JPH09265619A - Magnetic recording medium, its production and magnetic storage device - Google Patents

Magnetic recording medium, its production and magnetic storage device

Info

Publication number
JPH09265619A
JPH09265619A JP7033896A JP7033896A JPH09265619A JP H09265619 A JPH09265619 A JP H09265619A JP 7033896 A JP7033896 A JP 7033896A JP 7033896 A JP7033896 A JP 7033896A JP H09265619 A JPH09265619 A JP H09265619A
Authority
JP
Japan
Prior art keywords
magnetic
film
recording medium
magnetic recording
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7033896A
Other languages
Japanese (ja)
Inventor
Yuzuru Inagaki
譲 稲垣
Yoshifumi Matsuda
好文 松田
Shinan Yaku
四男 屋久
Akira Ishikawa
石川  晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7033896A priority Critical patent/JPH09265619A/en
Publication of JPH09265619A publication Critical patent/JPH09265619A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic recording medium with which recording and reproducing of high-density information is possible and which has high coercive force, low noise, high S' and high reliability. SOLUTION: This magnetic recording medium is constituted by arranging information recording layers 15, 15' consisting of magnetic films of a Co-based alloy system via at least two layers of nonmagnetic ground surface layers 13, 14, 13', 14' on a substrate 11. The first nonmagnetic ground surface films 13, 13' arranged on the extreme substrate side among the nonmagnetic ground surface layers 13, 14, 13', 14' consist of composite films essentially consisting of Cr and contg. at least one kind of the elements in the group consisting of Zr, Si, Al, Ti, V, Ta and Y and oxygen. The concn. of the elements described above is specified to >=1 to <=20atm.% and the concn. of the oxygen to >=1 to <=30atm.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気ディスク等の
情報記録用磁気記録媒体、その製造方法及び磁気記憶装
置に係り、特に面記録が高密度の磁気記録媒体、その製
造方法及び磁気記憶装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium for recording information such as a magnetic disk, a method of manufacturing the same, and a magnetic storage device, and more particularly, a magnetic recording medium having a high surface recording density, a method of manufacturing the same, and a magnetic storage device. Regarding

【0002】[0002]

【従来の技術】従来、磁化を面内方向に反転させて記録
する面内磁気記録用の媒体は、Coのような強磁性金属
を主成分としたCo基合金系磁性薄膜を情報記録層とし
ている。1平方インチ当たり1ギガビット以上の高密度
の情報記録を可能とするためには、この記録層に対して
保磁力を高め、媒体ノイズを小さくすることが要求され
ている。
2. Description of the Related Art Conventionally, a medium for in-plane magnetic recording in which magnetization is reversed in the in-plane direction for recording is a Co-based alloy magnetic thin film containing a ferromagnetic metal such as Co as a main component as an information recording layer. There is. In order to enable high density information recording of 1 gigabit per square inch or more, it is required to increase the coercive force of this recording layer and reduce the medium noise.

【0003】一般に、保磁力(Hc)を大きくするため
にCoCrPt合金磁性膜中のPt添加量を増し、これ
を体心立方構造(bcc)のCr又はCrを主成分とす
る合金系非磁性下地膜上にエピタキシャル成長させる方
法が、例えば、ジャーナル・オブ・アプライド・フイジ
ックス,73巻(1993年)第5569〜5571頁
(J.Appl.Phys.,vol.73,No.1
0,(1993)p.5569〜5571)に提案され
ている。
In general, in order to increase the coercive force (Hc), the amount of Pt added in the CoCrPt alloy magnetic film is increased, and the amount of Pt is added to the body-centered cubic structure (bcc) of Cr or an alloy based non-magnetic alloy containing Cr as the main component. A method of epitaxially growing on a formation is disclosed in, for example, Journal of Applied Physics, 73 (1993), pages 5569-5571 (J. Appl. Phys., Vol. 73, No. 1).
0, (1993) p. 5569-5571).

【0004】また、媒体ノイズ低減のための有効な方法
として、媒体をスパッタリングで形成する際、Ar圧を
10mTorr以上に増加することより記録層の結晶粒
を空間的に分離することにより、磁性結晶粒を磁気的に
孤立化させる方法(例えば、アイ・イー・イー・イー
トランザクション オン マグネチックス、26巻(1
990年)第1578〜1580頁(IEEE Tra
ns.on Magn.,Vol.26,No.5(1
990)p.1578〜1580))が知られている。
また、CoCrPt磁性膜中のCrの濃度を増してCr
を結晶粒界に偏析させる方法(例えば、アイ・イー・イ
ー・イー トランザクション オン マグネチックス、
29巻(1993年)第3667〜3669頁(IEE
E Trans.on Magn.,Vol.29,N
o.6(1993)p.3667〜3669))が知ら
れている。
Further, as an effective method for reducing the medium noise, when the medium is formed by sputtering, the Ar pressure is increased to 10 mTorr or more to spatially separate the crystal grains of the recording layer, and thereby the magnetic crystal is formed. A method of magnetically isolating grains (for example, I E E E)
Transaction on Magnetics, Volume 26 (1
990) pp. 1578-1580 (IEEE Tra
ns. on Magn. , Vol. 26, no. 5 (1
990) p. 1578-1580)) are known.
Further, the concentration of Cr in the CoCrPt magnetic film is increased to increase the Cr content.
Segregate at the grain boundaries (for example, I-E-E-Transaction-on-Magnetics,
Volume 29 (1993) pp. 3667-3669 (IEEE)
E Trans. on Magn. , Vol. 29, N
o. 6 (1993) p. 3667-3669)) are known.

【0005】さらに、媒体ノイズ低減のための手法とし
て、Crを主成分とする非磁性下地膜を2層化し、基板
側に配置された第1の下地膜として、X線回析において
体心立方構造の(110)配向を主体とする結晶構造を
有する非磁性下地膜を膜厚0.5〜8nm形成し、その
上に体心立方構造の(200)配向を主体とする第2の
非磁性下地膜を膜厚20〜300nm形成する方法が、
特開平7−57238号に記載されている。また、静磁
気特性や電磁変換特性を向上させる方法として、Crを
主成分とする非磁性下地膜に酸素を含有させて結晶配向
性を向上させる手法が特開平1−290118号に記載
されている。
Further, as a method for reducing the medium noise, a non-magnetic underlayer film containing Cr as a main component is formed into two layers, and the first underlayer film disposed on the substrate side is used as a body-centered cubic film in X-ray diffraction. A nonmagnetic underlayer having a crystalline structure mainly composed of (110) orientation is formed to a thickness of 0.5 to 8 nm, and a second nonmagnetic material mainly composed of (200) orientation of body-centered cubic structure is formed thereon. A method of forming a base film having a film thickness of 20 to 300 nm is
It is described in JP-A-7-57238. Further, as a method for improving the magnetostatic characteristics and the electromagnetic conversion characteristics, JP-A-1-290118 describes a method of improving the crystal orientation by adding oxygen to a non-magnetic underlayer film containing Cr as a main component. .

【0006】さらに、高密度記録を実現するためには、
ビット境界の磁化からの反磁界に打ち勝って磁化を記録
方向に保持しておくために、保磁力を高くすると同時
に、上記記録層の膜厚tと残留磁束密度Brの積Br・
tを小さくして反磁界を小さくする必要がある(例え
ば、アイ・イー・イー・イー トランザクション オン
マグネチックス、29巻(1993年)第3670〜3
672頁(IEEE Trans.on Magn.,
Vol.29,No.6(1993)p.3670〜3
672))。
Further, in order to realize high density recording,
In order to maintain the magnetization in the recording direction by overcoming the demagnetizing field from the magnetization at the bit boundary, the coercive force is increased, and at the same time, the product of the film thickness t of the recording layer and the residual magnetic flux density Br.
It is necessary to reduce t to reduce the demagnetizing field (for example, I-E-E-Transaction on Magnetics, Vol. 29 (1993) No. 3670-3).
Page 672 (IEEE Trans. On Magn.,
Vol. 29, No. 6 (1993) p. 3670-3
672)).

【0007】[0007]

【発明が解決しようとする課題】上記従来技術、すなわ
ち、磁性膜中Pt濃度の増加による高保磁力化は、貴金
属であるPtが高価で、製造コストが上昇する問題があ
った。このため、他の方法により保磁力を向上する技術
が求められていた。また、磁性膜の結晶粒を分離した
り、Cr濃度を増して低ノイズ化する方法は、保磁力角
形比(S*)の値が低下し、その結果、再生出力が低下
する問題があった。さらに、上記方法により媒体ノイズ
を低減すると、保磁力の環境温度に対する変化率を室温
(25℃)の保磁力で規格化した値(以下、規格化保磁
力温度変化率という)が増加し、低温においては保磁力
が増加してオーバーライトが困難となり、高温において
は保磁力が低下して再生出力が低下する問題が生じた。
従来、低ノイズ化と保磁力温度変化率の低減を両立して
実現する手法は知られていなかった。
The above-mentioned conventional technique, namely, the increase in the coercive force by increasing the Pt concentration in the magnetic film has a problem that the precious metal Pt is expensive and the manufacturing cost is increased. Therefore, there has been a demand for a technique for improving the coercive force by another method. Further, the method of separating the crystal grains of the magnetic film or increasing the Cr concentration to reduce the noise has a problem that the value of the coercive force squareness ratio (S * ) is lowered and, as a result, the reproduction output is lowered. . Further, when the medium noise is reduced by the above method, the value obtained by normalizing the change rate of the coercive force with respect to the ambient temperature by the coercive force at room temperature (25 ° C.) (hereinafter referred to as the normalized coercive force temperature change rate) increases, and In this case, the coercive force increased and it became difficult to overwrite, and at high temperature, the coercive force decreased and the reproduction output decreased.
Heretofore, there has been no known method for realizing both low noise and a low coercive force temperature change rate.

【0008】また、特開平7−57238号に記載の手
法では、基板側に配置された第1の下地膜を0.5〜8
nm、好ましくは0.5〜1.5nmという、他の膜に
比べて1/10以下の極めて薄い膜厚で形成する必要が
あり、ディスク面内での膜厚分布の制御や、量産プロセ
スで大量の磁気記録媒体を一定の品質で製造することが
困難であった。また、保磁力を向上したり保磁力温度変
化率を低減する効果については記述されていない。
Further, according to the method described in Japanese Patent Application Laid-Open No. 7-57238, the first underlayer film disposed on the substrate side is 0.5 to 8.
nm, preferably 0.5 to 1.5 nm, which is an extremely thin film thickness of 1/10 or less as compared with other films, and it is necessary to control the film thickness distribution in the disk surface and to perform a mass production process. It has been difficult to manufacture a large amount of magnetic recording media with constant quality. Further, the effect of improving the coercive force or reducing the coercive force temperature change rate is not described.

【0009】また、特開平1−290118号に記載の
手法では、保磁力やS*を向上できるが、媒体ノイズを
低減させたり、保磁力温度変化率を低減する効果は記述
されていない。
The method described in Japanese Patent Laid-Open No. 1-290118 can improve the coercive force and S * , but it does not describe the effect of reducing the medium noise or the temperature change rate of the coercive force.

【0010】以上述べたように、より高密度化を実現す
るためには、磁性膜中のPt濃度を増加することなく保
磁力を向上し、また、S*の値を下げず、規格化保磁力
温度変化率を増加することなく媒体ノイズを低減するこ
とが必要である。
As described above, in order to realize a higher density, the coercive force is improved without increasing the Pt concentration in the magnetic film, and the S * value is not lowered to maintain the standardization. It is necessary to reduce the medium noise without increasing the temperature change rate of the magnetic force.

【0011】さらに、磁気抵抗効果型素子を用いた記録
・再生分離型ヘッドと上記磁気記録媒体を、どのように
組み合わせることにより高い記録密度を持つ磁気ディス
ク装置を実現できるかについては、十分に検討されてい
なかった。前述の1平方インチ当たり1ギガビット以上
の記録密度を達成するためには、2.0kOeを超える
Hcが必要になることが分かっている。
Further, it has been sufficiently studied how the recording / reproducing separated head using the magnetoresistive element and the above magnetic recording medium are combined to realize a magnetic disk device having a high recording density. Was not done. It has been found that Hc exceeding 2.0 kOe is required to achieve the above-mentioned recording density of 1 Gbit / in 2 or more.

【0012】本発明の第1の目的は、高密度な情報の記
録再生が可能な、高保磁力、高S*、低ノイズ、かつ信
頼性の高い磁気記録媒体を提供することにある。本発明
の第2の目的は、上記のような高保磁力、高S*、低ノ
イズの磁気記録媒体の製造方法を提供することである。
本発明の第3の目的は、上記のような高保磁力、高
*、低ノイズの磁気記録媒体を用いた信頼性の高い磁
気記憶装置を提供することである。
It is a first object of the present invention to provide a magnetic recording medium having a high coercive force, a high S * , a low noise and a high reliability, which can record and reproduce high density information. A second object of the present invention is to provide a method of manufacturing a magnetic recording medium having high coercive force, high S * and low noise as described above.
A third object of the present invention is to provide a highly reliable magnetic storage device using the magnetic recording medium having high coercive force, high S * and low noise as described above.

【0013】[0013]

【課題を解決するための手段】上記第1の目的を達成す
るために、本発明の磁気記録媒体は、基板上に、少なく
とも二層の非磁性下地膜を介し、Co基合金系の磁性膜
からなる情報記録層を配置し、上記非磁性下地膜の内の
最も基板側に配置された第1の非磁性下地膜を、Crを
主成分とし、Zr、Si、Al、Ti、V、Ta及びY
からなる群から選ばれた少なくとも一種の元素並びに酸
素を含有する複合膜とし、上記元素の濃度が1原子%以
上、20原子%以下、酸素の濃度が1原子%以上、30
原子%以下となるようにしたものである。
In order to achieve the above-mentioned first object, a magnetic recording medium of the present invention comprises a Co-based alloy-based magnetic film on a substrate with at least two layers of non-magnetic underlayers interposed therebetween. The first nonmagnetic underlayer film, which is disposed on the most substrate side among the above nonmagnetic underlayer films, is composed of Cr as a main component and Zr, Si, Al, Ti, V, Ta. And Y
A composite film containing at least one element selected from the group consisting of and oxygen, wherein the concentration of the element is 1 atom% or more and 20 atom% or less, and the concentration of oxygen is 1 atom% or more, 30
It is made to be not more than atomic%.

【0014】上記非磁性下地膜の内の最も情報記録層側
に配置された第2の非磁性下地膜は、Crを主成分と
し、Ti、Mo、W及びVからなる群から選ばれた少な
くとも一種の元素を、5原子%以上、50原子%以下の
濃度で含有する合金からなり、X線回析において体心立
方構造の(110)配向を主体とする結晶構造を有する
ことが好ましい。
The second nonmagnetic undercoating film, which is disposed closest to the information recording layer among the above nonmagnetic undercoating films, contains Cr as a main component and is at least selected from the group consisting of Ti, Mo, W and V. It is preferable to use an alloy containing one kind of element in a concentration of 5 atomic% or more and 50 atomic% or less, and to have a crystal structure mainly having a (110) orientation of a body-centered cubic structure in X-ray diffraction.

【0015】さらに、上記第1の非磁性下地膜をX線回
析において非晶質とし、膜厚を10nm以上、100n
m以下とし、上記第2の非磁性下地膜の膜厚を2nm以
上、15nm以下とし、上記磁性膜をX線回析において
六方細密充填構造の(10.0)配向の結晶構造とする
と、保磁力を向上したり温度変化率を低減する効果が現
われるので好ましい。特に、上記第1の非磁性下地膜の
平均粒径を2nm以上、30nm以下とすると、媒体ノ
イズを低く保つことができる。また、上記非磁性下地膜
の厚みが10nm以上であれば量産プロセスの制御が容
易となり、厚みが100nm以下であれば所望の粒径の
範囲に保つことができる。
Further, the first non-magnetic underlayer film is made amorphous by X-ray diffraction and has a film thickness of 10 nm or more and 100 n.
m or less, the thickness of the second non-magnetic underlayer film is 2 nm or more and 15 nm or less, and the magnetic film has a hexagonal close-packed (10.0) -oriented crystal structure in X-ray diffraction. It is preferable because it has the effect of improving the magnetic force and reducing the temperature change rate. In particular, when the average particle size of the first nonmagnetic underlayer film is 2 nm or more and 30 nm or less, the medium noise can be kept low. Further, when the thickness of the non-magnetic underlayer film is 10 nm or more, the mass production process can be easily controlled, and when the thickness is 100 nm or less, the particle size can be kept within a desired range.

【0016】上記Zr、Si、Al、Ti、V、Ta、
Yからなる群の元素はCrに比べて酸素と結合しやすい
性質を有し、複合膜中では主として酸化物の状態で存在
する。このように、非磁性下地膜をZr、Si、Al、
Ti、V、Ta、Yからなる群の元素の酸化物とCrと
の複合膜とすることにより、粒径が小さく、かつ均一化
し、X線回析において非晶質膜とすることができる。こ
れは、Zr、Si、Al、Ti、V、Ta、Yからなる
元素群の酸化物がCrの結晶粒の結晶成長を抑制する効
果があるためである。これらの酸化物は膜中で偏析して
存在すると保磁力の向上や保磁力温度変化率の低減が可
能となるので好ましい。
Zr, Si, Al, Ti, V, Ta,
The element of the group consisting of Y has a property of easily bonding with oxygen as compared with Cr, and exists mainly in an oxide state in the composite film. In this way, the non-magnetic underlayer is formed of Zr, Si, Al,
By forming a composite film of Cr and an oxide of an element of the group consisting of Ti, V, Ta, and Y, the grain size can be made small and uniform, and an amorphous film can be obtained by X-ray diffraction. This is because the oxide of the element group consisting of Zr, Si, Al, Ti, V, Ta, and Y has the effect of suppressing the crystal growth of Cr crystal grains. It is preferable that these oxides are segregated and present in the film because the coercive force can be improved and the temperature change rate of the coercive force can be reduced.

【0017】上記非磁性下地膜の、Zr、Si、Al、
Ti、V、Ta、Yからなる群の元素の酸化物の添加濃
度は、上記元素群の合計濃度を1原子%以上、20原子
%以下、酸素の濃度を1原子%以上、30原子%以下と
すると、X線回析において非晶質構造とすることができ
る。このような複合膜は、Zr、Si、Al、Ti、
V、Ta、Yからなる群の元素の酸化物とCrからなる
ターゲットを用いて、スパッタリングすることにより容
易に形成できる。また、上記元素の酸化物を2種類以上
添加した場合も同様の特性向上が図られる。
Zr, Si, Al,
The addition concentration of the oxide of the element of the group consisting of Ti, V, Ta and Y is such that the total concentration of the above element group is 1 atom% or more and 20 atom% or less, and the oxygen concentration is 1 atom% or more and 30 atom% or less. Then, an amorphous structure can be obtained by X-ray diffraction. Such a composite film includes Zr, Si, Al, Ti,
It can be easily formed by sputtering using a target made of Cr and an oxide of an element of the group consisting of V, Ta, and Y. Further, similar characteristics can be improved when two or more kinds of oxides of the above elements are added.

【0018】さらに、非磁性下地膜が少なくともに二層
以上で構成され、その内の最も基板側に配置された第1
の非磁性下地膜が上記複合膜からなり、非磁性下地膜の
内の最も情報記録層側に配置された第2の非磁性下地膜
を、体心立方構造(bcc)のCrを主成分とする合金
からなり、かつ、その(110)結晶格子の大きさが、
六方細密充填構造(hcp)のCo合金磁性膜の(1
0.1)結晶格子の大きさと実質的に整合するように形
成すると、Hcを2kOe以上、5kOe以下、S*
0.7以上、0.95以下と高く保つことができ、1G
b/in2以上の高い記録密度においても十分な再生出
力が得られるので好ましい。ここで、第2の非磁性下地
膜の結晶格子の大きさが、上記磁性膜の結晶格子の大き
さと実質的に整合するとは、それらの結晶格子の大きさ
の差が±5%程度の範囲にあればよいことを意味する。
特に、上記第2の非磁性下地膜をCr−Ti或はCr−
Mo系合金とし、Ti或はMoの添加濃度を10−20
原子%とすると、Co−Cr−Pt系合金磁性膜との結
晶格子の整合性が増すとともに、結晶粒径を小さくでき
るので、媒体ノイズを低減できて好ましい。
Further, the non-magnetic underlayer is composed of at least two layers, and the first layer is arranged closest to the substrate.
The non-magnetic underlayer film of the above-mentioned composite film is composed of the above-mentioned composite film, and the second nonmagnetic underlayer film disposed closest to the information recording layer of the nonmagnetic underlayer film contains Cr of the body-centered cubic structure (bcc) as a main component. And the size of its (110) crystal lattice is
Hexagonal close-packed structure (hcp) Co alloy magnetic film (1
0.1) When formed so as to substantially match the size of the crystal lattice, Hc can be kept high at 2 kOe or more and 5 kOe or less, and S * can be kept high at 0.7 or more and 0.95 or less, and 1G
It is preferable because a sufficient reproduction output can be obtained even at a high recording density of b / in 2 or more. Here, the size of the crystal lattice of the second non-magnetic underlayer being substantially matched with the size of the crystal lattice of the magnetic film means that the difference in the size of the crystal lattice is within ± 5%. Means that there is to be.
In particular, the second non-magnetic underlayer film is formed of Cr-Ti or Cr-
Mo-based alloy with Ti or Mo addition concentration of 10-20
When the atomic percentage is set, the matching of the crystal lattice with the Co—Cr—Pt-based alloy magnetic film is increased, and the crystal grain size can be reduced, so that the medium noise can be reduced, which is preferable.

【0019】また、上記複合膜からなる非磁性下地膜を
形成すると、磁性膜の結晶粒中の、(10.0)面が基
板と平行となるように配向成長した結晶粒の比率を増す
ことができる。その結果、磁性膜の磁化容易軸であるc
軸が基板面と平行となり、保磁力や残留磁化角形比
(S)の値が向上する。その結果、1Gb/in2以上
の高い記録密度においても十分な再生出力が得られる。
Further, when the non-magnetic undercoat film made of the above composite film is formed, the ratio of crystal grains oriented and grown so that the (10.0) plane is parallel to the substrate in the crystal grains of the magnetic film is increased. You can As a result, c, which is the easy axis of magnetization of the magnetic film,
The axis becomes parallel to the substrate surface, and the values of coercive force and remanent magnetization squareness ratio (S) are improved. As a result, a sufficient reproduction output can be obtained even at a high recording density of 1 Gb / in 2 or more.

【0020】以上述べたような、結晶構造、結晶配向
性、格子整合性の改良の結果、保磁力や保磁力温度変化
率を改良することができる。特に、上記第2の非磁性下
地膜の膜厚を5nm以上、15nm以下とすると、上記
保磁力温度変化率は顕著に低減する。その結果、5℃か
ら55℃の温度範囲で保磁力の変化が低減し、オーバー
ライトや再生出力の変動を低減できて好ましい。
As a result of the improvement of the crystal structure, crystal orientation, and lattice matching as described above, the coercive force and the temperature change rate of the coercive force can be improved. In particular, when the thickness of the second non-magnetic underlayer film is 5 nm or more and 15 nm or less, the rate of change in coercive force with temperature is significantly reduced. As a result, change in coercive force is reduced in the temperature range of 5 ° C. to 55 ° C., and overwrite and reproduction output fluctuation can be reduced, which is preferable.

【0021】さらに、上記磁気記録媒体において、総磁
性膜厚tを10nm、30nm以下とし、保磁力Hcを
2.0kOe以上とすると、磁化遷移領域の磁化の乱れ
が低減して磁化遷移領域の幅が減少し、高記録密度領域
においても高い出力が得られるので好ましい。特にBr
tを30Gμm以上、100Gμm以下とすると媒体ノ
イズが低減し、高い媒体S/Nが得られるので好まし
い。また、良好な重ね書き(オーバーライト)特性を保
証するためには保磁力Hcは4kOe以下とすることが
好ましい。
Further, in the above magnetic recording medium, when the total magnetic film thickness t is set to 10 nm or 30 nm or less and the coercive force Hc is set to 2.0 kOe or more, the disorder of the magnetization in the magnetization transition region is reduced and the width of the magnetization transition region is reduced. Is reduced, and a high output can be obtained even in a high recording density region, which is preferable. Especially Br
When t is 30 Gμm or more and 100 Gμm or less, medium noise is reduced and a high medium S / N can be obtained, which is preferable. Further, in order to ensure good overwrite characteristics, the coercive force Hc is preferably 4 kOe or less.

【0022】さらに、上記磁気記録媒体において、ヘッ
ド走行方向と垂直の方向に測定した媒体保護膜表面の中
心線平均粗さRaを0.3nm以上、3nm以下とする
と、ヘッド浮上量が0.02μm以上、0.1μm以下
でも安定に浮上するため好ましい。また、媒体表面のR
aを従来より小さい値とした場合に、CSS動作時の磁
気ヘッドの粘着を制御するには、磁性膜上に保護膜を形
成した後にマスクを用いてプラズマエッチングすること
で表面に高さ20nm以下の微細な凹凸を形成したり、
Al等の低融点金属化合物、混合物のターゲットを用い
て保護膜表面に微細な突起が生じるように形成したり、
或は熱処理によって表面に微細な凹凸を形成すると、C
SS動作時にヘッドと媒体の摩擦力が低減でき、ヘッド
が媒体に粘着する問題が回避されるので好ましい。
Further, in the above magnetic recording medium, when the center line average roughness Ra of the surface of the medium protective film measured in the direction perpendicular to the head running direction is 0.3 nm or more and 3 nm or less, the head flying height is 0.02 μm. As described above, even if the thickness is 0.1 μm or less, it is possible to float stably, which is preferable. In addition, R on the medium surface
When a is smaller than the conventional value, the adhesion of the magnetic head during CSS operation can be controlled by forming a protective film on the magnetic film and performing plasma etching using a mask so that the height of the surface is 20 nm or less. Forming fine unevenness of
A low melting point metal compound such as Al or a mixture target is used to form fine projections on the surface of the protective film,
Alternatively, if minute unevenness is formed on the surface by heat treatment, C
It is preferable because the frictional force between the head and the medium can be reduced during the SS operation, and the problem of the head sticking to the medium can be avoided.

【0023】さらに、Cr、Mo、W、V、Ta、N
b、Zr、Ti、B、Be、C、Ni−P、Ni−Bの
少なくとも一つを主たる成分として、膜厚が0.5nm
以上、5nm以下である非磁性中間層により、磁性膜を
2層以上に多層化すると単層の磁性膜に比べて媒体ノイ
ズがさらに低下するので好ましい。
Further, Cr, Mo, W, V, Ta, N
b, Zr, Ti, B, Be, C, Ni-P, Ni-B as a main component and a film thickness of 0.5 nm
As described above, it is preferable that the nonmagnetic intermediate layer having a thickness of 5 nm or less makes the magnetic film multi-layered into two or more layers because the medium noise is further reduced as compared with the single-layer magnetic film.

【0024】さらに、磁性膜の保護層としてカーボン、
水素添加カーボン又はカーボンを主たる成分とする非磁
性材料を膜厚5〜20nm形成し、さらに吸着性のパー
フルオロアルキルポリエーテル等の潤滑層を膜厚3〜1
0nm設けることにより信頼性が高く、高密度記録が可
能な磁気記録媒体が得られる。保護層にはWC、(W−
Mo)−C等の炭化物、(Zr−Nb)−N、Si34
等の窒化物、SiO2、ZrO2等の酸化物、或はB、B
4C、MoS2、Rh等を用いると耐摺動性、耐食性を向
上できるので好ましい。これらの保護膜はマスクを用い
て表面をエッチングし、面積比で1〜20%の突起を設
けるか、成膜条件、組成等を調節し、保護膜中に異なる
相からなる突起物を析出せしめることで、保護膜が磁性
膜表面に比べて大きな面粗さを有することがより好まし
い。
Further, carbon is used as a protective layer for the magnetic film,
A nonmagnetic material containing hydrogenated carbon or carbon as a main component is formed to a film thickness of 5 to 20 nm, and a lubricating layer such as an adsorbent perfluoroalkyl polyether is formed to a film thickness of 3 to 1
By providing 0 nm, a highly reliable magnetic recording medium capable of high density recording can be obtained. WC, (W-
Mo) -C and the like carbide, (Zr-Nb) -N, Si 3 N 4
Such as nitrides, oxides such as SiO 2 and ZrO 2 , or B, B
It is preferable to use 4 C, MoS 2 , Rh or the like because the sliding resistance and the corrosion resistance can be improved. The surface of these protective films is etched using a mask, and projections having an area ratio of 1 to 20% are provided, or film formation conditions, compositions, and the like are adjusted to deposit projections having different phases in the protective films. Thus, it is more preferable that the protective film has a larger surface roughness than the surface of the magnetic film.

【0025】また、上記第2の目的を達成するために、
本発明の磁気記録媒体の製造方法は、基板上に、少なく
とも二層の非磁性下地膜を形成し、ついでCo基合金系
の磁性膜からなる情報記録層を形成するもので、非磁性
下地膜の内の最も基板側に配置された第1の非磁性下地
膜の形成を、Crと、Zr、Si、Al、Ti、V、T
a及びYからなる群から選ばれた少なくとも1種の元素
の酸化物との混合物からなり、上記元素の添加濃度が、
1原子%以上、20原子%以下であるターゲットを用
い、純Ar中で、酸素ガスを用いずにスパッタリングに
より行なうようにしたものである。
In order to achieve the above second object,
A method of manufacturing a magnetic recording medium according to the present invention comprises forming at least two layers of a non-magnetic underlayer film on a substrate, and then forming an information recording layer composed of a Co-based alloy-based magnetic film. Of the first non-magnetic underlayer film disposed closest to the substrate among Cr, Zr, Si, Al, Ti, V, T
a mixture with an oxide of at least one element selected from the group consisting of a and Y, and the addition concentration of the above element is
The target is 1 at% or more and 20 at% or less, and sputtering is performed in pure Ar without using oxygen gas.

【0026】ここで、第1の非磁性下地膜は室温で形成
し、その後に基板を150℃以上、400℃以下に加熱
してから第2の非磁性下地膜を形成すると、保磁力が向
上し、温度変化率を低減するので好ましい。また、媒体
を形成するに当たっては、磁性膜を形成する際の基板温
度を200℃以上、400℃以下とすると、磁性膜中の
Crの偏析が促進されてHcが向上するので好ましい。
If the first nonmagnetic underlayer film is formed at room temperature and then the substrate is heated to 150 ° C. or higher and 400 ° C. or lower before the second nonmagnetic underlayer film is formed, the coercive force is improved. However, the temperature change rate is reduced, which is preferable. Further, in forming the medium, it is preferable to set the substrate temperature at the time of forming the magnetic film to 200 ° C. or higher and 400 ° C. or lower because segregation of Cr in the magnetic film is promoted and Hc is improved.

【0027】さらに、上記第3の目的を達成するため
に、本発明の磁気記憶装置は、上記いずれか一の磁気記
録媒体と、この磁気記録媒体に情報を記録・再生する磁
気ヘッドとを備えるようにしたものである。
Further, in order to achieve the third object, the magnetic storage device of the present invention comprises any one of the above magnetic recording medium and a magnetic head for recording / reproducing information on / from this magnetic recording medium. It was done like this.

【0028】なお、上記の磁気記憶媒体と組み合わせて
磁気記憶装置とするための磁気ヘッドとしては、再生素
子に磁気抵抗効果型素子を用いた記録・再生分離型ヘッ
ドであることが好ましい。上記の磁気記録媒体は、磁気
抵抗効果型素子の特徴である高い再生感度との組み合わ
せにより、例えば、1平方インチ当たり1ギガビット以
上の記録密度で記録・再生する場合にも十分なS/Nが
得られる。
The magnetic head for combining with the above magnetic storage medium to form a magnetic storage device is preferably a recording / reproducing separated head using a magnetoresistive effect element as a reproducing element. The above-described magnetic recording medium has a sufficient S / N ratio even when recording / reproducing at a recording density of 1 gigabits per square inch or more, for example, in combination with the high reproducing sensitivity characteristic of the magnetoresistive element. can get.

【0029】さらに、この磁気ヘッドの再生部を、互い
の磁化方向が外部磁界によって相対的に変化することに
よって大きな抵抗変化を生じる複数の導電性磁性層とこ
の導電性磁性層の間に配置された導電性非磁性層を含む
磁気抵抗センサによって構成し、かつ、磁性層の厚さt
と、記録時における磁気記録媒体に対する磁気ヘッドの
相対的な走行方向に磁界を印加して測定したBrとの積
Br・tを30Gμm以上、80Gμm以下とし、上記
方向に磁界を印加して測定した上記磁気記録媒体の保磁
力Hcを、2.2キロエルステッド以上とすることによ
り、1平方インチ当たり2ギガビット以上の高密度な情
報の記録再生も可能となる。
Further, the reproducing portion of the magnetic head is arranged between a plurality of conductive magnetic layers which cause a large resistance change due to the mutual change of their magnetization directions by an external magnetic field, and the conductive magnetic layer. And a thickness t of the magnetic layer.
And the product Br · t of Br measured by applying a magnetic field in the traveling direction of the magnetic head relative to the magnetic recording medium during recording are set to 30 Gμm or more and 80 Gμm or less, and the magnetic field is applied in the above direction for measurement. By setting the coercive force Hc of the magnetic recording medium to be 2.2 kilo Oersted or more, it is possible to record and reproduce high density information of 2 gigabits or more per square inch.

【0030】[0030]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面を参照して詳細に説明する。図1は、本発明の面内
磁気記録媒体の断面構造の模式図である。同図におい
て、11はAl−Mg合金、化学強化ガラス、結晶化ガ
ラス、チタン、シリコン、カーボン又はセラミックス等
からなる基板、12及び12’は基板11の両面に形成
したNi−P、Ni−W−P等からなる非磁性メッキ層
である。Al−Mg合金を基板として用いた場合にはこ
のようなメッキ層を備えたものを基板として使用する。
なお、基板にSi単結晶、ガラス、カーボン等を用いた
場合は非磁性メッキ層を形成しなくてもよい。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic view of a sectional structure of an in-plane magnetic recording medium of the present invention. In the figure, 11 is a substrate made of Al-Mg alloy, chemically strengthened glass, crystallized glass, titanium, silicon, carbon or ceramics, and 12 and 12 'are Ni-P and Ni-W formed on both sides of the substrate 11. It is a non-magnetic plating layer made of -P or the like. When an Al-Mg alloy is used as the substrate, one having such a plating layer is used as the substrate.
In addition, when Si single crystal, glass, carbon or the like is used for the substrate, the nonmagnetic plating layer may not be formed.

【0031】また、13及び13’は、Crを主成分と
し、Zr、Si、Al、Ti、V、Ta、Yからなる群
の少なくとも一種の元素と酸素とを含有する複合膜から
なる第1の非磁性下地膜、14及び14’は、Cr、M
o、W、V、Nb、Ta、Cu、Ag、Mn、Zr、H
f若しくはSiからなる金属又はCr、Mo、W、V、
Nb、Ta、Cu、Ag、Mn、Zr、Hf若しくはS
iのいずれかを主成分とする合金からなる第2の非磁性
下地膜である。なお、非磁性下地膜を3層とするとき、
中間の層にも上記と同じ材質が用いられる。
Reference numerals 13 and 13 'are first composite films containing Cr as a main component and containing at least one element of the group consisting of Zr, Si, Al, Ti, V, Ta, and Y and oxygen. Of non-magnetic underlayer, 14 and 14 'are Cr, M
o, W, V, Nb, Ta, Cu, Ag, Mn, Zr, H
metal consisting of f or Si or Cr, Mo, W, V,
Nb, Ta, Cu, Ag, Mn, Zr, Hf or S
This is a second non-magnetic underlayer film made of an alloy containing any one of i as a main component. In addition, when the non-magnetic underlayer film has three layers,
The same material as above is used for the intermediate layer.

【0032】さらに、15及び15’は、非磁性下地膜
の上に形成したCo−Sm、Co−Ni−Cr、Co−
Ni−Pt、Co−Ni−P、Co−Cr−Ta、Co
−Cr−Pt、Co−Cr−W、Co−Cr−Si、C
o−Cr−Ta−Pt等からなる合金磁性膜からなる情
報記録層、16及び16’は、情報記録層の上に形成し
たカーボン、ボロン、SiO2、ZrO2等からなる非磁
性保護膜である。
Further, 15 and 15 'are Co-Sm, Co-Ni-Cr, Co- formed on the non-magnetic underlayer.
Ni-Pt, Co-Ni-P, Co-Cr-Ta, Co
-Cr-Pt, Co-Cr-W, Co-Cr-Si, C
The information recording layers 16 and 16 'made of an alloy magnetic film made of o-Cr-Ta-Pt or the like are non-magnetic protective films made of carbon, boron, SiO 2 , ZrO 2 or the like formed on the information recording layer. is there.

【0033】このような面内磁気記録媒体を次ぎのよう
にして作製した。強化ガラス基板、結晶化ガラス基板、
Ni−Pをメッキしてその表面を鏡面研磨したAl合金
基板等の種々の磁気ディスク用基板を用い、上記磁気記
録用媒体を構成する各膜をそれぞれ別々の成膜室で形成
する枚葉式スパッタ装置で、タクト時間10秒一定で一
枚ずつ順次送り、DCマグネトロンスパッタ法により各
膜を形成した。ここで成膜条件は、主真空槽の背圧:5
×10-8Torr以下、基板加熱温度:100〜300
℃、Arガス圧:5〜30mTorr、投入電力:ター
ゲットサイズが6インチに対して1〜4kWである。上
記種々の基板上に、Crを主成分とする一層以上の非磁
性下地膜を形成し、さらに、連続して膜厚10〜30n
mの種々の組成のCo、Cr及びTa又はCo、Cr及
びPtを主成分とする合金磁性膜を形成し、その上にカ
ーボン保護膜を形成した。そして、これらの膜の磁気特
性、結晶学的特性等を評価した。
Such an in-plane magnetic recording medium was manufactured as follows. Tempered glass substrate, crystallized glass substrate,
A single-wafer system in which various magnetic disk substrates, such as Al alloy substrates whose surfaces are mirror-polished with Ni-P, are mirror-polished, and the respective films constituting the magnetic recording medium are formed in separate film forming chambers. Each film was formed by the DC magnetron sputtering method by sequentially feeding one by one with a tact time of 10 seconds using a sputtering device. Here, the film forming conditions are: back pressure of the main vacuum chamber: 5
× 10 -8 Torr or less, substrate heating temperature: 100 to 300
C, Ar gas pressure: 5 to 30 mTorr, input power: 1 to 4 kW for a target size of 6 inches. On one or more of the above-mentioned various substrates, one or more non-magnetic underlayer films containing Cr as a main component are formed, and the film thickness is continuously 10 to 30 n.
Various alloy compositions of m of Co, Cr and Ta or alloy magnetic films containing Co, Cr and Pt as main components were formed, and a carbon protective film was formed thereon. Then, magnetic properties, crystallographic properties, etc. of these films were evaluated.

【0034】また、図2(a)、(b)は、本発明の磁
気記憶装置の平面模式図及びそのAA’線断面模式図で
ある。この磁気記憶装置は、一枚又は複数枚の磁気ディ
スク21と、磁気ディスクの情報記録面に対応した磁気
ヘッド23と、磁気ディスクを回転駆動する駆動部22
と、磁気ヘッド駆動手段24と、信号処理部25とを有
する。前記磁気記録媒体に、磁気ヘッドとして電磁誘導
型記録磁気抵抗効果型素子再生の複合ヘッド(MRヘッ
ド)を組み合わせて用いることが好ましい。
2A and 2B are a schematic plan view and a schematic sectional view taken along the line AA 'of the magnetic memory device of the present invention. This magnetic storage device includes one or a plurality of magnetic disks 21, a magnetic head 23 corresponding to the information recording surface of the magnetic disks, and a drive unit 22 for rotationally driving the magnetic disks.
And a magnetic head driving means 24 and a signal processing section 25. It is preferable to use a composite head (MR head) for reproducing an electromagnetic induction type magnetoresistive effect element as a magnetic head in combination with the magnetic recording medium.

【0035】[0035]

【実施例】【Example】

〈実施例1〉外径65mm、内径20mm、厚さ0.6
mmのガラスディスク基板に付着した研磨材等の汚れを
洗浄して乾燥させた。
<Example 1> Outer diameter 65 mm, inner diameter 20 mm, thickness 0.6
A stain such as an abrasive adhered to the mm-mm glass disk substrate was washed and dried.

【0036】この基板を枚葉式直流マグネトロンスパッ
タ装置の基板仕込み室に装填して真空に排気した後、当
該基板を加熱室、非磁性下地膜形成室、磁性膜形成室、
非磁性保護膜形成室及び取り出し室の順に、真空度5×
10-8Torr以下の主排気槽を介しながら搬送し、そ
れぞれの室でそれぞれの膜を形成した。
This substrate was loaded into a substrate preparation chamber of a single-wafer type DC magnetron sputtering apparatus and evacuated to a vacuum, and then the substrate was heated, a non-magnetic underlayer forming chamber, a magnetic film forming chamber,
Vacuum degree 5 × in the order of non-magnetic protective film forming chamber and take-out chamber
It was conveyed through a main exhaust tank at 10 -8 Torr or less, and each film was formed in each chamber.

【0037】まず、8mTorrのアルゴン圧のもと
で、Zr添加濃度の異なるCr−ZrO2ターゲットに
1kWの電力を加えて、膜厚10〜100nmのCr−
Zr−O非磁性下地膜を第1の非磁性下地膜として形成
した。次いで加熱室で270℃に加熱し、8mTorr
のアルゴン圧のもとでCr−20原子%Tiターゲット
に4kWの電力を加えて、膜厚2〜15nmのCr−T
i下地膜を第2の非磁性下地膜として形成した。この下
地膜の上に、8mTorrのアルゴン圧のもとでターゲ
ットに1.5kWの電力を加えて、Co−20原子%C
r−6原子%Ptからなる膜厚20nmの合金磁性膜を
積層した。さらに、この磁性膜の上に10mTorrの
アルゴン圧のもとでターゲットに1.5kWの電力を加
えて、膜厚10nmのカーボン保護膜を形成した。そし
て、当該保護膜上に吸着性のパーフルオロアルキルポリ
エーテル等の潤滑層を形成して2.5インチ磁気ディス
クとした。
First, under an argon pressure of 8 mTorr, a power of 1 kW was applied to Cr-ZrO 2 targets having different Zr addition concentrations to produce a Cr- film having a thickness of 10 to 100 nm.
The Zr-O nonmagnetic underlayer film was formed as the first nonmagnetic underlayer film. Then, heat to 270 ° C in the heating chamber and set to 8 mTorr.
Under the Argon pressure, a Cr-20 atom% Ti target is applied with an electric power of 4 kW to form a Cr-T film having a thickness of 2 to 15 nm.
The i base film was formed as a second non-magnetic base film. On this underlayer film, a target of 1.5 kW was applied under an argon pressure of 8 mTorr to produce Co-20 atom% C.
An alloy magnetic film having a film thickness of 20 nm made of r-6 atom% Pt was laminated. Further, a power of 1.5 kW was applied to the target on the magnetic film under an argon pressure of 10 mTorr to form a carbon protective film having a film thickness of 10 nm. Then, a lubricating layer such as an adsorbent perfluoroalkylpolyether was formed on the protective film to obtain a 2.5-inch magnetic disk.

【0038】こうして形成した磁気ディスクの静磁気特
性(保磁力Hc、角形比S*)や記録再生特性を以下の
方法により評価した。静磁気特性は、上記磁気ディスク
を、その半径20mmの位置から8mm×8mmの略正
方形状に切り出し、片面の磁性膜を削り落とした試料を
作製し、振動試料型磁力計(VSM)を用いて最大印加
磁界を13kOeとして面内方向の静磁気特製を求め
た。また、記録再生特性の評価には、磁気ヘッドとし
て、記録用にギャップ長0.4μm、トラック幅3.5
μm、巻線数17回の薄膜型ヘッド、再生用にシールド
間隔0.25μm、トラック幅2.3μmのMRヘッド
を有する記録再生分離型ヘッドを用い、線記録密度18
0kBPIのときのS/Nの値を求めた。
The magnetostatic properties (coercive force Hc, squareness ratio S * ) and recording / reproducing properties of the magnetic disk thus formed were evaluated by the following methods. For the magnetostatic characteristics, the magnetic disk was cut into a substantially square shape of 8 mm × 8 mm from the position of the radius of 20 mm, and a sample in which the magnetic film on one side was scraped off was prepared, and a vibrating sample magnetometer (VSM) was used. With the maximum applied magnetic field of 13 kOe, the in-plane static magnetic property was determined. For evaluation of the recording / reproducing characteristics, a magnetic head was used for recording, with a gap length of 0.4 μm and a track width of 3.5.
A recording / reproducing separated type head having a thin film type head having a winding number of 17 μm and a winding number of 17 and an MR head having a shield interval of 0.25 μm and a track width of 2.3 μm is used, and a linear recording density of 18
The value of S / N at 0 kBPI was obtained.

【0039】ZrO2を添加した非磁性複合膜はX線回
析において回析ピークは検出されなかった。オージェ電
子分光分析により測定した、上記非磁複合下地膜中のZ
rの濃度と、磁性膜のHcとの関係を図3に示す。Zr
の濃度を1原子%以上、20原子%以下とすることによ
り、Hcを向上できた。また、同試料の媒体ノイズを、
Zrを添加しない試料の値で規格化した、規格化媒体ノ
イズと上記複合下地膜中のZr濃度との関係を図4に示
す。Zrの濃度を1原子%以上20原子%以下とするこ
とにより、媒体ノイズを低減できた。また、これらの試
料において、Brと磁性膜厚tとの積はBrtは80G
μm、S*はZr添加濃度によらず約0.8と一定であ
り、S*を減少せずに媒体ノイズを低減できることが確
認できた。また、このときの複合下地膜中のオージェ電
子分光分析により測定した酸素の濃度は、Zr濃度が増
すに従い増加して、1原子%以上、30原子%以下であ
ることが確認された。
No diffraction peak was detected in the X-ray diffraction of the non-magnetic composite film containing ZrO 2 . Z in the above non-magnetic composite underlayer film measured by Auger electron spectroscopy
FIG. 3 shows the relationship between the concentration of r and Hc of the magnetic film. Zr
The Hc could be improved by setting the concentration of 1 atomic% or more and 20 atomic% or less. In addition, the medium noise of the same sample
FIG. 4 shows the relationship between the normalized medium noise and the Zr concentration in the composite underlayer film, which is normalized by the value of the sample to which Zr is not added. By setting the Zr concentration to be 1 atomic% or more and 20 atomic% or less, the medium noise could be reduced. Further, in these samples, the product of Br and the magnetic film thickness t has a Brt of 80 G.
It was confirmed that μm and S * were constant at about 0.8 regardless of the Zr addition concentration, and the medium noise could be reduced without reducing S * . In addition, it was confirmed that the oxygen concentration measured by Auger electron spectroscopy in the composite underlayer film at this time increased as the Zr concentration increased and was 1 atom% or more and 30 atom% or less.

【0040】さらに、周囲の温度を5℃から100℃ま
で変化させながら測定した、規格化保磁力温度変化率
(室温の保磁力で規格化)とZr添加濃度との関係を図
5に示す。Zrの濃度を1原子%以上、20原子%以下
とすることにより、規格化保磁力温度変化率が低減でき
た。一方、上記第2の非磁性下地膜であるCr−Ti合
金下地膜の膜厚を20nm以上にすると、上記保磁力温
度変化率の低減効果は減少した。
Further, FIG. 5 shows the relationship between the normalized coercive force temperature change rate (normalized by the coercive force at room temperature) and the Zr addition concentration measured while changing the ambient temperature from 5 ° C. to 100 ° C. The normalized coercive force temperature change rate could be reduced by setting the Zr concentration to 1 atom% or more and 20 atom% or less. On the other hand, when the thickness of the Cr—Ti alloy underlayer film, which is the second non-magnetic underlayer film, is 20 nm or more, the effect of reducing the coercive force temperature change rate decreases.

【0041】さらに、同試料の、線記録密度180kB
PIのときのS/Nの値と、上記複合下地膜中のZr濃
度との関係を図6に示した。Zrの濃度を1原子%以
上、20原子%以下とすることにより、S/Nを向上で
きた。上記方法により形成された磁気記録媒体をX線回
折分析した結果、上記非磁性複合下地膜にZrを添加す
るに従い、磁性膜の配向が六方晶構造の(10.1)配
向から、(10.0)配向に変化し、基板面内方向に磁
化容易軸(c軸)が配向するようになった。これに伴
い、残留磁化角形比(S)の値が0.8から0.9に向
上した。一方、Cr−Ti下地膜の(110)X線回析
強度はZr添加濃度が増すに従い減少した。これは、結
晶粒の微細化を表している。
Further, the linear recording density of the same sample is 180 kB.
The relationship between the S / N value at PI and the Zr concentration in the composite underlayer is shown in FIG. By setting the Zr concentration to be 1 atom% or more and 20 atom% or less, the S / N could be improved. As a result of X-ray diffraction analysis of the magnetic recording medium formed by the above method, as the Zr was added to the non-magnetic composite underlayer, the orientation of the magnetic film changed from (10.1) orientation of the hexagonal structure to (10. The orientation changed to 0) and the easy magnetization axis (c-axis) was oriented in the in-plane direction of the substrate. Along with this, the value of the remanent magnetization squareness ratio (S) was improved from 0.8 to 0.9. On the other hand, the (110) X-ray diffraction intensity of the Cr-Ti base film decreased as the Zr addition concentration increased. This represents the refinement of crystal grains.

【0042】〈実施例2〉実施例1におけるZrの代わ
りにSi、Al、Ti、V、Ta、Yをそれぞれ10原
子%添加した磁気ディスクを製造し、そのHc、規格化
ノイズ、線記録密度180kBPIのときのS/N、規
格化保磁力温度変化率を評価した。その値を表1に示
す。比較例には上記元素群を添加しない場合の特性を示
す。
Example 2 A magnetic disk was prepared in which Si, Al, Ti, V, Ta, and Y were added in an amount of 10 atomic% instead of Zr in Example 1, and the Hc, normalized noise, and linear recording density of the magnetic disk were manufactured. The S / N and the normalized coercive force temperature change rate at 180 kBPI were evaluated. The values are shown in Table 1. The comparative example shows the characteristics when the above element group is not added.

【0043】[0043]

【表1】 [Table 1]

【0044】いずれの場合も、無添加の試料に比べて特
性向上が図られることが確認された。また、各元素の添
加濃度を変化させた場合も、実施例1と同様、添加濃度
を1原子%以上、20原子%以上、酸素濃度を1原子%
以上、30原子%以下とすることにより特性向上が図ら
れた。さらに、上記元素を2種以上添加した場合も同様
の特性向上が図られることが確認できた。
In each case, it was confirmed that the characteristics were improved as compared with the sample without addition. Also, when the addition concentration of each element is changed, the addition concentration is 1 atom% or more, 20 atom% or more, and the oxygen concentration is 1 atom% as in Example 1.
As described above, the characteristics have been improved by setting the content to 30 atomic% or less. Furthermore, it has been confirmed that similar characteristics can be improved when two or more of the above elements are added.

【0045】さらに実施例1における第2の非磁性下地
膜として、Cr−Tiの代わりに、Cr−20原子%M
o、Cr−20原子%W、Cr−20原子%Vを用いた
磁気ディスクを製造し、その特性を評価した。この場合
も実施例1の磁気ディスクと略同様の結果が得られた。
Further, as the second non-magnetic underlayer film in Example 1, instead of Cr-Ti, Cr-20 atom% M was used.
Magnetic disks using o, Cr-20 atomic% W, and Cr-20 atomic% V were manufactured and their characteristics were evaluated. Also in this case, substantially the same result as that of the magnetic disk of Example 1 was obtained.

【0046】〈実施例3〉実施例1、2と同等の特性を
有する磁気ディスクを使用し、CoTaZr合金を記録
用磁極材料とし、MRヘッドを用い、図2(a)及び図
2(b)に示した磁気記録装置を試作した。このよう
に、上記磁気記録媒体と、MRヘッド及び高精度のヘッ
ド位置決め装置とを組み合わせることにより、1平方イ
ンチ当たり1.5ギガビットの面記録密度で記録再生エ
ラー率が10-8の以下の特性が得られた。
Example 3 A magnetic disk having the same characteristics as those of Examples 1 and 2 was used, CoTaZr alloy was used as a recording magnetic pole material, and an MR head was used, as shown in FIGS. 2 (a) and 2 (b). The magnetic recording device shown in was prototyped. As described above, by combining the magnetic recording medium with the MR head and the high-accuracy head positioning device, the following characteristics of the recording / reproducing error rate of 10 −8 at an areal recording density of 1.5 gigabits per square inch are obtained. was gotten.

【0047】本実施例では、CoTaZr合金を磁極材
とする複合型磁気ヘッドを用いた場合について説明した
が、NiFe、FeC合金等を記録用磁極材とする複合
型磁気ヘッドを用いた場合にも同様な効果が得られる。
さらに、上記磁気ヘッドの再生部を、従来の磁気抵抗効
果よりも格段に大きい巨大磁気抵抗効果を利用した磁気
抵抗センサによって構成することにより、1平方インチ
当たり2ギガビット以上の高い面記録密度で記録再生エ
ラー率が10-8以下の特性が得られた。
In this embodiment, the case of using the composite type magnetic head using CoTaZr alloy as the magnetic pole material has been described, but also in the case of using the composite type magnetic head using NiFe, FeC alloy or the like as the recording magnetic pole material. Similar effects are obtained.
Further, the reproducing portion of the magnetic head is composed of a magnetoresistive sensor utilizing a giant magnetoresistive effect which is significantly larger than the conventional magnetoresistive effect, thereby recording at a high areal recording density of 2 gigabits or more per square inch. Characteristics with a reproduction error rate of 10 −8 or less were obtained.

【0048】[0048]

【発明の効果】本発明によれば、保磁力温度変化率が小
さく、1平方インチ当たり1ギガビット以上と極めて高
い面記録密度で記録可能な面内磁気記録媒体が得られ
た。さらにこの磁気記録媒体と組み合わせた磁気記憶装
置は、1平方インチ当たり1ギガビット以上と極めて高
い面記録密度を有し、高い信頼性を示した。
According to the present invention, an in-plane magnetic recording medium having a small coercive force temperature change rate and capable of recording with an extremely high areal recording density of 1 gigabit per square inch or more was obtained. Further, the magnetic storage device combined with this magnetic recording medium has an extremely high areal recording density of 1 gigabit per square inch or more, and shows high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の磁気記録媒体の縦断面構造
図。
FIG. 1 is a vertical cross-sectional structural view of a magnetic recording medium according to an embodiment of the present invention.

【図2】本発明の一実施例の磁気記憶装置の平面模式図
及びそのA−A’線縦断面図。
FIG. 2 is a schematic plan view of a magnetic memory device according to an embodiment of the present invention and a vertical cross-sectional view taken along the line AA ′.

【図3】本発明の一実施例の非磁性複合下地膜中のZr
の濃度と、磁性膜Hcとの関係を表す図。
FIG. 3 shows Zr in a non-magnetic composite underlayer film according to an embodiment of the present invention.
FIG. 6 is a diagram showing the relationship between the concentration of H and the magnetic film Hc.

【図4】本発明の一実施例の非磁性複合下地膜中のZr
の濃度と、規格化媒体ノイズとの関係を表す図。
FIG. 4 is a graph showing Zr in a non-magnetic composite underlayer of one embodiment of the present invention.
FIG. 5 is a diagram showing the relationship between the density of the image and the standardized medium noise.

【図5】本発明の一実施例の非磁性複合下地膜中のZr
の濃度と、規格化保磁力温度変化率の関係を表す図。
FIG. 5 is a graph showing Zr in a non-magnetic composite underlayer of one embodiment of the present invention.
FIG. 6 is a diagram showing the relationship between the concentration of γ and the normalized coercive force temperature change rate.

【図6】本発明の一実施例の非磁性複合下地膜中のZr
の濃度と、線記録密度180kBPIのときのS/Nと
の関係を表す図。
FIG. 6 is a graph showing Zr in a non-magnetic composite underlayer of one embodiment of the present invention.
FIG. 5 is a diagram showing the relationship between the density of γ and the S / N when the linear recording density is 180 kBPI.

【符号の説明】[Explanation of symbols]

11…基板 12、12’…非磁性メッキ膜 13、13’…第1の非磁性下地膜 14、14’…第2の非磁性下地膜 15、15’…情報記録層 16、16’…非磁性保護膜 21…磁気ディスク 22…駆動部 23…磁気ヘッド 24…磁気ヘッド駆動手段 25…信号処理部 11 ... Substrate 12, 12 '... Nonmagnetic plating film 13, 13' ... First nonmagnetic underlayer film 14, 14 '... Second nonmagnetic underlayer film 15, 15' ... Information recording layer 16, 16 '... Non Magnetic protection film 21 ... Magnetic disk 22 ... Drive unit 23 ... Magnetic head 24 ... Magnetic head drive means 25 ... Signal processing unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 晃 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Ishikawa 2880 Kozu, Odawara-shi, Kanagawa Stock Company Hitachi Storage Systems Division

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】基板上に、少なくとも二層の非磁性下地膜
を介し、Co基合金系の磁性膜からなる情報記録層が配
置された磁気記録媒体において、上記非磁性下地膜の内
の最も基板側に配置された第1の非磁性下地膜は、Cr
を主成分とし、Zr、Si、Al、Ti、V、Ta及び
Yからなる群から選ばれた少なくとも一種の元素並びに
酸素を含有する複合膜からなり、上記元素の濃度が1原
子%以上、20原子%以下、酸素の濃度が1原子%以
上、30原子%以下であることを特徴とする磁気記録媒
体。
1. In a magnetic recording medium in which an information recording layer made of a Co-based alloy magnetic film is arranged on a substrate with at least two nonmagnetic underlayer films interposed therebetween, most of the nonmagnetic underlayer films are formed. The first non-magnetic underlayer film disposed on the substrate side is Cr
A composite film containing at least one element selected from the group consisting of Zr, Si, Al, Ti, V, Ta and Y and oxygen as a main component, and the concentration of the above element is 1 atomic% or more, 20 A magnetic recording medium, characterized in that the concentration of oxygen is 1 atomic% or less and the oxygen concentration is 1 atomic% or more and 30 atomic% or less.
【請求項2】上記非磁性下地膜の内の最も情報記録層側
に配置された第2の非磁性下地膜は、Crを主成分と
し、Ti、Mo、W及びVからなる群から選ばれた少な
くとも一種の元素を、5原子%以上、50原子%以下の
濃度で含有する合金からなり、かつ、体心立方構造の
(110)配向を主体とする結晶構造を有することを特
徴とする請求項1記載の磁気記録媒体。
2. The second non-magnetic undercoating film of the non-magnetic undercoating film disposed closest to the information recording layer is composed mainly of Cr and is selected from the group consisting of Ti, Mo, W and V. And an alloy containing at least one element in a concentration of 5 atomic% or more and 50 atomic% or less and having a crystal structure mainly composed of a (110) orientation of a body-centered cubic structure. Item 1. The magnetic recording medium according to item 1.
【請求項3】上記第1の非磁性下地膜は、非晶質であ
り、その膜厚は、10nm以上、100nm以下である
ことを特徴とする請求項1記載の磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the first non-magnetic underlayer film is amorphous and has a film thickness of 10 nm or more and 100 nm or less.
【請求項4】上記第2の非磁性下地膜の膜厚は、2nm
以上、15nm以下であることを特徴とする請求項2記
載の磁気記録媒体
4. The film thickness of the second nonmagnetic underlayer film is 2 nm.
3. The magnetic recording medium according to claim 2, wherein the thickness is 15 nm or less.
【請求項5】上記磁性膜は、六方細密充填構造の(1
0.0)配向を主体とする結晶構造を有することを特徴
とする請求項1から4のいずれか一に記載の磁気記録媒
体。
5. The magnetic film has a hexagonal close-packed structure (1
The magnetic recording medium according to any one of claims 1 to 4, which has a crystal structure mainly composed of (0.0) orientation.
【請求項6】上記第1の非磁性下地膜中の上記元素は酸
素と結合し、かつ、偏析していることを特徴とする請求
項1から5のいずれか一に記載の磁気記録媒体。
6. The magnetic recording medium according to claim 1, wherein the element in the first non-magnetic underlayer is bound to oxygen and segregated.
【請求項7】基板上に、少なくとも二層の非磁性下地膜
を形成し、ついでCo基合金系の磁性膜からなる情報記
録層を形成する請求項1から6のいずれか一に記載の磁
気記録媒体の製造方法であって、上記第1の非磁性下地
膜の形成は、Crと、Zr、Si、Al、Ti、V、T
a及びYからなる群から選ばれた少なくとも一種の元素
の酸化物との混合物からなり、上記元素の添加濃度が1
原子%以上、20原子%以下であるターゲットを用い、
純Ar中で、酸素ガスを用いずにスパッタリングにより
行なうことを特徴とする磁気記録媒体の形成方法。
7. The magnetic according to claim 1, wherein at least two non-magnetic underlayer films are formed on the substrate, and then an information recording layer made of a Co-based alloy-based magnetic film is formed. In the method of manufacturing a recording medium, the first nonmagnetic underlayer film is formed by using Cr, Zr, Si, Al, Ti, V, and T.
It is composed of a mixture with an oxide of at least one element selected from the group consisting of a and Y, and the addition concentration of the above element is 1
Using a target of at least 20 atomic% and at least 20 atomic%,
A method for forming a magnetic recording medium, characterized by performing sputtering in pure Ar without using oxygen gas.
【請求項8】上記第1の非磁性下地膜を室温で形成し、
その後に基板を150℃以上、400℃以下に加熱して
から上記第2の非磁性下地膜を形成することを特徴とす
る請求項7記載の磁気記録媒体の形成方法。
8. The first non-magnetic underlayer film is formed at room temperature,
8. The method for forming a magnetic recording medium according to claim 7, wherein the substrate is heated to 150 ° C. or higher and 400 ° C. or lower before the second nonmagnetic underlayer film is formed.
【請求項9】請求項1から6のいずれか一に記載の磁気
記録媒体と、該磁気記録媒体に情報を記録・再生する磁
気ヘッドとを備えたことを特徴とする磁気記憶装置。
9. A magnetic storage device comprising the magnetic recording medium according to claim 1 and a magnetic head for recording / reproducing information on / from the magnetic recording medium.
JP7033896A 1996-03-26 1996-03-26 Magnetic recording medium, its production and magnetic storage device Pending JPH09265619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7033896A JPH09265619A (en) 1996-03-26 1996-03-26 Magnetic recording medium, its production and magnetic storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7033896A JPH09265619A (en) 1996-03-26 1996-03-26 Magnetic recording medium, its production and magnetic storage device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002354502A Division JP3658586B2 (en) 2002-12-06 2002-12-06 Magnetic recording medium, method for manufacturing the same, and magnetic storage device

Publications (1)

Publication Number Publication Date
JPH09265619A true JPH09265619A (en) 1997-10-07

Family

ID=13428540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7033896A Pending JPH09265619A (en) 1996-03-26 1996-03-26 Magnetic recording medium, its production and magnetic storage device

Country Status (1)

Country Link
JP (1) JPH09265619A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031656A1 (en) * 1997-12-12 1999-06-24 Hitachi, Ltd. Magnetic recording medium and magnetic storage
US6544667B1 (en) 1999-03-11 2003-04-08 Hitachi, Ltd. Magnetic recording medium, producing method of the same and magnetic recording system
US6623873B1 (en) 1998-11-20 2003-09-23 Hitachi, Ltd. Magnetic recording medium and magnetic disk apparatus using the same
US6740383B2 (en) 1998-05-27 2004-05-25 Fujitsu Limited Magnetic recording medium possessing a ratio of Hc(perpendicular) to Hc(horizontal) that is not more than 0.22 and magnetic recording disk device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031656A1 (en) * 1997-12-12 1999-06-24 Hitachi, Ltd. Magnetic recording medium and magnetic storage
US6740383B2 (en) 1998-05-27 2004-05-25 Fujitsu Limited Magnetic recording medium possessing a ratio of Hc(perpendicular) to Hc(horizontal) that is not more than 0.22 and magnetic recording disk device
US6623873B1 (en) 1998-11-20 2003-09-23 Hitachi, Ltd. Magnetic recording medium and magnetic disk apparatus using the same
US6703148B2 (en) 1998-11-20 2004-03-09 Hitachi, Ltd. Magnetic recording medium and magnetic disk apparatus using the same
US6544667B1 (en) 1999-03-11 2003-04-08 Hitachi, Ltd. Magnetic recording medium, producing method of the same and magnetic recording system

Similar Documents

Publication Publication Date Title
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
JP2005044464A (en) Perpendicular magnetic recording medium
JPWO2009014205A1 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
US6403241B1 (en) CoCrPtB medium with a 1010 crystallographic orientation
JPH09293227A (en) Magnetic recording medium and magnetic disk device
JP2001344740A (en) Magnetic recording medium and magnetic storage device
JP2991672B2 (en) Magnetic recording media
JP3370720B2 (en) Magnetic recording medium and magnetic recording device
JP3359706B2 (en) Magnetic recording media
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JP3663289B2 (en) Magnetic recording medium and magnetic storage device
JPH11219511A (en) Magnetic recording medium and magnetic recording device
JP3041273B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP3222141B2 (en) Magnetic recording medium and magnetic storage device
JP2004272982A (en) Manufacturing method of perpendicular magnetic recording medium, and perpendicular magnetic recording medium
JP2003346334A (en) Vertical magnetic record medium and manufacturing method therefor
JP2003022523A (en) Perpendicular magnetic recording medium and method for manufacturing the same
JP3308239B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing device
JPH08180360A (en) Perpendicular magnetic recording medium and magnetic recorder
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JP2002324313A (en) Manufacturing method of magnetic recording medium
JP2001351226A (en) Magnetic recording medium, method for producing the same and magnetic recorder
JP3445537B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2002230735A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2000339657A (en) Magnetic recording medium