JP3308239B2 - Perpendicular magnetic recording medium and magnetic recording / reproducing device - Google Patents

Perpendicular magnetic recording medium and magnetic recording / reproducing device

Info

Publication number
JP3308239B2
JP3308239B2 JP16205199A JP16205199A JP3308239B2 JP 3308239 B2 JP3308239 B2 JP 3308239B2 JP 16205199 A JP16205199 A JP 16205199A JP 16205199 A JP16205199 A JP 16205199A JP 3308239 B2 JP3308239 B2 JP 3308239B2
Authority
JP
Japan
Prior art keywords
magnetic
film
recording medium
magnetic recording
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16205199A
Other languages
Japanese (ja)
Other versions
JP2000348326A (en
Inventor
正昭 二本
幸雄 本多
義幸 平山
敦 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16205199A priority Critical patent/JP3308239B2/en
Publication of JP2000348326A publication Critical patent/JP2000348326A/en
Application granted granted Critical
Publication of JP3308239B2 publication Critical patent/JP3308239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高密度磁気記録に
適する垂直磁気記録媒体及びこれを用いた磁気記録再生
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perpendicular magnetic recording medium suitable for high-density magnetic recording and a magnetic recording / reproducing apparatus using the same.

【0002】[0002]

【従来の技術】現在実用化されている磁気ディスク装置
は面内磁気記録方式を採用しており、ディスク基板面と
平行な方向に磁化し易い面内磁気記録媒体に基板と平行
な面内磁区を高密度に形成することが技術課題となって
いる。この方式で面記録密度、特に線記録密度を伸ばす
ためには、面内磁気記録媒体の保磁力を向上するととも
に記録磁性膜の厚さを低減することが必要である。磁性
膜の保磁力が4kOeを超えると、磁気ヘッドによる記
録が困難になり、また磁性膜の厚さがCo合金系磁性膜
では15nm以下になると、熱揺らぎのために記録磁化
強度が時間の経過につれて減少する問題が発生する。面
内記録方式は、隣接する記録ビットの磁化が互いに向あ
っており境界に幅をもった磁化遷移領域が形成されると
いう本質的な問題があるため、主として前記の理由が原
因で30Gb/in2以上の面記録密度を実現するため
には、技術的な困難が予想されている。
2. Description of the Related Art A magnetic disk drive currently in practical use employs an in-plane magnetic recording system, and an in-plane magnetic domain parallel to the substrate is provided on an in-plane magnetic recording medium which is easily magnetized in a direction parallel to the disk substrate surface. It is a technical problem to form a high density. In order to increase the areal recording density, particularly the linear recording density, by this method, it is necessary to improve the coercive force of the longitudinal magnetic recording medium and to reduce the thickness of the recording magnetic film. When the coercive force of the magnetic film exceeds 4 kOe, recording with a magnetic head becomes difficult, and when the thickness of the magnetic film is less than 15 nm in the case of a Co alloy-based magnetic film, the recording magnetization intensity elapses due to thermal fluctuation. The problem that the number decreases as a result occurs. The in-plane recording method has an essential problem that the magnetizations of adjacent recording bits face each other and a magnetic transition region having a width is formed at the boundary. Technical difficulties are expected to achieve a surface recording density of 2 or more.

【0003】垂直磁気記録方式は、薄膜媒体の膜面に垂
直に磁化を形成する方式であり、記録原理や媒体ノイズ
の発現機構が従来の面内磁気記録媒体の場合とは異な
る。垂直磁気記録方式は、隣接する磁化が逆平行になる
ために、本質的に高密度磁気記録に適した方式として注
目され、垂直磁気記録に適した媒体の構造などが提案さ
れている。垂直磁気記録方式には、単層の垂直磁化膜を
用いる方式と垂直磁化膜に裏打磁性膜を設ける方式があ
る。裏打磁性膜を持つ2層垂直磁気記録媒体を用いる技
術は、例えばIEEE Transaction on Magnetics, Vol.MAG
-20, No.5, September 1984, pp.657-662, "Perpendicu
lar Magnetic Recording-Evolution and Future"に記述
されている。この方式の垂直磁気記録媒体としてはパー
マロイなどの軟磁性膜層からなる裏打層上にCo−Cr
合金からなる垂直磁化膜を設けた媒体が検討されてい
る。
[0003] The perpendicular magnetic recording system is a system in which magnetization is formed perpendicularly to the film surface of a thin film medium, and the recording principle and medium noise generation mechanism are different from those of the conventional longitudinal magnetic recording medium. The perpendicular magnetic recording method has attracted attention as a method suitable for high-density magnetic recording because adjacent magnetizations are antiparallel, and a medium structure suitable for perpendicular magnetic recording has been proposed. The perpendicular magnetic recording method includes a method using a single-layer perpendicular magnetic film and a method in which a backing magnetic film is provided on the perpendicular magnetic film. A technique using a two-layer perpendicular magnetic recording medium having a backing magnetic film is disclosed in, for example, IEEE Transaction on Magnetics, Vol.MAG.
-20, No.5, September 1984, pp.657-662, "Perpendicu
lar Magnetic Recording-Evolution and Future ". As a perpendicular magnetic recording medium of this type, Co-Cr is formed on a backing layer made of a soft magnetic film layer such as permalloy.
A medium provided with a perpendicular magnetization film made of an alloy has been studied.

【0004】[0004]

【発明が解決しようとする課題】2層垂直磁気記録媒体
を用いる垂直磁気記録方式により30Gb/in2以上
の高密度磁気記録が可能な磁気記録再生装置を実用化す
るためには、媒体ノイズの低下と媒体表面の平坦化が不
可欠である。媒体ノイズは、垂直磁化膜と裏打磁性膜の
双方から発生しており、特に裏打磁性膜から発生するス
パイク状のノイズが問題となっていた。このようなノイ
ズの例は、例えばIEEE Transaction on Magnetics, Vo
l.MAG-20, No.5, September 1984, pp.663-668, "Cruci
al Points in Perpendicular Recording"に記述されて
いる。
In order to put into practical use a magnetic recording / reproducing apparatus capable of high-density magnetic recording of 30 Gb / in 2 or more by a perpendicular magnetic recording system using a two-layer perpendicular magnetic recording medium, medium noise must be reduced. Reduction and flattening of the medium surface are essential. The medium noise is generated from both the perpendicular magnetization film and the backing magnetic film, and spike noise generated from the backing magnetic film has been a problem. Examples of such noise are, for example, IEEE Transaction on Magnetics, Vo
l.MAG-20, No.5, September 1984, pp.663-668, "Cruci
al Points in Perpendicular Recording ".

【0005】このような問題に対して、裏打磁性膜の下
部に面内磁化膜を形成する方法が、例えば日本応用磁気
学会誌,Vol.21, Supplement No.S1, pp.104-108, "3
層垂直媒体の高S/N化及び記録信号の安定性" に見ら
れるように提案されているが、30Gb/in2以上の
高密度磁気記録が可能な磁気記録再生装置を実用化する
ためには必ずしも十分ではなかった。さらに高密度記録
のために必要な媒体としての条件である、表面の平坦化
に関しては有効な方法は殆ど提案されていない。本発明
の目的は、30Gb/in2以上の高密度記録密度を実
現するための低ノイズ特性、表面の平坦性を持つ垂直磁
気記録媒体を提供し、高密度記録再生装置の実現を容易
ならしめることにある。
In order to solve such a problem, a method of forming an in-plane magnetized film below the backing magnetic film is described in, for example, Journal of the Japan Society of Applied Magnetics, Vol. 21, Supplement No. S1, pp. 104-108, " 3
Higher S / N ratio of layer-perpendicular medium and stability of recording signal "have been proposed in order to put into practical use a magnetic recording / reproducing apparatus capable of high-density magnetic recording of 30 Gb / in 2 or more. Further, almost no effective method has been proposed for flattening the surface, which is a condition required as a medium for high-density recording.The purpose of the present invention is to provide 30 Gb / in 2 or more. Another object of the present invention is to provide a perpendicular magnetic recording medium having a low noise characteristic and a flat surface for realizing a high density recording density, and to facilitate realization of a high density recording / reproducing apparatus.

【0006】[0006]

【課題を解決するための手段】低ノイズ特性と表面の平
坦性を持つ垂直磁気記録媒体を実現するために、本発明
では非磁性基板上に裏打磁性膜層を介して垂直磁化膜、
保護潤滑膜が設けられた垂直磁気記録媒体において、裏
打磁性膜層を少なくとも1種の軟磁性膜と少なくとも1
種のL10型結晶の磁性材料を含むグラニュラー構造を
持つ硬磁性膜からなる2層以上の多層膜から構成する。
軟磁性膜は、例えば保磁力で定義するとき、数十Oe以
下の膜であり、硬磁性膜は数百Oe以上の膜である。
In order to realize a perpendicular magnetic recording medium having a low noise characteristic and a flat surface, the present invention provides a perpendicular magnetic film on a non-magnetic substrate via a backing magnetic film layer.
In a perpendicular magnetic recording medium provided with a protective lubricating film, the backing magnetic film layer is formed of at least one soft magnetic film and at least one soft magnetic film.
It consists of two or more layers of a multilayer film composed of a hard magnetic film having a granular structure comprising magnetic material species L1 0 type crystal.
The soft magnetic film is, for example, a film of several tens Oe or less, as defined by coercive force, and the hard magnetic film is a film of several hundred Oe or more.

【0007】裏打磁性膜に起因するノイズを低減するた
めには、磁性膜の磁区構造を微細化するとともに磁性膜
中に存在する磁壁が容易に動かないように固定すること
が必要である。これは、裏打磁性膜を少なくとも1種の
軟磁性膜と少なくとも1種の硬磁性膜からなる2層以上
の多層膜とし、軟磁性膜を非晶質膜、硬磁性膜をグラニ
ュラー構造を持つ膜から構成することにより可能とな
る。
In order to reduce the noise caused by the backing magnetic film, it is necessary to make the magnetic domain structure of the magnetic film finer and to fix the domain wall existing in the magnetic film so as not to move easily. This is because the backing magnetic film is a multilayer film composed of at least one kind of soft magnetic film and at least one kind of hard magnetic film, and the soft magnetic film is an amorphous film and the hard magnetic film is a film having a granular structure. This is made possible by configuring from.

【0008】裏打磁性膜を構成する非晶質軟磁性膜と硬
磁性膜を、接触もしくは極薄の非磁性膜を介して形成す
ると、2種類の磁性膜間には磁気的相互作用が存在す
る。このため、軟磁性膜中に磁壁が存在しても相互作用
のために外部磁界中でも磁壁の移動が抑制される。ま
た、L10構造を持つ強磁性材料と酸化物等の非磁性材
料から構成されるグラニュラー型の硬磁性膜上に軟磁性
膜を形成すると、軟磁性膜中に入る磁区構造が微細化さ
れる傾向がある。さらにグラニュラー型の膜の表面平坦
性は、膜厚が同様のCo−Cr−Pt合金等の多結晶型
の磁性膜の平坦性よりも優れている。また、L10構造
を持つ強磁性材料と酸化物等の非磁性材料から構成され
るグラニュラー型の硬磁性膜の磁気異方性エネルギーは
Co−Cr−PtなどのCo基合金膜の磁気異方性エネ
ルギーよりも10倍程度大きいためより薄い膜厚でも高
い保磁力を実現することができる。一般に、膜厚が大き
くなるほど膜の表面平坦性は劣化するため、上記グラニ
ュラー型の硬磁性膜は一定の保磁力を達成してしかも膜
厚を薄くするのに有効である。この硬磁性膜の上に直接
もしくは極薄の非磁性膜を介して非晶質構造を持つ軟磁
性膜を形成すると、表面平坦性にも優れた裏打磁性膜を
実現することができる。
When an amorphous soft magnetic film and a hard magnetic film constituting a backing magnetic film are formed through a contact or an extremely thin non-magnetic film, a magnetic interaction exists between the two types of magnetic films. . For this reason, even if a domain wall exists in the soft magnetic film, the movement of the domain wall is suppressed even in an external magnetic field due to the interaction. Further, by forming a soft magnetic film on the hard magnetic film composed granular type of a non-magnetic material such as an oxide and a ferromagnetic material having an L1 0 structure, domain structure entering into the soft magnetic film is miniaturized Tend. Further, the surface flatness of the granular type film is superior to the flatness of a polycrystalline type magnetic film such as a Co-Cr-Pt alloy having the same thickness. Also, L1 granular type hard magnetic anisotropy energy of the magnetic film composed of non-magnetic material such as 0 oxide and a ferromagnetic material having a structure magnetic anisotropy of the Co-based alloy film, such as Co-Cr-Pt Since it is about 10 times larger than the coercive energy, a high coercive force can be realized even with a thinner film thickness. Generally, as the film thickness increases, the surface flatness of the film deteriorates. Therefore, the granular hard magnetic film is effective in achieving a certain coercive force and reducing the film thickness. When a soft magnetic film having an amorphous structure is formed on this hard magnetic film directly or via an extremely thin non-magnetic film, a backing magnetic film having excellent surface flatness can be realized.

【0009】L10構造を持つ強磁性材料としては、C
o−PtxもしくはFe−Pty合金、もしくはこれらの
合金に他の元素を添加して得られる材料が適当である。
ここで、L10構造を持つ強磁性材料の化学量論組成は
いずれもx及びyの値は50at%であるが、一般にあ
る程度の固溶範囲を持つため、20at%<x<60a
t%,20at%<y<60at%の範囲が可能であ
る。また、添加元素として数at%程度のB,Si,
C,Nd,Sm,Crなどを添加することも可能であ
る。グラニュラー構造を形成するための非磁性材料とし
ては、SiO2,ZrO2,Al23などの酸化物やこれ
らの混晶酸化物が適当である。
[0009] As the ferromagnetic material having an L1 0 structure, C
o-Pt x or Fe-Pt y alloy, or material obtained by adding other elements in these alloys are suitable.
Here, L1 0 values of both x and y stoichiometric composition of the ferromagnetic material having the structure is a 50at%, since generally have some solid solubility range, 20at% <x <60a
The range of t%, 20 at% <y <60 at% is possible. Further, B, Si, about several at%
It is also possible to add C, Nd, Sm, Cr and the like. As the nonmagnetic material for forming the granular structure, oxides such as SiO 2 , ZrO 2 and Al 2 O 3 and mixed crystal oxides thereof are suitable.

【0010】また軟磁性膜としては、Fe−Niパーマ
ロイ膜等よりも電気抵抗の高い非晶質材料のCo−Nb
−X(X=Zr,Ti,Hf,Mo,W),Ni−Co
−Y(Y=Zr,Ti,Hf,Mo,W),Fe−Si
−Z(Z=B,Al)合金膜が望ましい。これらの磁性
膜は一般に微細構造が非晶質であるため、平坦な表面を
持つ膜を得る点で適当である。
The soft magnetic film is made of Co-Nb, an amorphous material having higher electric resistance than Fe-Ni permalloy film or the like.
-X (X = Zr, Ti, Hf, Mo, W), Ni-Co
-Y (Y = Zr, Ti, Hf, Mo, W), Fe-Si
A -Z (Z = B, Al) alloy film is desirable. Since these magnetic films generally have an amorphous fine structure, they are suitable for obtaining a film having a flat surface.

【0011】媒体表面を平坦化するためには、裏打磁性
膜の表面を平坦化することが必要不可欠である。一般
に、垂直磁気記録においてヘッドの記録効率を上げるた
めには、裏打磁性膜の厚さは1μm以上と厚いことが望
ましいとされている。同一材料でこのような厚い膜を形
成すると、膜形成の過程で膜の構造的な揺らぎが膜厚の
増大につれて拡大するため、表面の起伏Raが増大す
る。この傾向は、特に多結晶構造を持つ膜の場合顕著で
ある。この問題に対しては、前述のように非晶質膜及び
グラニュラー型の磁性膜を用いることである程度対応で
きるが、これらの膜を多層化することにより更に平坦な
膜を得ることができる。
In order to flatten the medium surface, it is essential to flatten the surface of the backing magnetic film. Generally, in order to increase the recording efficiency of the head in perpendicular magnetic recording, it is considered that the thickness of the backing magnetic film is preferably as thick as 1 μm or more. When such a thick film is formed of the same material, the structural fluctuation of the film increases in the process of forming the film as the film thickness increases, so that the roughness Ra of the surface increases. This tendency is particularly remarkable in a film having a polycrystalline structure. Although this problem can be solved to some extent by using an amorphous film and a granular magnetic film as described above, a more flat film can be obtained by making these films multilayer.

【0012】30Gb/in2以上の面記録密度を実現
するためには、磁気記録装置における磁気ヘッドと磁気
記録媒体表面の距離を15nm以下にすることが必要で
ある。このためには、媒体表面の起伏Raをクリアラン
スを考慮すると3nm以下としなければならず、このた
めには裏打磁性膜の表面起伏Raはこの値以下にしなけ
ればならない。裏打磁性膜の全膜厚として10μm以上
も原理的には可能であるが、媒体表面の起伏Raを3n
m以下とするためには裏打磁性膜の全膜厚は最大でも1
μm、望ましくは200nm以下とすることが必要であ
る。また。表面平坦化のためには膜厚は小さいほど良
い。裏打磁性膜を構成する硬磁性膜の厚さは上記グラニ
ュラー型の膜を用いると、膜配向制御用の非磁性膜を含
んだ場合でも20nm程度に低減することができる。ま
た軟磁性膜の厚さは、垂直磁気記録における裏打磁性膜
のメリットを出すためには少なくとも10nmは必要で
ある。したがって本発明の場合、裏打磁性膜厚の範囲は
30nm以上1μm以下が可能となる。膜形成の時間等
のプロセス条件等を考慮すると、より望ましい膜厚範囲
は30nm以上200nm以下である。
In order to achieve a surface recording density of 30 Gb / in 2 or more, it is necessary to keep the distance between the magnetic head and the surface of the magnetic recording medium in the magnetic recording apparatus at 15 nm or less. For this purpose, the undulation Ra of the medium surface must be 3 nm or less in consideration of clearance, and for this purpose, the undulation Ra of the backing magnetic film must be equal to or less than this value. Although the total thickness of the backing magnetic film can be 10 μm or more in principle, the roughness Ra of the medium surface is 3 n
m or less, the total thickness of the backing magnetic film should be at most 1
μm, preferably 200 nm or less. Also. The smaller the film thickness is, the better the surface is. When the above-mentioned granular type film is used, the thickness of the hard magnetic film constituting the backing magnetic film can be reduced to about 20 nm even when a non-magnetic film for controlling the film orientation is included. Further, the thickness of the soft magnetic film needs to be at least 10 nm in order to obtain the advantage of the backing magnetic film in perpendicular magnetic recording. Therefore, in the case of the present invention, the range of the backing magnetic film thickness can be 30 nm or more and 1 μm or less. In consideration of the process conditions such as the time for film formation, a more desirable film thickness range is 30 nm or more and 200 nm or less.

【0013】このような構造を持つ裏打磁性膜の上に形
成する垂直磁化膜としては、Co−Cr,Co−Cr−
Ta,Co−Cr−Pt,Co−Cr−Pt−Taなど
のCo基合金垂直磁化膜、Pt/Co,Pd/Co,P
t/Co合金,Pd/Co合金などの多層膜垂直磁化
膜、Tb−Fe−Co,Fe−Ptなどの非晶質もしく
は微結晶垂直磁化膜のいずれも可能である。また、裏打
磁性膜と垂直磁化膜の間に必要に応じて膜構造制御用の
中間層を導入することも可能である。さらに、30Gb
/in2以上の面記録密度を実現するためには、使用す
る最大線記録密度は300kFCI以上とすることが望
ましく、この場合、最短ビット長は80nmとなる。こ
れ以下の長さのビット長を実現するための垂直磁化膜の
厚さは、ビット長さの半分以下であること、すなわち4
0nm以下であることが必要である。しかし、膜厚が1
0nm以下になると熱揺らぎのために記録磁化強度が時
間の経過につれて減少する問題が発生するため、膜厚は
少なくとも10nm以上とすることが望まれる。
As the perpendicular magnetic film formed on the backing magnetic film having such a structure, Co-Cr, Co-Cr-
Co-based alloy perpendicular magnetization film such as Ta, Co-Cr-Pt, Co-Cr-Pt-Ta, Pt / Co, Pd / Co, P
Any of a multilayer perpendicular magnetic film such as a t / Co alloy and a Pd / Co alloy, and an amorphous or microcrystalline perpendicular magnetic film such as Tb-Fe-Co and Fe-Pt are possible. It is also possible to introduce an intermediate layer for controlling the film structure between the backing magnetic film and the perpendicular magnetization film, if necessary. In addition, 30Gb
In order to realize a surface recording density of / in 2 or more, the maximum linear recording density used is desirably 300 kFCI or more, and in this case, the shortest bit length is 80 nm. The thickness of the perpendicular magnetization film for realizing a bit length of less than this is less than half the bit length, that is, 4
It is necessary that the thickness be 0 nm or less. However, if the film thickness is 1
When the thickness is less than 0 nm, there arises a problem that the recording magnetization intensity decreases with time due to thermal fluctuation. Therefore, it is desirable that the film thickness is at least 10 nm or more.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。 [実施の形態1]直径2.5インチのガラス基板を用い
て、マグネトロンスパッタ法によって、図1に示す断面
構造を持つ垂直磁気記録媒体を作製した。基板11上
に、膜厚3nmのシード層12、膜厚10nmの下地層
13、膜厚10nmの硬磁性膜層14、膜厚200nm
の軟磁性膜層15からなる裏打磁性膜を形成し、その上
に垂直磁化膜16を25nm、保護膜17を5nmの厚
さこの順序で形成した。シード用にはMgOターゲッ
ト、下地層用にはCrターゲット、硬磁性膜層用にはC
o−35at%Ptターゲット上にSiO2ペレットを
表面積比で7:3とした複合ターゲット、軟磁性膜用に
はCo−5at%Zr−6at%Nbターゲット、垂直
磁化膜用にCo−20at%Cr−8at%Pt−4a
t%Taターゲット,保護膜用にカーボンターゲットを
用いた。スパッタのArガス圧力を3mTorr、スパ
ッターパワー10W/cm2、基板温度300℃の条件
で形成した。MgOターゲット及び複合ターゲットを用
いた膜形成では高周波マグネトロンスパッター法を、そ
の他のターゲットではDCマグネトロンスパッター法を
採用した。
Embodiments of the present invention will be described below with reference to the drawings. [Embodiment 1] A perpendicular magnetic recording medium having a sectional structure shown in FIG. 1 was manufactured by a magnetron sputtering method using a glass substrate having a diameter of 2.5 inches. On a substrate 11, a seed layer 12 having a thickness of 3 nm, an underlayer 13 having a thickness of 10 nm, a hard magnetic film layer 14 having a thickness of 10 nm, and a thickness of 200 nm
A backing magnetic film composed of the soft magnetic film layer 15 was formed, on which a perpendicular magnetic film 16 and a protective film 17 were formed in a thickness of 25 nm and a thickness of 5 nm in this order. MgO target for seed, Cr target for underlayer, C for hard magnetic film layer
A composite target having a surface area ratio of SiO 2 pellets of 7: 3 on an o-35 at% Pt target, a Co-5 at% Zr-6 at% Nb target for a soft magnetic film, and a Co-20 at% Cr for a perpendicular magnetization film -8 at% Pt-4a
A t% Ta target and a carbon target for the protective film were used. The sputtering was performed under the conditions of an Ar gas pressure of 3 mTorr, a sputtering power of 10 W / cm 2 , and a substrate temperature of 300 ° C. For film formation using an MgO target and a composite target, a high-frequency magnetron sputtering method was used, and for other targets, a DC magnetron sputtering method was used.

【0015】同様な条件で、硬磁性膜用にCo−35a
t%Ptターゲット上に、ZrO2ペレット、Al23
ペレット、Si34ペレットをそれぞれ表面積比で7:
3とした複合ターゲットを用いた以外は前記と同様な垂
直磁気記録媒体を作製した。また、同様な条件で、硬磁
性膜用にFe−45at%Ptターゲット上に、SiO
2ペレット、ZrO2ペレット、Al23ペレット、Si
34ペレットをそれぞれ表面積比で7:3とした複合タ
ーゲットを用いた以外は前記と同様な垂直媒体を作製し
た。
Under the same conditions, Co-35a is used for a hard magnetic film.
On a t% Pt target, ZrO 2 pellets, Al 2 O 3
The pellets and the Si 3 N 4 pellets were each in a surface area ratio of 7:
A perpendicular magnetic recording medium was prepared in the same manner as described above, except that the composite target No. 3 was used. Further, under the same conditions, SiO 2 was deposited on a Fe-45 at% Pt target for a hard magnetic film.
2 pellets, ZrO 2 pellets, Al 2 O 3 pellets, Si
A perpendicular medium was prepared in the same manner as described above, except that a composite target in which the surface area ratio of each of the 3 N 4 pellets was 7: 3 was used.

【0016】X線回折法及び電子顕微鏡法で各々の硬磁
性膜とCo−5at%Zr−6at%Nb膜の構造を調
べた結果、前者は結晶粒径が8nmから25nmの磁性
金属相と酸化物相が混在したグラニュラー構造を持ち、
後者は非晶質であることを確認した。
As a result of examining the structure of each of the hard magnetic film and the Co-5 at% Zr-6 at% Nb film by X-ray diffraction and electron microscopy, the former was found to be composed of a magnetic metal phase having a crystal grain size of 8 to 25 nm and an oxide. It has a granular structure in which physical phases are mixed,
The latter was confirmed to be amorphous.

【0017】比較試料1として、ガラス基板上に厚さ2
00nmのCo−5at%Zr−6at%Nb膜の単層
からなる裏打磁性膜を形成し、その上に厚さ25nmの
Co−20at%Cr−8at%Pt−4at%Taか
らなる垂直磁化膜、厚さ5nmのカーボンからなる保護
膜を形成した試料を、同様のスパッタ条件で作成した。
比較試料2として、ガラス基板上に厚さ15nmのCr
下地膜、厚さ30nmのCo−20at%Cr−10a
t%Pt硬磁性膜、厚さ200nmのCo−5at%Z
r−6at%Nb膜からなる裏打磁性膜を形成し、その
上に厚さ25nm厚のCo−20at%Cr−8at%
Pt−4at%Taからなる垂直磁化膜、厚さ5nmの
カーボンからなる保護膜を形成した試料を、同様のスパ
ッタ条件で作成した。
As a comparative sample 1, a sample having a thickness of 2
A backing magnetic film consisting of a single layer of a Co-5 at% Zr-6 at% Nb film having a thickness of 00 nm, and a perpendicular magnetic film consisting of Co-20 at% Cr-8 at% Pt-4 at% Ta having a thickness of 25 nm formed thereon; A sample on which a protective film made of carbon having a thickness of 5 nm was formed was prepared under the same sputtering conditions.
As Comparative Sample 2, a 15 nm thick Cr
Underlayer, 30 nm thick Co-20at% Cr-10a
t-5 Pt hard magnetic film, 200 nm thick Co-5 at% Z
A backing magnetic film made of an r-6 at% Nb film is formed, and a Co-20 at% Cr-8 at% 25 nm thick is formed thereon.
A sample having a perpendicular magnetization film made of Pt-4 at% Ta and a protective film made of carbon having a thickness of 5 nm was formed under the same sputtering conditions.

【0018】これらの試料の表面起伏Raを原子間力顕
微鏡、記録再生特性を記録再生分離型の磁気ヘッドを用
いて測定した。記録ヘッドは単磁極型の薄膜ヘッドであ
り、トラック幅は0.5μm,磁極厚さは0.2μm、
再生用ヘッドは巨大磁気抵抗効果型(GMR)ヘッドで
そのシールド間隔は0.15μm、再生素子のトラック
幅は0.45μm、測定時のスペーシングは0.015
μmとした。300kFCIの磁気記録を行なった場合
の媒体のS/Nは、比較試料のS/Nに対する相対値と
して、記録分解能は低線記録密度の再生出力が半減する
記録密度(D50kFCI)として測定した。これらの結
果を表1に示す。
The surface undulations Ra of these samples were measured using an atomic force microscope, and the recording / reproducing characteristics were measured using a recording / reproducing separation type magnetic head. The recording head is a single pole type thin film head, with a track width of 0.5 μm, a pole thickness of 0.2 μm,
The reproducing head is a giant magnetoresistive (GMR) head with a shield interval of 0.15 μm, a track width of the reproducing element of 0.45 μm, and a spacing of 0.015 at the time of measurement.
μm. S / N of the medium when subjected to magnetic recording of 300kFCI as a relative value to the S / N of the comparative sample, the recording resolution reproduction output of low linear recording density was measured as a recording density to half (D 50 kFCI) . Table 1 shows the results.

【0019】[0019]

【表1】 [Table 1]

【0020】表1から分かるように、本実施の形態の垂
直磁気記録媒体は、比較例に比べて表面起伏Raが大幅
に改善し、しかも媒体S/Nが向上しており、高密度磁
気記録媒体として望ましい。本実施の形態で作製した磁
気記録媒体を用いて、ディスク直径2.5インチの磁気
記録再生装置を作製した。磁気記録再生装置は、図3
(a)に概略平面図を、図3(b)にそのA−A断面図
を示すように、磁気記録媒体51、これを回転駆動する
磁気記録媒体駆動部52、記録ヘッド及び再生ヘッドを
備える磁気ヘッド53、磁気ヘッド駆動部54、磁気ヘ
ッドの記録再生信号を処理する信号処理部55等を有し
てなる周知の構成を持つ磁気記録再生装置である。再生
ヘッドの再生素子としてGMRヘッドを用いるとき、面
記録密度35Gb/in2の条件でエラーレート10-9
がいずれの試料でも確保でき、超高密度記録再生装置と
して動作することを確認した。
As can be seen from Table 1, the perpendicular magnetic recording medium of the present embodiment has a significantly improved surface undulation Ra and a higher medium S / N than the comparative example, and has a high density magnetic recording medium. Desirable as a medium. Using the magnetic recording medium manufactured in the present embodiment, a magnetic recording / reproducing apparatus having a disk diameter of 2.5 inches was manufactured. FIG.
As shown in a schematic plan view in (a) and a cross-sectional view along AA in FIG. 3 (b), a magnetic recording medium 51, a magnetic recording medium driving unit 52 for rotating the magnetic recording medium 51, a recording head and a reproducing head are provided. This is a magnetic recording / reproducing apparatus having a known configuration including a magnetic head 53, a magnetic head driving unit 54, a signal processing unit 55 for processing a recording / reproducing signal of the magnetic head, and the like. When a GMR head is used as the reproducing element of the reproducing head, the error rate is 10 −9 under the condition of the areal recording density of 35 Gb / in 2.
It was confirmed that any of the samples could be secured and that the device operated as an ultra-high density recording / reproducing apparatus.

【0021】[実施の形態2]直径2.5インチのシリ
コン基板を用いて、マグネトロンスパッタ法によって、
図2に示す断面構造を持つ垂直磁気記録媒体を作製し
た。基板21上に、シード層22を5nm厚、下地層2
3を5nm厚、硬磁性膜層24を10nm厚形成した。
その上に、1nm厚の非磁性膜25と50nm厚の軟磁
性膜26の積層膜を4組形成した。さらに、垂直磁化膜
27を25nm厚、カーボン保護膜28を6nm厚形成
した。シード層用にMgOターゲット、下地層用にCr
ターゲット、硬磁性膜層用にFe−50at%Ptター
ゲットとその上に置いたZrO2ペレットの面積比が
8:2である複合ターゲット、非磁性膜用にHfターゲ
ット、軟磁性膜用にCo−6at%Zr−3at%Ti
ターゲット、垂直磁化膜用にCo−20at%Cr−1
2at%Pt−2at%Ta−1at%Nbターゲッ
ト、保護膜用にカーボンターゲットを用いた。スパッタ
のArガス圧力を2.5mTorr、スパッターパワー
10W/cm2、基板温度310℃の条件で形成した。
X線回折及び電子顕微鏡観察で調べた硬磁性膜の構造は
磁性材料と非磁性材料が混在するグラニュラー構造であ
った。
[Embodiment 2] Using a silicon substrate having a diameter of 2.5 inches, a magnetron sputtering method is used.
A perpendicular magnetic recording medium having the cross-sectional structure shown in FIG. 2 was manufactured. On a substrate 21, a seed layer 22 having a thickness of 5 nm
3 was formed to a thickness of 5 nm, and the hard magnetic film layer 24 was formed to a thickness of 10 nm.
On top of this, four laminated films of a nonmagnetic film 25 having a thickness of 1 nm and a soft magnetic film 26 having a thickness of 50 nm were formed. Further, the perpendicular magnetization film 27 was formed with a thickness of 25 nm, and the carbon protection film 28 was formed with a thickness of 6 nm. MgO target for seed layer, Cr for underlayer
Target, the hard magnetic film ZrO 2 pellets area ratio placed thereon and Fe-50at% Pt targets for layer 8: 2. The term composite target, for non-magnetic film Hf target, the soft magnetic film Co- 6at% Zr-3at% Ti
Co-20at% Cr-1 for target and perpendicular magnetization film
A 2 at% Pt-2 at% Ta-1 at% Nb target was used, and a carbon target was used for a protective film. The sputtering was performed under the conditions of an Ar gas pressure of 2.5 mTorr, a sputtering power of 10 W / cm 2 , and a substrate temperature of 310 ° C.
The structure of the hard magnetic film examined by X-ray diffraction and electron microscope observation was a granular structure in which a magnetic material and a non-magnetic material were mixed.

【0022】ここで、軟磁性層の材料をCo−6at%
Nb−3at%Hf,Co−5at%Nb−4at%T
i,Co−5at%Nb−4at%Hf,Co−5at
%Nb−2at%W,Ni−10at%Co−3at%
Zr,Ni−29at%Co−3at%Ti,Ni−5
at%Co−6at%Hf,Ni−9at%Co−2a
t%Mo,Ni−12at%Co−2at%W,Fe−
4at%Si−2at%B,Fe−4at%Si−3a
t%Alとした以外は同様の垂直磁気記録媒体を前記と
同様の条件で作製した。
Here, the material of the soft magnetic layer is Co-6 at%.
Nb-3at% Hf, Co-5at% Nb-4at% T
i, Co-5 at% Nb-4 at% Hf, Co-5 at
% Nb-2at% W, Ni-10at% Co-3at%
Zr, Ni-29 at% Co-3 at% Ti, Ni-5
at% Co-6 at% Hf, Ni-9 at% Co-2a
t% Mo, Ni-12at% Co-2at% W, Fe-
4 at% Si-2 at% B, Fe-4 at% Si-3a
A similar perpendicular magnetic recording medium was produced under the same conditions as above, except that t% Al was used.

【0023】また、比較試料として、裏打磁性膜が厚さ
200nmの単独のCo−6at%Zr−3at%T
i,Co−6at%Nb−3at%Hf,Co−5at
%Nb−4at%Ti,Co−5at%Nb−4at%
Hf,Co−5at%Nb−2at%W,Ni−10a
t%Co−3at%Zr,Ni−29at%Co−3a
t%Ti,Ni−5at%Co−6at%Hf,Ni−
9at%Co−2at%Mo,Ni−12at%Co−
2at%W,Fe−4at%Si−2at%B,Fe−
4at%Si−3at%Alである他は上記と同様の垂
直磁気記録媒体を作製した。
As a comparative sample, the backing magnetic film was a single Co-6 at% Zr-3 at% T having a thickness of 200 nm.
i, Co-6 at% Nb-3 at% Hf, Co-5 at
% Nb-4at% Ti, Co-5at% Nb-4at%
Hf, Co-5at% Nb-2at% W, Ni-10a
t% Co-3at% Zr, Ni-29at% Co-3a
t% Ti, Ni-5at% Co-6at% Hf, Ni-
9at% Co-2at% Mo, Ni-12at% Co-
2 at% W, Fe-4 at% Si-2 at% B, Fe-
A perpendicular magnetic recording medium was prepared in the same manner as described above except that 4 at% Si and 3 at% Al were used.

【0024】これらの磁気記録媒体の表面平坦性Ra、
媒体S/N、記録分解能(D50kFCI)を実施の形態
1と同様の条件で測定した。それぞれの軟磁性膜材料に
対して、本発明の垂直磁気記録媒体と比較例について、
上記特性の比較をした。なお、媒体S/Nに関しては、
本発明の垂直磁気記録媒体のS/Nを各々の比較試料の
S/Nに対する相対値として表示した。結果を表2に示
す。
The surface flatness Ra of these magnetic recording media,
Medium S / N, recording resolution (D 50 kFCI) was measured under the same conditions as in the first embodiment. For each soft magnetic film material, the perpendicular magnetic recording medium of the present invention and a comparative example,
The above characteristics were compared. As for the medium S / N,
The S / N of the perpendicular magnetic recording medium of the present invention is shown as a relative value to the S / N of each comparative sample. Table 2 shows the results.

【0025】[0025]

【表2】 [Table 2]

【0026】表2に示されているように、本実施の形態
の垂直磁気記録媒体は、それぞれの比較例に比べて表面
平坦性Ra、媒体S/N及び記録分解能(D50kFC
I)が総合的に見て大幅に改善されており、高密度磁気
記録媒体として望ましいことがわかった。
As shown in Table 2, the perpendicular magnetic recording medium of the present embodiment has a surface flatness Ra, medium S / N, and recording resolution (D 50 kFC) which are smaller than those of the comparative examples.
I) was greatly improved overall, and it was found that it was desirable as a high-density magnetic recording medium.

【0027】[0027]

【発明の効果】本発明によれば、垂直磁気記録媒体の表
面平坦性、媒体S/N及び記録分解能を改善することが
でき、この結果、高密度磁気記録が可能な磁気ディスク
装置を得ることができる。特に、30Gb/in2以上
の高密度磁気記録が可能となり、装置の小型化や大容量
化が容易になる。
According to the present invention, the surface flatness of the perpendicular magnetic recording medium, the medium S / N, and the recording resolution can be improved, and as a result, a magnetic disk drive capable of high-density magnetic recording can be obtained. Can be. In particular, high-density magnetic recording of 30 Gb / in 2 or more becomes possible, and it is easy to reduce the size and capacity of the device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による垂直磁気記録媒体の一例の断面
図。
FIG. 1 is a sectional view of an example of a perpendicular magnetic recording medium according to the present invention.

【図2】本発明による垂直磁気記録媒体の他の例の断面
図。
FIG. 2 is a sectional view of another example of the perpendicular magnetic recording medium according to the present invention.

【図3】磁気記録再生装置の概略図。FIG. 3 is a schematic diagram of a magnetic recording / reproducing apparatus.

【符号の説明】[Explanation of symbols]

11…基板、12…シード層、13…下地層、14…硬
磁性膜、15…軟磁性膜、16…垂直磁化膜、17…保
護膜、21…基板、22…シード層、23…下地膜、2
4…硬磁性膜、25…非磁性膜、26…軟磁性膜、27
…垂直磁化膜、28…保護膜、51…磁気記録媒体、5
2…磁気記録媒体駆動部、53…磁気ヘッド、54…磁
気ヘッド駆動部、55…信号処理部
DESCRIPTION OF SYMBOLS 11 ... board | substrate, 12 ... seed layer, 13 ... base layer, 14 ... hard magnetic film, 15 ... soft magnetic film, 16 ... perpendicular magnetization film, 17 ... protective film, 21 ... substrate, 22 ... seed layer, 23 ... base film , 2
4: hard magnetic film, 25: non-magnetic film, 26: soft magnetic film, 27
... perpendicular magnetic film, 28 ... protective film, 51 ... magnetic recording medium, 5
2: magnetic recording medium driving unit, 53: magnetic head, 54: magnetic head driving unit, 55: signal processing unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊川 敦 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社 日立製作所 中央研究所内 (56)参考文献 特開 昭59−63026(JP,A) 特開 平9−320847(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/62 - 5/858 H01F 10/08 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Atsushi Kikukawa 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-59-63026 (JP, A) JP-A-9 −320847 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G11B 5/62-5/858 H01F 10/08

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非磁性基板上に裏打磁性膜層を介して設
けられた垂直磁化膜を有する垂直磁気記録媒体におい
て、 前記裏打磁性膜層は、グラニュラー構造を有する硬磁性
膜と、該硬磁性膜上に形成された少なくとも1層の軟磁
性膜とを備えることを特徴とする垂直磁気記録媒体。
1. A perpendicular magnetic recording medium having a perpendicular magnetic film provided on a nonmagnetic substrate with a backing magnetic film layer interposed therebetween, wherein the backing magnetic film layer has a hard magnetic structure having a granular structure.
Film and at least one layer of soft magnetism formed on the hard magnetic film
A perpendicular magnetic recording medium, comprising: a conductive film .
【請求項2】 請求項1記載の垂直磁気記録媒体におい
て、前記硬磁性膜は、L10型結晶の磁性材料を含むこ
とを特徴とする垂直磁気記録媒体。
2. A perpendicular magnetic recording medium according to claim 1, wherein the hard magnetic film is a perpendicular magnetic recording medium which comprises a magnetic material of L1 0 type crystal.
【請求項3】 請求項2記載の垂直磁気記録媒体におい
て、前記L10型結晶の磁性材料は、Fe−Pt合金又
はCo−Pt合金であることを特徴とする垂直磁気記録
媒体。
3. A perpendicular magnetic recording medium according to claim 2, wherein the magnetic material of the L1 0 type crystal is perpendicular magnetic recording medium, which is a Fe-Pt alloy or Co-Pt alloy.
【請求項4】 請求項1記載の垂直磁気記録媒体におい
て、前記硬磁性膜は、非磁性材料を含むことを特徴とす
る垂直磁気記録媒体。
4. The perpendicular magnetic recording medium according to claim 1, wherein the hard magnetic film contains a non-magnetic material.
【請求項5】 請求項1記載の垂直磁気記録媒体におい
て、前記軟磁性膜は、非晶質膜であることを特徴とする
垂直磁気記録媒体。
5. The perpendicular magnetic recording medium according to claim 1, wherein the soft magnetic film is an amorphous film.
【請求項6】 請求項5記載の垂直磁気記録媒体におい
て、前記軟磁性膜は、非晶質材料のCo−Nb−X(X
=Zr,Ti,Hf,Mo,W),Ni−Co−Y(Y
=Zr,Ti,Hf,Mo,W)又はFe−Si−Z
(Z=B,Al)であることを特徴とする垂直磁気記録
媒体。
6. The perpendicular magnetic recording medium according to claim 5, wherein the soft magnetic film is made of Co—Nb—X (X
= Zr, Ti, Hf, Mo, W), Ni-Co-Y (Y
= Zr, Ti, Hf, Mo, W) or Fe-Si-Z
(Z = B, Al) The perpendicular magnetic recording medium characterized by the above-mentioned.
【請求項7】 請求項1記載の垂直磁気記録媒体におい
て、前記裏打磁性膜層の厚さが30nm以上500nm
以下、前記垂直磁化膜の厚さが10nm以上40nm以
下、前記垂直磁化膜の表面で測定した起伏Raが3nm
以下であることを特徴とする垂直磁気記録媒体。
7. The perpendicular magnetic recording medium according to claim 1, wherein the thickness of the backing magnetic film layer is 30 nm or more and 500 nm.
Hereinafter, the thickness of the perpendicular magnetization film is 10 nm or more and 40 nm or less, and the undulation Ra measured on the surface of the perpendicular magnetization film is 3 nm.
A perpendicular magnetic recording medium characterized by the following.
【請求項8】 非磁性基板上に裏打磁性膜層を介して設
けられた垂直磁化膜を有する磁気記録媒体と、前記磁気
記録媒体を回転駆動する磁気記録媒体駆動部と、記録ヘ
ッド及び再生ヘッドを備える磁気ヘッドと、前記磁気ヘ
ッドを駆動する磁気ヘッド駆動部と、磁気ヘッドの記録
再生信号を処理する信号処理部とを含む磁気記録再生装
置において、 前記磁気記録媒体として、前記裏打ち磁性膜層が、グラ
ニュラー構造を有する 硬磁性膜と、該硬磁性膜上に形成
された少なくとも1層の軟磁性膜とを備える垂直磁気記
録媒体を用い、 前記記録ヘッドは薄膜ヘッド、前記再生ヘッドはGMR
効果を利用するヘッドであり、 磁気ヘッドと前記垂直磁気記録媒体の距離が20nm以
下になるように調整された条件で面記録密度30Gb/
in2以上を達成することを特徴とする磁気記録再生装
置。
8. A magnetic recording medium having a perpendicular magnetization film provided on a non-magnetic substrate with a backing magnetic film layer interposed therebetween, a magnetic recording medium driving unit for rotating the magnetic recording medium, a recording head and a reproducing head. A magnetic head comprising: a magnetic head driving unit that drives the magnetic head; and a signal processing unit that processes a recording / reproducing signal of the magnetic head. There, Gras
Hard magnetic film having a nuclear structure and formed on the hard magnetic film
A perpendicular magnetic recording medium comprising at least one soft magnetic film , wherein the recording head is a thin film head, and the reproducing head is a GMR.
And a surface recording density of 30 Gb / m under conditions adjusted so that the distance between the magnetic head and the perpendicular magnetic recording medium is 20 nm or less.
a magnetic recording / reproducing apparatus which achieves in 2 or more.
JP16205199A 1999-06-09 1999-06-09 Perpendicular magnetic recording medium and magnetic recording / reproducing device Expired - Fee Related JP3308239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16205199A JP3308239B2 (en) 1999-06-09 1999-06-09 Perpendicular magnetic recording medium and magnetic recording / reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16205199A JP3308239B2 (en) 1999-06-09 1999-06-09 Perpendicular magnetic recording medium and magnetic recording / reproducing device

Publications (2)

Publication Number Publication Date
JP2000348326A JP2000348326A (en) 2000-12-15
JP3308239B2 true JP3308239B2 (en) 2002-07-29

Family

ID=15747168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16205199A Expired - Fee Related JP3308239B2 (en) 1999-06-09 1999-06-09 Perpendicular magnetic recording medium and magnetic recording / reproducing device

Country Status (1)

Country Link
JP (1) JP3308239B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008090988A (en) * 2006-10-05 2008-04-17 Konica Minolta Opto Inc Substrate for magnetic recording medium
JP4641524B2 (en) * 2006-12-25 2011-03-02 キヤノン株式会社 Magnetic recording medium and method for manufacturing the same
JP5583997B2 (en) * 2009-03-30 2014-09-03 ダブリュディ・メディア・シンガポール・プライベートリミテッド Perpendicular magnetic recording medium
JP5790204B2 (en) * 2011-06-29 2015-10-07 富士電機株式会社 Magnetic recording medium

Also Published As

Publication number Publication date
JP2000348326A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
JP3731640B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3809418B2 (en) Magnetic recording medium and magnetic recording apparatus
JP2001023144A (en) Magnetic recording medium and method of manufacturing the same
JP3011918B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JPH0991660A (en) Magnetic recording medium and magnetic recorder applying the same
JP2991672B2 (en) Magnetic recording media
JP3308239B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing device
JPH08147665A (en) Magnetic recording medium and magnetic memory device using the medium
JPH10334440A (en) Magnetic recording medium and magnetic recording and reproducing device
JP3665221B2 (en) In-plane magnetic recording medium and magnetic storage device
JP4348971B2 (en) Method for manufacturing perpendicular magnetic recording medium and perpendicular magnetic recording medium
JP3217012B2 (en) Magnetic recording media
JP3663289B2 (en) Magnetic recording medium and magnetic storage device
JP3136133B2 (en) Magnetic recording media
JPH08115516A (en) Magnetic recording medium and magnetic recorder
JP3394108B2 (en) Magnetic storage device and multilayer magnetic layer magnetic recording medium
JP3932587B2 (en) Magnetic laminate, magnetic sensor, magnetic recording medium, and magnetic recording / reproducing apparatus
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JP3544645B2 (en) Magnetic recording medium and magnetic storage device
JP2000348327A (en) Perpendicular magnetic recording medium and magnetic recording and reproducing device
JP2001250223A (en) Magnetic recording medium and magnetic recorder
JP3567157B2 (en) Magnetic recording medium, method of manufacturing the same, and magnetic storage device
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JP3275167B2 (en) Magnetic recording medium and magnetic storage device
JP2002063712A (en) Magnetic recording medium and magnetic recording apparatus using the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees