetic thin film 2b, or in the magnetic thin film 2, that is, in each magnetic thin film 2a or 2b. In particular, if the thickness of the nonmagnetic layer is 2 nm or more, the formation of a magnetically deteriorated layer due to an interface reaction between the magnetic thin film and ferrite or a magnetic thin film having a different saturation magnetic flux density can be suppressed, and the magnetic thin film is crystalline. Sometimes a magnetic thin film with high crystal orientation can be formed, and if it is 10 nm or less, the soft magnetic characteristics of the entire magnetic thin film can be improved by the effect of magnetostatic coupling between the magnetic thin film layers.
[0013]
  The magnetic thin film device of the present invention comprises a magnetic thin film formed from a magnetic thin film in the same manner as described above. When viewed from the substrate side of this magnetic thin film, a magnetic thin film having a thickness of at least 100 nm is in the range of 3 nm ≦ D ≦ 50 nm. It is composed of a microcrystalline magnetic material having a magnetic crystal particle having an average crystal grain size D as a parent phase or an amorphous magnetic material. With such a magnetic material structure, the crystal magnetic anisotropy in the film plane and in the direction perpendicular to the film is reduced by exchange coupling, and the magnetization rotation in the direction perpendicular to the film surface near the ferrite interface is facilitated. In particular, it is desirable that at least 100 nm or more of the magnetic thin film on the substrate side is the above-described microcrystalline magnetic material or amorphous magnetic material.
[0014]
  In the magnetic thin film device of the present invention, a part of the magnetic thin film is formed by laminating a magnetic magnetic layer and a nonmagnetic nonmagnetic layer, and the thickness of this part is at least 100 nm or more from the surface. The Thus, since it is a laminated magnetic thin film in which magnetic and nonmagnetic materials are alternately laminated, the leakage magnetic field from the surface can be reduced and the output characteristics of the MIG head can be improved.
[0015]
  In particular, since the magnetic layer is composed of crystal grains having a columnar structure and the thickness d of the magnetic layer is in the range of 3 nm ≦ d ≦ 100 nm, the leakage magnetic flux in the direction perpendicular to the film surface is reduced. When the thickness d of the magnetic layer having the columnar structure is smaller than 3 nm, the thickness becomes equal to the diffusion distance of the nonmagnetic layer, so that the laminated structure cannot be maintained, and leakage flux is generated in the vertical direction. Also, if the magnetic layer thickness d of this columnar structure is greater than 100 nm, perpendicular magnetic anisotropy occurs and the stacking effect is lost.
[0016]
  Further, for example, the magnetic layer is amorphous or a microcrystalline material having an average size D of magnetic crystal grains of 3 nm ≦ D ≦ 50 nm, and the thickness d of the laminated magnetic layer is 100 nm ≦ d ≦ 2000 nm or less. In this case, when the magnetic layer thickness d is 2000 nm or more, a leakage magnetic field is generated from the surface of the magnetic thin film. On the other hand, when the thickness is less than 100 nm, the exchange coupling in the vertical direction is weakened, and the soft magnetic characteristics of the microcrystalline or amorphous magnetic material are deteriorated.
[0017]
  The magnetic thin film device of the present invention is formed by laminating a magnetic layer and a nonmagnetic layer.MagneticIt consists of a thin thin film. ThisMagnetismIn the laminated film provided in the thin film, the thickness of the nonmagnetic layer is in the range of 0.5 to 10 nm. Therefore, the leakage magnetic flux from the surface of the magnetic thin film can be minimized while the nonmagnetic layer maintains good magnetostatic coupling. When the nonmagnetic layer is thinner than 0.5 nm, the magnetic layers are directly coupled to each other, and a magnetic flux leakage from the surface of the magnetic material is generated. On the other hand, when the thickness is greater than 10 nm, magnetostatic coupling is weakened, so that when the head is used, output characteristics are reduced.
[0018]
  The magnetic thin film device of the present invention isFurther, as in the embodiment shown in FIG. In addition, a magnetic layer LA1 having a saturation magnetic flux density of A1 (Tesla) and a nonmagnetic layer are alternately stacked as the first magnetic thin film 2a via the nonmagnetic layer 3, and then the second magnetic thin film. 2b, a magnetic layer LA2 having a saturation magnetic flux density of A2 (Tesla) and a nonmagnetic layer are laminated.The magnetic layer LA1 has a thickness dA1, and the magnetic layer LA2 has a thickness dA2.And each magnetIn order to minimize the leakage flux generated by the same amount of magnetization between the
    0.6 × A2 × dA2 <A1 × dA1 <1.7 × A2 × dA2 (2) A laminated structure selected so as to substantially satisfy the relationship (2) is formed. In particular
    A1 × dA1 = A2 × dA2 (3) It is preferable to have a laminated structure selected so as to substantially satisfy the relationship:
[0019]
  In the magnetic thin film device, as shown in the example shown in FIG. 4, the magnetic thin film 2b includes a magnetic layer LA1 having a saturation magnetic flux density of A1 (Tesla) and a magnetic layer LA2 having a saturation magnetic flux density of A2 (Tesla). A plurality of layers are alternately stacked via the nonmagnetic layer 3. If the thickness of the magnetic layer LA1 is dA1, and the thickness dA2 of the magnetic layer LA2 is LA1, LA2But the expression(2) By satisfying the relationship (3), the amount of magnetization between the magnetic layers becomes the same, and the generated leakage magnetic flux can be minimized.
[0020]
  In the magnetic thin film device of the present invention, the nonmagnetic material forming the nonmagnetic layer is an oxide, carbide, or nitride, and the main component is a metal magnetic material when oxygen, carbon, or nitrogen is less than the stoichiometric ratio. This is desirable because the free energy at the interface with the magnetic thin film or the magnetic layer is reduced and the strength of the entire film is improved, and it is particularly preferably about 1 to 50% less than the stoichiometric ratio.
[0021]
  The magnetic thin film device of the present invention is particularly effective when used as a MIG head. In the following examples, unless otherwise specified, a single crystal ferrite substrate having an initial permeability of 1 MHz of 2000 and a saturation magnetic flux density of 0.53 (Tesla) is prepared, and a magnetic thin film is formed thereon by vacuum evaporation. The effect of the present invention was confirmed by the relative reproduction output by self-recording / reproducing at 5 MHz of the MIG head processed after forming 5 μm. Here, unless otherwise specified, the MIG head has a gap length of 0.3 μm and a number of turns of 20. In addition, since the relative output is different in initial permeability and saturation magnetic flux density in each embodiment, the magnetic thin film device having the maximum output is indicated as 0 dB in each embodiment. A commercially available tape was used as the tape.
[0022]
  (Reference example1-6)
  By RF (radio frequency) magnetron sputtering, two types of soft magnetic thin films with different saturation magnetic flux densities are continuously formed on the ferrite substrate so that the total thickness becomes 5 μm, and the thickness of each is changed to 10 nm near the substrate. MIG heads with different saturation magnetic flux densities B2 and saturation magnetic flux densities B3 of all magnetic thin films were produced. In order to prevent the mutual diffusion between the ferrite and the soft magnetic thin film, the gap was formed at 400 ° C. using low melting point glass. All of the soft magnetic thin films have an initial permeability of 3000 to 4000. Table 1 shows the formed magnetic thin film, the B2, B3 values, and the relative output of the MIG head. In the table, the numerical values in parentheses indicate the thickness of the magnetic thin film constituting the magnetic thin film in units of μm.
[0023]
[Table 1]
Figure 0003639333
[0024]
  As shown in Table 1, the magnetic material thin film formed on the ferrite substrate having a saturation magnetic flux density of B1 (Tesla), the average saturation magnetic flux of the magnetic material up to a thickness of 10 nm in the direction perpendicular to the film surface when viewed from the substrate side. When the density is B2 (Tesla) and the average saturation magnetic flux density of the magnetic thin film is B3 (Tesla), the MIG head in which B1, B2, and B3 are represented by the relationship of B1 ≦ B2 ≦ B3-0.1 (Tesla) is The recording / playback characteristics were good. furtherreferenceExamples 3 to 6 show examples in which two or three or more of the same elements are contained in the magnetic thin film in the direction perpendicular to the film surface, but the MIG head having the magnetic thin film thus configured is more excellent. It was found to have output characteristics.
[0025]
  In addition,Reference example1 to 6 describe a magnetic thin film formed by continuously forming two types of soft magnetic thin films having different saturation magnetic flux densities, but the same effect can be seen with three or more types. Further, in the MIG head satisfying the relationship of B1, B2, and B3, the output characteristics were improved regardless of the type of the magnetic thin film.
[0026]
  (referenceExamples 7-12)
  the abovereferenceIn Examples 1 to 6, the magnetic thin film has a total thickness of 5 μm.referenceIn Examples 7 to 12, the change in output characteristics is shown in Table 2 when only the total film thickness is changed to 3 μm while the film thickness composition ratio of the magnetic thin film is maintained, that is, the relationship between B1, B2, and B3 is kept constant. Show.
[0027]
[Table 2]
Figure 0003639333
[0028]
  referenceAs can be seen from Examples 7 to 12, the MIG head in which the relationship of B1, B2, and B3 is B1 ≦ B2 ≦ B3-0.1 (Tesla) has excellent output characteristics regardless of the magnetic film thickness. Indicates.
[0029]
  (referenceExamples 13-17)
  RF magnetron sputtering with 0-15nm SiO on ferrite substrate2Then, 0.8 (Tesla) NiFe is formed to 2.5 μm, and then 0.3 nm to 15 nm of SiO is formed.2Subsequently, 2.5 μm of 1 (Tesla) FeAlSi was formed, and the total thickness of the magnetic thin films was set to 5 μm to produce a MIG head. The heat treatment temperature was 550 ° C. The soft magnetic thin film has B2 of 0.8 (Tesla) and B3 of 0.9 (Tesla), and has the same composition and thickness. Table 3 shows the relative output of the head manufactured on the nonmagnetic substrate.
[0030]
[Table 3]
Figure 0003639333
[0031]
  Comparative Examples 9, 10 andreferenceThe same magnetic thin film and nonmagnetic layer as in Examples 13 to 17 were formed on a nonmagnetic substrate, and XRD (X-ray diffract meter X-ray diffractometer) was used to examine the orientation and permeability. thisreferenceIn Examples 13 to 17, both NiFe and FeAlSi were finely oriented and excellent in crystal orientation, but in the comparative examples, both orientation and magnetic permeability were low. In all of Comparative Examples 9 to 11, pseudo gap noise was observed at the ferrite / NiFe and NiFe / FeAlSi interfaces.
[0032]
  Therefore, a magnetic thin film device including a non-magnetic layer of 2 nm to 10 nm substantially parallel to the film surface at the interface between the magnetic thin film and ferrite or between the magnetic thin films having different saturation magnetic flux densities improves the output characteristics of the head. It turns out that there is an effect. In additionreferenceIn addition to the examples, it was found that the same effect was obtained in the amorphous magnetic thin film and the microcrystalline magnetic thin film.
[0033]
  It was also confirmed that when the non-magnetic material forming the non-magnetic layer is an oxide, carbide or nitride and the amount of oxygen, carbon or nitrogen is less than the stoichiometric ratio, film peeling can be suppressed without impairing output characteristics. .
[0034]
  (referenceExamples 18-21)
  RF magnetron sputtering, 5nm SiO on ferrite substrate2After formingreferenceAs Examples 18 to 20, MIG heads in which 1 (Tesla) FeTaAlSiN microcrystalline magnetic thin film was formed to 100, 1000, and 2000 nm, respectively, and 1.6 (Tesla) FeAlSiNi was formed so that the entire magnetic thin film was 5 μm each. Was made.
[0035]
  AlsoreferenceAs Example 21, a 1 (Tesla) FeTaAlSiN microcrystalline magnetic thin film was formed to a thickness of 100 nm, and then a MIG head formed with FeAlSiN, a 1.6 (Tesla) microcrystalline magnetic thin film, was produced.
[0036]
  Next, as Comparative Example 12, RF magnetron sputtering was performed, and 5 nm of SiO on the ferrite substrate.2After forming 50 nm of 1 (Tesla) FeTaAlSiN microcrystalline magnetic thin film, a MIG head having 1.6 (Tesla) FeAlSiNi formed so that the entire magnetic thin film was 5 μm was fabricated.
[0037]
  Similarly as Comparative Examples 13 to 15, 5 nm of SiO on the ferrite substrate.2After forming 1 (Tesla) FeAlSi magnetic thin film of 100, 1000, and 2000 nm, respectively, a MIG head having 1.6 (Tesla) FeAlSiNi formed so that the entire magnetic thin film was 5 μm was fabricated. .
[0038]
  Comparative Examples 12-15 andreferenceTable 4 shows the results of measuring the relative output of the MIG heads of Examples 18-21. Also, the above film formed on a non-magnetic substrate,referenceThe magnetic permeability of several types of magnetic thin films used in the examples and comparative examples was approximately 3000, indicating a substantially constant value.
[0039]
[Table 4]
Figure 0003639333
[0040]
  When the cross section of the FeTaAlSiN and FeAlSiN magnetic thin films is observed with a transmission electron microscope (TEM), the crystal phase is not a columnar crystal having a crystal grain size of about 3 to 50 nm, while FeAlSi and FeAlSiNi are made of columnar magnetic crystal particles. I found out.
[0041]
  Comparative Example 12 andreferenceComparing Example 18, the saturation magnetic flux density distribution and the initial permeability in the magnetic thin film are almost the same, but clearlyreferenceExample output is high. This does not appear in the apparent initial magnetic permeability of the entire film, but in the 50 nm microcrystalline thin film of Comparative Example 12, a sufficient exchange coupling distance cannot be obtained in the vertical direction, resulting in a magnetically deteriorated layer. Conceivable.
[0042]
  Comparative Example 13 andreferenceExample 18, Comparative Example 14 andreferenceExample 20, Comparative Example 15referenceComparing Example 21 with each other, initial permeability and magnetic thin filmInsideEven though the saturation magnetic flux density distribution is the samereferenceYou can see that the output of the example is high. This is because in the magnetic thin film having the columnar structure of the comparative example, the shape anisotropy in the direction perpendicular to the film surface favors the magnetization rotation in the direction perpendicular to the ferrite interface, while the magnetocrystalline anisotropy energy. -Is an easy axis in a specific orientation with respect to the magnetization change direction, and it is considered that the initial permeability in the vertical direction is difficult to control. On the contrary,referenceIn the microcrystalline magnetic material having a magnetic crystal grain having a crystal grain size represented in the range of 3 to 50 nm as a parent phase in the example, the orientation dependence is from the film plane to the crystal magnetic anisotropy perpendicular to the film. This is probably because the initial permeability in the direction perpendicular to the film surface near the ferrite interface is high.
[0043]
  thesereferenceFrom the example, the magnetic thin film device having a magnetic material having a magnetic crystal particle having a crystal grain size of 3 to 50 nm as a parent phase in a range of 100 nm or more as viewed from the substrate side of the magnetic thin film exhibits excellent output characteristics. I understand. It was also found from other experiments that an amorphous magnetic material instead of the microcrystalline magnetic material exhibits excellent output characteristics within the same range.
[0044]
    (referenceExamples 22-24)
  RF magnetron sputtering, 7nm SiO on ferrite substrate21 μm of 1.3 (Tesla) FeAlSi magnetic thin film is formed, and 1.6 μm of FeAlSi magnetic thin film 4 μm is formed thereon by introducing oxygen intermittently during the deposition in Ar gas. Then, a magnetic thin film in which a 0.3 nm FeAlSiO nonmagnetic layer and a 20 nm FeAlSi magnetic layer were alternately laminated was formed only near or on the entire surface of the magnetic thin film.
[0045]
  As seen from the surface of the magnetic thin film, several types of MIG heads were formed in which the range of the laminated film laminated with the FeAlSiO nonmagnetic layer was changed from 0 nm to 5 μm, and the relative output was measured. These results are shown in Table 5. The FeAlSi magnetic layer or thin film uses the same target and adjusts the saturation magnetic flux density by changing the discharge pressure. Further, the magnetic permeability of the above-mentioned several types of magnetic thin films formed on the nonmagnetic substrate showed a substantially constant value of about 1000.
[0046]
[Table 5]
Figure 0003639333
[0047]
  When the perpendicular magnetic anisotropy was measured by VSM (residual sideband modulation), the perpendicular magnetic anisotropy was smaller and the in-plane direction was more easily changed in the domain direction as the lamination range was expanded. From these things, thisreferenceIt can be seen that the lamination with the 0.3 nm FeAlSiO nonmagnetic layer in the example shows that the magnetization is controlled in the in-plane direction in the laminated film although the magnetostatic coupling is insufficient and the initial permeability is not improved. abovereferenceThe result of the example is considered to be the effect that the output characteristics are further improved and the leakage magnetic flux through the magnetic gap is reduced particularly when the magnetic layer near the surface of the magnetic thin film is laminated. When the entire magnetic thin film is laminated, the demagnetizing field energy of the magnetic thin film near the ferrite increases, but thisreferenceAs in the example, the saturation magnetic flux density of the magnetic thin film shows a relatively low value on the ferrite side, which is considered to indicate excellent output characteristics. It was also confirmed that when the non-magnetic material forming the non-magnetic layer is an oxide, carbide or nitride and the amount of oxygen, carbon or nitrogen is less than the stoichiometric ratio, film peeling can be suppressed without impairing output characteristics. .
[0048]
  (referenceExamples 25-27)
  RF magnetron sputtering, 7nm SiO on ferrite substrate2After forming 1 μm of FeAlSi magnetic thin film of 1 (Tesla), as a comparative example 19, a magnetic layered film in which 1.8 nm of FeAlSi magnetic thin film of 2 nm and 1 nm of FeAlSiO nonmagnetic layer are alternately laminated is formed. did.
[0049]
  referenceAs Example 25, 7 nm of SiO on a ferrite substrate as described above.2After forming 1 μm of FeAlSi magnetic thin film of 1 (tesla), a magnetic laminated film in which 1.6 nm of FeAlSi magnetic thin film of 3 nm and 1 nm of FeAlSiO nonmagnetic layer were alternately laminated was formed.
[0050]
  As above, 7 nm of SiO on the ferrite substrate2After forming 1 μm of FeAlSi magnetic thin film of 1 (Tesla),referenceAs Example 26, a magnetic laminated film in which 1.3 Tesla FeAlSi magnetic thin films 60 nm and 5 nm FeAlSiO nonmagnetic layers were alternately laminated,referenceAs Example 27, magnetic laminated films in which 1.3 Tesla FeAlSi magnetic thin films of 100 nm and 8 nm of FeAlSiO nonmagnetic layers were alternately laminated were formed.
[0051]
  As Comparative Example 20, several types of MIG heads were formed in which a magnetic laminated film was formed by alternately laminating a 1.26 Tesla FeAlSi magnetic thin film of 150 nm and an 8 nm FeAlSiO nonmagnetic layer so that the entire magnetic thin film was 5 μm. The relative output was measured. These results are shown in Table 6. Further, the magnetic permeability of the above-mentioned several kinds of magnetic thin films formed on the nonmagnetic substrate showed a substantially constant value of about 3000.
[0052]
[Table 6]
Figure 0003639333
[0053]
  When measuring perpendicular magnetic anisotropy by VSM,referenceIn Examples 25 to 27, the perpendicular magnetic anisotropy was smaller than those of Comparative Examples 19 and 20, and as a result of observing the film cross-sectional structure by TEM,referenceIn both the examples and the comparative examples, the magnetic crystal grains that can be regarded as columnar structures are the parent phase in the magnetic layer. In particular, in the magnetic layer of Comparative Example 19, the nonmagnetic layer material diffuses at the grain boundaries, and the layer structure is virtually clear. It was not structured.
[0054]
  From the above, when the magnetic thin film formed on ferrite has a thickness of 100 nm or more in the vicinity of the film surface and is composed of a magnetic layered film, and the magnetic layer has a columnar structure as a parent phase, the magnetic layer thickness d is 3 nm ≦ d It can be seen that when it is in the range of ≦ 100 nm, the leakage magnetic field on the surface of the thin film is suppressed and excellent output characteristics are exhibited.
[0055]
  thisreferenceIn addition to the FeAlSi-based laminated films shown in the examples, even when a magnetic layer having a columnar structure such as NiFe-based or CoFe-based is provided, it has been found that the magnetic layer thickness exhibits excellent output characteristics within the same range. Also, when the non-magnetic material forming the non-magnetic layer is an oxide, carbide or nitride, and oxygen, carbon or nitrogen is less than the stoichiometric ratio, the output characteristics will not be impaired, and film peeling will be suppressed. It was confirmed.
[0056]
  (referenceExamples 28-30)
  RF magnetron sputtering, 7nm SiO on ferrite substrate21 (Tesla) FeAlSi magnetic thin film 500 nm was formed. in addition,referenceThe following layers are formed for each example and comparative exampledid.
[0057]
  As Comparative Example 21, a magnetic laminated film in which a 1.65 (Tesla) FeTaAlSiC magnetic thin film 50 nm and a 4 nm FeTaAlSiCO nonmagnetic layer are alternately laminated is formed.
[0058]
  referenceAs Example 28, a magnetic laminated film in which a 1.65 (Tesla) FeTaAlSiC magnetic thin film 100 nm and an 8 nm FeTaAlSiCO nonmagnetic layer are alternately laminated is formed.
[0059]
  referenceAs Example 29, a magnetic laminated film in which 1.5 (Tesla) FeTaAlSiC magnetic thin films 1000 nm and 8 nm FeTaAlSiCO nonmagnetic layers are alternately laminated is formed.
[0060]
  referenceAs Example 30, a magnetic laminated film in which 1.5 (Tesla) FeTaAlSiC magnetic thin films 2000 nm and 8 nm FeTaAlSiCO nonmagnetic layers are alternately laminated is formed.
[0061]
  As Comparative Example 22, a magnetic multilayer film in which 1.5 (Tesla) FeTaAlSiC magnetic thin films 2500 nm and 8 nm FeTaAlSiCO nonmagnetic layers are alternately laminated is formed.
[0062]
  As Comparative Example 23, a FeTaAlSiC magnetic thin film of 5000 nm having a thickness of 1.5 (Tesla) is formed.
[0063]
  Then, several types of MIG heads having the entire magnetic thin film of 5.5 μm were formed, and the relative output was measured. The 3 μm 1.65 (Tesla) FeTaAlSiC and 1.5 (Tesla) FeTaAlSiC single-layer films formed on the nonmagnetic substrate both showed an initial permeability of about 2000. On the other hand, the magnetic permeability of the above-mentioned several types of magnetic thin films formed on nonmagnetic substrates isreferenceIn Examples 28 to 30 and Comparative Examples 22 and 23, about 2000, which was a substantially constant value, in Comparative Example 21, about 1000, deterioration in soft magnetic characteristics was observed.
[0064]
[Table 7]
Figure 0003639333
[0065]
  As a result of observing the film cross-sectional structure by TEM,referenceEach of Examples 28 to 30 and Comparative Examples 22 and 23 is made of a microcrystalline material having a crystal grain size of about 3 to 50 nm in the magnetic layer. When perpendicular magnetic anisotropy is measured by VSM,referenceIn Examples 28 to 30, the perpendicular magnetic anisotropy was smaller than those of Comparative Examples 22 and 23.
[0066]
  From the above, when the magnetic thin film formed on ferrite has a magnetic layer thickness of 100 nm or more and 2000 nm when the vicinity of the film surface is composed of a magnetic laminated film having a microcrystalline material having a crystal grain size of 3 to 50 nm as a parent phase. Within the range, it can be seen that the leakage magnetic field on the surface of the thin film is suppressed, and excellent output characteristics are exhibited without impairing the soft magnetic characteristics of the microcrystalline magnetic material.
[0067]
  Also, when the magnetic layer was an amorphous magnetic material such as CoZrNb, excellent output characteristics were exhibited in the above-mentioned magnetic layer thickness range. In addition, when the non-magnetic material forming the non-magnetic layer is an oxide, carbide, or nitride, and oxygen, carbon, or nitrogen is less than the stoichiometric ratio, the output characteristics are not impaired, and film peeling can be suppressed. It was confirmed.
[0068]
    (referenceExamples 31-34)
  RF magnetron sputtering, 7nm SiO on ferrite substrate21 (Tesla) FeAlSi magnetic thin film 70 nm and FeAlSiO nonmagnetic layer d-ox (nm) are alternately stacked to form a film of about 700 nm, and then 1.7 (Tesla) FeAlSi magnetic thin film 70 nm. FeAlSiO non-magnetic layers d-ox (nm) were alternately stacked to make the total film thickness approximately 5 μm, thereby producing a MIG head. Here, the nonmagnetic layer d-ox was set to any value in the range of 0.3 to 15 nm, and the optimum thickness of the nonmagnetic layer in the MIG head was examined. Table 8 shows the relative output results.
[0069]
[Table 8]
Figure 0003639333
[0070]
  As shown in Table 8, when the magnetic thin film formed on the ferrite is composed of a laminated film, the relative output characteristics show excellent values if the thickness of the nonmagnetic layer is in the range of 0.5 to 10 nm. . Further, in Examples 31 to 34, the case where the entire magnetic thin film is a laminated magnetic thin film was shown, but even when a part of the magnetic thin film is a laminated thin film, excellent characteristics in the same nonmagnetic layer thickness range. Indicates.
[0071]
  (Example1-9)
  RF magnetron sputtering, 7nm SiO on ferrite substrate2Then, 1 (Tesla) FeAlSi magnetic thin film 70 nm and FeAlSiO nonmagnetic layer 5 nm were alternately stacked to form a film of about 700 nm. Further, a FeAlSi magnetic thin film having a thickness of d of 1.4 (Tesla) was alternately laminated with a non-magnetic layer of FeAlSiO 5 nm to make the total film thickness about 5 μm, and a MIG head was manufactured. Here, the magnetic layer thickness d is any value in the range of 20 to 100 nm, and is optimal when a magnetic laminated thin film formed of magnetic layers having different saturation magnetic flux densities is used as a magnetic thin film in an MIG head. The lamination conditions were examined. Table 9 shows the relative output results.
[0072]
[Table 9]
Figure 0003639333
[0073]
  Next, 7 nm SiO on the ferrite substrate by RF magnetron sputtering.2After forming 1.2 nm (Tesla) FeAlSiN magnetic thin film 50 nm and FeAlSiO non-magnetic layer 2 nm alternately to form a film of about 500 nm, an FeAlSi magnetic thin film having a thickness d of 1.5 (Tesla) is further formed. The MIG head was manufactured by alternately laminating the FeAlSiO nonmagnetic layer 2 nm to a total thickness of about 5 μm. Here, the magnetic layer thickness d is any value in the range of 20 to 100 nm,DifferentMagnetic thin film formed of magnetic layer having saturation magnetic flux densityIs MThe optimum stacking condition when used as a magnetic thin film in an IG head was investigated. The relative output results are shown in Table 10.
[0074]
[Table 10]
Figure 0003639333
[0075]
  Table 9 shows the most excellent output characteristics when the magnetic layer thickness d is 30 to 80 nm, and Table 10 shows the most excellent output characteristics when the magnetic layer thickness d is 30 to 60 nm. Considering these results, magnetic layers and nonmagnetic layers having a saturation magnetic flux density of A1 were alternately laminated.A first magnetic thin film;Magnetic layers and nonmagnetic layers with a saturation magnetic flux density of A2 (Tesla) are alternately stacked.The second magnetic thin film is connectedIn the magnetic thin film having a continuously formed structure, the thickness of the magnetic layer LA1 having a saturation magnetic flux density of A1 (Tesla) is dA1 (nm), and the thickness of the magnetic layer LA2 having a saturation magnetic flux density of A2 (Tesla). When the thickness is dA2 (nm), LA1 and LA2Is productWhen layered, the formula is
    0.6 * A2 * dA2 <A1 * dA1 <1.7 * A2 * dA2
It can be seen that excellent output characteristics are exhibited as a MIG head if it is fabricated so as to satisfy the above relationship. As is clear from the above table, this relationship is
    A1 * dA1 = A2 * dA2
It can be seen that particularly excellent characteristics are exhibited when the above relationship is satisfied. Also this example1-9In the magnetic thin film, two kinds of laminated films having different saturation magnetic flux densities are shown. However, a magnetic thin film device composed of three or more kinds of laminated films having different saturation magnetic flux densities is shown.Even aboveExcellent output characteristics when the above relationship is satisfied.
[0076]
  (referenceExamples 35-42)
  After forming 7 nm of any one of 12 types of non-magnetic layers on a ferrite substrate by RF magnetron sputtering, forming a 2 μm FeAlSi magnetic thin film of 1 (tesla), and then forming a 1.6 tesla FeAlSi magnetism A magnetic thin film layer film in which thin films of 60 nm and 9 nm were alternately laminated was formed. Here, the same material was used for the nonmagnetic layer used in the same magnetic thin film. The composition of the nonmagnetic substance was examined by AES (Auger electron spectroscopy). The prepared magnetic thin film was allowed to stand in an environment of 90% humidity and 60 ° C., and then repeatedly adhered to and peeled off from a commercially available cellophane tape 10 times to examine the strength of the magnetic thin film. The results are shown in Table 11. In the table, the x mark indicates that the magnetic thin film is adhered to the cellophane tape, and the ◯ mark indicates the magnetic thin film that has not been peeled off.
[0077]
[Table 11]
Figure 0003639333
[0078]
  thisReference Examples 35-42When a MIG head was fabricated with a magnetic thin film formed on the ferrite and the output characteristics were measured, almost the same characteristics were obtained, and no clear difference depending on the material of the nonmagnetic layer was found. From the results shown in Table 11, the adhesion strength at the film interface is improved by using an oxide, carbide, or nitride having less oxygen, carbon, or nitrogen than the stoichiometric ratio as the nonmagnetic layer provided in the magnetic thin film. It can be seen that the reliability and ease of processing are improved.
[0079]
【The invention's effect】
  According to the MIG head in which the distribution of the saturation magnetic flux density in the magnetic thin film formed on the ferrite of the present invention is limited to a specific range, the saturation magnetic flux density is higher than that of the ferrite formed on the ferrite.Inside the magnetic thin filmIn particular, the total value of magnetic energy in the vicinity of the ferrite substrate interface can be reduced, and the transmission efficiency of magnetic flux between the ferrite and the magnetic thin film can be increased. Therefore, for example, when used for a device in which the flow of magnetic flux between the ferrite and the magnetic thin film is not parallel, such as an MIG head, the reproduction output can be improved.
[0080]
  Further, when two or more elements are shared in the magnetic thin film of the MIG head of the present invention, the rate of change of the saturation magnetic flux density in the direction perpendicular to the film surface can be reduced, and the magnetic flux between the ferrite and magnetic thin film can be reduced. The transmission efficiency can be further increased.
[0081]
  In the magnetic thin film of the MIG head of the present inventionShapeMadeMagnetic thin filmIf the thickness of the magnetic layer LA1 having a saturation magnetic flux density of A1 (tesla) is dA1, and the thickness dA2 of the magnetic layer LA2 having a saturation magnetic flux density of A2 (tesla) is LA1 and LA2But,
  0.6 * A2 * dA2 <A1 * dA1 <1.7 * A2 * dA2
By having the laminated structure selected so as to substantially satisfy the relationship, the leakage flux of the magnetic thin film can be further suppressed and the output of the MIG head can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a main part of one embodiment of a MIG head of the present invention.
FIG. 2 is a cross-sectional view showing the main part of another embodiment of the MIG head of the present invention.
FIG. 3 is a cross-sectional view showing a main part of still another embodiment of the MIG head of the present invention.
FIG. 4 is a cross-sectional view showing a main part of still another embodiment of the MIG head of the present invention.
[Explanation of symbols]
  1 Ferrite substrate
  2 Magnetic thin film
  2a First magnetic thin film
  2b Second magnetic thin film
  3 Nonmagnetic layer

Claims (1)

B1(テスラ)なる飽和磁束密度を有するフェライト基板上に第1の磁性薄膜および第2の磁性薄膜とが順に積層されてなる磁性体薄膜が形成されているメタルインギャップ(MIG)ヘッドであって、
前記第1の磁性薄膜の飽和磁束密度と前記第2の磁性薄膜の飽和磁束密度とが異なり、
第1の磁性薄膜の平均飽和磁束密度をB2(テスラ)、前記磁性体薄膜の平均飽和磁束密度をB3(テスラ)とすると、B1≦B2≦B3−0.1(テスラ)の関係が成立し、
前記磁性体薄膜は、磁性結晶粒子からなり、
前記磁性体薄膜内には、膜面に垂直方向に少なくとも2種以上の同一元素が含まれ、
前記フェライト基板と前記第1の磁性薄膜との間には非磁性層が挟まれており、
第1の磁性薄膜は、磁性層と非磁性層とが交互に積層されてなり、
第2の磁性薄膜は、磁性層と非磁性層とが交互に積層されてなり、
第1の磁性薄膜が有する磁性層LA1がA1(テスラ)なる飽和磁束密度を有すると共にdA1(nm)の厚みを有し、
第2の磁性薄膜が有する磁性層LA2がA2(テスラ)なる飽和磁束密度を有すると共にdA2(nm)の厚みを有するとすると、
0.6×A2×dA2<A1×dA1<1.7×A2×dA2
なる関係を満たす、MIGヘッド。
A metal-in-gap (MIG) head in which a magnetic thin film is formed by sequentially laminating a first magnetic thin film and a second magnetic thin film on a ferrite substrate having a saturation magnetic flux density of B1 (Tesla). ,
The saturation magnetic flux density of the first magnetic thin film is different from the saturation magnetic flux density of the second magnetic thin film,
When the average saturation magnetic flux density of the first magnetic thin film is B2 (Tesla) and the average saturation magnetic flux density of the magnetic thin film is B3 (Tesla), the relationship of B1 ≦ B2 ≦ B3-0.1 (Tesla) is established. ,
The magnetic thin film is made of magnetic crystal particles,
The magnetic thin film contains at least two kinds of the same elements in a direction perpendicular to the film surface,
A nonmagnetic layer is sandwiched between the ferrite substrate and the first magnetic thin film,
The first magnetic thin film is formed by alternately laminating magnetic layers and nonmagnetic layers,
The second magnetic thin film is formed by alternately laminating magnetic layers and nonmagnetic layers,
The magnetic layer LA1 of the first magnetic thin film has a saturation magnetic flux density of A1 (Tesla) and a thickness of dA1 (nm),
If the magnetic layer LA2 of the second magnetic thin film has a saturation magnetic flux density of A2 (Tesla) and a thickness of dA2 (nm),
0.6 * A2 * dA2 <A1 * dA1 <1.7 * A2 * dA2
MIG head that satisfies the relationship
JP31476094A 1994-12-19 1994-12-19 MIG head Expired - Fee Related JP3639333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31476094A JP3639333B2 (en) 1994-12-19 1994-12-19 MIG head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31476094A JP3639333B2 (en) 1994-12-19 1994-12-19 MIG head

Publications (2)

Publication Number Publication Date
JPH08171705A JPH08171705A (en) 1996-07-02
JP3639333B2 true JP3639333B2 (en) 2005-04-20

Family

ID=18057258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31476094A Expired - Fee Related JP3639333B2 (en) 1994-12-19 1994-12-19 MIG head

Country Status (1)

Country Link
JP (1) JP3639333B2 (en)

Also Published As

Publication number Publication date
JPH08171705A (en) 1996-07-02

Similar Documents

Publication Publication Date Title
US5792564A (en) Perpendicular recording medium and magnetic recording apparatus
US5587026A (en) Ferromagnetic film
US8034470B2 (en) Perpendicular magnetic recording medium and method of manufacturing the medium
Kohmoto Recent development of thin film materials for magnetic heads
US5439754A (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
US6110609A (en) Magnetic thin film and magnetic head using the same
Katada et al. Soft magnetic properties and microstructure of NiFe (Cr)/FeCo/NiFe (Cr) films with large saturation magnetization
JPH0797665A (en) Soft magnetic material, production thereof and magnetic head
JP2007164941A (en) Perpendicular magnetic recording medium
JP3639333B2 (en) MIG head
JPH02275605A (en) Soft magnetic thin film
JP2570337B2 (en) Soft magnetic laminated film
JP2006049706A (en) Switched connection type soft-magnetic material
JPS60132305A (en) Iron-nitrogen laminated magnetic film and magnetic head using the same
JP2002133635A (en) Information recording medium and information recording device
JPH03106003A (en) Soft magnetic amorphous alloy thin film
EP1505609A1 (en) Soft magnetic material of high saturation magnetic flux density
JP3597976B2 (en) Magnetic thin film and magnetic device using the same
JP2508479B2 (en) Soft magnetic ferrite thin film
JP3141436B2 (en) Perpendicular magnetic recording media
JPH01143312A (en) Amorphous soft magnetic laminated film
JPH0485716A (en) Thin magnetic film for magnetic head
JPH0315245B2 (en)
JP2808547B2 (en) Composite magnetic head
JP2002109714A (en) Information recording medium and information recording device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees