JP3141436B2 - Perpendicular magnetic recording media - Google Patents

Perpendicular magnetic recording media

Info

Publication number
JP3141436B2
JP3141436B2 JP03220727A JP22072791A JP3141436B2 JP 3141436 B2 JP3141436 B2 JP 3141436B2 JP 03220727 A JP03220727 A JP 03220727A JP 22072791 A JP22072791 A JP 22072791A JP 3141436 B2 JP3141436 B2 JP 3141436B2
Authority
JP
Japan
Prior art keywords
magnetic
hcp
pole
elevation angle
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03220727A
Other languages
Japanese (ja)
Other versions
JPH0562834A (en
Inventor
洋介 村上
哲也 山元
明彦 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP03220727A priority Critical patent/JP3141436B2/en
Publication of JPH0562834A publication Critical patent/JPH0562834A/en
Application granted granted Critical
Publication of JP3141436B2 publication Critical patent/JP3141436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は記録層の膜厚方向の磁化
によって情報記録がなされる垂直磁気記録媒体、特にC
oPtBO系の磁性層による垂直磁化記録媒体に係わ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perpendicular magnetic recording medium on which information is recorded by magnetization in the thickness direction of a recording layer, and more particularly to a C magnetic recording medium.
The present invention relates to a perpendicular magnetization recording medium having an oPtBO-based magnetic layer.

【0002】[0002]

【従来の技術】近年の情報記録の分野においては、高記
録密度化、高記録容量化への要求に応えるべく、垂直磁
気記録に関する研究が各所で進められている。垂直磁気
記録は、記録波長が磁性層の膜厚と同等以下の短波長と
なっても異極が接近することにより減磁が抑制されて静
磁気学的な安定化が達成されること、急峻な磁化転移領
域が形成されるために再生ヘッドの誘導起電力を大きく
できること等の長所を有しており、本質的に高密度記録
に適した方式と言える。
2. Description of the Related Art In the field of information recording in recent years, studies on perpendicular magnetic recording have been conducted in various places in order to meet demands for higher recording density and higher recording capacity. In perpendicular magnetic recording, even when the recording wavelength is a short wavelength equal to or less than the film thickness of the magnetic layer, demagnetization is suppressed by approaching the different poles, stabilization of magnetostatic is achieved, It has such advantages that the induced electromotive force of the reproducing head can be increased due to the formation of a magnetic transition region, which is essentially a method suitable for high-density recording.

【0003】この垂直磁気記録媒体の磁性層としては、
CoCr、CoMo、CoV、CoRu等の合金磁性薄
膜が知られている。
As a magnetic layer of this perpendicular magnetic recording medium,
An alloy magnetic thin film of CoCr, CoMo, CoV, CoRu or the like is known.

【0004】これら合金の中でも、高周波スパッタリン
グにより成膜されたCo−Cr合金磁性層は、最も垂直
磁気特性に優れる材料として知られている。
[0004] Among these alloys, a Co-Cr alloy magnetic layer formed by high frequency sputtering is known as a material having the most excellent perpendicular magnetic characteristics.

【0005】しかし、Co−Cr合金磁性層には、その
ままでは磁気ヘッドとの摺接に際して耐久性が不足する
ので保護潤滑層を要すること、しかもスペーシングロス
を小さくするために上記保持潤滑層の膜厚を極めて薄く
形成する必要があるが、これが困難であること、飽和磁
束密度が比較的低いこと、成膜時の基板温度を高くしな
いと高保磁力が得られないこと等の問題点がある。
However, the Co-Cr alloy magnetic layer requires a protective lubricating layer because the durability thereof is insufficient when the magnetic layer is in sliding contact with the magnetic head. It is necessary to form the film very thinly, but there are problems such as difficulty, a relatively low saturation magnetic flux density, and a high coercive force cannot be obtained unless the substrate temperature during film formation is increased. .

【0006】これに対して本出願人は、先に特開平2−
74012号公報において膜厚を大としても充分なHc
が得られ、また成膜時の基板温度を高める必要がなく、
かつ充分な飽和磁束密度Bsを得易いCoPtBO系合
金を提案した。このCoPtBO系合金は、その組成式
が(Coa Ptb c 100-x x で示され、その組成
範囲が、a=100−b−c、0≦b≦50、0.1≦
c≦30、0<x≦15(但し、a、b、c、xは原子
%)とされたもので、この磁性薄膜は、その成膜時の基
板温度が室温程度の比較的低い温度で、かつ比較的厚い
膜厚としても、3kOe程度の高い垂直保磁力Hcv
10〜12kG程度の高い飽和磁束密度Bs(4πM
s)、15kOe程度の高い垂直異方性磁界Hkを得て
いる。
[0006] On the other hand, the present applicant has previously disclosed in Japanese Patent Laid-Open No.
In the publication No. 74012, sufficient Hc can be obtained even if the film thickness is large.
And it is not necessary to raise the substrate temperature during film formation.
In addition, a CoPtBO-based alloy that easily obtains a sufficient saturation magnetic flux density Bs has been proposed. This CoPtBO-based alloy has a composition formula of (Co a Pt b B c ) 100-x O x , and the composition range is a = 100-bc, 0 ≦ b ≦ 50, 0.1 ≦
c ≦ 30, 0 <x ≦ 15 (where a, b, c, and x are atomic%). The magnetic thin film is formed at a relatively low substrate temperature of about room temperature. and even relatively large thickness, as high as 3kOe perpendicular coercivity Hc v,
High saturation magnetic flux density Bs of about 10 to 12 kG (4πM
s), a high perpendicular anisotropy magnetic field Hk of about 15 kOe is obtained.

【0007】更に本願出願人は、CoPtBO系極性層
において、より良好な垂直磁気特性を得るには、この磁
性層を構成する結晶の形状、大きさ、配向状態、配列状
態等の微細構造に関連していることを究明し、これらを
制御することにより常に安定した特性を有する垂直磁性
記録媒体を、特開平3−58316号に提示した。
Further, the applicant of the present application has proposed that in order to obtain better perpendicular magnetic characteristics in the CoPtBO-based polar layer, the CoPtBO-based polar layer must be related to the fine structure such as the shape, size, orientation state and arrangement state of the crystals constituting the magnetic layer. A perpendicular magnetic recording medium having stable characteristics by controlling these factors has been proposed in Japanese Patent Application Laid-Open No. 3-58316.

【0008】しかしながら本発明者等は、更に鋭意、考
察、検討、解析を行った結果、より正確に垂直磁気特性
に得る結晶構造、配向状態等の知見を得るに至った。
However, as a result of further diligent studies, investigations, and analyzes, the present inventors have come to know the crystal structure, orientation state, etc., which can obtain more accurate perpendicular magnetic characteristics.

【0009】尚、ここに垂直磁気記録媒体の記録磁性層
として垂直磁化膜とは、上述の磁性薄膜の垂直異方性磁
界Hkと、飽和磁束密度4πMsとの関係が、それぞれ
Hkの単位をkOeで示し、4πMsの単位をkGで示
したときに、これらの値が下記数1で示す関係を満たせ
ば良いと考えられる。
Here, the perpendicular magnetization film as a recording magnetic layer of the perpendicular magnetic recording medium means that the relationship between the perpendicular anisotropy magnetic field Hk of the above-mentioned magnetic thin film and the saturation magnetic flux density 4πMs has a unit of Hk of kOe. When the unit of 4πMs is indicated by kG, it is considered that these values should satisfy the relationship expressed by the following equation (1).

【数1】Hk≧4πMs[Formula 1] Hk ≧ 4πMs

【0010】[0010]

【発明が解決しようとする課題】本発明は、上述した新
しい知見に基いて、高い垂直異方性磁界を有し、垂直保
磁力の高い磁気記録媒体を提供する。
The present invention provides a magnetic recording medium having a high perpendicular anisotropic magnetic field and a high perpendicular coercive force, based on the above-mentioned new findings.

【0011】[0011]

【課題を解決するための手段】本発明は非磁性支持体上
にCoPtBO系磁性層を形成する。
According to the present invention, a CoPtBO-based magnetic layer is formed on a non-magnetic support.

【0012】そして、CoPtBO系磁性層を、六方晶
構造を有する直径4〜8nmの針状晶から構成し、各針
状晶が〈001〉軸方向を非磁性支持体面に垂直に向け
て配向すると共に、隣接する針状晶間に1〜4nmの間
隙を介して配列した構成とする。
The CoPtBO-based magnetic layer is composed of acicular crystals having a hexagonal structure and having a diameter of 4 to 8 nm, and each acicular crystal is oriented with the <001> axis direction perpendicular to the surface of the nonmagnetic support. At the same time, a configuration is adopted in which adjacent needle-like crystals are arranged with a gap of 1 to 4 nm therebetween.

【0013】[0013]

【作用】上述した結晶構造による針状晶、配列状態によ
って良好に単磁区が微小化されることにより減磁の抑制
がなされ、更に〈001〉方向は、六方晶における磁化
容易軸であると同時に針状結晶の長軸方向であり、した
がって上述の配向は、結晶磁気異方性、形状磁気異方性
の双方から垂直磁気記録層として高い垂直磁気異方性、
垂直保磁力が高められる。
According to the present invention, demagnetization is suppressed by finely arranging a single magnetic domain according to the acicular crystals and the arrangement state of the crystal structure described above. Further, the <001> direction is an easy axis of magnetization in the hexagonal crystal, and It is the major axis direction of the acicular crystal, and therefore the above-mentioned orientation is high perpendicular magnetic anisotropy as a perpendicular magnetic recording layer from both crystal magnetic anisotropy and shape magnetic anisotropy,
The vertical coercive force is increased.

【0014】即ち、本発明では、良好な垂直磁気異方性
を有するCoPtBO系磁性層の結晶配向を極点図測定
によって調べ、また透過電子顕微鏡により断面組織観察
を行った結果、磁性層が六方晶と面心立方晶の両成分を
有する柱状晶の場合には良好な垂直磁気異方性が現れに
くく、これに比し、六方晶を有する個々の針状晶が一定
の間隙を介して長軸方向を膜面に垂直に向けた構造をと
り、かつ六方晶の〈001〉方向が膜面に対し垂直配向
している場合に良好な垂直磁気異方性が現われることを
見い出したものである。
That is, according to the present invention, the crystal orientation of the CoPtBO-based magnetic layer having good perpendicular magnetic anisotropy was examined by pole figure measurement, and the cross-sectional structure was observed with a transmission electron microscope. In the case of a columnar crystal having both components of cubic and face-centered cubic, good perpendicular magnetic anisotropy is unlikely to appear.In contrast, individual needles having a hexagonal crystal have a long axis through a certain gap. It has been found that good perpendicular magnetic anisotropy appears when the structure is oriented perpendicular to the film surface and the hexagonal <001> direction is perpendicular to the film surface.

【0015】[0015]

【実施例】本発明は非磁性支持体上にCoPtBO系磁
性層を、六方晶構造を有する直径4〜8nmの針状晶か
ら構成し、各針状晶が〈001〉軸方向を非磁性支持体
面に垂直に向けて配向すると共に、隣接する針状晶間に
1〜4nmの間隙を介して配列した構成によって形成す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a CoPtBO-based magnetic layer is formed of a needle-like crystal having a hexagonal structure and having a diameter of 4 to 8 nm on a non-magnetic support. It is formed so as to be oriented perpendicular to the body surface and arranged with a gap of 1 to 4 nm between adjacent needle crystals.

【0016】このCoPtBO系磁性層下には、Pt下
地膜を形成し得る。
Under this CoPtBO-based magnetic layer, a Pt underlayer can be formed.

【0017】このPt下地膜は、そのX線回折像のPt
(111)ピークのロッキングカーブより求めた配向度
Δθ50が、Δθ50≦10゜とする。
The Pt underlayer is made of Pt of the X-ray diffraction image.
(111) orientation degree [Delta] [theta] 50 determined from rocking curve peaks, and [Delta] [theta] 50 ≦ 10 °.

【0018】また、CoPtBO系磁性層としては、そ
の組成式が(CoaPtb c 10 0-x x(a,b,
c,xは原子%)で表され、かつ、 a=100−b−c 0≦b≦50 0.1≦c≦30 0<x≦15 とする。
The composition formula of the CoPtBO-based magnetic layer is (Co a Pt b B c ) 100 -x O x (a, b,
c and x are atomic%), and a = 100−b−c 0 ≦ b ≦ 50 0.1 ≦ c ≦ 300 0 <x ≦ 15.

【0019】実施例1 スライドガラス基板上に、Pt下地膜とCoPtBO系
磁性層とを順次マグネトロン型スパッタリング装置でス
パッタした。これらスパッタリングの条件は、次のよう
に設定した。 バックグラウンド真空度:1.3×10-4Pa 基板温度:室温 投入パワー:DC300W
Example 1 A Pt base film and a CoPtBO-based magnetic layer were sequentially sputtered on a slide glass substrate by a magnetron sputtering apparatus. These sputtering conditions were set as follows. Background vacuum: 1.3 × 10 −4 Pa Substrate temperature: room temperature Input power: DC 300 W

【0020】そして、Pt下地膜のスパッタについて
は、 スパッタガス圧:2.0Pa(ガスはアルゴンガス使
用) 全ガス流量:50sccm 膜厚:100nm とした。CoPtBO系磁性層のスパッタについては、 スパッタガス圧:2.0Pa(ガスはアルゴンと酸素の
混合ガス使用) 全ガス流量:50sccm 酸素分圧:0.035Pa 膜厚:100nm ターゲット組成:Co68Pt239 (原子%) ターゲット形状:直径10cm、厚さ3mm とした。
The sputtering of the Pt underlayer film was performed under the following conditions: sputtering gas pressure: 2.0 Pa (gas was argon gas); total gas flow rate: 50 sccm; and film thickness: 100 nm. For the sputtering of the CoPtBO-based magnetic layer, sputtering gas pressure: 2.0 Pa (gas is a mixed gas of argon and oxygen) Total gas flow rate: 50 sccm Oxygen partial pressure: 0.035 Pa Film thickness: 100 nm Target composition: Co 68 Pt 23 B 9 (atomic%) Target shape: 10 cm in diameter and 3 mm in thickness.

【0021】実施例2 スライドガラス基板上に、直接CoPtBO系磁性層を
作製した。この場合、Pt下地膜は設けなかったもので
あり、このこと以外は全て実施例1と同様とした。
Example 2 A CoPtBO-based magnetic layer was formed directly on a slide glass substrate. In this case, the Pt base film was not provided, and all other conditions were the same as in the first embodiment.

【0022】比較例1 酸素を含まないCoPtB系磁性層を有する垂直磁気記
録媒体を作製した。成膜条件はスパッタガスに酸素を含
まないアルゴンガスを用いたこと以外は実施例1と同様
とした。
Comparative Example 1 A perpendicular magnetic recording medium having a CoPtB-based magnetic layer containing no oxygen was manufactured. The film forming conditions were the same as in Example 1 except that an argon gas containing no oxygen was used as a sputtering gas.

【0023】比較例2 スライドガラス基板上に、直接CoPtB系磁性層を比
較例1と同様に形成した。
Comparative Example 2 A CoPtB-based magnetic layer was formed directly on a slide glass substrate in the same manner as in Comparative Example 1.

【0024】上述の実施例1、2及び比較例1、2によ
る磁性層の垂直磁気異方性磁界Hkを測定したところ、
そのHkは、実施例1及び2がそれぞれ14kOe及び
10kOe、比較例1及び2は、それぞれHkが7kO
e及び3kOeとなった。
When the perpendicular magnetic anisotropy magnetic field Hk of the magnetic layers according to Examples 1 and 2 and Comparative Examples 1 and 2 was measured,
The Hk was 14 kOe and 10 kOe in Examples 1 and 2, respectively, and the Hk was 7 kOe in Comparative Examples 1 and 2, respectively.
e and 3 kOe.

【0025】そして、4πMsは、10〜12kGであ
るので、実施例1及び2では、Hk≧4πMsを満足し
ているので、これら実施例1及び2で垂直磁化膜が実現
していることがわかる。
Since 4πMs is 10 to 12 kG, Hk ≧ 4πMs is satisfied in Examples 1 and 2, and it is understood that a perpendicular magnetization film is realized in Examples 1 and 2. .

【0026】次に、実施例1、2、比較例1、2につい
ての結晶学的構造をみる。実施例2の場合の磁性層のX
線ディフラクトメータによるX線回折チャートを図1に
示す。また図2は、その解析結果を示す表図である。こ
の測定は、粉末にしたCoPtBO系薄膜を用いて行っ
たものである。図1中符号2〜7はピーク番号を示した
ものである。図2は、計算で求めた面心立方晶(fc
c)及び六方晶(hcp)の格子面間隔dと実測値のd
とを示したものである。この場合の計算値は、実測値の
2.112Å(図1のピークNo.2)をそれぞれfc
c(111)結晶面及びhcp(002)結晶面の格子
面間隔として求めたものである。この実測値によれば、
CoPtBO系磁性層は面心立方晶fccと、六方晶h
cpの成分を含んでいることになる。つまり、実測値を
計算値と比較して明らかなように、fccでは存在する
はずのないピーク1とピーク5とが実測されていて、こ
れによれば少なくとも六方晶hcpが生じていることが
わかる。尚、hcpにおいて(200)面及び(20
1)面によるピークが実測されていないが、全結晶面に
ついてピークの発生が生じるとは限らないので、これに
よって、hcpの存在が否定されることはない。
Next, the crystallographic structures of Examples 1 and 2 and Comparative Examples 1 and 2 will be described. X of the magnetic layer in the case of the second embodiment
FIG. 1 shows an X-ray diffraction chart by the X-ray diffractometer. FIG. 2 is a table showing the analysis results. This measurement was performed using a powdered CoPtBO-based thin film. In FIG. 1, reference numerals 2 to 7 indicate peak numbers. FIG. 2 shows the calculated face-centered cubic (fc)
c) and lattice spacing d of hexagonal crystal (hcp) and measured value d
It is shown. The calculated value in this case is 2.112 ° of the actually measured value (peak No. 2 in FIG. 1), respectively, fc
It is obtained as the lattice spacing between the c (111) crystal plane and the hcp (002) crystal plane. According to this actual measurement,
The CoPtBO-based magnetic layer has face-centered cubic fcc and hexagonal hcc.
cp. That is, as is clear from the comparison between the measured value and the calculated value, peaks 1 and 5 which should not exist in fcc are actually measured, and it is understood that at least hexagonal hcp is generated. . In hcp, the (200) plane and the (20) plane
1) Although the peak due to the plane is not actually measured, the peak does not always occur on all the crystal planes, so that the existence of hcp is not denied.

【0027】このようにディフラクトメータによる測定
では、CoPtBO系磁性層では、極点図測定を行って
fccであるか、hcpであるかの確認を行った。図3
〜図5は本発明による実施例1の場合、図6〜図8は比
較例1の酸素を含まなかった場合の極点図測定の結果を
示し、各図Aは実測結果、各図Bは仰角に対する回折強
度分布を示す。仰角0°は膜面内方向を、仰角90°は
膜面の法線方向を示す。各図Bの回折強度は、測定中の
回折に寄与する体積変化、検出効率の変化、Pt下地に
よる散乱の寄与を補正したものである。
As described above, in the measurement by the diffractometer, the CoPtBO-based magnetic layer was subjected to a pole figure measurement to confirm whether the magnetic field was fcc or hcp. FIG.
5 to 5 show the results of pole figure measurement in the case of Example 1 according to the present invention, and FIGS. 6 to 8 show the results of pole figure measurement when oxygen was not contained in Comparative Example 1, where FIG. 2 shows the diffraction intensity distribution for An elevation angle of 0 ° indicates an in-plane direction of the film, and an elevation angle of 90 ° indicates a normal direction of the film surface. The diffraction intensity in each figure B is obtained by correcting the change in volume, the change in detection efficiency, and the contribution of scattering due to the Pt underlayer that contribute to diffraction during measurement.

【0028】図4Bと図5Bとはこれらを比較するた
め、図5Bの最高強度132cpsを1としたときの相
対強度で示した。
4B and FIG. 5B are shown as relative intensities when the maximum intensity of 132 cps in FIG.

【0029】理想的なhcp(001)配向の場合、h
cp(001)極点図において仰角90°の方向に回折
ピークが現れ、またhcp(101)極点図において仰
角28°の方向に回折ピークが現れる。一方、理想的な
fcc(111)配向の場合、fcc(111)極点図
において仰角90°および仰角19.5°に回折ピーク
が現れ、またfcc(100)極点図において仰角3
4.5°の方向に回折ピークが現れる。
For an ideal hcp (001) orientation, h
In the cp (001) pole figure, a diffraction peak appears in the direction of the elevation angle of 90 °, and in the hcp (101) pole figure, a diffraction peak appears in the direction of the elevation angle of 28 °. On the other hand, in the case of an ideal fcc (111) orientation, diffraction peaks appear at an elevation angle of 90 ° and an elevation angle of 19.5 ° in the fcc (111) pole figure, and an elevation angle of 3 in the fcc (100) pole figure.
A diffraction peak appears in the direction of 4.5 °.

【0030】図3及び図5は理想的なhcp(001)
極点図の回折強度分布と一致している。図3の最大強度
に対する図4の最大強度比は0.0078である。一
方、図3の最大強度に対する図5の最強強度比は0.0
60である。
FIGS. 3 and 5 show an ideal hcp (001).
This is consistent with the diffraction intensity distribution of the pole figure. The ratio of the maximum intensity in FIG. 4 to the maximum intensity in FIG. 3 is 0.0078. On the other hand, the ratio of the maximum intensity in FIG. 5 to the maximum intensity in FIG.
60.

【0031】次に図6〜図8の比較例1の場合について
みると、理想的なhcp(001)配向および理想的な
fcc(111)配向の特徴は前述したと同様である。
図7Bと図8Bとを比較するため、図8Bの最高強度6
3cpsを1としたときの相対強度で示した。
Next, in the case of Comparative Example 1 shown in FIGS. 6 to 8, the characteristics of the ideal hcp (001) orientation and the ideal fcc (111) orientation are the same as described above.
For comparison between FIG. 7B and FIG. 8B, the maximum strength 6 shown in FIG.
The relative intensity when 3 cps is set to 1 is shown.

【0032】図7は一見理想的なfcc(111)配向
におけるfcc(100)極点図の特徴を示している。
しかし図6をみると仰角90゜にしたピークが無い。さ
らに、図8は理想的なhcp(001)配向の特徴を示
していない。図6の最大強度に対する図7の最大強度比
は0.017である。一方図6の最大強度に対する図8
の最大強度比は0.021である。図8の仰角20°の
ピークをhcp(001)配向のhcp(101)極成
分と仮定して計算しても、hcp(001)配向の割合
は本発明による実施例1の場合、図5の35%である。
一方fcc(111)配向成分は同様の本発明実施例の
図6の約2倍に増加している。
FIG. 7 shows the characteristics of the fcc (100) pole figure in the seemingly ideal fcc (111) orientation.
However, according to FIG. 6, there is no peak at an elevation angle of 90 °. Further, FIG. 8 does not show the characteristics of the ideal hcp (001) orientation. The ratio of the maximum intensity in FIG. 7 to the maximum intensity in FIG. 6 is 0.017. On the other hand, FIG.
Has a maximum intensity ratio of 0.021. Even when the peak at an elevation angle of 20 ° in FIG. 8 is calculated assuming the hcp (101) polar component of the hcp (001) orientation, the ratio of the hcp (001) orientation is as shown in FIG. 35%.
On the other hand, the fcc (111) orientation component is about twice as large as that of FIG.

【0033】また、図9〜図11の各A図及びB図は、
本発明による実施例2の実測結果の極点図及び仰角に対
する回折強度分布を示す。図12〜14の各A図及びB
図は、比較例2の同様の実測結果の極点図及び仰角に対
する回折強度分布を示す。
FIGS. 9 and 11 are diagrams A and B, respectively.
9 shows a pole figure of a measurement result of Example 2 according to the present invention and a diffraction intensity distribution with respect to an elevation angle. Figures A and B in Figures 12-14
The figure shows a pole figure of the same measurement result of Comparative Example 2 and a diffraction intensity distribution with respect to the elevation angle.

【0034】図9及び図11は理想的なhcp(00
1)極点図の回折強度分布と一致している。図9の最大
強度に対する図10の最大強度比は0.0103、図9
の最大強度に対する図11の最大強度比は0.0469
である。
FIGS. 9 and 11 show an ideal hcp (00
1) It matches the diffraction intensity distribution of the pole figure. The ratio of the maximum intensity in FIG. 10 to the maximum intensity in FIG.
The maximum intensity ratio of FIG.
It is.

【0035】図13は一見理想的なfcc(111)配
向におけるfcc(100)極点図の特徴を示してい
る。しかし、図12では仰角90゜のピークが支配的で
ある。また、図14はhcp(001)配向の特徴を示
していない。
FIG. 13 shows the characteristics of the fcc (100) pole figure in the seemingly ideal fcc (111) orientation. However, in FIG. 12, the peak at an elevation angle of 90 ° is dominant. FIG. 14 does not show the feature of the hcp (001) orientation.

【0036】図12の最大強度に対する図13の最大強
度比は0.0349、図12の最大強度に対する図14
の最大強度比は0.051である。
The maximum intensity ratio of FIG. 13 to the maximum intensity of FIG. 12 is 0.0349, and the ratio of the maximum intensity of FIG.
Has a maximum intensity ratio of 0.051.

【0037】比較例2の図12におけるfcc(11
1)配向成分は、実施例2の図12における場合の約
3.4倍に増加している。このとき図14の仰角20°
のピークをhcp(001)配向のhcp(101)極
成分と仮定すると、hcp(001)配向の割合は実施
例2(図11)とほぼ同じである。
Fcc (11) in FIG.
1) The orientation component is increased to about 3.4 times that in the case of FIG. At this time, the elevation angle is 20 ° in FIG.
Is assumed to be the hcp (101) polar component of the hcp (001) orientation, the ratio of the hcp (001) orientation is almost the same as that of Example 2 (FIG. 11).

【0038】上述したところから明らかなように、比較
例1、2は、本発明実施例1及び2に比し、hcp{1
11}配向が弱く、かつfcc{200}配向成分も認
められる。即ち、本発明実施例において大なる垂直異方
性磁界Hkが得られるのは、hcp{001}配向によ
る結晶磁気異方性が寄与していることに因ると云える。
As is apparent from the above description, Comparative Examples 1 and 2 are different from Examples 1 and 2 of the present invention in that hcp {1.
The 11 ° orientation is weak, and an fcc {200} orientation component is also observed. That is, it can be said that the reason why the large perpendicular anisotropy magnetic field Hk is obtained in the embodiment of the present invention is that the crystal magnetic anisotropy due to the hcp {001} orientation contributes.

【0039】また、透過電子顕微鏡(TEM)を用いて
実施例1及び比較例1の断面観察を行ったところ、実施
例1の場合、断面組織が膜面に対して垂直に成長した微
細な粒径(長軸方向)4〜8nmの針状であり、各針状
結晶は1〜4μmの間隔を介して配列されているのに比
し、比較例1では、柱状組織となっていることが観察さ
れた。これにより、本発明実施例による場合、その形状
が形状磁気異方性を高めるように形成されていて、この
ことから垂直異方性磁界Hkが高められている。
The cross section of Example 1 and Comparative Example 1 was observed using a transmission electron microscope (TEM). In Example 1, fine grains having a cross-sectional structure perpendicular to the film surface were observed. In the comparative example 1, the needle-like crystals have a columnar structure in comparison with the needle-like crystals having a diameter (major axis direction) of 4 to 8 nm, which are arranged at intervals of 1 to 4 μm. Was observed. Thus, in the case of the embodiment of the present invention, the shape is formed so as to increase the shape magnetic anisotropy, and therefore, the perpendicular anisotropy magnetic field Hk is increased.

【0040】また、上述したように、Pt下地層は、そ
のX線回折像のPt(111)ピークのロッキングカー
ブより求めた配向Δθ50を10゜以下に選定するもので
あるが、この配向度Δθ50とは、X線回折のいわゆるθ
−2θスキャンによる表面解析法において、Pt下地層
2の(111)結晶面上に2θを固定して求めたロッキ
ングカーブにおける強度が、最大強度をIとしたときに
I/2以上となる角度範囲を示す。
Further, as described above, the Pt underlayer has an orientation Δθ 50 determined from the rocking curve of the Pt (111) peak of the X-ray diffraction image of 10 ° or less. Δθ 50 is the so-called θ of X-ray diffraction.
In a surface analysis method using a −2θ scan, the angle range in which the rocking curve intensity obtained by fixing 2θ on the (111) crystal plane of the Pt underlayer 2 is I / 2 or more when the maximum intensity is I Is shown.

【0041】図15にPt下地層のΔθ50とHkとの関
係の測定結果を示すように、上述したようにΔθ50を1
0°以下に選定することによって、高い垂直異方性磁界
Hkを得ることができるものである。
[0041] As in FIG. 15 shows the measurement results of the relationship between [Delta] [theta] 50 and Hk of Pt underlayer, the [Delta] [theta] 50 as described above 1
By setting the angle to 0 ° or less, a high perpendicular anisotropy magnetic field Hk can be obtained.

【0042】これは、一般にΔθ50が大である程、その
結晶性が悪くなるため、上述したようにΔθ50を比較的
小さく抑えることによって、Pt下地層2の結晶性を良
好に保持し、これによってこの上の磁性層の磁気特性、
例えば磁気異方性が大となって、上述のHk≧4πMs
の条件を満足するための条件の緩和がはかられるものと
思われる。
In general, the larger the Δθ 50 is, the worse the crystallinity becomes. Therefore, by keeping the Δθ 50 relatively small as described above, the crystallinity of the Pt underlayer 2 can be maintained well. As a result, the magnetic properties of the magnetic layer above this,
For example, when the magnetic anisotropy increases, the above-described Hk ≧ 4πMs
It is considered that the condition for satisfying the condition (1) is relaxed.

【0043】尚、上述した例では、非磁性支持体がスラ
イドガラス基板の場合であるが、上述したように下地の
Pt及び磁性層の形成スパッタにおける基板温度は室温
で良いことからガラス基板に限らず、耐熱性の低い支持
体、例えばポリエチレンテレフタレート等を使用するこ
ともできる。
In the above example, the non-magnetic support is a slide glass substrate. However, as described above, since the substrate temperature in the formation of the underlying Pt and the sputtering of the magnetic layer can be room temperature, it is limited to a glass substrate. Alternatively, a support having low heat resistance, such as polyethylene terephthalate, may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】CoPtBO系の薄膜のX線ディフラクトメー
タの回折チャートである。
FIG. 1 is a diffraction chart of an X-ray diffractometer of a CoPtBO-based thin film.

【図2】図1による回折チャートの実測値と計算値で求
めたfcc及びhcpの格子面間隔の表図である。
FIG. 2 is a table showing lattice spacings of fcc and hcp obtained by actual measurement values and calculation values of the diffraction chart in FIG.

【図3】実施例1におけるhcp(001)またはfc
c(111)極点図及び仰角に対する回折強度を示す図
である。
FIG. 3 shows hcp (001) or fc in Example 1.
It is a figure which shows a c (111) pole figure and the diffraction intensity with respect to an elevation angle.

【図4】実施例1におけるfcc(100)極点図及び
仰角に対する回折強度を示す図である。
FIG. 4 is a diagram showing an fcc (100) pole figure and a diffraction intensity with respect to an elevation angle in Example 1.

【図5】実施例1におけるhcp(101)極点図及び
仰角に対する回折強度を示す図である。
FIG. 5 is a diagram showing a hcp (101) pole figure and a diffraction intensity with respect to an elevation angle in Example 1.

【図6】比較例1におけるhcp(001)またはfc
c(111)極点図及び仰角に対する回折強度を示す図
である。
FIG. 6 shows hcp (001) or fc in Comparative Example 1.
It is a figure which shows a c (111) pole figure and the diffraction intensity with respect to an elevation angle.

【図7】比較例1におけるfcc(100)極点図及び
仰角に対する回折強度を示す図である。
FIG. 7 is a diagram showing a fcc (100) pole figure and a diffraction intensity with respect to an elevation angle in Comparative Example 1.

【図8】比較例1におけるhcp(101)極点図及び
仰角に対する回折強度図である。
8A and 8B are a hcp (101) pole figure and a diffraction intensity diagram with respect to an elevation angle in Comparative Example 1.

【図9】実施例2におけるhcp(001)またはfc
c(111)極点図及び仰角に対する回折強度を示す図
である。
FIG. 9 shows hcp (001) or fc in Example 2.
It is a figure which shows a c (111) pole figure and the diffraction intensity with respect to an elevation angle.

【図10】実施例2におけるfcc(100)極点図及
び仰角に対する回折強度を示す図である。
FIG. 10 is a diagram showing a fcc (100) pole figure and a diffraction intensity with respect to an elevation angle in Example 2.

【図11】実施例2におけるhcp(101)極点図及
び仰角に対する回折強度を示す図である。
FIG. 11 is a diagram showing an hcp (101) pole figure and a diffraction intensity with respect to an elevation angle in Example 2.

【図12】比較例2におけるhcp(001)またはf
cc(111)極点図及び仰角に対する回折強度を示す
図である。
FIG. 12 shows hcp (001) or f in Comparative Example 2.
It is a figure which shows a diffraction intensity with respect to a cc (111) pole figure and an elevation angle.

【図13】比較例2におけるfcc(100)極点図及
び仰角に対する回折強度を示す図である。
13 is a diagram showing a fcc (100) pole figure and a diffraction intensity with respect to an elevation angle in Comparative Example 2. FIG.

【図14】比較例2におけるhcp(101)極点図及
び仰角に対する回折強度を示す図である。
FIG. 14 is a diagram showing a hcp (101) pole figure and a diffraction intensity with respect to an elevation angle in Comparative Example 2.

【図15】Pt下地層のΔθ50と垂直異方性磁界Hkと
の関係を示す図である。
FIG. 15 is a diagram showing a relationship between Δθ 50 of a Pt underlayer and a perpendicular anisotropic magnetic field Hk.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−74012(JP,A) 特開 平3−58316(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 10/16 C23C 14/08 G11B 5/66 H01F 41/18 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-74012 (JP, A) JP-A-3-58316 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 10/16 C23C 14/08 G11B 5/66 H01F 41/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非磁性支持体上にCoPtBO系磁性層
が形成されて成り、 上記CoPtBO系磁性層が六方晶構造を有する直径4
〜8nmの針状晶から構成され、各針状晶が〈001〉
軸方向に非磁性支持体面に垂直に向けて配向されると共
に、隣接する針状晶間に1〜4nmの間隙を介して配列
されて成ることを特徴とする垂直磁気記録媒体。
A CoPtBO-based magnetic layer is formed on a non-magnetic support, wherein the CoPtBO-based magnetic layer has a hexagonal structure and a diameter of 4 mm.
88 nm, each needle-like crystal being <001>
A perpendicular magnetic recording medium characterized by being oriented in a direction perpendicular to the surface of a nonmagnetic support in the axial direction, and being arranged with a gap of 1 to 4 nm between adjacent needles.
JP03220727A 1991-08-30 1991-08-30 Perpendicular magnetic recording media Expired - Fee Related JP3141436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03220727A JP3141436B2 (en) 1991-08-30 1991-08-30 Perpendicular magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03220727A JP3141436B2 (en) 1991-08-30 1991-08-30 Perpendicular magnetic recording media

Publications (2)

Publication Number Publication Date
JPH0562834A JPH0562834A (en) 1993-03-12
JP3141436B2 true JP3141436B2 (en) 2001-03-05

Family

ID=16755578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03220727A Expired - Fee Related JP3141436B2 (en) 1991-08-30 1991-08-30 Perpendicular magnetic recording media

Country Status (1)

Country Link
JP (1) JP3141436B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541131B1 (en) 2000-05-25 2003-04-01 Seagate Technology Llc Perpendicular recording media with enhanced coercivity

Also Published As

Publication number Publication date
JPH0562834A (en) 1993-03-12

Similar Documents

Publication Publication Date Title
US7090934B2 (en) Perpendicular magnetic recording medium
US6080476A (en) Magnetic recording medium and magnetic recording system using such a magnetic recording medium
EP0584768B1 (en) Method for making soft magnetic film
JP2002025030A (en) Perpendicular magnetic recording medium, method for producing the same and magnetic recorder
JP2996442B2 (en) Magnetic thin film recording medium and method of manufacturing the same
US6395413B1 (en) Perpendicular magnetic recording medium
US5452167A (en) Soft magnetic multilayer films for magnetic head
US6863998B2 (en) Magnetic recording medium, method for producing the same, and magnetic recording apparatus
US6686071B2 (en) Magnetic recording medium and magnetic recording apparatus using the same
US6410133B1 (en) Magnetic recording disk, method of the magnetic recording disk and magnetic recording apparatus
JP2007164941A (en) Perpendicular magnetic recording medium
JP2003203330A (en) Magnetic recording medium
JP3141436B2 (en) Perpendicular magnetic recording media
US6916530B2 (en) Perpendicular magnetic recording medium
JP3173490B2 (en) Perpendicular magnetic recording media
JP2000149201A (en) Magnetic memory reproducing device
JP2775877B2 (en) Perpendicular magnetic recording media
JP3308239B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing device
JP3157806B2 (en) Magnetic recording media
JP2002230735A (en) Perpendicular magnetic recording medium and magnetic storage device
JP3730821B2 (en) Substrate with substrate, magnetic recording medium, and magnetic recording apparatus
JP2005092918A (en) Perpendicular magnetic recording medium having amorphous soft magnetic film
JP2898996B2 (en) Magnetic recording medium, method of manufacturing the same, and recording / reproducing apparatus using the same
JP3427403B2 (en) Perpendicular magnetization film and perpendicular magnetic recording medium
JP2002183927A (en) Perpendicular magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees