JP3429777B2 - Magnetic recording medium and magnetic storage device using the same - Google Patents

Magnetic recording medium and magnetic storage device using the same

Info

Publication number
JP3429777B2
JP3429777B2 JP50778298A JP50778298A JP3429777B2 JP 3429777 B2 JP3429777 B2 JP 3429777B2 JP 50778298 A JP50778298 A JP 50778298A JP 50778298 A JP50778298 A JP 50778298A JP 3429777 B2 JP3429777 B2 JP 3429777B2
Authority
JP
Japan
Prior art keywords
magnetic
underlayer
layer
medium
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP50778298A
Other languages
Japanese (ja)
Inventor
哲也 神邊
宏之 片岡
一郎 玉井
譲 細江
石川  晃
究 棚橋
好文 松田
朋生 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority claimed from PCT/JP1996/002198 external-priority patent/WO1998006093A1/en
Application granted granted Critical
Publication of JP3429777B2 publication Critical patent/JP3429777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/012Recording on, or reproducing or erasing from, magnetic disks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7369Two or more non-magnetic underlayers, e.g. seed layers or barrier layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7373Non-magnetic single underlayer comprising chromium
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は,高密度記録,具体的には1平方インチ当た
り2ギガビット以上の記録密度を有する磁気記憶装置
と,これを実現するための低ノイズな薄膜磁気記録媒体
に関する。
Description: TECHNICAL FIELD The present invention relates to high density recording, specifically, a magnetic storage device having a recording density of 2 gigabits per square inch, and a low noise thin film magnetic recording for realizing the same. Regarding the medium.

背景技術 磁気記憶装置に対する大容量化の要求は,現在益々高
まりつつある。従来の磁気ヘッドには磁束の時間的変化
に伴う電圧変化を利用した電磁誘導型磁気ヘッドが用い
られていた。これは一つのヘッドで記録と再生の両方を
行うものである。これに対して近年,記録用と再生用の
ヘッドを別にし,再生用ヘッドにより高感度な磁気抵抗
効果型ヘッドを利用した複合型ヘッドの採用が急速に進
みつつある。磁気抵抗効果型ヘッドとは,ヘッド素子の
電気抵抗が媒体からの漏洩磁束の変化に伴って変化する
ことを利用したものである。また,巨大磁気抵抗効果,
或いはスピンバルブ効果を利用した更に高感度なヘッド
の開発も進みつつある。これらは非磁性層を介した複数
の磁性層の磁化の相対的方向が,媒体からの漏洩磁界に
より変化し,これによって電気抵抗が変化する効果であ
る。現在,実用化されている磁気記録媒体では,磁性層
としてCoCrPt,CoCrTa,CoNiCr等,Coを主成分とする合金
が用いられている。これらのCo合金はc軸方向を磁化容
易軸とする六方最密構造(hcp構造)をとるため,面内
磁気記録媒体としてはこのc軸が面内方向をとる結晶配
向が望ましい。しかし,このような配向は不安定である
ため基板上に直接Coを形成しても一般には起こらない。
そこで体心立方構造(bcc構造)をとるCr(100)面がCo
(11.0)面と整合性が良いことを利用して(100)配向
したCrの下地層をまず基板上に形成し,その上にCo合金
層をエピタキシャル成長させることによってCo合金層に
c軸が面内方向を向いた(11.0)配向をとらせる手法が
用いられている。また,Co合金磁性層とCr下地層界面で
の整合性を更に向上させるために,Crに第二元素を添加
し,Cr下地層の格子間隔を増加させる手法が用いられて
いる。これによってCo(11.0)配向が更に増大し、保磁
力を増加させることが出来る。このような技術の例とし
ては,特開昭62−257618号公報や,特開昭63−197018号
公報に示されているようにV,Ti等を添加するものが挙げ
られる。
BACKGROUND ART The demand for large capacity magnetic storage devices is currently increasing more and more. As a conventional magnetic head, an electromagnetic induction type magnetic head utilizing a voltage change accompanying a temporal change of magnetic flux has been used. This is for both recording and reproduction with one head. On the other hand, in recent years, a recording head and a reproducing head are separately provided, and a composite head using a magnetoresistive head having high sensitivity for the reproducing head is rapidly being adopted. The magnetoresistive head uses the fact that the electric resistance of the head element changes as the leakage magnetic flux from the medium changes. Also, the giant magnetoresistive effect,
Alternatively, the development of a head with higher sensitivity utilizing the spin valve effect is under way. These are the effects that the relative directions of the magnetizations of the plurality of magnetic layers via the non-magnetic layer are changed by the leakage magnetic field from the medium, which changes the electric resistance. Currently, magnetic recording media that have been put into practical use use CoCrPt, CoCrTa, CoNiCr, and other alloys containing Co as the main component for the magnetic layer. Since these Co alloys have a hexagonal close-packed structure (hcp structure) with the easy axis of magnetization in the c-axis direction, a crystal orientation in which the c-axis is in the in-plane direction is desirable for the in-plane magnetic recording medium. However, since such an orientation is unstable, it generally does not occur even if Co is directly formed on the substrate.
Therefore, the Cr (100) plane that has a body-centered cubic structure (bcc structure) is Co
Taking advantage of its good compatibility with the (11.0) plane, a (100) -oriented Cr underlayer is first formed on the substrate, and a Co alloy layer is epitaxially grown on the underlayer to form a c-axis on the Co alloy layer. A method of taking an inward (11.0) orientation is used. In order to further improve the matching at the interface between the Co alloy magnetic layer and the Cr underlayer, a method of adding a second element to Cr and increasing the lattice spacing of the Cr underlayer is used. This further increases the Co (11.0) orientation and can increase the coercive force. An example of such a technique is to add V, Ti or the like as shown in JP-A-62-257618 and JP-A-63-197018.

高記録密度化に必要な要素としては,記録媒体の高保
磁力化と並んで低ノイズ化が挙げられる。媒体ノイズは
主に記録ビット間に生ずるジグザグ状の磁化遷移領域に
起因している。この遷移領域をスムーズ化することが媒
体ノイズの低減には必要である。これには磁性結晶粒の
微細化,結晶粒径の均一化が有効であることが知られて
いる。
Along with the high coercive force of the recording medium, low noise is an essential factor for increasing the recording density. The medium noise is mainly due to the zigzag-shaped magnetization transition region generated between recording bits. Smoothing of this transition region is necessary to reduce medium noise. For this purpose, it is known that miniaturization of magnetic crystal grains and homogenization of crystal grain size are effective.

上記のような磁気抵抗効果型ヘッドは再生感度が極め
て高いため,高密度記録に適している。しかし,磁気記
録媒体からの再生信号のみならず,ノイズに対する感度
も同時に高くなるため,記録媒体には従来以上に低ノイ
ズ化が求められる。媒体ノイズを低減するには上記のよ
うに磁性結晶粒を微結晶化・均一化する必要がある。そ
のためには,下地層を微結晶化・均一化することが有効
である。上記,公知例にみられるCr下地層への第二元素
添加は,下地層の格子定数を増加させる技術であり,下
地層の結晶粒を微結晶化,均一化させるものではない。
よって,保磁力向上には有効であるが,媒体ノイズ低減
には効果がない。
The magnetoresistive head as described above has an extremely high reproduction sensitivity and is suitable for high density recording. However, since not only the reproduced signal from the magnetic recording medium but also the sensitivity to noise are increased at the same time, the recording medium is required to have lower noise than ever before. In order to reduce the medium noise, it is necessary to make the magnetic crystal grains finely crystallized and uniform as described above. To that end, it is effective to microcrystallize and homogenize the underlayer. The addition of the second element to the Cr underlayer, which is seen in the above-mentioned known example, is a technique for increasing the lattice constant of the underlayer, and does not make the crystal grains of the underlayer fine and uniform.
Therefore, it is effective in improving the coercive force, but not effective in reducing the medium noise.

また,基板にガラスを用いた場合,従来のNiPメッキ
されたA1合金基板(以下,A1基板と略す)を用いた場合
に比べ,磁性層の結晶粒が肥大化するため,媒体ノイズ
が増大し,電磁変換特性が劣下する。これに対し,ガラ
ス基板とCr合金下地層間に非晶質,或いは微結晶膜を形
成することにより,磁性層の結晶粒を微細化する技術が
特開平4−153910号公報に示されている。しかし,結晶
粒径の均一化に対効果はなく,十分な電磁変換特性は得
られていない。
In addition, when glass is used as the substrate, the media noise increases because the crystal grains of the magnetic layer grow larger than when using a conventional NiP-plated A1 alloy substrate (hereinafter abbreviated as A1 substrate). , Electromagnetic conversion characteristics are inferior. On the other hand, Japanese Unexamined Patent Publication No. 4-153910 discloses a technique for making crystal grains of a magnetic layer fine by forming an amorphous or microcrystalline film between a glass substrate and a Cr alloy underlayer. However, there is no effect on making the crystal grain size uniform, and sufficient electromagnetic conversion characteristics have not been obtained.

このように高い記録密度でも良好な電磁変換特性を示
すためには,Co合金磁性層のhcp(11.0)配向を崩さず,
その結晶粒径を微細化し,かつ粒径分布を減少させ,媒
体ノイズを低減させる必要がある。
In order to show good electromagnetic conversion characteristics even at such high recording density, the hcp (11.0) orientation of the Co alloy magnetic layer must be maintained.
It is necessary to reduce the crystal grain size, reduce the grain size distribution, and reduce the medium noise.

また,上記の様な低ノイズな磁気記録媒体と高感度な
磁気抵抗効果型ヘッドを組み合わせて磁気ディスク装置
を試作してみても,十分な電磁変換特性は必ずしも得ら
れない。これは,磁気ヘッド,磁気記録媒体がそれぞれ
別々に開発されており,磁気ディスク装置として如何に
高い記録密度を実現するかについては,これまで十分に
考慮されていなかったためである。
Even if a magnetic disk device is manufactured by combining the above-mentioned low-noise magnetic recording medium and a highly sensitive magnetoresistive head, a sufficient electromagnetic conversion characteristic cannot always be obtained. This is because the magnetic head and the magnetic recording medium have been developed separately, and it has not been sufficiently considered until now how to realize a high recording density as a magnetic disk device.

本研究の目的は,上記の問題点を解決し,1平方インチ
当たり2ギガビット以上の記録密度,及び高い信頼性を
有す磁気記憶装置と,高密度記録に適した低ノイズな磁
気記録媒体を提供することにある。
The purpose of this research is to solve the above problems and to provide a magnetic storage device having a recording density of 2 gigabits or more per square inch and high reliability, and a low noise magnetic recording medium suitable for high density recording. To provide.

発明の開示 本発明では,基板上に単層または複数の下地層を介し
て形成された磁性層を有する磁気記録媒体と,これを記
録方向に駆動する駆動部と,記録部と再生部から成る磁
気ヘッドと,上記磁気ヘッドを上記磁気記録媒体に対し
て相対運動させる手段と,上記磁気ヘッドへの信号入力
と磁気ヘッドからの出力信号再生を行うための記録再生
信号処理手段を有する磁気記憶装置において,前記磁気
ヘッドの再生部を磁気抵抗効果型磁気ヘッドで構成し,
かつ,前記磁気記録媒体の単層の下地層または複数の下
地層の少なくとも一層をCr,Mo,V,Taからなる第一の群よ
り選ばれた少なくとも一種の元素を主成分とし,かつ,
B,C,P,Biよりなる第二の群より選ばれた少なくとも一種
の元素を含有するする合金材料から成る層で構成するこ
とにより,上記の目的を達成する。
DISCLOSURE OF THE INVENTION The present invention comprises a magnetic recording medium having a magnetic layer formed on a substrate through a single layer or a plurality of underlayers, a drive unit for driving the magnetic layer in the recording direction, a recording unit and a reproducing unit. A magnetic storage device having a magnetic head, means for moving the magnetic head relative to the magnetic recording medium, and recording / reproducing signal processing means for inputting a signal to the magnetic head and reproducing an output signal from the magnetic head. In, the reproducing portion of the magnetic head is composed of a magnetoresistive effect magnetic head,
At least one of the single underlayer or the plurality of underlayers of the magnetic recording medium contains at least one element selected from the first group consisting of Cr, Mo, V, and Ta as a main component, and
The object described above is achieved by using a layer made of an alloy material containing at least one element selected from the second group consisting of B, C, P and Bi.

前記第一の群より選ばれた少なくとも一種の元素を主
成分とする下地層に,第二の群より選ばれた少なくとも
一種の元素を添加することにより,該下地層の結晶粒が
微細になり,粒径が均一化される。このため,下地層上
に形成される磁性層の結晶粒も微細化・均一化され,媒
体ノイズを低減できる。図1にCr−15at%Ti下地層,或
いはこれにBを5at%添加したCr−14.3at%Ti−5at%B
下地層を用いた媒体のBr×tと規格化媒体ノイズ,及び
S/Nの関係を示す。尚,これらの媒体は,保磁力がほぼ
同程度になるよう種々の膜構成,及びプロセス条件で作
製したものである。ここで,元素記号の前に示した数字
は,各元素の濃度を原子百分率(at%)で示したもので
ある。また,規格化媒体ノイズとは媒体ノイズを孤立再
生波の出力とトラック幅で規格化した値であり,以後,
媒体ノイズはこの値によって相対的に評価する.規格化
媒体ノイズはBr×tの値に依らず,CrTiB下地を用いた方
が15%程度低く,S/NもCrTiB下地層媒体の方が高くなっ
ている。またこのとき,CrTiB下地層はCrTi下地層と同
様,bcc構造をとり(100)配向するため,Co合金磁性層の
hcp(11.0)配向は崩れない。
By adding at least one element selected from the second group to the underlayer containing at least one element selected from the first group as a main component, the crystal grains of the underlayer become fine. , The particle size is made uniform. Therefore, the crystal grains of the magnetic layer formed on the underlayer are also miniaturized and made uniform, and the medium noise can be reduced. Figure 1 shows the Cr-15at% Ti underlayer, or Cr-14.3at% Ti-5at% B with 5at% of B added to it.
Br × t of media using underlayer and normalized media noise, and
The S / N relationship is shown. Incidentally, these media were manufactured under various film configurations and process conditions so that the coercive force is almost the same. Here, the numbers shown before the element symbols indicate the concentration of each element in atomic percentage (at%). The standardized medium noise is a value obtained by normalizing the medium noise by the output of the isolated reproduction wave and the track width.
The medium noise is relatively evaluated by this value. The normalized media noise is about 15% lower when using the CrTiB underlayer, and the S / N is also higher when using the CrTiB underlayer, regardless of the value of Br × t. At this time, the CrTiB underlayer has a bcc structure and has a (100) orientation, similar to the CrTi underlayer.
The hcp (11.0) orientation does not collapse.

図2にCr−15at%Ti−B下地層に添加したB濃度と規
格化媒体ノイズの関係を示す。B添加により媒体ノイズ
は低減されるが,B濃度が20at%を越えるとこの効果はな
くなる。これは下地層の結晶性の劣化により,磁性層の
結晶性も崩れるためである。また,B濃度が1at%未満で
あると結晶粒の微細化・均一化が不十分で,低ノイズ化
の効果が小さい。
FIG. 2 shows the relationship between the B concentration added to the Cr-15 at% Ti-B underlayer and the normalized medium noise. Although the medium noise is reduced by adding B, this effect disappears when the B concentration exceeds 20 at%. This is because the crystallinity of the magnetic layer is destroyed due to the deterioration of the crystallinity of the underlayer. Also, if the B concentration is less than 1 at%, the grain refinement and homogenization are insufficient, and the effect of noise reduction is small.

このような低ノイズ化の効果はB以外の前記第二の群
の元素を添加した場合にも確認できたが,Pを添加したと
きがBを添加したときと同様,特に低ノイズ化が顕著で
あった.これに対し,Cを添加した場合は保磁力,保磁力
角型比S*の向上が著しく,また,Biを添加した場合は
耐食性に優れた媒体が得られた.これらの元素の添加濃
度も1at%以上,20at%以上が望ましいが,2〜8at%添加
のときに特に低ノイズな媒体が得られる。
The effect of reducing the noise was confirmed when the elements of the second group other than B were added, but when P is added, the noise is remarkably reduced as in the case where B is added. Met. On the other hand, when C was added, the coercive force and coercive force squareness ratio S * were significantly improved, and when Bi was added, a medium with excellent corrosion resistance was obtained. The addition concentration of these elements is also preferably 1 at% or more and 20 at% or more, but when 2 to 8 at% is added, a medium with particularly low noise can be obtained.

下地層とCo合金磁性層との界面の格子整合性を向上さ
せ,磁気特性を向上させるために,該下地層に添加する
元素としては,Tiの他にV,Mo等が挙げられる。これらCrV
合金,CrMo合金下地層に,前記第二の群の元素を添加し
た場合にも,CrTiの場合と同様,該下地層の結晶粒径の
微細化・均一化が起こり,ノイズ低減効果が確認でき
た。特にCrV下地層に第二の群の元素を添加した媒体は,
CrTi下地層やCrMo下地層に添加した媒体に比べ,重ね書
き特性が良好である。また,CrMo下地層に第二の群の元
素を添加した場合は,比較的低温でも強いbcc(100)配
向と良好な結晶性を示す。このため,カーボン保護膜が
低温で形成出来るため膜質が向上し,他の下地層を用い
た場合より良好なCSS特性を有する媒体が得られる。総
合的に比較すると,格子整合性向上のためにTiを添加し
たCrTi合金にBを添加した下地層を用いた媒体が,特に
Co合金の磁化容易軸が面内方向を強く向き,かつ結晶粒
の微細化,均一化が最も顕著である。このため高分解能
化と低ノイズ化が両立でき,特に優れた記録再生特性を
示す媒体が得られる。
In addition to Ti, V, Mo and the like can be cited as elements added to the underlayer in order to improve the lattice matching property at the interface between the underlayer and the Co alloy magnetic layer and improve the magnetic characteristics. These CrV
Even when the elements of the second group are added to the underlayer of the alloy or CrMo alloy, the crystal grain size of the underlayer becomes finer and more uniform as in the case of CrTi, and the noise reduction effect can be confirmed. It was In particular, the medium in which the second group of elements is added to the CrV underlayer is
The overwrite characteristics are better than those of media added to the CrTi or CrMo underlayer. When the second group of elements is added to the CrMo underlayer, it exhibits strong bcc (100) orientation and good crystallinity even at relatively low temperatures. For this reason, the carbon protective film can be formed at a low temperature, so that the film quality is improved and a medium having better CSS characteristics than when using another underlayer can be obtained. Comprehensively comparing, the media using the underlayer of B-added CrTi alloy to improve the lattice matching,
The axis of easy magnetization of the Co alloy is strongly oriented in the in-plane direction, and grain refinement and homogenization are most noticeable. Therefore, high resolution and low noise can be achieved at the same time, and a medium exhibiting particularly excellent recording and reproducing characteristics can be obtained.

また,磁気記録媒体の磁性層は,CoCrPt,CoCrPtTa,CoC
rPtTi,CoCrTa,CoNiCr等,Coを主成分とするhcp構造の合
金を用いることが出来るが,高記録密度化に適した高い
保磁力を得るためには,Ptを含むCo合金を用いることが
特に好ましい。
The magnetic layer of the magnetic recording medium is CoCrPt, CoCrPtTa, CoC.
Although alloys with a hcp structure containing Co as the main component, such as rPtTi, CoCrTa, and CoNiCr, can be used, in order to obtain a high coercive force suitable for high recording density, it is particularly preferable to use a Co alloy containing Pt. preferable.

磁性層上に保護膜として5〜30nmのカーボンを形成
し,パーフルオロアルキルポリエーテル系の潤滑層を1
〜30nm設けることにより,信頼性の高い磁気記録媒体が
得られる。保護膜として水素を添加したカーボン,炭化
シリコン,炭化タングステン,或いはこれらの化合物と
カーボンの混合膜を用いることにより,耐摺動性,耐食
性を向上することが出来る。
A 5 to 30 nm carbon layer is formed as a protective film on the magnetic layer, and a perfluoroalkylpolyether type lubrication layer is formed.
By providing ~ 30 nm, a highly reliable magnetic recording medium can be obtained. By using hydrogen-added carbon, silicon carbide, tungsten carbide, or a mixed film of these compounds and carbon as the protective film, sliding resistance and corrosion resistance can be improved.

また,ガラス基板を用いた磁気記録媒体では,CrB合金
下地層を(100)配向させるためにTa等の配向制御層を
該下地層と基板間に形成するのが望ましい。更に前記配
向制御層とガラス基板間にTi,Zr,Cr等の金属,或いはこ
れらの酸化物を形成することにより,ガラスとの密着性
が向上し,かつ基板上の吸着ガス,或いはガラス中から
の不純物イオン等の膜中への拡散が抑制され,良好な磁
気特性が得られる。また,Al,Ag等の低融点金属,或いは
それらの合金からなる下地層を形成すること出来る.そ
れにより,媒体表面に微細な凹凸が形成され,CSS(コン
タクト・スタート・ストップ)特性が向上できる。
Further, in a magnetic recording medium using a glass substrate, it is desirable to form an orientation control layer such as Ta between the underlayer and the substrate in order to orient the (100) CrB alloy underlayer. Furthermore, by forming a metal such as Ti, Zr, or Cr, or an oxide thereof between the orientation control layer and the glass substrate, the adhesion with the glass is improved, and the adsorption gas on the substrate or from the glass Diffusion of impurity ions in the film into the film is suppressed, and good magnetic properties are obtained. It is also possible to form an underlayer made of a low melting point metal such as Al or Ag, or an alloy thereof. As a result, fine irregularities are formed on the medium surface, and CSS (contact start stop) characteristics can be improved.

本発明の磁気記憶装置に用いている,再生用の磁気抵
抗効果型ヘッドの抵抗センサ部を挟む2枚の軟磁性シー
ルド層間は0.35μm以下である。前記シールド層間隔が
0.35μm以上になると分解能が低下し,好ましくない。
媒体は保磁力が2キロエルステッド以上で,磁性層膜厚
tと残留磁束密度Brの積であるBr×tが10〜130ガウス
・ミクロンの範囲内にある。保磁力が1.8キロエルステ
ッドよりも小さくなると,高記録密度(150kFCl以上)
での出力が小さくなり好ましくない。また,Br×tが130
ガウス・ミクロンより大きくなると分解能が低下し,10
ガウス・ミクロンよりも小さくなると出力が小さくなり
過ぎるため,1平行インチ当たり2ギガビットの高密度記
録を行ったときに十分な記録再生特性が得られない。
The distance between the two soft magnetic shield layers sandwiching the resistance sensor portion of the magnetoresistive head for reproduction used in the magnetic memory device of the present invention is 0.35 μm or less. The shield layer spacing is
When it is 0.35 μm or more, the resolution is lowered, which is not preferable.
The medium has a coercive force of 2 kOersted or more, and the product of the magnetic layer thickness t and the residual magnetic flux density Br, Br × t, is in the range of 10 to 130 gauss-microns. Higher recording density (150kFCl or more) when the coercive force is smaller than 1.8 kilo Oersted
It is not preferable because the output at is small. Also, Br × t is 130
When it is larger than Gauss-micron, the resolution decreases and
If it is smaller than Gauss-micron, the output becomes too small, so sufficient recording / reproducing characteristics cannot be obtained when high density recording of 2 gigabits per parallel inch is performed.

更に,磁気抵抗効果型磁気ヘッドを,互いの磁化方向
が外部磁界によって相対的に変化することによって大き
な抵抗変化を生じる複数の導電性磁性層と,その導電性
磁性層の間に配置された導電性非磁性層を含む磁気抵抗
センサによって構成し,巨大磁気抵抗効果あるいはスピ
ン・バルブ効果を利用したものとすることにより,信号
強度をさらに高めることができ,1平方インチ当たり3ギ
ガビット以上の記録密度を持った信頼性の高い磁気記憶
装置を実現することができる。
Further, in the magnetoresistive effect magnetic head, a plurality of conductive magnetic layers that cause a large resistance change when their magnetization directions are relatively changed by an external magnetic field and a conductive magnetic layer disposed between the conductive magnetic layers are provided. By using a magnetoresistive sensor including a magnetic non-magnetic layer and utilizing the giant magnetoresistive effect or spin valve effect, the signal strength can be further increased, and a recording density of 3 gigabits or more per square inch can be achieved. It is possible to realize a highly reliable magnetic storage device.

図面の簡単な説明 第1図は、Br×tと規格化媒体ノイズ,及び装置S/N
を示す線図であり、第2図は、下地層中のB添加濃度と
規格化媒体ノイズの関係を示す線図であり、第3図は、
(a)および(b)は,それぞれ,本発明の一実施例の
磁気記憶装置の平面模式図およびそのA−A'断面図であ
り、第4図は、本発明の磁気記憶装置における,磁気ヘ
ッドの断面構造の一例を示す斜視図であり、第5図は、
本発明の磁気記憶装置における,磁気ヘッドの磁気抵抗
センサ部の断面構造の一例を示す模式図であり、第6図
は、本発明の実施例で用いた媒体の断面図であり、第7
図は、本発明の実施例と比較例の媒体における保磁力と
重ね書き特性の関係を示す線図であり、第8図は、本発
明の磁気記憶装置における,磁気ヘッドの断面構造の一
例を示す斜視図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows Br × t, standardized medium noise, and device S / N.
2 is a diagram showing the relationship between the concentration of B added in the underlayer and the normalized medium noise, and FIG. 3 is a diagram showing
FIGS. 4A and 4B are respectively a schematic plan view and a sectional view taken along the line AA ′ of the magnetic memory device according to one embodiment of the present invention. FIG. 4 shows the magnetic memory device according to the present invention. FIG. 5 is a perspective view showing an example of a sectional structure of the head, and FIG.
FIG. 6 is a schematic diagram showing an example of a sectional structure of a magnetoresistive sensor portion of a magnetic head in a magnetic memory device of the present invention, and FIG. 6 is a sectional view of a medium used in an example of the present invention,
FIG. 8 is a diagram showing the relationship between coercive force and overwriting characteristics in the media of the examples of the present invention and comparative examples, and FIG. 8 is an example of the cross-sectional structure of the magnetic head in the magnetic memory device of the present invention. It is a perspective view shown.

発明を実施するための最良の形態 実施例1: 本発明の実施例を図3,図4,図5を用いて説明する。本
実施例の磁気記憶装置の平面模式図,断面模式図を図3
(a),及び図3(b)に示す。この装置は磁気ヘッド
1,及びその駆動部2と,該磁気ヘッドの記録再生信号処
理手段3と磁気記録媒体4とこれを回転させる駆動部5
とからなる周知の構造を持つ磁気記憶装置である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1: An embodiment of the present invention will be described with reference to FIGS. 3, 4, and 5. FIG. 3 is a schematic plan view and a schematic cross-sectional view of the magnetic storage device of this embodiment.
It shows in (a) and FIG.3 (b). This device is a magnetic head
1, and its driving unit 2, a recording / reproducing signal processing unit 3 of the magnetic head, a magnetic recording medium 4, and a driving unit 5 for rotating the magnetic recording medium 4.
It is a magnetic storage device having a well-known structure consisting of.

上記磁気ヘッドの構造を図4に示す。この磁気ヘッド
は基体6上に形成された記録用の電磁誘導型磁気ヘッ
ド,再生用の磁気抵抗効果型磁気ヘッドを併せ持つ複合
型ヘッドである。前記記録用ヘッドはコイル7を挟む上
部記録磁極8と下部記録磁極兼上部シールド層9からな
り,記録磁極間のギャップ層厚は0.3μmとした。ま
た,コイルには厚さ3μmのCuを用いた.前記再生用ヘ
ッドは磁気抵抗センサ10とその両端の電極パタン11から
なり,磁気抵抗センサは共に1μm厚の下部記録磁極兼
上部シールド層と下部シールド層12で挟まれ,該シール
ド層間距離は0.25μmである。尚,図4では記録磁極間
のギャップ層,及びシールド層と磁気抵抗センサとのギ
ャップ層は省略してある。
The structure of the above magnetic head is shown in FIG. This magnetic head is a composite type head having both an electromagnetic induction type magnetic head for recording and a magnetoresistive effect type magnetic head for reproduction formed on a substrate 6. The recording head comprises an upper recording magnetic pole 8 sandwiching the coil 7 and a lower recording magnetic pole / upper shield layer 9, and the gap layer thickness between the recording magnetic poles is 0.3 μm. In addition, Cu with a thickness of 3 μm was used for the coil. The reproducing head comprises a magnetoresistive sensor 10 and electrode patterns 11 on both ends thereof, and the magnetoresistive sensor is sandwiched between a lower recording magnetic pole / upper shield layer and a lower shield layer 12 each having a thickness of 1 μm, and the shield interlayer distance is 0.25 μm. Is. In FIG. 4, the gap layer between the recording magnetic poles and the gap layer between the shield layer and the magnetoresistive sensor are omitted.

図5に磁気抵抗センサの断面構造を示す。磁気センサ
の信号検出領域13は,酸化A1のギャップ層14上に横バイ
アス層15,分離層16,磁気抵抗強磁性層17が順次形成され
た部分からなる。磁気抵抗強磁性層には,20nmのNiFe合
金を用いた。横バイアス層には25nmのNiFeNbを用いた
が,NiFeRh等の比較的電気抵抗が高く,軟磁気特性の良
好な強磁性合金であれば良い。横バイアス層は磁気抵抗
強磁性層を流れるセンス電流がつくる磁界によって,該
電流と垂直な膜面内方向(横方向)に磁化され,磁気抵
抗強磁性層に横方向のバイアス磁界を印加する。これに
よって,媒体からの漏洩磁界に対して線形な再生出力を
示す磁気センサが得られる。磁気抵抗強磁性層からのセ
ンス電流の分流を防ぐ分離層には,比較的電気抵抗が高
いTaを用い,膜厚は5nmとした。
FIG. 5 shows a sectional structure of the magnetoresistive sensor. The signal detection area 13 of the magnetic sensor is composed of a portion in which a lateral bias layer 15, a separation layer 16 and a magnetoresistive ferromagnetic layer 17 are sequentially formed on a gap layer 14 of oxidized A1. A 20 nm NiFe alloy was used for the magnetoresistive ferromagnetic layer. Although 25 nm of NiFeNb was used for the lateral bias layer, any ferromagnetic alloy such as NiFeRh having a relatively high electric resistance and good soft magnetic characteristics may be used. The lateral bias layer is magnetized in the in-plane direction (horizontal direction) perpendicular to the current by the magnetic field generated by the sense current flowing through the magnetoresistive ferromagnetic layer, and applies a lateral bias magnetic field to the magnetoresistive ferromagnetic layer. As a result, a magnetic sensor having a linear reproduction output with respect to the leakage magnetic field from the medium can be obtained. The separation layer that prevents the shunting of the sense current from the magnetoresistive ferromagnetic layer was made of Ta, which has a relatively high electric resistance, and its thickness was 5 nm.

信号検出領域の両端にはテーパー形状に加工されたテ
ーパー部18がある。テーパー部は,磁気抵抗強磁性層を
単磁区化するための永久磁石層19と,その上に形成され
た信号を取り出すための一対の電極11からなる。永久磁
石層は保磁力が大きく,磁化方向が容易に変化しないこ
とが必要であり,CoCr,CoCrPt合金等が用いられる。
At both ends of the signal detection area, there are tapered portions 18 processed into a tapered shape. The taper portion is composed of a permanent magnet layer 19 for making the magnetoresistive ferromagnetic layer into a single magnetic domain, and a pair of electrodes 11 for taking out signals formed thereon. The permanent magnet layer must have a large coercive force and the magnetization direction must not change easily, and CoCr, CoCrPt alloys, etc. are used.

図6に本実施例で用いた磁気記録媒体の膜構成を示
す。非磁性基板20上に下地層21,磁性層22,保護膜23,潤
滑膜24の順に形成されている。ここでは,前記非磁性基
板と磁性層の間に形成されている下地層は単層で表記し
てあるが,単層,多層何れの場合も含むものとする。基
板には化学強化されたソーダライムガラスをアルカリ洗
剤で洗浄後,スピン乾燥したものを用いた。基板上にガ
ラス中からのイオン,吸着ガスの侵入の防止,ガラスと
の良好な密着等を主な目的とした第一の下地層,前述の
CrB合金の(100)配向化を主な目的とした第二の下地
層,Co磁性層の(11.0)配向化を主な目的としたCrB合金
層からなる第三の下地層,Co合金磁性層,カーボン保護
膜24が形成されている。第一の下地層には50nmのZr,第
二の下地層には10nmのTa,第三の下地層には30nmのCr−1
5at%Ti合金にBを5at%添加したCr−14.3at%Ti−5at
%合金,磁性層にCo−20at%Cr−12at%Pt合金,保護膜
にカーボンを用い,これらを連続して真空中で形成し
た。各層の成膜は,全てDCスパッタ法により,5mTorrの
アルゴンガス圧の下で成膜レート5〜8nm/secの範囲で
行った。基板加熱は第二の下地層Ta成膜後に,基板温度
が300℃になるように行った。成膜された媒体にパーフ
ルオロアルキルポリエーテル系の材料をフルオロカーボ
ン材料で希釈したものを潤滑材として塗布した。また,
第三の下地層にBを添加しないCr−15at%Ti合金を使用
し,保磁力が本実施例の媒体と同程度の媒体を作製し,
これを比較例とした。
FIG. 6 shows the film structure of the magnetic recording medium used in this example. An underlayer 21, a magnetic layer 22, a protective film 23, and a lubricating film 24 are formed in this order on a nonmagnetic substrate 20. Here, the underlayer formed between the non-magnetic substrate and the magnetic layer is described as a single layer, but it includes both a single layer and a multilayer. The substrate used was a chemically strengthened soda lime glass washed with an alkaline detergent and then spin dried. The first underlayer, whose main purpose is to prevent the invasion of ions and adsorbed gas from the glass on the substrate and to achieve good adhesion with the glass.
Second underlayer mainly for (100) orientation of CrB alloy, third underlayer composed of CrB alloy layer mainly for (11.0) orientation of Co magnetic layer, Co alloy magnetic layer The carbon protective film 24 is formed. The first underlayer is 50 nm Zr, the second underlayer is 10 nm Ta, and the third underlayer is 30 nm Cr-1.
Cr-14.3at% Ti-5at which added 5at% of B to 5at% Ti alloy
% Alloy, Co-20at% Cr-12at% Pt alloy for the magnetic layer, and carbon for the protective film, these were continuously formed in vacuum. All layers were formed by DC sputtering at a deposition rate of 5-8 nm / sec under an argon gas pressure of 5 mTorr. The substrate was heated so that the substrate temperature was 300 ° C after the second underlayer Ta was formed. A perfluoroalkylpolyether-based material diluted with a fluorocarbon material was applied as a lubricant to the formed medium. Also,
A Cr-15at% Ti alloy containing no B was used for the third underlayer, and a medium having a coercive force similar to that of the medium of the present example was produced.
This was used as a comparative example.

本実施例の媒体の保磁力は2900Oe,Br×tは82ガウス
ミクロンであった。比較例の媒体と共に上記磁気記憶装
置に組み込んで,ヘッド浮上量30nm,線記録密度210kBP
I,トラック密度9.6kTPIで記録再生評価を行った。本実
施例の媒体を用いた場合,比較例の媒体を用いた場合に
対し,規格化媒体ノイズは約20%低減され,重ね書き特
性は10dB程度向上した。このため,1平方インチ当たり2
ギガビットの記録密度に対し,良好な記録再生特性が得
られた。以上より,下地層へのB添加は媒体ノイズの低
減,重ね書き特性の向上に有効であることがわかった. 実施例2: 実施例1と同様な構成を有す磁気記憶装置において,
基板表面にNiPメッキされた直径2.5インチ,0.635mm圧の
A1合金基板(以下,NiP/A1基板と記す)上に形成された
磁気記録媒体を用いた。
The coercive force of the medium of this example was 2900 Oe and Br × t was 82 gauss microns. When incorporated into the above magnetic storage device together with the medium of the comparative example, the head flying height was 30 nm and the linear recording density was 210 kBP.
Recording and reproduction were evaluated at I and track density of 9.6 kTPI. When the medium of this example was used, the standardized medium noise was reduced by about 20% and the overwriting characteristic was improved by about 10 dB compared with the case of using the medium of the comparative example. Therefore, 2 per square inch
Good recording and reproducing characteristics were obtained for gigabit recording density. From the above, it was found that adding B to the underlayer is effective in reducing medium noise and improving overwrite characteristics. Second Embodiment In a magnetic storage device having the same configuration as the first embodiment,
2.5 inch diameter, 0.635 mm pressure plated NiP on the substrate surface
A magnetic recording medium formed on an A1 alloy substrate (hereinafter referred to as NiP / A1 substrate) was used.

円周方向にテクスチャ加工を施した該NiP/Al合金基板
を300℃まで加熱したのち,Cr−9at%Ti−5at%B合金を
10〜30nm,CoCrPt合金を20nm,カーボン保護膜を10nm連続
して形成した。このとき,磁性層形成時のアルゴンガス
圧は5〜15mTorrまで変化させた。これらの媒体のBr×
tは70〜90ガウス・ミクロンの範囲内であった。また,
これらの媒体は基板のテクスチャ加工のため,円周方向
に磁気異方性を持つ.このため,保磁力は円周方向が半
径方向よりも大きく,その比率,即ち配向比は1.4〜1.6
であった。これにより,磁化方向が記録方向に安定化さ
れ,良好な記録特性が得られる。
After heating the NiP / Al alloy substrate textured in the circumferential direction to 300 ° C, Cr-9at% Ti-5at% B alloy was applied.
10-30 nm, CoCrPt alloy 20 nm, and carbon protective film 10 nm were formed continuously. At this time, the argon gas pressure during formation of the magnetic layer was changed to 5 to 15 mTorr. Br x of these media
t was in the range of 70 to 90 gauss microns. Also,
These media have magnetic anisotropy in the circumferential direction due to the texture processing of the substrate. Therefore, the coercive force in the circumferential direction is larger than that in the radial direction, and the ratio, that is, the orientation ratio is 1.4 to 1.6.
Met. As a result, the magnetization direction is stabilized in the recording direction, and good recording characteristics are obtained.

これらの媒体を用いて,実施例1と同様な条件で記録
再生特性の評価を行った。保磁力と重ね書き特性の関係
を図7に示す。同図にはBを添加しないCr−15at%Ti下
地層を使用し,前記媒体と同一プロセスで作製した媒体
の結果も比較例として示してある。同程度の保磁力の媒
体を比較した場合,重ね書き特性はCr−9at%Ti−5at%
B下地層媒体の方が15dB程度向上しており,下地層への
B添加は重ね書き特性を向上させることを示している.
他の記録再生特性も1平方インチ当たり2ギガビットの
記録密度に対し,極めて良好であった。
Using these media, recording / reproducing characteristics were evaluated under the same conditions as in Example 1. The relationship between coercive force and overwriting characteristics is shown in FIG. In the same figure, the results of a medium manufactured by the same process as the above medium using a Cr-15at% Ti underlayer without addition of B are also shown as a comparative example. When comparing media with similar coercive force, the overwrite characteristics are Cr-9at% Ti-5at%
The B underlayer medium is improved by about 15 dB, indicating that the addition of B to the underlayer improves the overwriting characteristics.
Other recording / reproducing characteristics were also very good for a recording density of 2 gigabits per square inch.

X線回折の測定を行った結果,CrTiB下地層はbcc構造
で強く(100)配向しており,その上に形成されたCoCrP
t磁性層もエピタキシャル成長により強く(11.0)配向
していることがわかった。この配向はBを添加しないCr
Ti下地層を用いた場合と同様である。即ち,Bを添加して
も下地層の配向が変化しないため,良好な磁気特性が得
られるCoCrPt磁性層の(11.0)配向は崩れないことがわ
かった。
As a result of X-ray diffraction measurement, the CrTiB underlayer had a bcc structure and had a strong (100) orientation.
It was found that the t magnetic layer was also strongly (11.0) oriented by epitaxial growth. This orientation is Cr without addition of B
This is the same as when the Ti underlayer is used. In other words, it was found that the addition of B does not change the orientation of the underlayer, so that the (11.0) orientation of the CoCrPt magnetic layer, which provides good magnetic properties, does not collapse.

実施例3: 実施例1と同様な構成であるが,再生用ヘッドの抵抗
センサと記録媒体の膜構成が異なる磁気記憶装置につい
ての実施例を以下に示す。
Example 3: An example of a magnetic memory device having the same configuration as that of Example 1 but different in the resistance sensor of the reproducing head and the film configuration of the recording medium is shown below.

抵抗センサは図8に示す様に,酸化Alギャップ層14上
に,磁性層に(111)配向をとらせるためのTaバッファ
層25が5nm,7nmの第一の磁性層26,1.5nmのCu中間層27,3n
mの第二の磁性層28,10nmのFe−50at%Mn反強磁性合金層
29が順次形成された構造である。前記第一の磁性層には
Ni−20at%Fe合金を使用し,第二の磁性層にはCoを使用
した。反強磁性層からの交換磁界により,第二の磁性層
の磁化は一方向に固定されている。これに対し,第二の
磁性層と非磁性層を介して接する第一の磁性層の磁化の
方向は,磁気記録媒体からの漏洩磁界により変化するた
め,抵抗変化が生じる。このような二つの磁性層の磁化
の相対的方向の変化に伴う抵抗変化はスピンバルブ効果
と呼ばれるが,本実施例では再生用ヘッドにこの効果を
利用したスピンバルブ型磁気ヘッドを使用した。テーパ
ー部は実施例1の磁気センサと同一構成である。
As shown in FIG. 8, the resistance sensor has a Ta buffer layer 25 of 5 nm and 7 nm for forming the (111) orientation of the magnetic layer on the oxidized Al gap layer 14 and a first magnetic layer 26 of 1.5 nm and Cu of 1.5 nm. Middle layer 27,3n
2nd magnetic layer of m 28,10nm Fe-50at% Mn antiferromagnetic alloy layer
29 is a structure formed sequentially. In the first magnetic layer
A Ni-20at% Fe alloy was used, and Co was used for the second magnetic layer. The magnetization of the second magnetic layer is fixed in one direction by the exchange magnetic field from the antiferromagnetic layer. On the other hand, the direction of magnetization of the first magnetic layer, which is in contact with the second magnetic layer via the non-magnetic layer, changes due to the leakage magnetic field from the magnetic recording medium, resulting in a resistance change. Such a resistance change caused by a change in the relative directions of the magnetizations of the two magnetic layers is called a spin valve effect. In the present embodiment, a spin valve type magnetic head utilizing this effect was used as a reproducing head. The taper portion has the same structure as the magnetic sensor of the first embodiment.

本実施例で使用した記録媒体の成膜プロセスを以下に
記す.前記のテクスチャ加工されたNiP/Al基板をランプ
加熱により,260℃まで加熱したのち,DCスパッタ法によ
り,第一の下地層Crを20nm,第二の下地層CrB合金を30nm
形成し,続いてCoCrPt磁性層を25nm,10nmのカーボン保
護膜を連続して形成した。第一の下地層のCrは第二の下
地層にbcc(100)配向をとらせる配向制御の役割を果た
す。第二の下地層CrB合金にはCr−14.3at%Ti−5at%B
合金,Cr−14.3at%V−5at%B合金,Cr−14.3at%Mo−5
at%B合金を用いた。また,Bを添加しないCr−15at%Ti
合金,Cr−15at%V合金,Cr−15at%Mo合金を第二の下地
層に用いた媒体も作製し,比較例とした。
The film forming process of the recording medium used in this example is described below. The textured NiP / Al substrate was heated to 260 ° C by lamp heating, and then the first underlayer Cr was 20 nm and the second underlayer CrB alloy was 30 nm by DC sputtering.
After that, a CoCrPt magnetic layer was continuously formed with a 25 nm and 10 nm carbon protective film. Cr of the first underlayer plays a role of orientation control that causes the second underlayer to have a bcc (100) orientation. The second underlayer CrB alloy contains Cr-14.3 at% Ti-5 at% B
Alloy, Cr-14.3at% V-5at% B Alloy, Cr-14.3at% Mo-5
At% B alloy was used. In addition, Cr-15at% Ti without B addition
Alloys, Cr-15 at% V alloys, and Cr-15 at% Mo alloys were also prepared as media for the second underlayer and used as comparative examples.

潤滑剤を塗布したのち,上記磁気抵抗センサを用いた
磁気記憶装置に組み込み,実施例1と同一条件で記録再
生評価を行った。結果を表1に示す。本実施例の媒体を
用いた場合は,何れの場合も比較例に比べて,規格化媒
体ノイズは10%以上減少し,重ね書き特性は向上してい
る。このため,1平方インチ当たり2ギガビットの記録密
度に対し,良好な記録再生特性が得られた。
After applying the lubricant, it was incorporated into a magnetic memory device using the magnetoresistive sensor, and recording / reproducing evaluation was performed under the same conditions as in Example 1. The results are shown in Table 1. When the medium of the present example is used, the normalized medium noise is reduced by 10% or more and the overwriting characteristic is improved in any case as compared with the comparative example. Therefore, good recording and reproducing characteristics were obtained for a recording density of 2 gigabits per square inch.

また,本実施例媒体の中では,CrTiB下地層媒体が規格
化媒体ノイズが特に低く,CrVB下地層媒体が最も良好な
重ね書き特性を示した。
In addition, among the media of this example, the CrTiB underlayer medium had particularly low standardized medium noise, and the CrVB underlayer medium exhibited the best overwriting characteristics.

実施例4 実施例1と同様な磁気記憶装置において,磁気記録媒
体の下地層にCr−14.3at%Ti−5at%−B合金,Cr−14.3
at%Ti−5at%−C合金,Cr−14.3at%Ti−5at%−P合
金,及びCr−14.3at%Ti−5at%−Bi合金を用いた。
Example 4 In the same magnetic storage device as in Example 1, Cr-14.3 at% Ti-5 at% -B alloy, Cr-14.3 at the underlayer of the magnetic recording medium.
At% Ti-5at% -C alloy, Cr-14.3at% Ti-5at% -P alloy, and Cr-14.3at% Ti-5at% -Bi alloy were used.

NiP/Al基板を250℃に加熱した後,上記の各下地層を30n
m,CoCrPTa磁性層を20nm,カーボン保護膜を10nmと順次形
成した。潤滑材塗布後,実施例1と同一条件で記録再生
特性の評価を行った。また,下地層に30nmのCrTi合金を
用いた媒体を同一条件で作製,評価し,これを比較例と
した。
After heating the NiP / Al substrate to 250 ℃, apply 30n of each of the above underlayers.
The m, CoCrPTa magnetic layer was formed to 20 nm, and the carbon protective film was formed to 10 nm. After applying the lubricant, the recording / reproducing characteristics were evaluated under the same conditions as in Example 1. A medium using a 30 nm CrTi alloy for the underlayer was prepared and evaluated under the same conditions, and this was used as a comparative example.

本実施例の媒体の下地層は,何れもbcc構造で(100)
配向しており,磁性層もエピタキシャル成長により(1
1.0)配向となった。本実施例,及び比較例媒体の記録
再生特性を表2に示す。比較例に対し,本実施例の媒体
は何れも媒体ノイズが減少し,かつ重ね書き特性が向上
しており,1平方インチ当たり2ギガビットの記録密度に
対し,良好な記録再生特性であった。規格化媒体ノイズ
はCrTiB下地層,及びCrTiP下地層の媒体が特に低く,低
ノイズ化にはB,P添加が有効であることがわかる。また,
CrTiC下地層媒体は磁性層のhcp(11.0)配向が最も強
く,高い保磁力とS*が得られる。更にCrTiBi下地層媒
体は他の実施例媒体に比べて,耐食性が良好であった。
本実施例媒体のCSS試験を行ったところ,3万回のCSSを行
っても摩擦係数は0.3以下と良好な値を示した。
The underlayer of the medium of this embodiment has a bcc structure (100).
The magnetic layer is oriented (1
1.0) Orientation. Table 2 shows the recording / reproducing characteristics of the mediums of this example and the comparative example. As compared with the comparative example, the media of the present examples all had reduced medium noise and improved overwriting characteristics, and had good recording / reproducing characteristics for a recording density of 2 gigabits per square inch. The normalized media noise is particularly low in the media of CrTiB underlayer and CrTiP underlayer, and it is clear that adding B and P is effective for reducing noise. Also,
In the CrTiC underlayer medium, the hcp (11.0) orientation of the magnetic layer is the strongest, and high coercive force and S * are obtained. Further, the CrTiBi underlayer medium had better corrosion resistance than the other Examples.
When the CSS test was performed on the medium of this example, the friction coefficient was 0.3 or less, which was a good value even after CSS was performed 30,000 times.

実施例5 前記実施例1と同様の強化ガラス基板上にDCスパッタ
法により,第一の下地層Cr−13.5at%Ti−10at%−Bを
10nm形成した後,基板を200℃まで加熱し,第二の下地
層Cr−10at%Ti合金を30nm形成し,CoCrPt磁性層を25nm,
カーボン保護膜を10nmと連続して形成した。
Example 5 A first underlayer Cr-13.5 at% Ti-10 at% -B was formed on the same tempered glass substrate as in Example 1 by DC sputtering.
After forming 10 nm, the substrate is heated to 200 ℃, the second underlayer Cr-10at% Ti alloy 30nm is formed, CoCrPt magnetic layer 25nm,
A carbon protective film was continuously formed with a thickness of 10 nm.

X線回折の測定を行ったところ,回折パターンには下地
層のものと思われるbcc(200)ピークとCoCrPt合金層か
らのhcp(11.0)ピークのみがみられた。第一の下地層
のCr−13.5at%Ti−10at%−B合金と第二の下地層のCr
−at%10Ti合金は格子定数が極めて近いため,前記bcc
(200)ピークがどちらからのものであるかの判別は困
難である。そこで10nmのCrTiB単層膜を前記媒体の成膜
時と同一条件で形成し,X線回折の測定を行った。得られ
た回折パターンには明確なピークはみらなかったため,b
cc(200)ピークは第二の下地層のCrTi合金からのもの
であると思われる。これより,第一の下地層のCrTiB合
金はアモルファス構造,或いはそれに近い微細結晶構造
をとっており,その上に形成されたCrTi層に(100)配
向をとらせていることがわかる。このため,Co合金磁性
層がエピタキシャル成長して(11.0)配向をとってい
る。また,第一の下地層のCrTiB層は膜厚が30nm以上に
なると強くbcc(110)配向するため,第二の下地層のCr
Tiも(110)配向となり,CoCrPt合金層は(10.1)配向と
なる。(10.1)配向したCoCrPt層は(11.0)配向した場
合に比べ,磁化容易軸であるc軸の面内成分が減少する
ため,磁気特性が劣下するので好ましくない。
When the X-ray diffraction was measured, only the bcc (200) peak which seems to be that of the underlayer and the hcp (11.0) peak from the CoCrPt alloy layer were observed in the diffraction pattern. Cr-13.5at% Ti-10at% -B alloy of the first underlayer and Cr of the second underlayer
Since the lattice constant of -at% 10Ti alloy is very close,
It is difficult to determine which the (200) peak is from. Therefore, a 10 nm CrTiB single layer film was formed under the same conditions as when forming the medium, and the X-ray diffraction was measured. Since no clear peak was found in the obtained diffraction pattern, b
The cc (200) peak appears to be from the second underlayer CrTi alloy. From this, it is clear that the CrTiB alloy of the first underlayer has an amorphous structure or a fine crystal structure close to it, and the CrTi layer formed thereon has a (100) orientation. Therefore, the Co alloy magnetic layer grows epitaxially and has a (11.0) orientation. In addition, the CrTiB layer of the first underlayer has a strong bcc (110) orientation at a film thickness of 30 nm or more.
Ti also has a (110) orientation, and the CoCrPt alloy layer has a (10.1) orientation. The (10.1) -oriented CoCrPt layer is not preferable because the in-plane component of the c-axis, which is the easy axis of magnetization, is reduced as compared with the case of (11.0) orientation, and the magnetic properties are deteriorated.

第一の下地層膜厚が10nmの媒体の保磁力は2480エルス
テッドであった。これを実施例3と同様の磁気記憶装置
に組み込んで記録再生特性の評価を行ったところ,45dB
の重ね書き特性が得られた。また,内周から外周までの
ヘッドシーク試験5万回後のビットエラー数は10ビット
/面以下であり,MTBFで15万時間が達成できた。
The coercive force of the medium with the first underlayer film thickness of 10 nm was 2480 Oersted. When this was incorporated into a magnetic storage device similar to that of Example 3 and the recording / reproducing characteristics were evaluated, it was 45 dB.
The overwriting characteristics of were obtained. After the head seek test 50,000 times from the inner circumference to the outer circumference, the number of bit errors was 10 bits / surface or less, and the MTBF was 150,000 hours.

本実施例での成膜は全てDCスパッタ法により行った
が,RFスパッタ法,イオンビームスパッタ法,ECRスパッ
タ法等を用いても同様な効果が得られることは容易に予
想される。
Although the film formation in this embodiment was all performed by the DC sputtering method, it is easily expected that the same effect can be obtained by using the RF sputtering method, the ion beam sputtering method, the ECR sputtering method, or the like.

産業上の利用可能性 本発明の磁気記録媒体は,従来の磁気記録媒体に対
し,媒体ノイズが10〜20%低減され,更に重ね書き特性
が15dB程度向上する。この媒体と磁気抵抗効果型ヘッド
を組み合わせた磁気記憶装置では,高いS/Nと低いビッ
トエラーレートが得られ,1平方インチ当たり2ギガビッ
トの高い記録密度で15万時間以上の平均故障間隔が実現
できる。
INDUSTRIAL APPLICABILITY The magnetic recording medium of the present invention has a medium noise reduced by 10 to 20% as compared with the conventional magnetic recording medium, and the overwriting characteristic is further improved by about 15 dB. A magnetic storage device that combines this medium with a magnetoresistive head achieves high S / N and low bit error rate, and achieves an average failure interval of 150,000 hours or more at a high recording density of 2 gigabits per square inch. it can.

従って、本発明によれば、高密度な情報の記録再生が
可能で信頼性の高い磁気記憶装置の提供であり、磁気記
憶装置に対する大容量化の要求に応えることができる。
Therefore, according to the present invention, it is possible to provide a highly reliable magnetic storage device capable of recording and reproducing high-density information, and it is possible to meet the demand for larger capacity of the magnetic storage device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 晃 東京都小平市上水本町5―16―3―3 (72)発明者 棚橋 究 神奈川県藤沢市辻堂5977―1 日立シー サイド.ドミト (72)発明者 松田 好文 神奈川県小田原市国府津2278番地 第2 グリーンハイツ202 (72)発明者 山本 朋生 東京都八王子市子安町2―32 日立子安 台アパートD―303 (56)参考文献 特開 平7−37237(JP,A) 特開 平7−262546(JP,A) 特開 平7−307020(JP,A) 特開 平7−73441(JP,A) 特開 平7−73433(JP,A) 特開 平7−43427(JP,A) 特開 平6−215348(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/62 - 5/858 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Ishikawa 5-16-3-3, Kamimizumoto-cho, Kodaira-shi, Tokyo (72) Inventor Ken Tanabashi 5977-1, Tsujido, Fujisawa-shi, Kanagawa Hitachi Seaside. Domito (72) Inventor Yoshifumi Matsuda 2278, Kokuzu, Odawara, Kanagawa No. 2 Green Heights 202 (72) Inventor Tomio Yamamoto 2-32 Koyasu, Hachioji, Tokyo Hitachi Koyasudai D-303 (56) Reference Japanese Patent Laid-Open No. 7-37237 (JP, A) Japanese Patent Laid-Open No. 7-262546 (JP, A) Japanese Patent Laid-Open No. 7-307020 (JP, A) Japanese Patent Laid-Open No. 7-73441 (JP, A) Japanese Patent Laid-Open No. 7-73433 (JP , A) JP-A-7-43427 (JP, A) JP-A-6-215348 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G11B 5 / 62-5 / 858

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に単層または複数の下地層を介して
形成された磁性層を有する磁気記録媒体において、 前記単層の下地層または複数の下地層の少なくとも一層
がCrを主成分とし、Ti,Vからなる第1の群より選ばれた
少なくとも一種の元素を含有し、かつ、B,C,P,Biからな
る第2の群より選ばれた少なくとも一種の元素を含有す
る合金材料からなることを特徴とする磁気記録媒体。
1. A magnetic recording medium having a magnetic layer formed on a substrate through a single layer or a plurality of underlayers, wherein at least one of the single underlayer or the plurality of underlayers contains Cr as a main component. Alloy material containing at least one element selected from the first group consisting of B, C, P and Bi and containing at least one element selected from the second group consisting of B, C, P and Bi A magnetic recording medium comprising:
【請求項2】前記Crを主成分とした下地層が、実質的に
Cr,Ti,Bからなることを特徴とする請求項1に記載の磁
気記録媒体。
2. The underlayer containing Cr as a main component is substantially
The magnetic recording medium according to claim 1, comprising Cr, Ti, and B.
【請求項3】前記Crを主成分とした下地層に含有される
第2の群より選ばれた少なくとも一種の元素の濃度が、
1at%以上、20at%以下であることを特徴とする請求項
1に記載の磁気記録媒体。
3. The concentration of at least one element selected from the second group contained in the underlayer containing Cr as a main component,
The magnetic recording medium according to claim 1, wherein the content is 1 at% or more and 20 at% or less.
【請求項4】基板上に単層または複数の下地層を介して
形成された磁性層を有する磁気記録媒体と、これを記録
方向に駆動する駆動部と、記録部と再生部からなる磁気
ヘッドと、上記磁気ヘッドを上記磁気記録媒体に対して
相対運動させる手段と、上記磁気ヘッドの信号入力と該
磁気ヘッドからの出力信号再生を行うための記録再生信
号手段を有する磁気記憶装置において、 前記磁気ヘッドの再生部が磁気抵抗効果型磁気ヘッドで
構成され、かつ、前記磁気記録媒体の単層の下地層また
は複数の下地層の少なくとも一層がCrを主成分とし、T
i,Vからなる第1の群より選ばれた少なくとも一種の元
素を含有し、かつ、B,C,P,Biからなる第2の群より選ば
れた少なくとも一種の元素を含有する合金材料からなる
ことを特徴とする磁気記憶装置。
4. A magnetic recording medium having a magnetic layer formed on a substrate through a single layer or a plurality of underlayers, a drive section for driving the magnetic layer in a recording direction, and a magnetic head comprising a recording section and a reproducing section. A magnetic storage device having means for moving the magnetic head relative to the magnetic recording medium, and recording / reproducing signal means for performing signal input of the magnetic head and reproduction of an output signal from the magnetic head, The reproducing portion of the magnetic head is composed of a magnetoresistive effect magnetic head, and at least one of a single underlayer or a plurality of underlayers of the magnetic recording medium contains Cr as a main component, and T
From an alloy material containing at least one element selected from the first group consisting of i and V and containing at least one element selected from the second group consisting of B, C, P and Bi A magnetic storage device characterized by the following.
【請求項5】前記Crを主成分とした下地層が、実質的に
Cr,Ti,Bからなることを特徴とする請求項4に記載の磁
気記憶装置。
5. The underlayer containing Cr as a main component is substantially
The magnetic storage device according to claim 4, wherein the magnetic storage device comprises Cr, Ti, and B.
JP50778298A 1996-08-05 1996-08-05 Magnetic recording medium and magnetic storage device using the same Expired - Fee Related JP3429777B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/002198 WO1998006093A1 (en) 1996-05-20 1996-08-05 Magnetic recording medium and magnetic storage device using the medium

Publications (1)

Publication Number Publication Date
JP3429777B2 true JP3429777B2 (en) 2003-07-22

Family

ID=14153645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50778298A Expired - Fee Related JP3429777B2 (en) 1996-08-05 1996-08-05 Magnetic recording medium and magnetic storage device using the same

Country Status (1)

Country Link
JP (1) JP3429777B2 (en)

Similar Documents

Publication Publication Date Title
US7056604B2 (en) Magnetic recording media and magnetic recording system using the same
JP3429972B2 (en) Magnetic recording medium and magnetic storage device using the same
JPH1079113A (en) In-plane magnetic recording medium and magnetic storage device utilizing the same
JPH10233016A (en) Intra-surface magnetic recording medium and magnetic memory device formed by using the same
JP3764833B2 (en) Magnetic recording medium and magnetic storage device
JP2001344740A (en) Magnetic recording medium and magnetic storage device
JP2001184626A (en) Magnetic recording medium and magnetic memory device
JP3665221B2 (en) In-plane magnetic recording medium and magnetic storage device
JP3217012B2 (en) Magnetic recording media
EP0809238B1 (en) Magnetic recording media and magnetic recording system using the same
JP3716097B2 (en) Magnetic recording medium and magnetic storage device using the same
JP3429777B2 (en) Magnetic recording medium and magnetic storage device using the same
JP2000020936A (en) Inp-lane magnetic recording medium and magnetic storage device using the same
JP3340420B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2000067423A (en) Intra-surface magnetic recording medium and magnetic storage using the same
JP2009064501A (en) Magnetic recording medium and magnetic recording and playback apparatus
US7115329B1 (en) Magnetic recording medium and magnetic storage device
JP3721754B2 (en) Magnetic recording medium and magnetic storage device
JPH10320740A (en) Magnetic storage device and intrasurface magnetic recording medium
KR19980086372A (en) In-plane magnetic recording medium and magnetic memory device using the same
JP4283934B2 (en) Magnetic recording medium and magnetic storage device
JPH11175945A (en) Magnetic storage device and intrasurface magnetic recording medium
JPH10135039A (en) Magnetic recording medium and magnetic storage device
JP2000187825A (en) Magnetic recording medium and magnetic storage device
JP2001195721A (en) Magnetic storage device with magnetic recording medium

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees