JP3567157B2 - Magnetic recording medium, method of manufacturing the same, and magnetic storage device - Google Patents

Magnetic recording medium, method of manufacturing the same, and magnetic storage device

Info

Publication number
JP3567157B2
JP3567157B2 JP2002157216A JP2002157216A JP3567157B2 JP 3567157 B2 JP3567157 B2 JP 3567157B2 JP 2002157216 A JP2002157216 A JP 2002157216A JP 2002157216 A JP2002157216 A JP 2002157216A JP 3567157 B2 JP3567157 B2 JP 3567157B2
Authority
JP
Japan
Prior art keywords
magnetic
film
recording medium
underlayer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002157216A
Other languages
Japanese (ja)
Other versions
JP2003016637A (en
Inventor
好文 松田
石川  晃
四男 屋久
譲 細江
哲也 神邊
浩二 阪本
Original Assignee
株式会社日立グローバルストレージテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立グローバルストレージテクノロジーズ filed Critical 株式会社日立グローバルストレージテクノロジーズ
Priority to JP2002157216A priority Critical patent/JP3567157B2/en
Publication of JP2003016637A publication Critical patent/JP2003016637A/en
Application granted granted Critical
Publication of JP3567157B2 publication Critical patent/JP3567157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンピュータの補助記憶装置等に用いる磁気記憶装置、その磁気記憶装置に用いる磁気記録媒体及びその製造方法に関するものである。
【0002】
【従来の技術】
情報化社会の進行により、日常的に扱う情報量は増加の一途を辿っている。これに伴って、磁気記憶装置に対する高記録密度、大記憶容量化の要求が強くなっている。従来の磁気ヘッドには磁束の時間的変化に伴う電圧変化を利用した電磁誘導型磁気ヘッドが用いられていた。これは一つのヘッドで記録と再生の両方を行うものである。これに対して近年、記録用と再生用のヘッドを別にし、再生用ヘッドにより高感度な磁気抵抗効果型ヘッドを利用した複合型ヘッドの採用が急速に進みつつある。磁気抵抗効果型ヘッドとは、ヘッド素子の電気抵抗が磁気記録媒体からの漏洩磁束の変化に伴って変化することを利用したものである。また、複数の磁性層を非磁性層を介して積層したタイプの磁性層で生じる非常に大きな磁気抵抗変化(巨大磁気抵抗効果或いはスピンバルブ効果)を利用したさらに高感度なヘッドの開発も進みつつある。これは非磁性層を介した複数の磁性層の磁化の相対的方向が、媒体からの漏洩磁界により変化し、これによって電気抵抗が変化することを利用するものである。
【0003】
現在、実用化されている磁気記録媒体では、磁性膜としてCo−Cr−Pt、Co−Cr−Ta、Co−Ni−Cr等、Coを主成分とする合金が用いられている。これらのCo合金はc軸方向を磁化容易軸とする六方晶構造(hcp構造)を採るため、磁化を磁性膜面内で反転させて記録する面内磁気記録媒体としてはこのCo合金のc軸が面内方向をとる結晶配向すなわち(11.0)配向が望ましい。しかし、この(11.0)配向は不安定であるため基板上に直接Co合金を形成しても一般にはこのような配向は起こらない。
【0004】
そこで体心立方構造(bcc構造)をとるCr(100)面がCo(11.0)面と整合性がよいことを利用して(100)配向したCrの下地膜をまず基板上に形成し、その上にCo合金磁性膜をエピタキシャル成長させることによって、Co合金磁性膜のc軸が面内方向を向いた(11.0)配向を採らせる手法が用いられている。また、Co合金磁性膜とCr下地膜界面での結晶格子整合性をさらに向上させるためにCrに第二元素を添加し、Cr下地膜の格子間隔を増加させる手法が用いられている。これによってCo(11.0)配向がさらに増大し、保磁力を増加させることができる。このような例として、V、Ti等を添加する例がある。
【0005】
また、高記録密度化に必要な要素としては、磁気記録媒体の高保磁力化と並んで低ノイズ化が挙げられる。上記のような磁気抵抗効果型ヘッドは再生感度が極めて高いため、高密度記録に適しているが、磁気記録媒体からの再生信号のみならず、ノイズに対する感度も同時に高くなる。このため、磁気記録媒体には従来以上に低ノイズ化が求められる。媒体ノイズを低減するためには、磁性膜中の結晶粒を微細化し、結晶粒径を均一化すること等が効果的であることが知られている。
【0006】
また、磁気ディスク媒体に対する重要な要求として、耐衝撃性の向上が挙げられる。特に、近年ノートパソコン等の携帯型情報機器への磁気ディスク装置が搭載されるようになり、信頼性向上の観点から、この耐衝撃性向上は非常に重要な課題となっている。従来の表面にNi−Pメッキを施したAl合金基板に替えて、表面を強化処理したガラス基板、或いは、結晶化ガラス基板を用いることにより、磁気ディスク媒体の耐衝撃性を向上することができる。ガラス基板は従来のNi−PメッキAl合金基板に比べて表面が平滑であるため、磁気ヘッドと磁気記録媒体の浮上スペーシングを小さくする上で有利であり、高記録密度化に適している。しかし、ガラス基板を用いた場合、基板との密着性不良や、基板中からの不純物イオン、或いは基板表面の吸着ガスがCr合金下地膜中へ侵入する等の問題が発生している。これらに対しては、ガラス基板とCr合金下地膜の間に種々の金属膜、合金膜、酸化物膜を形成する等の対策がなされている。
なお、これらに関連する技術として、特開昭62−293511号公報、特開平2−29923号公報、特開平5−135343号公報等が挙げられる。
【0007】
【発明が解決しようとする課題】
媒体ノイズの低減には、上記のように磁性膜中の結晶粒の微細化、均一化が有効なことが知られている。しかし、上記従来技術を用いて記録密度1平方インチ当たり900メガビット程度の磁気記録媒体と高感度な磁気抵抗効果型ヘッドを組み合わせて磁気ディスク装置を試作してみると、1平方インチ当たり1ギガビット程度又はそれ以上の記録密度が得られるような十分な電磁変換特性が得られなかった。特に、磁気記録媒体の基板としてガラス基板を用いた場合に、高線記録密度領域での電磁変換特性が悪いという結果が得られた。この原因を調べたところ、ガラス基板上に直接、或いは前記公知例にみられる種々の金属又はそれらの合金を介して形成されたCr合金下地膜は、Ni−PメッキAl合金基板上に形成された場合ほど強く(100)配向していなかった。このためCo合金磁性膜の(11.0)以外の結晶面が基板と平行に成長し、磁化容易軸であるc軸の面内配向度が小さくなっていた。これにより、保磁力が低下し、高線記録密度での再生出力が低下していた。また、ガラス基板を用いた場合には、磁性膜の結晶粒が、Al合金基板を用いた場合に比べて肥大化しており、結晶粒の粒径分散も20%〜30%程度大きくなっていた。このため、媒体ノイズが増大し、電磁変換特性が劣化した。また、特開平4−153910号公報に示された非晶質又は微結晶膜をガラス基板と下地膜間に形成しても、磁性膜の結晶粒径はある程度小さくなる場合もあるが、十分ではなかった。さらに、粒径分布の低減に対してはほとんど効果がみられず、良好な電磁変換特性が得られなかった。
【0008】
本発明の第1の目的は、磁性膜の配向性を向上させ、磁性膜の結晶粒の微細化と均一化を図り、低ノイズの磁気記録媒体を提供することにある。
本発明の第2の目的は、そのような磁気記録媒体の製造方法を提供することにある。
本発明の第3の目的は、高記録密度の磁気記憶装置を提供することにある。
【0009】
【課題を解決するための手段】
上記第1の目的を達成するために、本発明の磁気記録媒体は、基板上に、直接又は第3下地膜を介して第1下地膜を配置し、第1下地膜上に第2下地膜を直接配置し、第2下地膜上に磁性膜を配置したものであって、この第1下地膜及び第2下地膜の界面に、酸素量の多いクラスタを分散させるようにしたものである。
【0010】
また、上記第2の目的を達成するために、本発明の磁気記録媒体の製造方法は、基板上に、直接又は第3下地膜を介して第1下地膜を形成し、第1下地膜を酸素有する雰囲気に、PO・t(ただし、POは雰囲気の酸素分圧、tはこの雰囲気に曝す時間である)が1×10−6(Torr・秒)以上、1×10−2(Torr・秒)以下の間曝し、この雰囲気に曝された第1下地膜上に直接第2下地膜を形成し、第2下地膜上に磁性膜を形成するようにしたものである。
【0011】
また、上記第3の目的を達成するために、本発明の磁気記憶装置は、上記の磁気記録媒体と、磁気記録媒体の各面に対応して設けられ、記録部と再生部からなる磁気ヘッドと、磁気記録媒体と磁気ヘッドの相対的な位置を変化させるための駆動部と、磁気ヘッドを所望の位置に位置決めする磁気ヘッド駆動部と、磁気ヘッドへの信号入力と磁気ヘッドからの出力信号再生を行うための記録再生信号処理系とから構成するようにしたものである。
【0012】
上記第1下地膜は2種以上の元素からなる合金であることが好ましい。この合金に酸化のしやすさの異なる元素を含ませた場合、第1下地膜をある時間、ある酸素分圧の雰囲気に曝すと、その表面が面内で連続した一様の酸化膜を作らずに、酸化しやすい元素のリッチな領域が局所的に酸素量の多いクラスタを作り、これが第2下地膜の成長核となり、この上に成長する第2下地膜の結晶粒を微細化かつ均一化し、さらに磁性膜の平均結晶粒を小さく、かつその粒径を均一にすることができるものと推定される。
【0013】
図1に第1下地膜表面に形成したクラスタの模式図を示す。これはガラス基板上に第1下地膜として68at%Co−24at%Cr−8at%W合金膜のみの単層膜を形成し、さらにその表面にクラスタを形成したサンプルを透過電子顕微鏡(TEM)を用いて構造を調べたものの模式図である。ここで、クラスタとは図1に示すように微細な粒状に見えるものとし、数nm間隔で均一に分散している。元素の酸化しやすさの度合としては酸化物生成標準自由エネルギーが指標となり、第1下地膜をつくる合金の中に、250℃の温度における酸化物生成標準自由エネルギーΔG°の差が150(kJ/mol O)以上(ただし、酸化物が2種類以上存在する元素の場合は(例えばFeはFe、Fe等の酸化物がある)上記ΔG°は最も低い値を選ぶ)である2種以上の元素を含ませることが好ましく、180(kJ/mol O)以上である2種以上の元素を含ませることがより好ましく、200(kJ/mol O)以上である2種以上の元素を含ませることが最も好ましい。この差の上限は特にないが、一般的な元素の組み合わせでは1000程度までである。
【0014】
さらにこの合金に酸化物生成標準自由エネルギーΔG°がマイナス750(kJ/mol O)以下の元素が含まれていることにより微量の酸素供給で効果がでる。ここで、表1に各種元素とそれに対応した酸化物及びその250℃の温度における生成標準自由エネルギーΔG°を示す。このΔG°はCoughlinが示したΔG°と温度の関係図から読み取った値である。これは、日本金属学会出版、非鉄金属精練(新制金属新版精練篇)(1964年)第291頁から第292頁に示されている。
【0015】
【表1】

Figure 0003567157
【0016】
第1下地膜用の合金としては、Mo、Ti、Zr、Alの群から選ばれた少なくとも1種の元素とCrを含有する合金が基板と膜の密着性の点から好適である。さらに第1下地膜用の合金としては、Cr、Si、V、Ta、Ti、Zr、Al、Wの群から選ばれた少なくとも1種の元素とCoを含有する合金とすると、この合金が非晶質又は微結晶になりやすく組織が緻密になるため、ガラス基板を用いた場合にはガラスから膜中に侵入してくるアルカリ元素等不純物の拡散バリアになるため有効である。ここで、非晶質とはX線回折による明瞭なピークが観察されないこと、または、電子線回折による明瞭な回折スポット、回折リングが観察されず、ハロー状の回折リングが観察されることをいう。また、微結晶とは、結晶粒径が磁性層の結晶粒径より小さく、好ましくは平均粒径が8nm以下の結晶粒から成ることをいう。また、上記第1下地膜用の合金の中で酸化物生成標準自由エネルギーΔG°が最も低い元素の含有率は、それが上記成長核の数量に関係するため、5at%から50at%の間程度が第2下地膜の結晶粒微細化に効果があるので好ましく、5at%から30at%の間程度がより好ましい。
【0017】
また、第1下地膜と基板の間には、第3下地膜を配置してよい。例えば、基板をガラス基板とするとき、従来例に示した種々の金属膜、合金膜、酸化物膜等を第3下地膜として用いることができる。
【0018】
第2下地膜としては、Co合金磁性膜との結晶格子整合性の高いCr合金等のbcc構造を有するものが好ましい。例えば、Cr、Cr合金、すなわち、CrTi、CrV、CrMo等を用いることができる。
【0019】
第1下地膜の厚さは20nmから50nmの範囲であることが好ましく、第1下地膜の厚さは10nmから50nmの範囲であることが好ましい。
【0020】
また、磁性膜は、磁気異方性が面内を向いている磁性膜であることが好ましい。このような磁性膜として、例えば、Co−Cr−Pt、Co−Cr−Pt−Ta、Co−Cr−Pt−Ti、Co−Cr−Ta、Co−Ni−Cr等のCoを主成分とする合金を用いることができるが、高い保磁力を得るためには、Ptを含むCo合金を用いることが好ましい。さらに、磁性膜を非磁性中間層を介した複数の層で構成することもできる。
【0021】
磁性膜の磁気特性としては、膜面内に磁界を印加して測定した保磁力を1.8キロエルステッド以上とし、膜面内に磁界を印加して測定した残留磁束密度Brと膜厚tの積Br・tを20ガウス・ミクロン以上、140ガウス・ミクロン以下とすると、1平方インチ当たり1ギガビット以上の記録密度領域において、良好な記録再生特性が得られるので好ましい。保磁力が1.8キロエルステッド未満であると、高記録密度(200kFCI以上)での出力が小さくなり好ましくない。ここでFCI(flux reversal per inch)は記録密度の単位である。また、Br・tが140ガウス・ミクロンより大きくなると高記録密度での再生出力が低下し、20ガウス・ミクロン未満であると、低記録密度での再生出力が小さくなり好ましくない。
なお、磁性膜を非磁性中間層を介した複数の層で構成するとき、上記Br・tの計算における磁性膜の膜厚tは各磁性層の厚さの合計を表すものとする。
【0022】
【発明の実施の形態】
図2は、磁気記録媒体を作製するための枚葉成膜型のスパッタリング装置の一例の模式的説明図である。実際のスパッタリング装置は、中央にメインチャンバ29があり、その周囲に仕込み室21、第1下地膜形成室22、加熱室23、酸化室24、第2下地膜形成室25、磁性膜形成室26、保護膜形成室27a、27b、27c、27d、取り出し室28が円形に並んでいる。基板をある室で処理した後に次ぎの室に送る操作は、各室で同時に行う。つまりこのスパッタリング装置で複数枚同時に処理することができ、基板を各室に次々に順に送ればよい。保護膜形成室27a、27b、27c、27dが4室あるのは、保護膜形成は低速度で行うのが好ましいので、1つの室で所望の厚さの4分の1ずつ形成するためである。
【0023】
このスパッタリング装置により、強化ガラスの基板20をまず仕込み室21に入れて真空とし、メインチャンバ29を経て次々に各室に移動させて次のように処理する。第1下地膜として60at%Co−30at%Cr−10at%Zr合金を室温で形成し、270℃に加熱した後、酸化室24でアルゴンと酸素の混合ガスの雰囲気に曝す。このとき、この混合ガスの混合比及びこの混合ガスの雰囲気に曝す時間を種々変化させる。第2下地膜として75at%Cr−15at%Ti合金を、磁性膜として75at%Co−19at%Cr−6at%Pt合金をそれぞれ順に積層した。この間270℃又はそれより多少低い温度に保たれている。さらに、保護膜としてカーボンを厚さ10nm〜30nm形成する。
【0024】
上述の混合ガスの混合比及び混合ガスの雰囲気に曝す時間を変えた結果、媒体ノイズと線形的な相関を示す活性化体積vと磁気モーメントIsbの積(v・Isb)は、この雰囲気の酸素分圧POとそれに曝す時間tの積(PO・t)に対し、図3に示すように、極小値をとることが分かった。ここで、v・Isbについては、ジャーナル オブ マグネティズム アンド マグネティック マテリアルズ、第145巻(1995年)、第255頁〜第260頁(J.Magn.Magn.Mater.,vol.145,pp.255〜260(1995))に説明されている。v・Isbは磁化反転の最小単位に対応した量であり、このv・Isbが小さいほど媒体ノイズが小さいことを示す。このv・Isbは物理的量なので媒体ノイズを記録再生条件によらず客観的に比較できる。上記v・Isbが最小になるPO・tは第1下地膜又は第2下地膜の合金組成やその組成比により変わるが、種々の実験によれば、PO・tは1×10−6(Torr・秒)以上、1×10−2(Torr・秒)以下で媒体ノイズを下げる効果があった。特に第1下地膜にCoが含まれている場合にはPO・tが1×10−6(Torr・秒)以上、1×10−3(Torr・秒)以下で効果があった。
【0025】
なお、磁気記録媒体は保護膜上に、さらに吸着性のパーフルオロアルキルポリエーテル等の潤滑膜を厚さ1nm〜10nm設けることにより信頼性が高く、高密度記録が可能な磁気記録媒体となる。
また、上記加熱は、第1下地膜形成前に行っても同様の効果がある。或いは、酸化までを室温で行い、270℃に加熱してから第2下地膜を形成してもよい。この加熱は下地膜の結晶性を向上させ、磁性膜を高保磁力化したり、低ノイズ化させるための一般的な方法で、通常は200℃〜300℃程度に加熱している。
【0026】
保護層として水素を添加したカーボン膜や、炭化シリコン又は炭化タングステン等の化合物から成る膜や、これらの化合物とカーボンの混合膜を用いると耐摺動性、耐食性を向上出来るので好ましい。また、これらの保護層を形成した後、微細マスク等を用いてプラズマエッチングすることで表面に微細な凹凸を形成したり、化合物、混合物のターゲットを用いて保護層表面に異相突起を生じせしめたり、或いは熱処理によって表面に凹凸を形成すと、ヘッドと媒体との接触面積を低減でき、CSS動作時にヘッドが媒体表面に粘着する問題が回避されるので好ましい。
【0027】
また、基板として、Ni−PをメッキしたAl合金基板を用いた場合にも、ガラス基板を用いた場合と同様、磁性層の結晶粒が微細になるという効果が確認された。
さらにまた、基板としてAl合金基板を用いた場合、上述のようにNi−P等の第3下地膜を基板と第1下地膜の間に設けることが好ましい。基板としてガラス基板を用いた場合、通常用いられていえる種々の金属膜、合金膜、酸化物膜を基板と第1下地膜の間に設けることが好ましい。
【0028】
図6は、本発明の一実施例の磁気ディスク装置の平面模式図及びそのAA’線断面模式図である。磁気記録媒体64を記録方向に駆動する駆動部65と、磁気記録媒体64の各面に対応して設けられ、記録部と再生部からなる磁気ヘッド61と、磁気ヘッド61を所望の位置に位置決めする磁気ヘッド駆動部62と、磁気ヘッドへの信号入力と磁気ヘッドからの出力信号再生を行うための記録再生信号処理系63とからなる。磁気ヘッドの再生部を磁気抵抗効果型磁気ヘッドで構成することにより、高記録密度における十分な信号強度を得ることができ、1平方インチ当たり1ギガビット以上の記録密度を持った信頼性の高い磁気ディスク装置を実現することができる。
【0029】
また、本発明の磁気記録媒体を磁気ディスク装置で用いる場合、磁気抵抗効果型磁気ヘッドの磁気抵抗センサ部を挟む2枚のシールド層の間隔(シールド間隔)は0.35μm以下が好ましい。これは、シールド間隔が0.35μm以上になると分解能が低下し、信号の位相ジッターが大きくなってしまうためである。
【0030】
さらに、磁気抵抗効果型磁気ヘッドを、互いの磁化方向が外部磁界によって相対的に変化することによって大きな抵抗変化を生じる複数の導電性磁性層と、その導電性磁性層の間に配置された導電性非磁性層を含む磁気抵抗センサによって構成し、巨大磁気抵抗効果、或いはスピン・バルブ効果を利用したものとすることにより、信号強度をさらに高めることができ、1平方インチ当たり2ギガビット以上の記録密度を持った信頼性の高い磁気記憶装置の実現が可能となる。
【0031】
<実施例1>
図4は、本実施例の磁気記録媒体の模式的に示した断面斜視図である。基板40には2.5インチ型の化学強化されたソーダライムガラスを使用した。その上に厚さ25nmの60at%Co−30at%Cr−10at%Zr合金からなる第1下地膜41、41’を、厚さ20nmの85at%Cr−15at%Ti合金からなる第2下地膜42、42’を、厚さ20nmの75at%Co−19at%Cr−6at%Pt合金磁性膜43、43’を、さらに厚さ10nmのカーボン保護膜44、44’を形成した。膜形成装置として、インテバック(Intevac)社製の枚葉式スパッタリング装置mdp250Aを用い、タクト10秒で成膜した。タクトとは上記スパッタリング装置で基板が前の室からある室に送られてきた直後から、その室で処理を行い次ぎの室に送られるまでの時間を意味する。このスパッタリング装置のチャンバ構成は図2に示した通りである。各膜の形成時のアルゴン(Ar)ガス圧はすべて6mTorrとした。成膜中のメインチャンバ29の酸素分圧は約1×10−8(Torr)である。
【0032】
第1下地膜は基板を加熱しない状態で第1下地膜形成室22で形成し、加熱室23でランプヒーターにより270℃まで加熱し、その後酸化室24で99%Ar−1%O混合ガスの圧力5mTorr(ガス流量10sccm)の雰囲気に3秒間曝し、その後その上に上記各膜を第2下地膜形成室25、磁性膜形成室26、保護膜形成室27a、27b、27c、27dで順に形成した。このときの前記PO・tは5mTorr×0.01×3秒=1.5×10−4(Torr・秒)に相当する。カーボン保護膜まで形成した後、パーフルオロアルキルポリエーテル系の材料をフルオロカーボン材料で希釈したものを潤滑膜45、45’として塗布した。
【0033】
<比較例1>
上記実施例1で、酸化室24で上記混合ガスを導入しない以外は上記と同一条件で作製した磁気記録媒体を比較例1とした。
【0034】
本実施例1の磁気記録媒体の保磁力は2170エルステッドで比較例1の磁気記録媒体よりも約300エルステッド程度高く、残留磁束密度Brと磁性膜厚tの積Br・tは89ガウス・ミクロンであった。実施例1の磁気記録媒体ではv・Isbは1.05×10−15(emu)と比較例1の磁気記録媒体の2.24×10−15(emu)に対し47%に減少したため、媒体ノイズもこれに対応し約半分に低減できた。再生出力は評価した記録密度領域では実施例1、比較例1ともに同程度であり、媒体のS/Nは媒体ノイズの低減分を向上できた。
【0035】
実際に磁気ディスク装置に組み込んで、線記録密度161kBPI(bit per inch)、トラック密度9.3kTPI(track per inch)の条件で磁気抵抗効果型磁気ヘッドにより記録再生特性を評価したところ、実施例1の磁気記録媒体は比較例のそれに対し、S/Nが1.8倍高く、面記録密度1平方インチ当たり1.6ギガビットの装置仕様を充分満たした。一方、比較例1の媒体ではS/Nが不足し、装置仕様を満足できなかった。
【0036】
本実施例1と同一条件で、第1下地膜Co−Cr−Zr合金をガラス基板上に厚さ25nm形成し酸化室での処理まで行ったものを、TEM(透過電子顕微鏡)を用いてCo−Cr−Zr合金膜の構造を調べたところ、TEM像には、第1下地膜表面の局所的な酸化に対応する微細なクラスタを反映した濃淡が観察された。このクラスタは径が数nmで、数nmピッチにおよそ均一に形成されている。このTEM像の模式図を図1に示す。
【0037】
また、本実施例1の磁気記録媒体及び比較例1の磁気記録媒体のX線回折の測定を行った結果、図5に示す回折パターンが得られた。上記第1下地層のCo−Cr−Zr合金のみの単層膜を上記同一成膜条件で上記ガラス基板上に50nm形成し、X線回折の測定を行ったところ、明瞭な回折ピークはみられなかった。比較例1の磁気記録媒体の回折パターンでは第2下地膜の体心立方構造(bcc構造)のCrTi(110)ピークは磁性膜からの六方最密構造(hcp構造)のCoCrPt(00.2)ピークと重なるため、この両者の識別も不可能である。しかし、いずれにしても第2下地膜は実施例1の磁気記録媒体のように強く(100)配向しておらず、配向が異なる複数の結晶粒の混合相となっている。このため、磁性膜中のCo−Cr−Pt合金結晶も様々な結晶配向をとっており、Co−Cr−Pt磁性膜からは複数の回折ピークがみられる。
【0038】
一方、実施例1の磁気記録媒体は上記のように第1下地膜のCo−Cr−Zr合金単層膜では回折ピークを示さないため、図中の回折ピークは、第2下地膜からのbcc構造のCrTi(200)ピークと、Co−Cr−Pt磁性膜からのhcp構造のCoCrPt(11.0)ピークである。このことから、非晶質構造のCo−Cr−Zr合金層上に形成された第2下地膜のCr−Ti合金は(100)配向をとり、その上のCo−Cr−Pt磁性膜はエピタキシャル成長により(11.0)配向をとっていることが分かる。このため、Co−Cr−Pt合金の磁化容易軸であるc軸の面内方向の成分が大きくなり、良好な磁気特性が得られる。
【0039】
さらに、磁性膜のTEM観察を行ったところ、本実施例1のCo−Cr−Pt合金の平均結晶粒経は10.8nmであり、比較例1のそれの16.2nmに比べて微細化されていた。また、前記単層のCo−Cr−Zr合金単層膜の磁化測定を行ったところ、明瞭なヒステリシス曲線が得られなかったため、この合金膜は非磁性であると考えられる。
【0040】
<実施例2>
上記実施例1と同様の膜構成で磁気記録媒体を作製した。基板には2.5インチ型の化学強化されたアルミノシリケートガラスを使用した。その上に厚さ40nmの62at%Co−30at%Cr−8at%Ta合金からなる第1下地膜を、厚さ25nmの80at%Cr−20at%Ti合金からなる第2下地膜を、厚さ23nmの72at%Co−18at%Cr−2at%Ta−8at%Pt合金磁性膜を、さらに厚さ10nmのカーボン保護膜を形成した。膜形成装置として実施例1と同じ枚葉式スパッタ装置を用い、タクト9秒で成膜した。各膜の形成時のアルゴン(Ar)ガス圧はすべて6mTorrとした。成膜中のメインチャンバの酸素分圧は約5×10−9(Torr)である。
【0041】
第1下地膜は基板を加熱しない状態で第1下地膜成膜室で形成し、加熱室でランプヒーターにより250℃まで加熱し、その後酸化室で98mol%Ar−2mol%O混合ガスを用いガス圧力4mTorr(ガス流量8sccm)の雰囲気に3秒間曝し、その上に各膜を形成した。これは上記PO・tで4mTorr×0.02×3秒=2.4×10−4(Torr・秒)に相当する。上記カーボン保護膜まで形成した後、実施例1と同様の潤滑膜を塗布した。
【0042】
<比較例2>
上記実施例2で、酸化室で上記混合ガスを導入しない以外は上記と同一条件で作製した磁気記録媒体を比較例2とした。
【0043】
本実施例2の磁気記録媒体の保磁力は2640エルステッドで比較例2の磁気記録媒体よりも約200エルステッド程度高く、残留磁束密度と磁性膜厚の積Br・tは85ガウス・ミクロンであった。実施例2の磁気記録媒体ではv・Isbは0.98×10−15(emu)と比較例2のそれの1.81×10−15(emu)に対し54%に減少したため、媒体ノイズもこれに対応し約半分に低減できた。再生出力は評価した記録密度領域では実施例2、比較例2ともに同程度であり、磁気記録媒体のS/Nは媒体ノイズの低減分を向上できた。磁気ディスク装置に組み込んで、線記録密度210kBPI、トラック密度9.6kTPIの条件で磁気抵抗効果型磁気ヘッドにより記録再生特性を評価したところ、実施例2の磁気記録媒体は比較例2のそれに比べS/Nが1.3倍高く、面記録密度1平方インチ当たり2.0ギガビットの装置仕様を充分満たした。一方、比較例2の磁気記録媒体ではS/Nが不足し、装置仕様を満足できなかった。
【0044】
<実施例3>
上記実施例1と同様の膜構成で磁気記録媒体を作製した。基板には2.5インチ型の化学強化されたアルミノシリケートガラスを使用した。その上に厚さ30nmの85at%Cr−15at%Zr合金からなる第1下地膜を、厚さ25nmの80at%Cr−15at%Ti−5at%B合金からなる第2下地膜を、厚さ22nmの72at%Co−19at%Cr−1at%Ti−8at%Pt合金磁性膜を、さらに厚さ10nmのカーボン保護膜を形成した。膜形成装置として実施例1と同じ枚葉式スパッタ装置を用い、タクト8秒で成膜した。各膜の形成時のアルゴン(Ar)ガス圧はすべて5mTorrとした。成膜中のメインチャンバの酸素分圧は約3×10−9(Torr)である。
【0045】
第1下地膜は基板を特に加熱しないで第1下地膜成膜室で形成し、加熱室でランプヒーターにより240℃まで加熱し、その後酸化室で79mol%Ar−21mol%O混合ガスを用いガス圧力3mTorr(ガス流量6sccm)の雰囲気に2秒間曝し、その上の各膜を形成した。これは上記PO・tで3mTorr×0.21×2秒=1.3×10−4(Torr・秒)に相当する。上記カーボン保護膜まで形成した後、実施例1と同様の潤滑膜を塗布した。
【0046】
<比較例3>
上記実施例3で、酸化室で上記混合ガスを導入しない以外は上記と同一条件で作製した磁気記録媒体を比較例3とした。
【0047】
本実施例3の磁気記録媒体の保磁力は2680エルステッドで比較例3の磁気記録媒体よりも約200エルステッド程度高く、残留磁束密度と磁性膜厚の積Br・tは69ガウス・ミクロンであった。実施例3の磁気記録媒体ではv・Isbは0.89×10−15(emu)と比較例3のそれの1.44×10−15(emu)に対し60%に減少したため、媒体ノイズもこれに対応し約40%低減できた。再生出力は評価した記録密度領域では実施例3、比較例3ともに同程度であり、磁気記録媒体のS/Nは媒体ノイズの低減分を向上できた。磁気ディスク装置に組み込んで、線記録密度225kBPI、トラック密度9.8kTPIの条件で磁気抵抗効果型磁気ヘッドにより記録再生特性を評価したところ、実施例3の磁気記録媒体は比較例3のそれに比べS/Nが1.4倍高く、面記録密度1平方インチ当たり2.2ギガビットの装置仕様を充分満たした。一方、比較例3の媒体ではS/Nが不足し、装置仕様を満足できなかった。
【0048】
<実施例4>
実施例1と同様の膜構成で磁気記録媒体を作製した。外径95mm、内径25mm、厚さ0.8mmの96wt%Al−4wt%Mgの基板の両面に88wt%Ni−12wt%Pからなるメッキ層を厚さが13μmとなるよう形成した。この基板の表面をラッピングマシンを用いて表面中心線平均粗さRaが2nmとなるまで平滑に研磨し、洗浄、さらに乾燥した。その後、テープポリッシングマシン(例えば、特開昭62−262227号公報に記載)を用い、砥粒の存在下で研磨テープをコンタクトロールを通して、基板を回転させながらディスク面の両側に押しつけることにより、基板表面に略円周方向のテクスチャを形成した。さらに、基板に付着した研磨剤等の汚れを洗浄、除去して乾燥した。
【0049】
このように処理した基板の上に、厚さ20nmの60at%Co−30at%Cr−10at%Ta合金からなる第1下地膜を、厚さ20nmの85at%Cr−20at%Ti合金からなる第2下地膜を、厚さ20nmの72at%Co−20at%Cr−8at%Pt合金磁性膜を、さらに厚さ10nmのカーボン保護膜を形成した。実施例1で用いた膜形成装置によりタクト9秒で成膜した。各膜の形成時のアルゴン(Ar)ガス圧はすべて5mTorrとした。成膜中のメインチャンバの酸素分圧は約1×10−9(Torr)であった。
【0050】
第1下地膜は基板を加熱しない状態で第1下地膜形成室で形成し、加熱室でランプヒーターにより270℃まで加熱し、その後酸化室で98%Ar−2%O混合ガスの圧力4mTorr(ガス流量8sccm)の雰囲気に3秒間曝し、その上の各膜を形成した。これは上記PO・tで4mTorr×0.02×3秒=2.4×10−4乗(Torr・秒)に相当する。上記カーボン保護膜まで形成した後、パーフルオロアルキルポリエーテル系の材料をフルオロカーボン材料で希釈したものを潤滑膜として塗布した。
【0051】
また、本発明の実施例に用いた膜形成装置に比べ、到達真空度が悪く酸素分圧が大きい膜形成装置、あるいは複数の基板に同時に膜形成できる装置のように第1下地膜形成後から第2下地膜を形成するまでの時間が長い膜形成装置では、上記実施例のように酸化室を特に設けなくても、上記の酸化による微細な成長核が形成でき、上記実施例と同様の効果が得られる。
【0052】
<実施例5>
実施例1と同様の膜構成で磁気記録媒体を作製した。基板には2.5インチ型の化学強化されたアルミノシリケートガラスを使用した。その上に、厚さ25nmの60at%Co−30at%Cr−10at%Zr合金からなる第1下地膜を、厚さ20nmの85at%Cr−15at%Ti合金からなる第2下地膜を、厚さ20nmの75at%Co−19at%Cr−6at%Pt合金磁性膜を、さらに厚さ10nmのカーボン保護膜を形成した。膜形成装置として、パレットに保持した複数枚の基板に同時に各膜形成を行う装置を用い、タクト60秒で成膜した。各膜の形成時のアルゴン(Ar)ガス圧はすべて6mTorrとした。成膜中の各成膜室の酸素分圧は約1×10−8(Torr)であった。
【0053】
第1下地膜は基板を加熱しない状態で形成し、次に加熱室でランプヒーターにより270℃まで加熱し、その後、その上の各膜を形成した。これは上記PO・tで約2×10−6(Torr・秒)に相当する。上記カーボン保護膜まで形成した後、パーフルオロアルキルポリエーテル系の材料をフルオロカーボン材料で希釈したものを潤滑膜として塗布した。
【0054】
以上の実施例及び比較例について、それぞれの上記評価結果をまとめて表2に示す。
【0055】
【表2】
Figure 0003567157
【0056】
本発明の非晶質、またはそれに近い微結晶構造のCo合金を用いた第1下地膜であるCo合金膜上に上記の酸化雰囲気に曝した後、第2下地膜なしに直接、磁性膜を形成した場合、磁性膜は強い(00.1)配向を示した。これは磁性層のCo合金結晶のc軸が膜面に対して垂直方向を向いた配向であり、面内磁気記録媒体としては使用できないが、膜面に対し磁化を垂直方向に記録する垂直磁気記録媒体に適している。
【0057】
【発明の効果】
本発明の磁気記録媒体は、媒体ノイズの低減、保磁力増大等の効果があった。本発明の磁気記録媒体の製造方法によれば、上記のような磁気記録媒体を容易に製造することができる。また、本発明の磁気記録媒体を用いた磁気記憶装置は、高い記録密度を有する。
【図面の簡単な説明】
【図1】本発明の磁気記録媒体の第1下地膜上に形成されたクラスタのTEM写真の模式図。
【図2】本発明の磁気記録媒体の膜形成装置の一例を示す模式図。
【図3】本発明の磁気記録媒体の多層下地膜形成時の条件に対する活性化堆積と磁気モーメントの積の関係図。
【図4】本発明の磁気記録媒体の模式的断面斜視図。
【図5】本発明の磁気記録媒体の一実施例及び比較例の磁気記録媒体のX線回折パターン図。
【図6】本発明の磁気記憶装置の一実施例の平面模式図及び断面模式図。
【符号の説明】
20…基板、21…仕込み室、22…第1下地膜形成室、23…加熱室、24…酸化室、25…第2下地膜形成室、26…磁性膜形成室、27a、27b、27c、27d…保護膜形成室、28…取り出し室、29…メインチャンバ、40…基板、41、41’…第1下地膜、42、42’…第2下地膜、43、43’…磁性膜、44、44’…保護膜、45、45’…潤滑膜、61…磁気ヘッド、62…磁気ヘッド駆動部、63…記録再生信号処理系、64…磁気記録媒体、65…駆動部。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic storage device used for an auxiliary storage device of a computer, a magnetic recording medium used for the magnetic storage device, and a method of manufacturing the same.
[0002]
[Prior art]
With the progress of the information society, the amount of information that is handled on a daily basis is steadily increasing. Along with this, there has been a strong demand for magnetic storage devices to have high recording density and large storage capacity. Conventional magnetic heads use an electromagnetic induction type magnetic head that utilizes a voltage change accompanying a temporal change in magnetic flux. This performs both recording and reproduction with one head. On the other hand, in recent years, a composite head using a magnetoresistive head, which has a high sensitivity as a reproducing head, separately from a recording head and a reproducing head, has been rapidly adopted. The magnetoresistive head utilizes the fact that the electric resistance of the head element changes with the change of the magnetic flux leakage from the magnetic recording medium. Further, the development of a more sensitive head utilizing an extremely large magnetoresistance change (giant magnetoresistance effect or spin valve effect) generated in a magnetic layer of a type in which a plurality of magnetic layers are stacked via a nonmagnetic layer is also progressing. is there. This utilizes the fact that the relative directions of the magnetizations of the plurality of magnetic layers via the non-magnetic layer change due to the leakage magnetic field from the medium, thereby changing the electrical resistance.
[0003]
At present, in magnetic recording media put into practical use, alloys containing Co as a main component, such as Co-Cr-Pt, Co-Cr-Ta, and Co-Ni-Cr, are used as magnetic films. Since these Co alloys have a hexagonal structure (hcp structure) having an easy axis of magnetization in the c-axis direction, the c-axis of this Co alloy is used as an in-plane magnetic recording medium for recording by reversing the magnetization in the magnetic film plane. Is desirably a crystal orientation that takes an in-plane direction, that is, a (11.0) orientation. However, since this (11.0) orientation is unstable, such an orientation generally does not occur even if a Co alloy is formed directly on a substrate.
[0004]
Therefore, by utilizing the fact that the Cr (100) plane having a body-centered cubic structure (bcc structure) has good consistency with the Co (11.0) plane, a (100) oriented Cr underlayer is first formed on the substrate. A method is employed in which a Co alloy magnetic film is epitaxially grown thereon so that the Co alloy magnetic film has a (11.0) orientation in which the c-axis is in the in-plane direction. In order to further improve the crystal lattice matching at the interface between the Co alloy magnetic film and the Cr underlayer, a method of adding a second element to Cr to increase the lattice spacing of the Cr underlayer has been used. Thereby, the Co (11.0) orientation is further increased, and the coercive force can be increased. As such an example, there is an example of adding V, Ti, and the like.
[0005]
In addition, as an element necessary for high recording density, low noise can be cited as well as high coercive force of the magnetic recording medium. The magnetoresistive head as described above has a very high reproduction sensitivity and is suitable for high-density recording. However, the sensitivity to noise as well as the reproduction signal from the magnetic recording medium is also increased. For this reason, magnetic recording media are required to have lower noise than ever. In order to reduce the medium noise, it is known that it is effective to make the crystal grains in the magnetic film fine and to make the crystal grain size uniform.
[0006]
An important requirement for a magnetic disk medium is improvement in impact resistance. In particular, in recent years, magnetic disk drives have been mounted on portable information devices such as notebook personal computers, and from the viewpoint of improving reliability, this impact resistance improvement has become a very important issue. The impact resistance of the magnetic disk medium can be improved by using a glass substrate or a crystallized glass substrate whose surface has been strengthened instead of the conventional Al alloy substrate having Ni-P plating on the surface. . Since the glass substrate has a smoother surface than a conventional Ni-P plated Al alloy substrate, it is advantageous in reducing the floating spacing between the magnetic head and the magnetic recording medium, and is suitable for high recording density. However, when a glass substrate is used, problems such as poor adhesion to the substrate and impurity ions from the substrate or adsorbed gas on the substrate surface penetrate into the Cr alloy base film. For these, various measures have been taken, such as forming various metal films, alloy films, and oxide films between the glass substrate and the Cr alloy base film.
In addition, as techniques related to these, JP-A-62-293511, JP-A-2-29923, JP-A-5-135343, and the like can be mentioned.
[0007]
[Problems to be solved by the invention]
It is known that miniaturization and uniformization of crystal grains in a magnetic film are effective in reducing medium noise as described above. However, a trial production of a magnetic disk drive using a magnetic recording medium having a recording density of about 900 megabits per square inch and a high-sensitivity magnetoresistive head using the above-mentioned conventional technology shows that about 1 gigabit per square inch. Or, sufficient electromagnetic conversion characteristics to obtain a higher recording density could not be obtained. In particular, when a glass substrate was used as the substrate of the magnetic recording medium, a result was obtained in which the electromagnetic conversion characteristics in a high linear recording density region were poor. When the cause was investigated, the Cr alloy base film formed directly on the glass substrate or via the various metals or their alloys found in the above-mentioned known examples was formed on the Ni-P plated Al alloy substrate. Was not as strongly (100) oriented as in the case of For this reason, the crystal plane other than (11.0) of the Co alloy magnetic film grew parallel to the substrate, and the degree of in-plane orientation of the c-axis, which is the axis of easy magnetization, was small. As a result, the coercive force was reduced, and the reproduction output at a high linear recording density was reduced. Also, when a glass substrate was used, the crystal grains of the magnetic film were enlarged as compared with the case where an Al alloy substrate was used, and the particle size distribution of the crystal grains was also increased by about 20% to 30%. . For this reason, the medium noise increased and the electromagnetic conversion characteristics deteriorated. Further, even if an amorphous or microcrystalline film disclosed in JP-A-4-153910 is formed between a glass substrate and a base film, the crystal grain size of the magnetic film may be reduced to some extent, but it is not sufficient. Did not. Furthermore, there was almost no effect on the reduction of the particle size distribution, and good electromagnetic conversion characteristics could not be obtained.
[0008]
A first object of the present invention is to provide a magnetic recording medium with low noise by improving the orientation of a magnetic film, making crystal grains of the magnetic film finer and more uniform.
A second object of the present invention is to provide a method for manufacturing such a magnetic recording medium.
A third object of the present invention is to provide a magnetic storage device having a high recording density.
[0009]
[Means for Solving the Problems]
In order to achieve the first object, in the magnetic recording medium of the present invention, a first underlayer is disposed on a substrate directly or via a third underlayer, and a second underlayer is formed on the first underlayer. Are disposed directly, and a magnetic film is disposed on the second underlayer, and clusters having a large amount of oxygen are dispersed at the interface between the first underlayer and the second underlayer.
[0010]
In order to achieve the second object, a method of manufacturing a magnetic recording medium according to the present invention comprises forming a first underlayer directly or via a third underlayer on a substrate, and forming the first underlayer on the substrate. In an atmosphere having oxygen, PO 2 · t (where PO 2 is an oxygen partial pressure of the atmosphere and t is a time of exposure to this atmosphere) is 1 × 10 −6 (Torr · sec) or more and 1 × 10 −2 (Torr · sec). (Torr.sec) or less, a second underlayer is formed directly on the first underlayer exposed to this atmosphere, and a magnetic film is formed on the second underlayer.
[0011]
In order to achieve the third object, a magnetic storage device according to the present invention includes a magnetic head, which is provided corresponding to each surface of the magnetic recording medium and includes a recording unit and a reproducing unit. A drive unit for changing a relative position between the magnetic recording medium and the magnetic head; a magnetic head drive unit for positioning the magnetic head at a desired position; a signal input to the magnetic head and an output signal from the magnetic head It is configured to include a recording / reproducing signal processing system for performing reproduction.
[0012]
The first underlayer is preferably an alloy composed of two or more elements. When an element having a different oxidizability is included in this alloy, when the first underlayer is exposed to an atmosphere of a certain oxygen partial pressure for a certain time, a uniform oxide film whose surface is continuous in the plane is formed. Instead, a region rich in the easily oxidizable element locally forms a cluster having a large amount of oxygen, and this cluster serves as a growth nucleus of the second underlayer, and the crystal grains of the second underlayer growing thereon are refined and uniform. It is presumed that the average grain size of the magnetic film can be reduced and the grain size can be made uniform.
[0013]
FIG. 1 shows a schematic diagram of a cluster formed on the surface of the first underlayer. This is done by forming a single-layer film of only a 68 at% Co-24 at% Cr-8 at% W alloy film as a first underlayer on a glass substrate, and further forming a cluster on the surface thereof by a transmission electron microscope (TEM). It is a schematic diagram of what investigated the structure using. Here, the clusters are assumed to be fine particles as shown in FIG. 1 and are uniformly dispersed at intervals of several nm. The standard free energy of oxide formation is used as an index for the degree of oxidization of the element, and the difference in the standard free energy of oxide formation ΔG ° at a temperature of 250 ° C. is 150 (kJ) in the alloy forming the first underlayer. / Mol O 2 ) or more (however, when the oxide is an element having two or more kinds of oxides (for example, Fe is an oxide such as Fe 2 O 3 or Fe 3 O 4 )), the above ΔG ° is selected to be the lowest value. )), More preferably 180 (kJ / mol O 2 ) or more, more preferably 200 (kJ / mol O 2 ) or more. Most preferably, two or more elements are contained. Although there is no particular upper limit for this difference, it is up to about 1000 for a general combination of elements.
[0014]
Further, since the alloy contains an element having a standard oxide formation free energy ΔG ° of −750 (kJ / mol O 2 ) or less, an effect can be obtained by supplying a small amount of oxygen. Here, Table 1 shows various elements, their corresponding oxides, and their standard free energy of formation ΔG ° at a temperature of 250 ° C. This ΔG ° is a value read from a graph showing the relationship between ΔG ° and temperature shown by Coughlin. This is shown on pages 291 to 292, published by the Japan Institute of Metals, non-ferrous metal refining (new metal refining edition) (1964).
[0015]
[Table 1]
Figure 0003567157
[0016]
As the alloy for the first underlayer, an alloy containing at least one element selected from the group consisting of Mo, Ti, Zr, and Al and Cr is preferable from the viewpoint of the adhesion between the substrate and the film. Further, when the alloy for the first underlayer is an alloy containing at least one element selected from the group consisting of Cr, Si, V, Ta, Ti, Zr, Al, and W and Co, the alloy is non-metallic. When a glass substrate is used, it is effective because it becomes a diffusion barrier for impurities such as alkali elements penetrating into the film from the glass, because the structure is likely to become crystalline or microcrystalline and the structure becomes dense. Here, the term “amorphous” means that a clear peak due to X-ray diffraction is not observed, or a clear diffraction spot or diffraction ring due to electron beam diffraction is not observed and a halo-shaped diffraction ring is observed. . Further, the term “microcrystal” means that the crystal grain has a crystal grain size smaller than that of the magnetic layer, and preferably has an average grain size of 8 nm or less. Further, among the alloys for the first underlayer, the content of the element having the lowest oxide standard free energy ΔG ° is about 5 at% to 50 at% because it is related to the number of the growth nuclei. Is effective in reducing the crystal grain size of the second underlayer, and is preferably about 5 at% to 30 at%.
[0017]
Further, a third base film may be provided between the first base film and the substrate. For example, when the substrate is a glass substrate, various metal films, alloy films, oxide films, and the like described in the conventional example can be used as the third base film.
[0018]
As the second base film, a film having a bcc structure such as a Cr alloy having high crystal lattice matching with the Co alloy magnetic film is preferable. For example, Cr, a Cr alloy, that is, CrTi, CrV, CrMo, or the like can be used.
[0019]
The thickness of the first underlayer is preferably in the range of 20 to 50 nm, and the thickness of the first underlayer is preferably in the range of 10 to 50 nm.
[0020]
Further, the magnetic film is preferably a magnetic film whose magnetic anisotropy is in the plane. As such a magnetic film, for example, Co such as Co-Cr-Pt, Co-Cr-Pt-Ta, Co-Cr-Pt-Ti, Co-Cr-Ta, or Co-Ni-Cr is used as a main component. Although an alloy can be used, it is preferable to use a Co alloy containing Pt in order to obtain a high coercive force. Further, the magnetic film may be composed of a plurality of layers via a non-magnetic intermediate layer.
[0021]
As the magnetic characteristics of the magnetic film, the coercive force measured by applying a magnetic field to the film surface is set to 1.8 kOe or more, and the residual magnetic flux density Br and the film thickness t measured by applying the magnetic field to the film surface are measured. The product Br · t is preferably not less than 20 gauss microns and not more than 140 gauss microns, because good recording and reproduction characteristics can be obtained in a recording density region of 1 gigabit per square inch or more. If the coercive force is less than 1.8 kOe, the output at a high recording density (200 kFCI or more) becomes undesirably small. Here, FCI (flux reversal per inch) is a unit of recording density. On the other hand, when Br · t is larger than 140 Gauss / micron, the reproduction output at a high recording density is reduced, and when it is less than 20 Gauss / micron, the reproduction output at a low recording density is undesirably small.
When the magnetic film is composed of a plurality of layers via a non-magnetic intermediate layer, the thickness t of the magnetic film in the calculation of Br · t represents the total thickness of each magnetic layer.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 2 is a schematic explanatory view of an example of a single-wafer deposition type sputtering apparatus for producing a magnetic recording medium. In an actual sputtering apparatus, there is a main chamber 29 in the center, around which a charging chamber 21, a first base film forming chamber 22, a heating chamber 23, an oxidizing chamber 24, a second base film forming chamber 25, and a magnetic film forming chamber 26. , Protective film forming chambers 27a, 27b, 27c, 27d, and a take-out chamber 28 are arranged in a circle. The operation of processing a substrate in one chamber and then sending the substrate to the next chamber is performed simultaneously in each chamber. That is, a plurality of substrates can be simultaneously processed by this sputtering apparatus, and the substrates may be sequentially sent to each chamber one after another. The four protective film forming chambers 27a, 27b, 27c, and 27d are provided so that the protective film is preferably formed at a low speed, so that one chamber has a quarter of a desired thickness. .
[0023]
With this sputtering apparatus, the substrate 20 of tempered glass is first placed in the preparation chamber 21 to be evacuated, and then moved to each chamber one after another via the main chamber 29 to be processed as follows. A 60 at% Co-30 at% Cr-10 at% Zr alloy is formed at room temperature as a first underlayer, heated to 270 ° C., and then exposed to an atmosphere of a mixed gas of argon and oxygen in the oxidation chamber 24. At this time, the mixing ratio of the mixed gas and the time of exposure to the atmosphere of the mixed gas are variously changed. A 75 at% Cr-15 at% Ti alloy was sequentially laminated as a second underlayer, and a 75 at% Co-19 at% Cr-6 at% Pt alloy was sequentially laminated as a magnetic film. During this time, the temperature is maintained at 270 ° C. or slightly lower. Further, carbon is formed to a thickness of 10 nm to 30 nm as a protective film.
[0024]
As a result of changing the mixing ratio of the mixed gas and the time of exposing the mixed gas to the atmosphere, the product (v · Isb) of the activation volume v and the magnetic moment Isb that shows a linear correlation with the medium noise is represented by the oxygen of the atmosphere. It was found that the product (PO 2 · t) of the partial pressure PO 2 and the exposure time t takes a minimum value as shown in FIG. Here, regarding v · Isb, Journal of Magnetics and Magnetic Materials, Vol. 145 (1995), pp. 255-260 (J. Magn. Magn. Mater., Vol. 145, pp. 255) To 260 (1995)). v · Isb is an amount corresponding to the minimum unit of magnetization reversal, and a smaller v · Isb indicates that the medium noise is smaller. Since v · Isb is a physical quantity, the medium noise can be objectively compared regardless of the recording / reproducing conditions. PO 2 · t at which v · Isb is minimized varies depending on the alloy composition of the first underlayer or the second underlayer and the composition ratio thereof. According to various experiments, PO 2 · t is 1 × 10 −6. (Torr · sec) or more and 1 × 10 −2 (Torr · sec) or less provided an effect of reducing medium noise. Especially if it contains Co in the first base film PO 2 · t 1 × 10 -6 (Torr · sec) or more, was effective at less than 1 × 10 -3 (Torr · sec).
[0025]
The magnetic recording medium is a highly reliable magnetic recording medium capable of performing high-density recording by providing a lubricating film such as perfluoroalkylpolyether having a thickness of 1 nm to 10 nm on the protective film.
The same effect can be obtained even if the heating is performed before the formation of the first underlayer. Alternatively, the second base film may be formed after performing the steps up to oxidation at room temperature and heating to 270 ° C. This heating is a general method for improving the crystallinity of the underlying film, increasing the coercive force of the magnetic film, and reducing the noise, and is usually heated to about 200 ° C. to 300 ° C.
[0026]
It is preferable to use a carbon film to which hydrogen is added, a film made of a compound such as silicon carbide or tungsten carbide, or a mixed film of these compounds and carbon as the protective layer because sliding resistance and corrosion resistance can be improved. In addition, after forming these protective layers, plasma etching is performed using a fine mask or the like to form fine irregularities on the surface, or a heterogeneous projection is generated on the protective layer surface using a compound or mixture target. Alternatively, it is preferable to form irregularities on the surface by heat treatment, since the contact area between the head and the medium can be reduced, and the problem of the head sticking to the medium surface during CSS operation is preferable.
[0027]
Also, when an Al alloy substrate plated with Ni-P was used as the substrate, the effect of making the crystal grains of the magnetic layer finer was confirmed as in the case of using a glass substrate.
Furthermore, when an Al alloy substrate is used as the substrate, it is preferable to provide the third underlayer such as Ni-P between the substrate and the first underlayer as described above. In the case where a glass substrate is used as the substrate, it is preferable to provide various metal films, alloy films, and oxide films that can be generally used between the substrate and the first base film.
[0028]
FIG. 6 is a schematic plan view of a magnetic disk drive according to an embodiment of the present invention, and a schematic cross-sectional view taken along line AA 'of FIG. A driving unit 65 for driving the magnetic recording medium 64 in the recording direction, a magnetic head 61 provided corresponding to each surface of the magnetic recording medium 64 and comprising a recording unit and a reproducing unit, and positioning the magnetic head 61 at a desired position And a recording / reproducing signal processing system 63 for inputting a signal to the magnetic head and reproducing an output signal from the magnetic head. By constructing the reproducing portion of the magnetic head with a magnetoresistive effect type magnetic head, it is possible to obtain a sufficient signal intensity at a high recording density, and to obtain a highly reliable magnetic recording having a recording density of 1 gigabit per square inch or more. A disk device can be realized.
[0029]
When the magnetic recording medium of the present invention is used in a magnetic disk drive, the distance (shield distance) between two shield layers sandwiching the magnetoresistive sensor portion of the magnetoresistive head is preferably 0.35 μm or less. This is because when the shield interval is 0.35 μm or more, the resolution is reduced and the phase jitter of the signal is increased.
[0030]
Further, the magneto-resistance effect type magnetic head is composed of a plurality of conductive magnetic layers that generate a large resistance change when their magnetization directions are relatively changed by an external magnetic field, and a conductive layer disposed between the conductive magnetic layers. By using a giant magnetoresistive effect or a spin valve effect to form a magnetoresistive sensor including a conductive nonmagnetic layer, the signal strength can be further increased, and recording of 2 gigabits or more per square inch can be achieved. A highly reliable magnetic storage device having a high density can be realized.
[0031]
<Example 1>
FIG. 4 is a cross-sectional perspective view schematically illustrating the magnetic recording medium of the present embodiment. For the substrate 40, 2.5-inch chemically strengthened soda lime glass was used. A first underlayer film 41, 41 'made of a 60 at% Co-30 at% Cr-10 at% Zr alloy having a thickness of 25 nm is formed thereon, and a second underlayer film 42 made of an 85 at% Cr-15 at% Ti alloy having a thickness of 20 nm is formed. , 42 ′, 75 at% Co-19 at% Cr-6 at% Pt alloy magnetic films 43 and 43 ′ with a thickness of 20 nm, and carbon protective films 44 and 44 ′ with a thickness of 10 nm. As a film forming apparatus, a single-wafer sputtering apparatus mdp250A manufactured by Intevac was used, and a film was formed in a tact time of 10 seconds. Tact means the time from immediately after a substrate is sent from a previous chamber to a certain chamber by the above sputtering apparatus, until processing is performed in that chamber and then sent to the next chamber. The chamber configuration of this sputtering apparatus is as shown in FIG. The argon (Ar) gas pressure during the formation of each film was 6 mTorr. The oxygen partial pressure of the main chamber 29 during the film formation is about 1 × 10 −8 (Torr).
[0032]
The first base film is formed in the first base film formation chamber 22 without heating the substrate, heated to 270 ° C. by a lamp heater in the heating chamber 23, and then mixed with 99% Ar-1% O 2 gas in the oxidation chamber 24. At a pressure of 5 mTorr (gas flow rate: 10 sccm) for 3 seconds, and thereafter, the above films are sequentially placed in the second base film forming chamber 25, the magnetic film forming chamber 26, and the protective film forming chambers 27a, 27b, 27c, 27d. Formed. The PO 2 · t at this time corresponds to 5 mTorr × 0.01 × 3 seconds = 1.5 × 10 −4 (Torr · second). After the carbon protective film was formed, a material obtained by diluting a perfluoroalkyl polyether-based material with a fluorocarbon material was applied as lubricating films 45 and 45 '.
[0033]
<Comparative Example 1>
Comparative Example 1 was a magnetic recording medium manufactured under the same conditions as in Example 1 except that the mixed gas was not introduced into the oxidation chamber 24.
[0034]
The coercive force of the magnetic recording medium of the first embodiment is 2170 Oe, which is about 300 Oe higher than that of the magnetic recording medium of the first comparative example, and the product Br · t of the residual magnetic flux density Br and the magnetic film thickness t is 89 Gauss / micron. there were. In the magnetic recording medium of Example 1, v · Isb was 1.05 × 10 −15 (emu), which is 47% of 2.24 × 10 −15 (emu) of the magnetic recording medium of Comparative Example 1. The noise was reduced to about half in response to this. The reproduction output was almost the same in both the example 1 and the comparative example 1 in the evaluated recording density region, and the S / N of the medium was able to improve the reduction of the medium noise.
[0035]
When the recording / reproduction characteristics were evaluated by using a magnetoresistive magnetic head under the conditions of a linear recording density of 161 kBPI (bit per inch) and a track density of 9.3 kTPI (track per inch), the recording / reproducing characteristics were evaluated. The S / N ratio of the magnetic recording medium is 1.8 times higher than that of the comparative example, and the magnetic recording medium sufficiently satisfies the device specification of 1.6 gigabits per square inch of areal recording density. On the other hand, the medium of Comparative Example 1 was insufficient in S / N and could not satisfy the device specifications.
[0036]
Under the same conditions as in Example 1, a first underlayer film of Co—Cr—Zr alloy formed on a glass substrate to a thickness of 25 nm and processed in an oxidation chamber was subjected to Co treatment using a TEM (transmission electron microscope). Examination of the structure of the -Cr-Zr alloy film revealed that the TEM image showed shading reflecting fine clusters corresponding to local oxidation of the surface of the first underlayer. These clusters have a diameter of several nm and are formed almost uniformly at a pitch of several nm. FIG. 1 shows a schematic diagram of this TEM image.
[0037]
Further, as a result of measuring the X-ray diffraction of the magnetic recording medium of Example 1 and the magnetic recording medium of Comparative Example 1, the diffraction patterns shown in FIG. 5 were obtained. When a single-layer film of only the Co—Cr—Zr alloy of the first underlayer was formed on the glass substrate under the same film formation conditions as above under a thickness of 50 nm and X-ray diffraction was measured, a clear diffraction peak was observed. Did not. In the diffraction pattern of the magnetic recording medium of Comparative Example 1, the CrTi (110) peak of the body-centered cubic structure (bcc structure) of the second underlayer was CoCrPt (00.2) of the hexagonal close-packed structure (hcp structure) from the magnetic film. Since they overlap with the peak, it is impossible to distinguish between the two. However, in any case, the second underlayer is not strongly (100) oriented as in the magnetic recording medium of Example 1, but is a mixed phase of a plurality of crystal grains having different orientations. Therefore, the Co—Cr—Pt alloy crystal in the magnetic film also has various crystal orientations, and a plurality of diffraction peaks are observed from the Co—Cr—Pt magnetic film.
[0038]
On the other hand, since the magnetic recording medium of Example 1 does not show a diffraction peak in the Co—Cr—Zr alloy single layer film of the first underlayer as described above, the diffraction peak in FIG. These are the CrTi (200) peak of the structure and the CoCrPt (11.0) peak of the hcp structure from the Co-Cr-Pt magnetic film. Therefore, the Cr—Ti alloy of the second underlayer formed on the Co—Cr—Zr alloy layer having the amorphous structure has a (100) orientation, and the Co—Cr—Pt magnetic film thereon is epitaxially grown. It can be understood from the above that the (11.0) orientation is obtained. For this reason, the component in the in-plane direction of the c-axis, which is the axis of easy magnetization of the Co—Cr—Pt alloy, increases, and good magnetic characteristics can be obtained.
[0039]
Further, TEM observation of the magnetic film revealed that the average crystal grain size of the Co—Cr—Pt alloy of Example 1 was 10.8 nm, which was smaller than that of Comparative Example 1 of 16.2 nm. I was In addition, when the magnetization of the single-layer Co—Cr—Zr alloy single-layer film was measured, no clear hysteresis curve was obtained, and this alloy film is considered to be nonmagnetic.
[0040]
<Example 2>
A magnetic recording medium was manufactured with the same film configuration as in Example 1 above. A 2.5-inch chemically strengthened aluminosilicate glass was used for the substrate. A first underlayer made of a 62 at% Co-30 at% Cr-8 at% Ta alloy having a thickness of 40 nm, a second under film made of an 80 at% Cr-20 at% Ti alloy having a thickness of 25 nm, and a thickness of 23 nm were formed thereon. Of a 72 at% Co-18 at% Cr-2 at% Ta-8 at% Pt alloy magnetic film and a carbon protective film having a thickness of 10 nm. The same single-wafer sputtering apparatus as in Example 1 was used as a film forming apparatus, and a film was formed in 9 seconds of tact. The argon (Ar) gas pressure during the formation of each film was 6 mTorr. The oxygen partial pressure of the main chamber during the film formation is about 5 × 10 −9 (Torr).
[0041]
The first underlayer is formed in a first underlayer deposition chamber without heating the substrate, heated to 250 ° C. by a lamp heater in a heating chamber, and then using a 98 mol% Ar-2 mol% O 2 mixed gas in an oxidation chamber. The film was exposed to an atmosphere at a gas pressure of 4 mTorr (gas flow rate: 8 sccm) for 3 seconds, and each film was formed thereon. This is equivalent to 4 mTorr × 0.02 × 3 seconds = 2.4 × 10 −4 (Torr · second) in PO 2 · t. After forming up to the carbon protective film, the same lubricating film as in Example 1 was applied.
[0042]
<Comparative Example 2>
Comparative Example 2 was a magnetic recording medium manufactured under the same conditions as in Example 2 except that the mixed gas was not introduced into the oxidation chamber.
[0043]
The coercive force of the magnetic recording medium of Example 2 was 2640 Oersted, which was about 200 Oe higher than that of Comparative Example 2, and the product Br.t of the residual magnetic flux density and the magnetic film thickness was 85 Gauss microns. . Because was reduced to 54% with respect to the v · Isb is 0.98 × 10 -15 (emu) and Comparative Example 2 that of 1.81 × 10 -15 (emu) in the magnetic recording medium of Example 2, also the medium noise Correspondingly, it was reduced to about half. In the evaluated recording density region, the reproduction output was almost the same in both Example 2 and Comparative Example 2, and the S / N of the magnetic recording medium was able to improve the reduction of the medium noise. When the recording / reproducing characteristics were evaluated using a magnetoresistive magnetic head under the conditions of a linear recording density of 210 kBPI and a track density of 9.6 kTPI, the magnetic recording medium of Example 2 was compared with that of Comparative Example 2 by S / N is 1.3 times higher, sufficiently meeting the device specification of 2.0 gigabits per square inch of areal recording density. On the other hand, the magnetic recording medium of Comparative Example 2 was insufficient in S / N, and could not satisfy the device specifications.
[0044]
<Example 3>
A magnetic recording medium was manufactured with the same film configuration as in Example 1 above. A 2.5-inch chemically strengthened aluminosilicate glass was used for the substrate. A first underlayer made of an 85 at% Cr-15 at% Zr alloy having a thickness of 30 nm, a second underlayer made of an 80 at% Cr-15 at% Ti-5 at% B alloy having a thickness of 25 nm, and a thickness of 22 nm were formed thereon. A 72 at% Co-19 at% Cr-1 at% Ti-8 at% Pt alloy magnetic film and a 10 nm thick carbon protective film were further formed. The same single-wafer sputtering apparatus as in Example 1 was used as a film forming apparatus, and a film was formed in 8 seconds of tact. The argon (Ar) gas pressure during the formation of each film was 5 mTorr. The oxygen partial pressure of the main chamber during the film formation is about 3 × 10 −9 (Torr).
[0045]
The first underlayer is formed in the first underlayer deposition chamber without particularly heating the substrate, heated to 240 ° C. by a lamp heater in a heating chamber, and then using a 79 mol% Ar-21 mol% O 2 mixed gas in an oxidation chamber. The film was exposed to an atmosphere at a gas pressure of 3 mTorr (gas flow rate: 6 sccm) for 2 seconds to form each film thereon. This is equivalent to 3 mTorr × 0.21 × 2 seconds = 1.3 × 10 −4 (Torr · second) in the above PO 2 · t. After forming up to the carbon protective film, the same lubricating film as in Example 1 was applied.
[0046]
<Comparative Example 3>
Comparative Example 3 was a magnetic recording medium manufactured under the same conditions as in Example 3 except that the mixed gas was not introduced into the oxidation chamber.
[0047]
The coercive force of the magnetic recording medium of Example 3 was 2680 Oersted, which was about 200 Oersted higher than that of Comparative Example 3, and the product Br.t of the residual magnetic flux density and the magnetic film thickness was 69 Gauss microns. . In the magnetic recording medium of the third embodiment, v · Isb is 0.89 × 10 −15 (emu), which is 60% of 1.44 × 10 −15 (emu) of that of the third comparative example. Correspondingly, a reduction of about 40% was achieved. The reproduction output was almost the same in the evaluated recording density region in both Example 3 and Comparative Example 3, and the S / N of the magnetic recording medium was able to improve the reduction of the medium noise. The magnetic recording medium of Example 3 was compared with that of Comparative Example 3 by evaluating the recording and reproducing characteristics of the magnetic recording medium of Comparative Example 3 under the conditions of a linear recording density of 225 kBPI and a track density of 9.8 kTPI. / N is 1.4 times higher, sufficiently meeting the device specification of 2.2 gigabits per square inch of areal recording density. On the other hand, the medium of Comparative Example 3 was insufficient in S / N and could not satisfy the device specifications.
[0048]
<Example 4>
A magnetic recording medium was manufactured with the same film configuration as in Example 1. A plating layer made of 88 wt% Ni-12 wt% P was formed on both surfaces of a 96 wt% Al-4 wt% Mg substrate having an outer diameter of 95 mm, an inner diameter of 25 mm, and a thickness of 0.8 mm to a thickness of 13 μm. The surface of this substrate was polished smoothly using a lapping machine until the surface center line average roughness Ra became 2 nm, washed, and further dried. Then, using a tape polishing machine (for example, described in JP-A-62-262227), a polishing tape is passed through a contact roll in the presence of abrasive grains, and pressed against both sides of the disk surface while rotating the substrate. A substantially circumferential texture was formed on the surface. Further, dirt such as an abrasive attached to the substrate was washed, removed, and dried.
[0049]
On the substrate treated in this manner, a first underlayer made of a 60 at% Co-30 at% Cr-10 at% Ta alloy having a thickness of 20 nm was formed on a second base made of an 85 at% Cr-20 at% Ti alloy having a thickness of 20 nm. As a base film, a 72 at% Co-20 at% Cr-8 at% Pt alloy magnetic film having a thickness of 20 nm was formed, and a carbon protective film having a thickness of 10 nm was further formed. The film was formed in 9 seconds by the tact time using the film forming apparatus used in Example 1. The argon (Ar) gas pressure during the formation of each film was 5 mTorr. The oxygen partial pressure of the main chamber during the film formation was about 1 × 10 −9 (Torr).
[0050]
The first base film is formed in a first base film forming chamber without heating the substrate, heated to 270 ° C. by a lamp heater in a heating chamber, and then, in an oxidation chamber, a pressure of 98% Ar-2% O 2 mixed gas of 4 mTorr. (For a gas flow rate of 8 sccm) for 3 seconds to form each film thereon. This is equivalent to 4 mTorr × 0.02 × 3 seconds = 2.4 × 10 −4 power (Torr · second) in PO 2 · t. After forming the carbon protective film, a material obtained by diluting a perfluoroalkyl polyether-based material with a fluorocarbon material was applied as a lubricating film.
[0051]
Also, as compared with the film forming apparatus used in the embodiment of the present invention, the film forming apparatus has a low ultimate vacuum and a large oxygen partial pressure, or a film forming apparatus that can form a film on a plurality of substrates at the same time after the first base film is formed. In a film forming apparatus having a long time until the formation of the second base film, a fine growth nucleus can be formed by the above-described oxidation without particularly providing an oxidation chamber as in the above-described embodiment. The effect is obtained.
[0052]
<Example 5>
A magnetic recording medium was manufactured with the same film configuration as in Example 1. A 2.5-inch chemically strengthened aluminosilicate glass was used for the substrate. A first underlayer made of a 60 at% Co-30 at% Cr-10 at% Zr alloy having a thickness of 25 nm and a second under film made of an 85 at% Cr-15 at% Ti alloy having a thickness of 20 nm were further formed thereon. A 20 nm 75 at% Co-19 at% Cr-6 at% Pt alloy magnetic film was formed, and a 10 nm thick carbon protective film was further formed. As a film forming apparatus, an apparatus for simultaneously forming each film on a plurality of substrates held on a pallet was used, and the film was formed in a tact time of 60 seconds. The argon (Ar) gas pressure during the formation of each film was 6 mTorr. During the film formation, the oxygen partial pressure in each film formation chamber was about 1 × 10 −8 (Torr).
[0053]
The first base film was formed without heating the substrate, and then heated to 270 ° C. by a lamp heater in a heating chamber, and then each film thereon was formed. This corresponds to about 2 × 10 −6 (Torr · sec) in the above PO 2 · t. After forming the carbon protective film, a material obtained by diluting a perfluoroalkyl polyether-based material with a fluorocarbon material was applied as a lubricating film.
[0054]
Table 2 summarizes the above evaluation results of the above Examples and Comparative Examples.
[0055]
[Table 2]
Figure 0003567157
[0056]
After exposing the above-mentioned oxidizing atmosphere to a Co alloy film which is a first base film using a Co alloy of the present invention having an amorphous structure or a microcrystalline structure similar thereto, a magnetic film is directly formed without a second base film. When formed, the magnetic film showed a strong (00.1) orientation. This is an orientation in which the c-axis of the Co alloy crystal of the magnetic layer is oriented perpendicular to the film surface, and cannot be used as an in-plane magnetic recording medium, but perpendicular magnetic recording in which magnetization is perpendicular to the film surface. Suitable for recording media.
[0057]
【The invention's effect】
The magnetic recording medium of the present invention has effects such as a reduction in medium noise and an increase in coercive force. According to the method of manufacturing a magnetic recording medium of the present invention, the above-described magnetic recording medium can be easily manufactured. Further, a magnetic storage device using the magnetic recording medium of the present invention has a high recording density.
[Brief description of the drawings]
FIG. 1 is a schematic TEM photograph of a cluster formed on a first underlayer of a magnetic recording medium of the present invention.
FIG. 2 is a schematic view showing an example of a film forming apparatus for a magnetic recording medium according to the present invention.
FIG. 3 is a diagram showing the relationship between the activation deposition and the product of the magnetic moment with respect to the conditions when forming a multilayer underlayer of the magnetic recording medium of the present invention.
FIG. 4 is a schematic sectional perspective view of a magnetic recording medium of the present invention.
FIG. 5 is an X-ray diffraction pattern diagram of a magnetic recording medium according to one embodiment of the present invention and a magnetic recording medium according to a comparative example.
FIG. 6 is a schematic plan view and a schematic sectional view of an embodiment of the magnetic storage device of the present invention.
[Explanation of symbols]
Reference numeral 20: substrate, 21: preparation chamber, 22: first base film formation chamber, 23: heating chamber, 24: oxidation chamber, 25: second base film formation chamber, 26: magnetic film formation chamber, 27a, 27b, 27c, 27d: protective film forming chamber, 28: take-out chamber, 29: main chamber, 40: substrate, 41, 41 ': first base film, 42, 42': second base film, 43, 43 ': magnetic film, 44 , 44 ': protective film, 45, 45': lubricating film, 61: magnetic head, 62: magnetic head driving unit, 63: recording / reproducing signal processing system, 64: magnetic recording medium, 65: driving unit.

Claims (4)

基板と、
該基板上形成された酸化物生成標準エネルギーが150(kJ/mol O)以上の差がある2種以上の合金からなる第1の下地膜と、
該第1の下地膜上に形成された第2の下地膜と、
該第2の下地膜上に形成された磁性膜とを有し、
前記第1下地膜及び第2下地膜界面に、酸化しやすい元素の多い領域が局所的に酸化されてなるクラスタが分散されていることを特徴とする磁気記録媒体。
A substrate,
A first base film made of two or more alloys formed on the substrate and having a standard oxide generation energy of 150 (kJ / mol O 2 ) or more;
A second base film formed on the first base film;
A magnetic film formed on the second underlayer.
A magnetic recording medium, wherein clusters formed by locally oxidizing a region containing a large number of easily oxidizable elements are dispersed at an interface between the first underlayer and the second underlayer.
前記基板はガラス基板であることを特徴とする請求項1記載の磁気記録媒体。2. The magnetic recording medium according to claim 1, wherein the substrate is a glass substrate. 前記基板はアルミ合金基板であることを特徴とする請求項1記載の磁気記録媒体。2. The magnetic recording medium according to claim 1, wherein the substrate is an aluminum alloy substrate. 前記磁性膜の上には保護膜が形成され、該保護膜の上には潤滑膜が塗布されていることを特徴とする請求項1乃至3のいずれかに記載の磁気記録媒体。4. The magnetic recording medium according to claim 1, wherein a protective film is formed on the magnetic film, and a lubricating film is applied on the protective film.
JP2002157216A 2002-05-30 2002-05-30 Magnetic recording medium, method of manufacturing the same, and magnetic storage device Expired - Fee Related JP3567157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002157216A JP3567157B2 (en) 2002-05-30 2002-05-30 Magnetic recording medium, method of manufacturing the same, and magnetic storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002157216A JP3567157B2 (en) 2002-05-30 2002-05-30 Magnetic recording medium, method of manufacturing the same, and magnetic storage device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP29245196A Division JP3371062B2 (en) 1996-11-05 1996-11-05 Magnetic recording medium, method of manufacturing the same, and magnetic storage device

Publications (2)

Publication Number Publication Date
JP2003016637A JP2003016637A (en) 2003-01-17
JP3567157B2 true JP3567157B2 (en) 2004-09-22

Family

ID=19194864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002157216A Expired - Fee Related JP3567157B2 (en) 2002-05-30 2002-05-30 Magnetic recording medium, method of manufacturing the same, and magnetic storage device

Country Status (1)

Country Link
JP (1) JP3567157B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127619A (en) 2004-10-28 2006-05-18 Hitachi Global Storage Technologies Netherlands Bv Magnetic recording medium and its manufacturing method

Also Published As

Publication number Publication date
JP2003016637A (en) 2003-01-17

Similar Documents

Publication Publication Date Title
JP3371062B2 (en) Magnetic recording medium, method of manufacturing the same, and magnetic storage device
US7056604B2 (en) Magnetic recording media and magnetic recording system using the same
JPWO2007129687A1 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP2002358617A (en) Perpendicular magnetic recording medium
JP2004110941A (en) Magnetic recording medium and magnetic storage device
US6878439B2 (en) Magnetic recording medium, its production process and magnetic recording device
JP3544645B2 (en) Magnetic recording medium and magnetic storage device
JP3567157B2 (en) Magnetic recording medium, method of manufacturing the same, and magnetic storage device
JP3217012B2 (en) Magnetic recording media
EP0809238B1 (en) Magnetic recording media and magnetic recording system using the same
JP3359706B2 (en) Magnetic recording media
JP3308239B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing device
JP2005174531A (en) Magnetic body for non-reactive treatment for use in granular perpendicular recording
JP2002324313A (en) Manufacturing method of magnetic recording medium
JP2001283427A (en) Magnetic recording medium, its manufacture method, sputtering target and magnetic recording and reproducing device
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JP3394108B2 (en) Magnetic storage device and multilayer magnetic layer magnetic recording medium
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JP2006040410A (en) Method for manufacturing magnetic recording medium
JP3429777B2 (en) Magnetic recording medium and magnetic storage device using the same
JP2001312815A (en) Magnetic recording medium, method of manufacturing the same, sputtering target and magnetic recording and reproducing device
JP2006024261A (en) Magnetic recording medium, its manufacturing method, and magnetic disk apparatus
JPH0757261A (en) Magnetic recording medium and magnetic head and its method and apparatus for production
JP2002042329A (en) Magnetic recording medium, method for manufacturing the same and magnetic recording device
WO2007026550A1 (en) Magnetic disk and process for producing magnetic disk

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees