JP2001195721A - Magnetic storage device with magnetic recording medium - Google Patents

Magnetic storage device with magnetic recording medium

Info

Publication number
JP2001195721A
JP2001195721A JP2000340390A JP2000340390A JP2001195721A JP 2001195721 A JP2001195721 A JP 2001195721A JP 2000340390 A JP2000340390 A JP 2000340390A JP 2000340390 A JP2000340390 A JP 2000340390A JP 2001195721 A JP2001195721 A JP 2001195721A
Authority
JP
Japan
Prior art keywords
magnetic
layer
particle size
recording
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000340390A
Other languages
Japanese (ja)
Inventor
Tetsuya Kanbe
哲也 神邊
Yoshio Takahashi
由夫 高橋
Akira Ishikawa
石川  晃
Ichiro Tamai
一郎 玉井
Yuzuru Hosoe
譲 細江
Yoshifumi Matsuda
好文 松田
Kiwamu Tanahashi
究 棚橋
Tomoo Yamamoto
朋生 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000340390A priority Critical patent/JP2001195721A/en
Publication of JP2001195721A publication Critical patent/JP2001195721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic storage device capable of high density information recording and reproduction and having high reliability. SOLUTION: The magnetic storage device has a magnetic recording medium, a magnetic head comprising a driving part which drives the medium in the recording direction, a recording part and a reproducing part, a means of moving the magnetic head relatively to the magnetic recording medium and a recording and reproducing signal processing means for inputting a signal in the magnetic head and reproducing a signal outputted from the magnetic head. The magnetic recording medium has a strtrcture with a magnetic layer formed on a substrate by way of a monolayer or multilayer underlayer and the magnetic layer comprises magnetic crystal particles having a columnar structure or non- crystalline magnetic particles. The average particle diameter of the magnetic particles and particle size dispersion standardized by the average particle diameter are <=16nm and <=0.5, respectively. The value Ku.V/kT given by dividing the product of the magnetic anisotropy constant Ku and volume V of the magnetic particles by the product of the Boltzmann's constant k and absolute temperature T is >=60 and the thickness of the magnetic layer is <2 times the average particle diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気記憶装置、具体
的には1平方インチ当たり2ギガビット以上の記録密度
を有する磁気記憶装置と、これを実現するための低ノイ
ズで、かつ熱ゆらぎに対して十分な安定性を有す薄膜磁
気記録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic storage device, and more particularly, to a magnetic storage device having a recording density of 2 gigabits per square inch or more, and a low noise and thermal fluctuation for realizing the same. And a thin film magnetic recording medium having sufficient stability.

【0002】[0002]

【従来の技術】磁気記憶装置に対する大容量化の要求
は、現在益々高まりつつある.従来の磁気ヘッドには磁
束の時間的変化に伴う電圧変化を利用した電磁誘導型磁
気ヘッドが用いられていた。これは一つのヘッドで記録
と再生の両方を行うものである。
2. Description of the Related Art A demand for a large capacity of a magnetic storage device is increasing at present. Conventional magnetic heads use an electromagnetic induction type magnetic head that utilizes a voltage change accompanying a temporal change in magnetic flux. This is to perform both recording and reproduction with one head.

【0003】これに対して近年、記録用と再生用のヘッ
ドを別にし、再生用ヘッドにより高感度な磁気抵抗効果
型ヘッドを利用した複合型ヘッドの採用が急速に進みつ
つある.磁気抵抗効果型ヘッドとは、ヘッド素子の電気
抵抗が媒体からの漏洩磁束の変化に伴って変化すること
を利用したものである.また、複数の磁性層を非磁性層
を介して積層したタイプの磁性層で生じる非常に大きな
磁気抵抗変化(巨大磁気抵抗効果、或いはスピンバルブ
効果)を利用した更に高感度なヘッドの開発も進みつつ
ある。この効果は非磁性層を介した複数の磁性層の磁化
の相対的方向が、媒体からの漏洩磁界により変化し、こ
れによって電気抵抗が変化する効果である。
On the other hand, in recent years, a composite head using a magnetoresistive head, which has a high sensitivity as a reproducing head, separately from a recording head and a reproducing head, is rapidly progressing. The magnetoresistive head utilizes the fact that the electrical resistance of the head element changes with the change of magnetic flux leakage from the medium. Further, the development of a more sensitive head utilizing an extremely large magnetoresistance change (giant magnetoresistance effect or spin valve effect) generated in a magnetic layer of a type in which a plurality of magnetic layers are stacked via a nonmagnetic layer has been advanced. It is getting. This effect is an effect in which the relative directions of the magnetizations of the plurality of magnetic layers via the non-magnetic layer change due to the leakage magnetic field from the medium, thereby changing the electric resistance.

【0004】高記録密度化には記録媒体の更なる低ノイ
ズ化が必要となる。媒体ノイズを低減するためには磁性
結晶粒間の交換相互作用の低減や、磁性結晶粒の微細化
が有効であることが計算機シミュレーションや、実験に
より示されている(J.Appl.Phys.、Vo
l.63(8)、 3248(1988)、J.App
l.Phys.、Vol.79(8)、 5339(1
996))。交換相互作用を低減させる具体的な手法と
しては、主に磁性層中の高Cr濃度化、磁性結晶粒の空
間的分離度の増大等が挙げられる。高Cr濃度化はより
多量のCrを結晶粒界に偏析させ、磁性結晶粒間の交換
相互作用を低減させるものである。しかし、同時に磁性
結晶粒内のCr濃度も増大するため、飽和磁束密度の低
下を招き、残留磁束密度Brと磁性層膜厚tの積である
Br×tの値を維持するために磁性層膜厚を増加させる
必要が生じる。しかし、結晶粒は膜厚増加によって肥大
化し、媒体ノイズを増加させるため、この手法には限界
がある。また、磁性結晶粒の分離度を増大させるには柱
状構造をとった各下地層結晶粒を先鋭化させる必要があ
る。そのためには下地層膜厚を増加させる必要がある
が、この場合もその上に形成された磁性結晶粒を肥大化
させることになる.よって、この手法にも限界がある。
[0004] To increase the recording density, it is necessary to further reduce the noise of the recording medium. Computer simulations and experiments have shown that the reduction of exchange interaction between magnetic crystal grains and the miniaturization of magnetic crystal grains are effective in reducing medium noise (J. Appl. Phys. Vo
l. 63 (8), 3248 (1988); App
l. Phys. Vol. 79 (8), 5339 (1
996)). Specific methods for reducing the exchange interaction mainly include increasing the Cr concentration in the magnetic layer and increasing the degree of spatial separation of magnetic crystal grains. Higher Cr concentration segregates a larger amount of Cr at the crystal grain boundaries and reduces the exchange interaction between magnetic crystal grains. However, at the same time, the Cr concentration in the magnetic crystal grains also increases, which causes a decrease in the saturation magnetic flux density. In order to maintain the value of Br × t, which is the product of the residual magnetic flux density Br and the magnetic layer thickness t, the magnetic layer film is formed. It is necessary to increase the thickness. However, this method has a limit because crystal grains increase in thickness due to an increase in film thickness and increase in medium noise. Further, in order to increase the degree of separation of the magnetic crystal grains, it is necessary to sharpen the crystal grains of each underlayer having a columnar structure. For this purpose, it is necessary to increase the thickness of the underlayer, but in this case also, the magnetic crystal grains formed thereon are enlarged. Therefore, there is a limit to this method.

【0005】また、特開平7−311929には磁性層
にSiO2等の酸化物を添加し、これを粒界偏析させる
ことにより結晶粒間の交換相互作用を低減させると同時
に結晶成長を抑制し、粒径微細化を図る方策が提案され
ている。しかし、絶縁物の添加はターゲットの抵抗値を
著しく増加させるため、膜作製はRFスパッタ法を用い
ざるを得ない。RFスパッタ法はDCスパッタ法に比
べ、コスト、安定性等の点において劣り、大量生産には
適さない。また、RFスパッタ法により作製された媒体
は、結晶配向の制御が困難なため、高い保磁力や、保磁
力角型比が得難いという問題がある。
In Japanese Patent Application Laid-Open No. Hei 7-31929, an oxide such as SiO2 is added to a magnetic layer and segregated at the grain boundary to reduce exchange interaction between crystal grains and to suppress crystal growth. Measures for reducing the particle size have been proposed. However, since the addition of an insulator significantly increases the resistance value of the target, the film must be formed by RF sputtering. The RF sputtering method is inferior to the DC sputtering method in cost, stability, and the like, and is not suitable for mass production. Further, the medium manufactured by the RF sputtering method has a problem that it is difficult to control the crystal orientation, and thus it is difficult to obtain a high coercive force and a coercive force squareness ratio.

【0006】一方、微細化された磁性結晶粒は熱ゆらぎ
の影響をより強く受けるため、記録された磁化の安定性
が著しく低下する。このため、時間と共に磁化反転の起
こる割合が大きくなり、長期間のデータ保存に対し、十
分な信頼性が確保できなくなる。更に微細化された結晶
粒は隣接結晶粒からの静磁気的相互作用をより強く受け
るため、媒体ノイズの増大を招く。従って、結晶粒はあ
る程度の大きさを保つ必要がある。
On the other hand, the fine magnetic crystal grains are more strongly affected by thermal fluctuations, so that the stability of recorded magnetization is significantly reduced. For this reason, the rate of occurrence of magnetization reversal increases with time, and sufficient reliability cannot be ensured for long-term data storage. Further, the refined crystal grains are more strongly affected by magnetostatic interaction from the adjacent crystal grains, which causes an increase in medium noise. Therefore, the crystal grains need to keep a certain size.

【0007】[0007]

【発明が解決しようとする課題】上記のように、高い記
録密度を実現するには低ノイズであるばかりでなく、熱
ゆらぎに対する十分な安定性を有した磁気記録媒体が必
要となる。
As described above, in order to achieve a high recording density, a magnetic recording medium having not only low noise but also sufficient stability against thermal fluctuation is required.

【0008】本発明の目的は磁性結晶の平均粒径、及び
粒径分散を適切な範囲内の値に制御することにより、低
ノイズであり、かつ熱ゆらぎに対して十分な安定性を有
す磁気記録媒体を提供し、更にこの磁気記録媒体と高感
度な磁気ヘッドを組み合わせることにより1平方インチ
当たり2ギガビット以上の記録密度を持った信頼性の高
い磁気記憶装置を提供することである。
[0008] An object of the present invention is to control the average grain size and the grain size dispersion of the magnetic crystal to values within appropriate ranges, thereby achieving low noise and having sufficient stability against thermal fluctuation. An object of the present invention is to provide a magnetic recording medium, and to provide a highly reliable magnetic storage device having a recording density of 2 gigabits per square inch or more by combining the magnetic recording medium with a highly sensitive magnetic head.

【0009】[0009]

【課題を解決するための手段】上記目的は、基板上に単
層、または多層下地を介して形成された磁性層を有す磁
気記録媒体において、該磁性層中の結晶粒の平均粒径<
d>を16nm以下とし、平均粒径で規格化した粒径分
散Δd/<d>(以下、規格化粒径分散と称す)を0.
5以下とすることにより達成される。ここで結晶粒径、
規格化粒径分散については以下の様に定義する。透過型
電子顕微鏡観察により得られた磁性層表面の格子像から
各結晶粒の面積を求め、これと同一面積の真円の直径を
見積もり、これを結晶粒径とする。このとき、複数の磁
性結晶粒が同一下地結晶粒上に異なる結晶方位をとって
成長した構造、即ちバイクリスタル構造がみられる場合
は、同一結晶方位をもつ磁性結晶を一つの結晶粒と数え
る。観察した結晶粒のうち、粒径がそれ以下である結晶
粒の面積の合計を、計測した全結晶粒の面積で規格化し
た値を積算面積比率とする。図1に本発明における媒体
の磁性結晶粒径と積算面積比率の関係(以後、積算面積
比率曲線と呼ぶ)を示した。本発明では、積算面積比率
が50%となるときの粒径を平均粒径<d>と定義し、
積算面積比率が75%となる粒径と、25%となる粒径
の差Ddを粒径分散幅と定義する.更に、Δdと前記平
均粒径の比Dd/<d>を規格化粒径分散と定義する。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a magnetic recording medium having a magnetic layer formed on a substrate with a single layer or a multi-layer underlayer, wherein the average grain size of crystal grains in the magnetic layer is smaller than
d> is set to 16 nm or less, and the particle size dispersion Δd / <d> (hereinafter, referred to as normalized particle size dispersion) standardized by the average particle size is set to 0.1.
It is achieved by setting it to 5 or less. Where the grain size,
The standardized particle size distribution is defined as follows. The area of each crystal grain is determined from the lattice image of the surface of the magnetic layer obtained by observation with a transmission electron microscope, and the diameter of a perfect circle having the same area is estimated, which is defined as the crystal grain size. At this time, when a structure in which a plurality of magnetic crystal grains are grown with different crystal orientations on the same base crystal grain, that is, a bicrystal structure is observed, a magnetic crystal having the same crystal orientation is counted as one crystal grain. Of the observed crystal grains, the value obtained by normalizing the total area of the crystal grains having a grain size equal to or smaller than the measured area of all the crystal grains is defined as an integrated area ratio. FIG. 1 shows the relationship between the magnetic crystal grain size of the medium and the integrated area ratio (hereinafter, referred to as an integrated area ratio curve) in the present invention. In the present invention, the particle size when the integrated area ratio becomes 50% is defined as an average particle size <d>,
The difference Dd between the particle size at which the integrated area ratio becomes 75% and the particle size at which the integrated area ratio becomes 25% is defined as the particle size dispersion width. Further, a ratio Dd / <d> between Δd and the average particle diameter is defined as a normalized particle diameter dispersion.

【0010】平均粒径が16nmより大きくなると20
0kFCI以上の高線記録密度で記録した場合、磁化遷
移領域の乱れ(不規則性)が大きくなり、媒体ノイズが
増大するので好ましくない。また、規格化粒径分散が
0.5以上になると極度に微細な結晶粒の数が増加し、
これらが熱ゆらぎの影響を強く受けるため、記録磁化の
減衰が著しくなり好ましくない。更に、このとき媒体ノ
イズも増大するので好ましくない。このように、単に磁
性結晶粒を微細化するのみではなく、均一化することに
より熱ゆらぎの影響を受け易い極度に微細な結晶粒を排
除することが、ノイズ低減のみならず、熱ゆらぎに対す
る安定性を確保する上で極めて重要である。実施例2に
示したように規格化粒径分散を0.4以下にすると、更
なる低ノイズ化と熱的安定性の向上が図られ、より好ま
しい。また、このような磁性結晶粒径の制御は、特に従
来、NiP/Al基板を用いた媒体に比べ、低ノイズ化
が困難であったガラス基板を用いた媒体に対して、極め
て有効なノイズ低減の手段となる。
When the average particle size is larger than 16 nm, 20
When recording is performed at a high linear recording density of 0 kFCI or more, the disorder (irregularity) of the magnetization transition region increases, and the medium noise increases, which is not preferable. Further, when the normalized particle size distribution is 0.5 or more, the number of extremely fine crystal grains increases,
Since these are strongly affected by thermal fluctuations, the recording magnetization greatly decreases, which is not preferable. Further, at this time, the medium noise also increases, which is not preferable. In this way, not only miniaturization of magnetic crystal grains but also elimination of extremely fine crystal grains that are susceptible to thermal fluctuations by uniformizing not only noise reduction but also stability against thermal fluctuations It is extremely important to ensure the performance. As shown in Example 2, when the normalized particle size distribution is set to 0.4 or less, further reduction in noise and improvement in thermal stability are achieved, which is more preferable. In addition, such control of the magnetic crystal grain size is extremely effective for noise reduction especially for a medium using a glass substrate, which has been difficult to reduce noise compared to a medium using a NiP / Al substrate. Means.

【0011】磁性層としてはCoCrPt、CoCrP
tTa、CoCrPtTi、CoCrTa、CoNiC
r等、Coを主成分とし、かつCrを含有する合金を用
いることができるが、高い保磁力を得るためにはPtを
含むCo合金を用いることが好ましい。磁性結晶粒のも
つ磁気異方性エネルギーKuと体積Vとの積Ku・V
を、ボルツマン定数kと絶対温度Tとの積で除した値K
u・V/kTを60以上とすることにより、熱ゆらぎの影
響を低減させることができる.Ku・V/kTがこれ以下
となると熱ゆらぎの影響により、磁化反転が起こる確率
が急激に増加するため、記録磁化の減衰が著しくなり、
好ましくない。また、特に磁性層の粒径が10nm以下
となる媒体には、磁性層に高Pt濃度合金、或いは、S
mCo、FeSmN等の希土類元素を含む合金等、高K
u材料を用いることが望ましい。磁性層の膜厚は平均粒
径の2.5倍以下であることが好ましい。膜厚がこれ以
上になると膜面に対して垂直方向の形状磁気異方性が増
大し、膜面内方向の保磁力が減少するため、好ましくな
い。
As the magnetic layer, CoCrPt, CoCrP
tTa, CoCrPtTi, CoCrTa, CoNiC
An alloy containing Co as a main component and containing Cr, such as r, can be used. However, in order to obtain a high coercive force, a Co alloy containing Pt is preferably used. The product Ku · V of magnetic anisotropy energy Ku of magnetic crystal grains and volume V
Divided by the product of Boltzmann's constant k and absolute temperature T, K
By setting u · V / kT to 60 or more, the influence of thermal fluctuation can be reduced. When Ku · V / kT is less than this, the probability of magnetization reversal sharply increases due to the influence of thermal fluctuations, so that the attenuation of recording magnetization becomes remarkable,
Not preferred. In particular, for a medium in which the particle size of the magnetic layer is 10 nm or less, a high Pt concentration alloy or S
alloys containing rare earth elements such as mCo, FeSmN, etc.
It is desirable to use a u material. The thickness of the magnetic layer is preferably not more than 2.5 times the average particle size. When the film thickness is more than this, the shape magnetic anisotropy in the direction perpendicular to the film surface increases, and the coercive force in the film surface direction decreases, which is not preferable.

【0012】磁性層の磁気的な特性としては、記録方向
に磁界を印加して測定した保磁力を2kOe以上とし、
残留磁束密度Brと膜厚tの積Br×Tを40ガウス・ミ
クロン以上、140ガウス・ミクロン以下とすると、1
平方インチ当たり2ギガビット以上の記録密度領域にお
いて、良好な記録再生特性が得られるので好ましい。保
磁力が2kOeよりも小さくなると、高記録密度(20
0kFCI以上)での出力が小さくなり好ましくない。
また、Br×Tが140ガウス・ミクロンより大きくな
ると分解能が低下し、40ガウス・ミクロンよりも小さ
くなると再生出力が小さくなり好ましくない。
The magnetic properties of the magnetic layer are as follows: a coercive force measured by applying a magnetic field in the recording direction is 2 kOe or more;
If the product Br × T of the residual magnetic flux density Br and the film thickness t is 40 Gauss / micron or more and 140 Gauss / micron or less, 1
It is preferable because good recording / reproducing characteristics can be obtained in a recording density region of 2 gigabits per square inch or more. When the coercive force is smaller than 2 kOe, a high recording density (20
(0 kFCI or more), which is not preferable because the output becomes small.
Further, when Br × T is larger than 140 Gauss / micron, the resolution is reduced, and when it is smaller than 40 Gauss / micron, the reproduction output is undesirably reduced.

【0013】更に、磁性層の保護層としてカーボンを厚
さ5nm〜20nm形成し、さらに吸着性のパーフルオ
ロアルキルポリエーテル等の潤滑層を厚さ2nm〜10
nm設けることにより信頼性が高く、高密度記録が可能
な磁気記録媒体が得られる。また、保護層として水素を
添加したカーボン膜、或いは、炭化シリコン、炭化タン
グステン、(W−Mo)−C、(Zr−Nb)−N等の
化合物から成る膜、或いは、これらの化合物とカーボン
の混合膜を用いると耐摺動性、耐食性を向上出来るので
好ましい。また、これらの保護層を形成した後、微細マ
スク等を用いてプラズマエッチングすることで表面に微
細な凹凸を形成したり、化合物、混合物のターゲットを
用いて保護層表面に異相突起を生じせしめたり、或いは
熱処理によって表面に凹凸を形成すと、ヘッドと媒体と
の接触面積を低減でき、CSS動作時にヘッドが媒体表
面に粘着する問題が回避されるので好ましい。
Further, carbon is formed to a thickness of 5 nm to 20 nm as a protective layer for the magnetic layer, and a lubricating layer made of adsorbable perfluoroalkyl polyether is formed to a thickness of 2 nm to 10 nm.
By providing nm, a magnetic recording medium with high reliability and capable of high-density recording can be obtained. Further, a carbon film to which hydrogen is added as a protective layer, a film made of silicon carbide, tungsten carbide, a compound such as (W—Mo) —C, (Zr—Nb) —N, or a film of these compounds and carbon It is preferable to use a mixed film because sliding resistance and corrosion resistance can be improved. In addition, after forming these protective layers, plasma etching is performed using a fine mask or the like to form fine irregularities on the surface, or a heterogeneous projection is formed on the surface of the protective layer using a compound or mixture target. Alternatively, it is preferable to form irregularities on the surface by heat treatment because the contact area between the head and the medium can be reduced, and the problem of the head sticking to the medium surface during CSS operation is preferable.

【0014】上記の磁気記録媒体と、これを記録方向に
駆動する駆動部と、記録部と再生部から成る磁気ヘッド
と、上記磁気ヘッドを上記磁気記録媒体に対して相対運
動させる手段と、上記磁気ヘッドへの信号入力と該磁気
ヘッドからの出力信号再生を行うための記録再生信号処
理手段を有する磁気記憶装置において、前記磁気ヘッド
の再生部を磁気抵抗効果型磁気ヘッドで構成することに
より、高記録密度における十分な信号強度を得ることが
でき、1平方インチ当たり2ギガビット以上の記録密度
を持った信頼性の高い磁気記憶装置を実現することが出
来る。また、本発明の磁気記録装置で用いている磁気抵
抗効果型磁気ヘッドの磁気抵抗センサ部を挟む2枚のシ
ールド層の間隔(シールド間隔)は0.30μm以下が
好ましい。これは、シールド間隔が0.30μm以上に
なると分解能が低下し、信号の位相ジッターが大きくな
ってしまうためである。更に、磁気抵抗効果型磁気ヘッ
ドを、互いの磁化方向が外部磁界によって相対的に変化
することによって大きな抵抗変化を生じる複数の導電性
磁性層と、その導電性磁性層の間に配置された導電性非
磁性層を含む磁気抵抗センサによって構成し、巨大磁気
抵抗効果、或いはスピン・バルブ効果を利用したものと
することにより、信号強度をさらに高めることができ、
1平方インチ当たり4ギガビット以上の記録密度を持っ
た信頼性の高い磁気記憶装置の実現が可能となる。
The magnetic recording medium, a drive unit for driving the magnetic recording medium in a recording direction, a magnetic head including a recording unit and a reproducing unit, a unit for moving the magnetic head relative to the magnetic recording medium, In a magnetic storage device having recording / reproduction signal processing means for performing signal input to a magnetic head and reproduction of an output signal from the magnetic head, by configuring a reproduction unit of the magnetic head by a magnetoresistive magnetic head, A sufficient signal intensity at a high recording density can be obtained, and a highly reliable magnetic storage device having a recording density of 2 gigabits per square inch or more can be realized. Further, the distance between two shield layers (shield distance) sandwiching the magnetoresistive sensor portion of the magnetoresistive head used in the magnetic recording apparatus of the present invention is preferably 0.30 μm or less. This is because when the shield interval is 0.30 μm or more, the resolution is reduced and the phase jitter of the signal is increased. Further, the magneto-resistance effect type magnetic head is composed of a plurality of conductive magnetic layers that generate a large resistance change due to a relative change in their magnetization directions due to an external magnetic field, and a conductive layer disposed between the conductive magnetic layers. By using a magnetoresistive sensor including a conductive nonmagnetic layer and utilizing the giant magnetoresistance effect or the spin valve effect, the signal strength can be further increased,
A highly reliable magnetic storage device having a recording density of 4 gigabits per square inch or more can be realized.

【0015】[0015]

【発明の実施の形態】<実施例1>本発明の実施例を図
2、図3、図4を用いて説明する.本実施例の磁気記憶
装置の平面摸式図、断面摸式図を図2(a)、及び図2
(b)に示す。この装置は磁気ヘッド1、及びその駆動
部2と、該磁気ヘッドの記録再生信号処理手段3と磁気
記録媒体4とこれを回転させる駆動部5とからなる周知
の構造を持つ磁気記憶装置である。
<Embodiment 1> An embodiment of the present invention will be described with reference to FIGS. 2, 3 and 4. FIG. FIGS. 2A and 2A are a schematic plan view and a schematic sectional view of the magnetic storage device of the present embodiment.
(B). This device is a magnetic storage device having a known structure including a magnetic head 1, a drive unit 2 for the magnetic head, a recording / reproducing signal processing means 3 for the magnetic head, a magnetic recording medium 4, and a drive unit 5 for rotating the magnetic head. .

【0016】上記磁気ヘッドの構造を図3に示す。この
磁気ヘッドは基体6上に形成された記録用の電磁誘導型
磁気ヘッドと再生用の磁気抵抗効果型磁気ヘッドを併せ
持つ複合型ヘッドである。前記記録用ヘッドはコイル7
を挟む上部記録磁極8と下部記録磁極兼上部シールド層
9からなり、記録磁極間のギャップ層厚は0.3μmと
した。
FIG. 3 shows the structure of the magnetic head. This magnetic head is a composite type head having both an electromagnetic induction type magnetic head for recording and a magnetoresistive magnetic head for reproduction formed on the base 6. The recording head is a coil 7
The upper recording magnetic pole 8 and the lower recording magnetic pole / upper shield layer 9 sandwiching the magnetic recording medium and the gap layer thickness between the recording magnetic poles was 0.3 μm.

【0017】また、コイルには厚さ3μmのCuを用い
た。前記再生用ヘッドは磁気抵抗センサ10とその両端
の電極パタン11からなり、磁気抵抗センサは共に1μ
m厚の下部記録磁極兼上部シールド層と下部シールド層
12で挟まれ、該シールド層間距離は0.25μmであ
る。
Further, Cu having a thickness of 3 μm was used for the coil. The reproducing head comprises a magnetoresistive sensor 10 and electrode patterns 11 at both ends thereof.
It is sandwiched between a lower recording magnetic pole / upper shield layer having a thickness of m and the lower shield layer 12, and the distance between the shield layers is 0.25 μm.

【0018】図4に磁気抵抗センサの断面構造を示す。
磁気センサの信号検出領域13は、酸化Alのギャップ層
14上に横バイアス層15、分離層16、磁気抵抗強磁
性層17が順次形成された部分からなる。磁気抵抗強磁
性層には、20nmのNiFe合金を用いた。横バイア
ス層には25nmのNiFeNbを用いたが、NiFe
Rh等の比較的電気抵抗が高く、軟磁気特性の良好な強
磁性合金であれば良い。横バイアス層は磁気抵抗強磁性
層を流れるセンス電流がつくる磁界によって、該電流と
垂直な膜面内方向(横方向)に磁化され、磁気抵抗強磁
性層に横方向のバイアス磁界を印加する。これによっ
て、媒体からの漏洩磁界に対して線形な再生出力を示す
磁気センサが得られる。
FIG. 4 shows a sectional structure of the magnetoresistive sensor.
The signal detection region 13 of the magnetic sensor includes a portion in which a lateral bias layer 15, a separation layer 16, and a magnetoresistive ferromagnetic layer 17 are sequentially formed on a gap layer 14 of Al oxide. A 20 nm NiFe alloy was used for the magnetoresistive ferromagnetic layer. NiFeNb of 25 nm was used for the lateral bias layer.
Any ferromagnetic alloy such as Rh or the like having a relatively high electric resistance and good soft magnetic properties may be used. The lateral bias layer is magnetized in an in-plane direction (lateral direction) perpendicular to the current by a magnetic field generated by a sense current flowing through the magnetoresistive ferromagnetic layer, and applies a lateral bias magnetic field to the magnetoresistive ferromagnetic layer. As a result, a magnetic sensor showing a linear reproduction output with respect to the leakage magnetic field from the medium can be obtained.

【0019】磁気抵抗強磁性層からのセンス電流の分流
を防ぐ分離層には、比較的電気抵抗が高いTaを用い、
膜厚は5nmとした。
The separation layer for preventing the shunt of the sense current from the magnetoresistive ferromagnetic layer is made of Ta having a relatively high electric resistance.
The film thickness was 5 nm.

【0020】信号検出領域の両端にはテーパー形状に加
工されたテーパー部18がある.テーパー部は、磁気抵
抗強磁性層を単磁区化するための永久磁石層19と、そ
の上に形成された信号を取り出すための一対の電極11
からなる。永久磁石層は保磁力が大きく、磁化方向が容
易に変化しないことが必要であり、CoCr、CoCr
Pt合金等が用いられる。
At both ends of the signal detection area, there are tapered portions 18 formed into a tapered shape. The tapered portion includes a permanent magnet layer 19 for converting the magnetoresistive ferromagnetic layer into a single magnetic domain, and a pair of electrodes 11 formed thereon for extracting a signal.
Consists of The permanent magnet layer needs to have a large coercive force and the magnetization direction does not easily change.
A Pt alloy or the like is used.

【0021】図5に本実施例の磁気記録媒体の層構成を
示す。基板20にはNiPメッキをコーティングした超
平滑Al合金基板(以下、Al基板と記す)を用いた。ラン
プヒーターにより加熱したのち、DCマグネトロンスパ
ッタ法によりCr−20at%Ti合金下地層21を3
〜20nm、Co−21at%Cr−10at%Pt合
金磁性層22を20nm、カーボン保護膜23を10n
mと順次形成した。スパッタガスにはArを用い、各層
の成膜時のガス圧は5〜20mTorrまで変化させ
た.また、潤滑材24にはパーフルオロアルキルポリエ
ーテル系の材料をフルオロカーボン材料で希釈したもの
を用いた。
FIG. 5 shows the layer structure of the magnetic recording medium of this embodiment. As the substrate 20, a super smooth Al alloy substrate coated with NiP plating (hereinafter referred to as Al substrate) was used. After being heated by a lamp heater, the Cr-20 at% Ti alloy underlayer 21 is removed by DC magnetron sputtering.
-20 at%, Co-21 at% Cr-10 at% Pt alloy magnetic layer 22 at 20 nm, and carbon protective film 23 at 10 n
m. Ar was used as a sputtering gas, and the gas pressure at the time of forming each layer was changed from 5 to 20 mTorr. As the lubricant 24, a material obtained by diluting a perfluoroalkyl polyether-based material with a fluorocarbon material was used.

【0022】[0022]

【表1】 [Table 1]

【0023】表1に上記各条件で作成した媒体の保磁
力、規格化媒体ノイズ、及びKu・V/kTの値を示す。
ここで規格化媒体ノイズkNdとは、線記録密度220
kFCI、ヘッド浮上量50nmの条件で測定した媒体
ノイズを孤立再生波とトラック幅の平方根で規格化した
値である。また、Ku・V/kTは室温における回転履歴
損失の測定より求めた異方性磁界Hkと、飽和磁化Msか
らKu=Hk・Ms/2として求めた異方性定数Kuと、磁性
結晶粒の体積Vを用いて算出した値である。Vは平均粒
径と磁性層膜厚から求めた値である。k、Tはそれぞれ
ボルツマン定数、絶対温度である。
Table 1 shows the values of coercive force, normalized medium noise, and Ku · V / kT of the medium prepared under the above conditions.
Here, the normalized medium noise kNd is a linear recording density 220
This is a value obtained by standardizing the medium noise measured under the conditions of kFCI and head flying height of 50 nm by the solitary reproduction wave and the square root of the track width. Ku · V / kT is an anisotropic magnetic field Hk obtained from the measurement of rotational history loss at room temperature, an anisotropic constant Ku obtained from the saturation magnetization Ms as Ku = Hk · Ms / 2, This is a value calculated using the volume V. V is a value obtained from the average particle size and the thickness of the magnetic layer. k and T are Boltzmann's constant and absolute temperature, respectively.

【0024】これらの媒体の磁性層の透過型電子顕微鏡
観察を行ったところ、磁性層は柱状構造をとっていた。
また、磁性結晶粒間には明瞭な偏析相は認められなかっ
た。
When the magnetic layers of these media were observed with a transmission electron microscope, the magnetic layers had a columnar structure.
No clear segregation phase was observed between the magnetic crystal grains.

【0025】得られたTEM像(格子像)から前述した
手法により求めた平均粒径、規格化粒径分散の値を図6
に示す。何れの媒体も規格化粒径分散は0.5以下であ
り、平均粒径に対する磁性層膜厚の比は2以下であった
表1に示すように、本実施例媒体B〜Dは何れも規格化
媒体ノイズは0.018以下、保磁力は2kOe以上と
1平方インチ当たり2ギガビット以上の高記録密度の実
現に対して十分な特性を示している。これに対し、平均
粒径が16nm以上の媒体Aはノイズが著しく高い。前
述のように本実施例媒体では何れの媒体にも明瞭な粒界
相はみられず、また、各媒体のX線回折パターンは、何
れも磁性層からの(11.0)回折ピークと下地層から
の(200)回折ピークのみを示しており、結晶配向に
大きな差はみられなかった。このことから、媒体Aでノ
イズが高いのは結晶粒径の影響であると考えられる。故
に1平方インチ当たり2ギガビット以上の高記録密度を
実現するには、平均粒径が16nm以下である必要があ
ることがわかる。
FIG. 6 shows the average particle size and the normalized particle size dispersion obtained from the obtained TEM image (lattice image) by the above-mentioned method.
Shown in In all of the media B to D of the present examples, as shown in Table 1, the normalized particle size dispersion was 0.5 or less, and the ratio of the thickness of the magnetic layer to the average particle size was 2 or less. The normalized medium noise is 0.018 or less, and the coercive force is 2 kOe or more, which is sufficient for realizing a high recording density of 2 gigabits per square inch or more. On the other hand, the medium A having an average particle diameter of 16 nm or more has a remarkably high noise. As described above, in the media of this example, no clear grain boundary phase was observed in any of the media, and the X-ray diffraction patterns of each of the media showed a (11.0) diffraction peak from the magnetic layer and a lower Only the (200) diffraction peak from the formation was shown, and no significant difference was found in the crystal orientation. From this, it is considered that the high noise in the medium A is due to the influence of the crystal grain size. Therefore, in order to realize a high recording density of 2 gigabits per square inch or more, it is understood that the average particle size needs to be 16 nm or less.

【0026】また、高記録密度化におけるもう一つの課
題である熱ゆらぎの影響について検討するため、再生出
力の時間に対する減衰率の測定を行った。結果を図7に
示す。ここで再生出力の減衰率とは室温大気中で一定時
間放置した後に測定した再生出力S1と記録直後に測定
した再生出力S0の差ΔS(=S1−S0)をS0で規
格化した値ΔS/S0であり、熱ゆらぎに対する媒体の
安定性を示す値と考えられる。このときの線記録密度は
220kFCIとした。本実施例媒体A〜Dは何れも9
6時間後の減衰率は2%以内であった。この場合、10
年後(8.76×104時間後)まで外挿したときの減
衰率は5%以下と見積もられ、長期間の記録に十分適し
ていると考えられる。これに対し、Ku・V/kTが60
未満の媒体Eは出力の減衰率が大きく、熱的安定性が不
十分であることを示している。よって、十分な熱的安定
性を得るにはKu・V/kTが60以上である必要がある
ことがわかる。
Further, in order to examine the effect of thermal fluctuation, which is another problem in increasing the recording density, a measurement was made of the decay rate of the reproduction output with respect to time. FIG. 7 shows the results. Here, the decay rate of the reproduction output is a value ΔS / obtained by normalizing the difference ΔS (= S1−S0) between the reproduction output S1 measured after standing for a certain period of time in the air at room temperature and the reproduction output S0 measured immediately after recording with S0. S0, which is considered to be a value indicating the stability of the medium with respect to thermal fluctuation. The linear recording density at this time was 220 kFCI. Each of the mediums A to D in the present embodiment is 9
The decay rate after 6 hours was within 2%. In this case, 10
The decay rate when extrapolated until the year after (8.76 × 104 hours) is estimated to be 5% or less, and is considered to be sufficiently suitable for long-term recording. On the other hand, Ku · V / kT is 60
The medium E of less than the above has a large output decay rate, indicating that the thermal stability is insufficient. Therefore, it is understood that Ku · V / kT needs to be 60 or more in order to obtain sufficient thermal stability.

【0027】本実施例媒体を、上述のヘッドと共に組み
込んだ磁気記憶装置においてCSS試験(コンタクト・
スタート・ストップ試験)を行ったところ、3万回のC
SSを行っても摩擦係数は0.3以下であった。また、
媒体の内周から外周なでのヘッドシーク試験5万回後の
ビットエラー数は10ビット/面以下であり、平均故障
間隔で30万時間以上が達成できた。 <実施例2>第一の下地層に10nmのCr、第二の下
地層に5〜20nmの(Cr−15at%Ti)−xa
t%B合金を使用し、B濃度xを0〜10at%まで変
化させた磁気記録媒体を作製した。磁性層には18nm
のCo−18at%Cr−14at%Pt−2at%T
a合金を用いた。
In a magnetic storage device incorporating the medium of the present embodiment together with the above-described head, a CSS test (contact and
Start-stop test), 30,000 times C
Even when SS was performed, the coefficient of friction was 0.3 or less. Also,
The number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference of the medium was 10 bits / plane or less, and an average failure interval of 300,000 hours or more was achieved. <Embodiment 2> 10 nm Cr for the first underlayer and 5-20 nm (Cr-15at% Ti) -xa for the second underlayer.
Using a t% B alloy, a magnetic recording medium was manufactured in which the B concentration x was changed from 0 to 10 at%. 18 nm for the magnetic layer
Co-18at% Cr-14at% Pt-2at% T
a alloy was used.

【0028】各媒体の磁気特性を表2に示す。Table 2 shows the magnetic characteristics of each medium.

【0029】[0029]

【表2】 [Table 2]

【0030】ここで規格化媒体ノイズ、再生出力の減衰
率は実施例1と同様の条件で測定したものであり、減衰
率は96時間後の値である。TEM像(格子像)より平
均粒径、規格化粒径分散を求めた結果、図8に示すよう
に何れの媒体も平均粒径は16nm以下であり、平均粒
径に対する磁性層膜厚の比は2以下であった。規格化粒
径分散が0.5以上の媒体B、媒体Dは平均粒径がKu・
V/kT>60となる領域にあるにも関わらず、規格化
媒体ノイズが著しく高い。また、これらの媒体は出力の
減衰率もそれぞれ−4.2%、−5.6%と大きい。TE
M像では何れの媒体にも明瞭な粒界相は認められず、各
媒体の偏析状態に大きな差はないと思われる.また、X
線回折の結果、何れの媒体も第一、及び第二の下地層か
らは体心立方構造の(200)回折ピークのみがみら
れ、磁性層から六方稠密構造の(11.0)回折ピーク
のみがみられた。このように本実施例媒体の偏析状態、
結晶配向には大きな差はないため、前述の磁気特性の違
いは主に磁性結晶粒の均一性に起因していると思われ
る。よって、1平方インチ当たり2ギガビット以上の高
密度記録に対して十分な磁気特性と熱安定性を得るに
は、規格化粒径分散が0.5以下の均一な媒体を作製す
る必要があることがわかる。また、規格化粒径分散が
0.4以下である媒体Eは、媒体Fに対して平均粒径は
ほぼ同程度であるにも関わらず、著しく低ノイズであ
り、また出力の減衰率も低い.これより、規格化粒径分
散を0.4以下まで低減させることは、更なる低ノイズ
化、及び熱的安定性の向上に対して極めて効果的である
ことがわかる。
Here, the normalized medium noise and the decay rate of the reproduction output are measured under the same conditions as in the first embodiment, and the decay rate is a value after 96 hours. As a result of obtaining the average particle size and the normalized particle size dispersion from the TEM image (lattice image), as shown in FIG. 8, the average particle size was 16 nm or less for all the media, and the ratio of the thickness of the magnetic layer to the average particle size was shown. Was 2 or less. Media B and D having a normalized particle size dispersion of 0.5 or more have an average particle size of Ku ·
Despite being in the region where V / kT> 60, the normalized medium noise is extremely high. These media also have large output attenuation rates of -4.2% and -5.6%, respectively. TE
In the M images, no clear grain boundary phase was observed in any of the media, and it is considered that there is no significant difference in the segregation state of each medium. Also, X
As a result of the line diffraction, in each medium, only the (200) diffraction peak of the body-centered cubic structure was observed from the first and second underlayers, and only the (11.0) diffraction peak of the hexagonal dense structure was observed from the magnetic layer. Was seen. Thus, the segregation state of the medium of the present embodiment,
Since there is no significant difference in the crystal orientation, it is considered that the difference in the magnetic properties described above is mainly caused by the uniformity of the magnetic crystal grains. Therefore, in order to obtain sufficient magnetic properties and thermal stability for high-density recording of 2 gigabits per square inch or more, it is necessary to produce a uniform medium having a normalized particle size distribution of 0.5 or less. I understand. Further, the medium E having a normalized particle size dispersion of 0.4 or less has extremely low noise and a low output decay rate although the average particle size is almost the same as that of the medium F. . From this, it can be seen that reducing the normalized particle size dispersion to 0.4 or less is extremely effective for further reducing noise and improving thermal stability.

【0031】尚、本実施例では膜形成は全てDCスパッ
タ法により行ったが、その他、イオンビームスパッタ
法、ECRスパッタ法等でも同様な効果が得られる。
In this embodiment, all the films are formed by the DC sputtering method, but the same effect can be obtained by other methods such as the ion beam sputtering method and the ECR sputtering method.

【0032】<実施例3>実施例1と同様の構成を持つ
磁気記憶装置において、磁性層にFe−Sm−N合金を
用いた磁気記録媒体を作製した。
<Embodiment 3> In a magnetic storage device having the same configuration as in Embodiment 1, a magnetic recording medium using a Fe-Sm-N alloy for the magnetic layer was manufactured.

【0033】化学強化されたソーダライムガラス基板上
にCrB下地層を10nm形成し、B濃度を0〜10a
t%まで変化させた。ランプヒーターにより、基板を3
00℃まで加熱したのち、12nmのFeSmN合金か
らなる磁性層、カーボン保護膜と順次形成した。磁性タ
ーゲットにはFe−87at%Sm−2at%N合金を
用いた。スパッタガスにはArに3%の窒素を添加した
混合ガスを用い、ガス圧は5〜20mTorrとした。
A CrB underlayer is formed to a thickness of 10 nm on a chemically strengthened soda lime glass substrate, and the B concentration is set to 0 to 10 a.
t%. The substrate is 3
After heating to 00 ° C., a magnetic layer of 12 nm FeSmN alloy and a carbon protective film were sequentially formed. An Fe-87 at% Sm-2 at% N alloy was used as the magnetic target. As a sputtering gas, a mixed gas obtained by adding 3% of nitrogen to Ar was used, and the gas pressure was 5 to 20 mTorr.

【0034】TEM観察の結果、各媒体の磁性層の構造
は実施例1と同様の柱状構造をとっていたが、磁性粒子
は非晶質であり、これを結晶質の偏析相が取り囲んだ構
造であることがわかった。
As a result of TEM observation, the structure of the magnetic layer of each medium had a columnar structure similar to that of Example 1. However, the magnetic particles were amorphous, and this structure was surrounded by a crystalline segregation phase. It turned out to be.

【0035】各媒体の磁気特性を表3に、また、実施例
1と同様な手法で見積もった非晶質の磁性粒子の平均粒
径と規格化粒径分散を図9に示す。
Table 3 shows the magnetic characteristics of each medium, and FIG. 9 shows the average particle size and normalized particle size distribution of the amorphous magnetic particles estimated by the same method as in Example 1.

【0036】[0036]

【表3】 [Table 3]

【0037】これらの媒体は全て平均粒径16nm以
下、規格化粒径分散0.5以下で、平均粒径に対する磁
性層膜厚は2以下である。磁性層に結晶磁気異方性の高
い希土類合金を用いているため、実施例1、2の媒体に
比べ、より微細な粒径でも60以上のKu・V/kTが得
られている。Ku・V/kTが60以上である媒体A〜C
は2kOe以上の高い保磁力と、0.018以下の低い
規格化媒体ノイズを有し、且つ96時間後の減衰率は2
%以下と1平方インチ当たり2ギガビット以上の高記録
密度の実現に対して十分な特性を示している。但し、媒
体DはKu・V/kTは56と低いため、出力の減衰率が
大きく、熱的安定性が劣っている。ここでもやはり熱ゆ
らぎに対する十分な安定性を得るにはKu・V/kTは6
0以上である必要があることが示されている。
All of these media have an average particle size of 16 nm or less, a standardized particle size dispersion of 0.5 or less, and a magnetic layer thickness of 2 or less with respect to the average particle size. Since a rare earth alloy having high crystal magnetic anisotropy is used for the magnetic layer, a Ku · V / kT of 60 or more is obtained even with a finer grain size than the media of Examples 1 and 2. Media A to C having Ku · V / kT of 60 or more
Has a high coercive force of 2 kOe or more, a low normalized medium noise of 0.018 or less, and an attenuation rate after 96 hours is 2
%, And sufficient characteristics for realizing a high recording density of 2 gigabits per square inch or more. However, since the medium D has a low Ku · V / kT of 56, the output attenuation rate is large and the thermal stability is poor. Again, Ku · V / kT is 6 in order to obtain sufficient stability against thermal fluctuation.
It is shown that it needs to be 0 or more.

【0038】本実施例の磁気記憶装置を用い、ヘッド浮
上量30nm、線記録密度196kBPI、トラック密
度10.5kTPIの条件で記録再生特性を評価したと
ころ、1.6の装置S/Nが得られた。また、磁気ヘッ
ドへの入力信号を8−9符号変調処理して出力信号に最
尤復号処理を施すことにより、1平方インチ当たり2ギ
ガビットの情報を記録再生することができた。しかも、
内周から外周までのヘッドシーク試験5万回後のビット
エラー数は10ビット/面以下であり、平均故障間隔で
20万時間が達成できた。
When the recording / reproducing characteristics were evaluated using the magnetic storage device of this embodiment under the conditions of a head flying height of 30 nm, a linear recording density of 196 kBPI, and a track density of 10.5 kTPI, an apparatus S / N of 1.6 was obtained. Was. Further, by performing 8-9 code modulation processing on the input signal to the magnetic head and performing maximum likelihood decoding processing on the output signal, information of 2 gigabits per square inch could be recorded and reproduced. Moreover,
The number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference was 10 bits / plane or less, and 200,000 hours could be achieved at an average failure interval.

【0039】<実施例4>実施例1と同様な磁気記憶装
置において、再生用磁気ヘッドに図10に示すセンサを
用いた。
<Embodiment 4> In a magnetic storage device similar to that of Embodiment 1, a sensor shown in FIG. 10 was used as a reproducing magnetic head.

【0040】このセンサはギャップ層14上に、5nm
のTaバッファ層25、7nmの第一の磁性層26、
1.5nmのCu中間層27、3nmの第二の磁性層2
8、10nmのFe−50at%Mn反強磁性合金層2
9が順次形成された構造である。前記第一の磁性層には
Ni−20at%Fe合金を使用し、第二の磁性層には
Coを使用した。反強磁性層からの交換磁界により、第
二の磁性層の磁化は一方向に固定されている。これに対
し、第二の磁性層と非磁性層を介して接する第一の磁性
層の磁化の方向は、磁気記録媒体からの漏洩磁界により
変化するため、抵抗変化が生じる。このような二つの磁
性層の磁化の相対的方向の変化に伴う抵抗変化はスピン
バルブ効果と呼ばれるが、本実施例では再生用ヘッドに
この効果を利用したスピンバルブ型磁気ヘッドを使用し
た。テーパー部は実施例1の磁気センサと同一構成であ
る。
This sensor has a thickness of 5 nm on the gap layer 14.
Ta buffer layer 25, 7 nm first magnetic layer 26,
1.5 nm Cu intermediate layer 27, 3 nm second magnetic layer 2
8, 10 nm Fe-50 at% Mn antiferromagnetic alloy layer 2
Reference numeral 9 denotes a structure formed sequentially. A Ni-20 at% Fe alloy was used for the first magnetic layer, and Co was used for the second magnetic layer. The magnetization of the second magnetic layer is fixed in one direction by the exchange magnetic field from the antiferromagnetic layer. On the other hand, the direction of magnetization of the first magnetic layer, which is in contact with the second magnetic layer via the non-magnetic layer, changes due to the leakage magnetic field from the magnetic recording medium, so that a resistance change occurs. Such a change in resistance due to a change in the relative direction of magnetization of the two magnetic layers is called a spin valve effect. In this embodiment, a spin valve magnetic head utilizing this effect was used as a reproducing head. The tapered portion has the same configuration as the magnetic sensor of the first embodiment.

【0041】ガラス基板上に第一の下地層としてCo−
30at%Cr−10at%Zr合金、第二の下地層に
Cr−15at%Mo合金を使用し、磁性層にCo−2
0at%Cr−12at%Pt−2at%Taを用いた
磁気記録媒体を用いた。下地層膜厚、及び成膜条件は全
て一定とし、磁性層膜厚のみを16〜36nmまで4n
m刻みで変化させた。
As a first underlayer on a glass substrate, Co-
Using a 30 at% Cr-10 at% Zr alloy, a Cr-15 at% Mo alloy for the second underlayer, and a Co-2 for the magnetic layer.
A magnetic recording medium using 0 at% Cr-12 at% Pt-2 at% Ta was used. The thickness of the underlayer and the film formation conditions are all constant, and only the thickness of the magnetic layer is 4 n from 16 to 36 nm.
Changed in m increments.

【0042】[0042]

【表4】 [Table 4]

【0043】表4に示すように、何れの媒体も全てKu
・V/kTは60以上であった。また、平均粒径は16n
m以下、規格化粒径分散は0.5以下であった(図1
1)。尚、各媒体の磁性層膜厚は媒体Aが36nmであ
り、媒体B以下4nmずつ減少し、媒体Eが16nmで
ある。媒体A、及びBは共に保磁力は2.4kOe以
下、線記録密度260kFCIで記録したときの規格化
媒体ノイズは0.018以上であった。これらの媒体は
1平方インチ当たり4ギガビット以上の高記録密度に対
して不十分である。これは、これら両媒体の平均粒径に
対する磁性層膜厚の比がそれぞれ、2.2、 2.1と2
より大きいため、膜と垂直方向の形状磁気異方性が増大
したため考えられる。よって、良好な磁気特性を得るに
は磁性層膜厚は平均粒径の2倍以下であることが好まし
い。
As shown in Table 4, all of the media were all Ku.
-V / kT was 60 or more. The average particle size is 16n
m or less, and the normalized particle size distribution was 0.5 or less (FIG. 1).
1). The magnetic layer thickness of each medium is 36 nm for the medium A, decreases by 4 nm below the medium B, and 16 nm for the medium E. Each of the media A and B had a coercive force of 2.4 kOe or less and a normalized medium noise of 0.018 or more when recorded at a linear recording density of 260 kFCI. These media are inadequate for high recording densities of 4 gigabits per square inch or more. This is because the ratio of the thickness of the magnetic layer to the average particle size of both media is 2.2, 2.1 and 2 respectively.
This is probably because the shape magnetic anisotropy in the direction perpendicular to the film was increased due to the larger size. Therefore, in order to obtain good magnetic properties, the thickness of the magnetic layer is preferably not more than twice the average particle size.

【0044】本媒体媒体に潤滑剤を塗布した後、上記ヘ
ッドを用いた装置に組み込み、線記録密度245kBP
I、トラック密度16.5kTPIの条件で記録再生特
性を行ったところ、装置S/N=1.8と高い値が得ら
れた。また、磁気ヘッドへの入力信号を16−17符号
変調処理して出力信号に最尤復号処理を施すことによ
り、1平方インチ当たり4ギガビットの情報を記録再生
することができた。また、媒体の内周から外周までのヘ
ッドシーク試験5万回後のビットエラー数は10ビット
/面以下であり、平均故障間隔で30万時間以上が達成
出来た。
After a lubricant was applied to the medium, the medium was incorporated into an apparatus using the above-described head, and a linear recording density of 245 kBP was applied.
I, when the recording / reproducing characteristics were performed under the conditions of a track density of 16.5 kTPI, a high value of S / N = 1.8 was obtained. By subjecting the input signal to the magnetic head to 16-17 code modulation and applying the maximum likelihood decoding to the output signal, information of 4 gigabits per square inch could be recorded and reproduced. The number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference of the medium is 10 bits.
/ Plane, and 300,000 hours or more were achieved at the average failure interval.

【0045】[0045]

【発明の効果】本発明の磁気記録媒体は、媒体ノイズの
低減、及び熱ゆらぎに対する安定性向上の効果を持つ。
本発明の磁気記録媒体と磁気抵抗効果型ヘッドを用いる
ことにより、一平方インチあたり2ギガビットの記録密
度を有し、かつ平均故障回数が30万時間以上の磁気記
憶装置の実現が可能となる。
The magnetic recording medium of the present invention has the effects of reducing medium noise and improving stability against thermal fluctuation.
By using the magnetic recording medium and the magnetoresistive head of the present invention, a magnetic storage device having a recording density of 2 gigabits per square inch and an average number of failures of 300,000 hours or more can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)及び(b)は、それぞれ、本発明の一実
施例の磁気記録媒体における磁性結晶粒の平均粒径と積
算面積比率、及び積算面積の関係を示す曲線。
FIGS. 1A and 1B are curves respectively showing the relationship between the average grain size of magnetic crystal grains, the integrated area ratio, and the integrated area in the magnetic recording medium of one embodiment of the present invention.

【図2】(a)及び(b)は、それぞれ、本発明の一実
施例の磁気記憶装置の平面模式図及びそのA−A' 断面
図。
FIGS. 2A and 2B are a schematic plan view and a sectional view taken along line AA ′ of a magnetic storage device according to an embodiment of the present invention, respectively.

【図3】本発明の磁気記憶装置における、磁気ヘッドの
断面構造の一例を示す斜視図。
FIG. 3 is a perspective view showing an example of a cross-sectional structure of a magnetic head in the magnetic storage device of the present invention.

【図4】本発明の磁気記憶装置における、磁気ヘッドの
磁気抵抗センサ部の断面構造の一例を示す模式図。
FIG. 4 is a schematic diagram showing an example of a cross-sectional structure of a magnetoresistive sensor section of a magnetic head in the magnetic storage device of the present invention.

【図5】本発明の磁気記録媒体媒体の断面構造の一例を
示す模式図。
FIG. 5 is a schematic diagram showing an example of a cross-sectional structure of a magnetic recording medium according to the present invention.

【図6】本発明の一実施例の磁気記録媒体における磁性
結晶粒の平均粒径と規格化粒径分散の関係を示すマップ
図。
FIG. 6 is a map showing the relationship between the average grain size of magnetic crystal grains and the normalized grain size distribution in the magnetic recording medium of one embodiment of the present invention.

【図7】本発明の一実施例の磁気記録媒体の再生出力の
時間に対する減衰率を示す図。
FIG. 7 is a diagram showing an attenuation rate with respect to time of a reproduction output of the magnetic recording medium according to one embodiment of the present invention.

【図8】本発明の一実施例の磁気記録媒体における磁性
結晶粒の平均粒径と規格化粒径分散の関係を示すマップ
図。
FIG. 8 is a map showing the relationship between the average grain size of magnetic crystal grains and the normalized grain size distribution in the magnetic recording medium of one embodiment of the present invention.

【図9】本発明の一実施例の磁気記録媒体における磁性
結晶粒の平均粒径と規格化粒径分散の関係を示すマップ
図。
FIG. 9 is a map showing the relationship between the average grain size of magnetic crystal grains and the normalized grain size distribution in the magnetic recording medium of one embodiment of the present invention.

【図10】本発明の磁気記憶装置における、磁気ヘッド
の断面構造の一例を示す斜視図。
FIG. 10 is a perspective view showing an example of a cross-sectional structure of a magnetic head in the magnetic storage device of the present invention.

【図11】本発明の一実施例の磁気記録媒体における磁
性結晶粒の平均粒径と規格化粒径分散の関係を示すマッ
プ図。
FIG. 11 is a map showing the relationship between the average grain size of magnetic crystal grains and the normalized grain size distribution in the magnetic recording medium of one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1...磁気ヘッド、2...磁気ヘッド駆動部、3...記録
再生信号処理系、4...気記録媒体、5...磁気記録媒体
駆動部、6...基体、7...コイル、8...上部記録磁
極、9...下部記録磁極兼上部シールド層、10...磁気
抵抗センサ、11...導体層、12...下部シールド層、
13...信号検出領域、14...シールド層と磁気抵抗セ
ンサの間のギャップ層、15...横バイアス層、16...
分離層、17...磁気抵抗強磁性層、18...テーパー
部、19...永久磁石層、20..基板、21...下地層、
22...磁性層、23...保護膜、24...潤滑膜、2
5...バッファ層、26...第一の磁性層、27...中間
層、28...第二の磁性層、29...反強磁性層。
DESCRIPTION OF SYMBOLS 1 ... Magnetic head, 2 ... Magnetic head drive part, 3 ... Recording / reproduction signal processing system, 4 ... Air recording medium, 5 ... Magnetic recording medium drive part, 6 ... Substrate, 7 ... coil, 8 ... upper recording magnetic pole, 9 ... lower recording pole and upper shield layer, 10 ... magnetic resistance sensor, 11 ... conductor layer, 12 ... lower shield layer,
13 ... signal detection area, 14 ... gap layer between shield layer and magnetoresistive sensor, 15 ... lateral bias layer, 16 ...
Separation layer, 17 ... Magnetoresistance ferromagnetic layer, 18 ... Tapered portion, 19 ... Permanent magnet layer, 20 ... Substrate, 21 ... Underlayer,
22 ... magnetic layer, 23 ... protective film, 24 ... lubricating film, 2
5 ... buffer layer, 26 ... first magnetic layer, 27 ... intermediate layer, 28 ... second magnetic layer, 29 ... antiferromagnetic layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 晃 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 (72)発明者 玉井 一郎 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 細江 譲 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 松田 好文 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 (72)発明者 棚橋 究 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 山本 朋生 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akira Ishikawa 2880 Kozu, Odawara-shi, Kanagawa Prefecture, Hitachi, Ltd.Storage Systems Division (72) Inventor Ichiro Tamai 1-1280 Higashi-Koikekubo, Kokubunji-shi, Tokyo Hitachi, Ltd. Central Research Laboratory (72) Inventor Joe Hosoe 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside Hitachi, Ltd.Central Research Laboratory (72) Inventor Yoshifumi Matsuda 2880 Kokuzu, Odawara-shi, Kanagawa Prefecture Storage Systems Division, Hitachi, Ltd. 72) Inventor Toru Tanahashi 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (72) Inventor Tomoki Yamamoto 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】基板上に単層または多層の下地層を介して
形成された磁性層を有する磁気記録媒体と、これを記録
方向に駆動する駆動部と、記録部と再生部を備えた磁気
ヘッドと、該磁気ヘッドを前記記録媒体に対して相対運
動をさせる手段と、前記磁気ヘッドを介して入出力され
る記録再生信号の処理手段とを有し、前記磁性層は柱状
構造を有する磁性粒子で構成され、該磁性粒の基板面に
平行な面内で測定した平均粒径<d>が16nm以下で
あり、かつその粒径分散幅△dと平均粒径の比△d/<
d>が0.5以下であることを特徴とする磁気記憶装
置。
1. A magnetic recording medium having a magnetic layer formed on a substrate via a single-layer or multi-layer underlayer, a driving unit for driving the magnetic layer in a recording direction, and a magnetic unit having a recording unit and a reproducing unit. A magnetic head having means for moving the magnetic head relative to the recording medium, and processing means for recording / reproducing signals input / output via the magnetic head, wherein the magnetic layer has a columnar structure. The average particle diameter <d> of the magnetic particles measured in a plane parallel to the substrate surface is 16 nm or less, and the ratio of the particle diameter dispersion width Δd to the average particle diameter Δd / <
d> 0.5 or less.
【請求項2】基板上に単層または多層の下地層を介して
形成された磁性層を有する磁気記録媒体と、これを記録
方向に駆動する駆動部と、記録部と再生部を備えた磁気
ヘッドと、該磁気ヘッドを前記記録媒体に対して相対運
動をさせる手段と、前記磁気ヘッドを介して入出力され
る記録再生信号の処理手段とを有し、前記磁性層は、 柱状構造を有する結晶質の磁性粒子で構成され、透過電
子顕微鏡による前記磁性層の格子像において同一結晶方
位をもつと観測される領域を結晶粒として該観測される
領域と同一面積の真円の直径で定義される結晶粒の粒径
とし、 該結晶粒の粒径から計算される結晶粒の面積を粒径に対
して積算した値を観測された全結晶粒の積算面積で規格
化した積算面積比率が50%となるときの粒径として定
義した平均粒径<d>が16nm以下であり、 前記積算面積比率が75%となる粒径と25%となる粒
径の差で定義される粒径分散幅Δdを、前記平均粒径<
d>で規格化した値、Δd/<d>として定義される規
格化平均粒径分散が、0.5以下であることを特微とす
る磁気記憶装置。
2. A magnetic recording medium having a magnetic layer formed on a substrate via a single-layer or multi-layer underlayer, a driving unit for driving the magnetic layer in a recording direction, and a magnetic unit comprising a recording unit and a reproducing unit. A head, means for causing the magnetic head to move relative to the recording medium, and means for processing a recording / reproducing signal input / output via the magnetic head, wherein the magnetic layer has a columnar structure A region, which is composed of crystalline magnetic particles and is observed as having the same crystal orientation in the lattice image of the magnetic layer by a transmission electron microscope, is defined as a crystal grain and is defined by a diameter of a perfect circle having the same area as the observed region. The integrated area ratio obtained by standardizing the value obtained by integrating the area of the crystal grain calculated from the particle size of the crystal grain with respect to the particle size is 50 % Defined as particle size Diameter <d> is not more than 16 nm, the particle size dispersion width Δd to be defined by the difference between the particle size the integrated area ratio is the particle diameter and the 25% to be 75%, the average particle size <
A magnetic storage device characterized in that a value normalized by d> and a normalized average particle size variance defined as Δd / <d> are 0.5 or less.
【請求項3】基板上に単層または多層の下地層を介して
形成された磁性層を有する磁気記録媒体と、これを記録
方向に駆動する駆動部と、記録部と再生部を備えた磁気
ヘッドと、該磁気ヘッドを前記記録媒体に対して相対運
動をさせる手段と、前記磁気ヘッドを介して入出力され
る記録再生信号の処理手段とを有し、前記磁性層は、 柱状構造を有する非晶質の磁性粒子で構成され、透過電
子顕微鏡による前記磁性層の格子像において同一結晶方
位をもつと観測される領域を結晶粒として該観測される
領域と同一面積の真円の直径で定義される結晶粒の粒径
とし、 該結晶粒の粒径から計算される結晶粒の面積を粒径に対
して積算した値を観測された全結晶粒の積算面積で規格
化した積算面積比率が50%となるときの粒径として定
義した平均粒径<d>が16nm以下であり、 前記積算面積比率が75%となる粒径と25%となる粒
径の差で定義される粒径分散幅Δdを、前記平均粒径<
d>で規格化した値、Δd/<d>として定義される規
格化平均粒径分散が、0.5以下であることを特微とす
る磁気記憶装置。
3. A magnetic recording medium having a magnetic layer formed on a substrate via a single-layer or multi-layer underlayer, a drive unit for driving the magnetic layer in a recording direction, and a magnetic unit comprising a recording unit and a reproducing unit. A head, means for causing the magnetic head to move relative to the recording medium, and means for processing a recording / reproducing signal input / output via the magnetic head, wherein the magnetic layer has a columnar structure A region composed of amorphous magnetic particles and defined as having a same crystal orientation in a lattice image of the magnetic layer by a transmission electron microscope is defined as a crystal grain and defined as a diameter of a perfect circle having the same area as the observed region. The integrated area ratio obtained by standardizing the value obtained by integrating the area of the crystal grain calculated from the particle size of the crystal grain with respect to the particle size as the integrated area of all the observed crystal grains Average defined as particle size at 50% Diameter <d> is not more than 16 nm, the particle size dispersion width Δd to be defined by the difference between the particle size the integrated area ratio is the particle diameter and the 25% to be 75%, the average particle size <
A magnetic storage device characterized in that a value normalized by d> and a normalized average particle size variance defined as Δd / <d> are 0.5 or less.
【請求項4】前記規格化平均粒径分散/<d>が、0.
4以下であることを特徴とする請求項1から請求項3の
いずれか1項に記載の磁気記憶装置。
4. The method according to claim 1, wherein said normalized average particle size distribution / <d> is 0.1.
The magnetic storage device according to any one of claims 1 to 3, wherein the number is 4 or less.
【請求項5】請求項1から4のいずれか1項に記載の磁
気記憶装置において、異方性定数Kuと前記磁性粒子の
平均体積Vとの積を、ボルツマン定数kと絶対温度Tと
の積で割った値KuV/kTが60以上であることを特
徴とする磁気記憶装置。
5. The magnetic storage device according to claim 1, wherein a product of an anisotropy constant Ku and an average volume V of said magnetic particles is a product of a Boltzmann constant k and an absolute temperature T. A magnetic storage device, wherein a value KuV / kT divided by a product is 60 or more.
【請求項6】請求項1から4のいずれか1項に記載の磁
気記憶装置において、室温における回転履歴損失の測定
より求めた異方性磁界HKと飽和磁化Msとを用いてH
K・Ms/2として定義された異方性定数Kuと、前記
平均粒径と磁性層の膜厚から算出される結晶粒の平均体
積Vと、ボルツマン定数kと、絶対温度Tとから表され
る値KuV/kTが60以上であることを特徴とする磁
気記憶装置。
6. The magnetic storage device according to claim 1, wherein an anisotropy magnetic field HK and a saturation magnetization Ms obtained from a measurement of a rotational history loss at room temperature are used.
It is expressed by an anisotropy constant Ku defined as K · Ms / 2, an average volume V of crystal grains calculated from the average grain size and the thickness of the magnetic layer, a Boltzmann constant k, and an absolute temperature T. A magnetic storage device having a value KuV / kT of 60 or more.
【請求項7】請求項1から6のいずれか1項に記載の磁
気記憶装置において、前記磁性層は六方稠密構造の磁性
合金を含有し、前記磁性粒子のc軸が実質的に基板面内
方向を向いており、かつ、前記磁性層が(100)面が基
板面と略平行になるように配向した体心立方構造のCr
を主成分とした下地層上に形成されていることを特徴と
する磁気記憶装置。
7. The magnetic memory device according to claim 1, wherein the magnetic layer contains a magnetic alloy having a hexagonal close-packed structure, and the c-axis of the magnetic particles is substantially in the plane of the substrate. In the body-centered cubic structure, wherein the magnetic layer is oriented so that the (100) plane is substantially parallel to the substrate surface.
A magnetic storage device characterized by being formed on a base layer mainly composed of:
【請求項8】請求項7に記載の磁気記憶装置において、
該磁性合金が15〜23at%のCr及び6〜20at
%のPtを含有することを特徴とする磁気記憶装置。
8. The magnetic storage device according to claim 7, wherein
The magnetic alloy contains 15 to 23 at% of Cr and 6 to 20 at%.
% Pt.
JP2000340390A 2000-11-02 2000-11-02 Magnetic storage device with magnetic recording medium Pending JP2001195721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000340390A JP2001195721A (en) 2000-11-02 2000-11-02 Magnetic storage device with magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000340390A JP2001195721A (en) 2000-11-02 2000-11-02 Magnetic storage device with magnetic recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP07717497A Division JP3429972B2 (en) 1997-03-28 1997-03-28 Magnetic recording medium and magnetic storage device using the same

Publications (1)

Publication Number Publication Date
JP2001195721A true JP2001195721A (en) 2001-07-19

Family

ID=18815316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000340390A Pending JP2001195721A (en) 2000-11-02 2000-11-02 Magnetic storage device with magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2001195721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7338725B2 (en) 2001-11-28 2008-03-04 Hitachi, Ltd. Magnetic recording medium and magnetic storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7338725B2 (en) 2001-11-28 2008-03-04 Hitachi, Ltd. Magnetic recording medium and magnetic storage device

Similar Documents

Publication Publication Date Title
JP3429972B2 (en) Magnetic recording medium and magnetic storage device using the same
US7056604B2 (en) Magnetic recording media and magnetic recording system using the same
US5922456A (en) Longitudal magnetic recording medium having a multi-layered underlayer and magnetic storage apparatus using such magnetic recording medium
JPH10233016A (en) Intra-surface magnetic recording medium and magnetic memory device formed by using the same
CN108573715B (en) Assisted magnetic recording medium and magnetic memory apparatus
JP3764833B2 (en) Magnetic recording medium and magnetic storage device
US6686071B2 (en) Magnetic recording medium and magnetic recording apparatus using the same
JP3648450B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3217012B2 (en) Magnetic recording media
JP3665221B2 (en) In-plane magnetic recording medium and magnetic storage device
EP0809238B1 (en) Magnetic recording media and magnetic recording system using the same
JP2006085751A (en) Magnetic recording medium and magnetic storage device
JP2001195721A (en) Magnetic storage device with magnetic recording medium
JPH0773433A (en) Magnetic recording medium, its production and magnetic recorder
JPH11306532A (en) Magnetic recording medium and magnetic storage device using the same
JP2000020936A (en) Inp-lane magnetic recording medium and magnetic storage device using the same
JP2000067423A (en) Intra-surface magnetic recording medium and magnetic storage using the same
JP3340420B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2002324313A (en) Manufacturing method of magnetic recording medium
JP2003030812A (en) Magnetic recording medium and magnetic recorder
JP2000339657A (en) Magnetic recording medium
JP3429777B2 (en) Magnetic recording medium and magnetic storage device using the same
JP3721754B2 (en) Magnetic recording medium and magnetic storage device
JPH10320740A (en) Magnetic storage device and intrasurface magnetic recording medium
JPH10135039A (en) Magnetic recording medium and magnetic storage device