JPH11306532A - Magnetic recording medium and magnetic storage device using the same - Google Patents

Magnetic recording medium and magnetic storage device using the same

Info

Publication number
JPH11306532A
JPH11306532A JP10603198A JP10603198A JPH11306532A JP H11306532 A JPH11306532 A JP H11306532A JP 10603198 A JP10603198 A JP 10603198A JP 10603198 A JP10603198 A JP 10603198A JP H11306532 A JPH11306532 A JP H11306532A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
layer
medium
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10603198A
Other languages
Japanese (ja)
Other versions
JP3716097B2 (en
Inventor
Tetsuya Kanbe
哲也 神邊
Fumiyoshi Kirino
文良 桐野
Ichiro Tamai
一郎 玉井
Yoshio Takahashi
由夫 高橋
Yuzuru Hosoe
譲 細江
Kiwamu Tanahashi
究 棚橋
Satoru Matsunuma
悟 松沼
Yoshitsugu Koiso
良嗣 小礒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10603198A priority Critical patent/JP3716097B2/en
Priority to US09/206,869 priority patent/US6221508B1/en
Publication of JPH11306532A publication Critical patent/JPH11306532A/en
Priority to US09/799,073 priority patent/US6574060B2/en
Priority to US10/404,071 priority patent/US7050253B2/en
Application granted granted Critical
Publication of JP3716097B2 publication Critical patent/JP3716097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic storage device which allows recording and reproducing of high-density information and has high reliability. SOLUTION: This magnetic storage device has the magnetic recording medium, a drive section for driving this medium in a recording direction, a magnetic head consisting of a recording part and a reproducing part, a means for moving this magnetic head relative to the magnetic recording medium and a recording and reproducing signal processing means for executing the signal input to the magnetic head and the reproduction of the output signal from the magnetic head. In such a case, the reproducing part of the magnetic head comprises a magneto-resistive magnetic head and the magnetic recording medium comprises a magnetic layer 23 formed via a single layer or plural ground surface layers 21, 22. At least one layer of these ground surface layers 21, 22 is formed of the layer consisting of an amorphous or microcrystalline material which consists essentially of Ni and contains at least one element of Nb and Ta.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気記憶装置、具体
的には1平方インチ当たり4ギガビット以上の記録密度を
有する磁気記憶装置と、これを実現するための低ノイズ
で、かつ熱磁気緩和による再生出力の減衰が抑制された
高い安定性を有する磁気記録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic storage device, specifically a magnetic storage device having a recording density of 4 gigabits per square inch or more, and a low-noise and thermomagnetic relaxation device for realizing this. The present invention relates to a magnetic recording medium having high stability in which attenuation of reproduction output is suppressed.

【0002】[0002]

【従来の技術】近年、磁気記憶装置の急速な記録密度の
向上に伴い、高感度な磁気ヘッドと高保磁力、かつ低ノ
イズな磁気記録媒体が求められている。磁気ヘッドには
現在、主として磁気抵抗効果型ヘッド(MRヘッド)が用
いられているが、これよりも更に2〜3倍高感度な巨大磁
気抵抗効果型ヘッド(GMRヘッド)の開発も急速に進ん
でいる。
2. Description of the Related Art In recent years, with a rapid increase in recording density of a magnetic storage device, a magnetic head having high sensitivity and a magnetic recording medium having high coercive force and low noise have been demanded. Currently, a magneto-resistive head (MR head) is mainly used as a magnetic head, but the development of a giant magneto-resistive head (GMR head) that is two to three times more sensitive than this is also rapidly progressing. In.

【0003】また、ノート型パソコンの普及に伴い、従
来のNiPメッキされたAl-Mg合金基板(以後、Al基板と記
す)媒体に代わり、携帯使用に耐えうる高い耐衝撃性を
有すガラス基板媒体の開発が急速に進んでいる。しか
し、ガラス基板媒体では密着性不良、基板から膜中への
不純物ガスの侵入、配向性劣化、粒径肥大化等により、
Al基板媒体に比べて磁気特性が劣化する傾向にある。こ
れらに対する改善策として、基板と下地層間に新たに中
間膜、シード層、バリア層等と呼ばれる新たな層を形成
することが試みられている。例えば特願昭62-293511
号、特願昭62-293512号にはTi、Zr、Hf、V、Nb、Ta、C
r、Mo、W、Mnのうち少なくとも一種の元素を含む金属の
酸化物からなる中間膜を形成することにより密着性が向
上し、良好なCSS特性が得られることが示されている。
また、特開平4-153910号にはYとTi、Zr、Hf、V、Nb、T
a、Cr、Mo、Wの一種からなる非晶質、または微結晶膜を
形成することにより、粒径が微細化されノイズが低減す
ることが示されている。特開平5-135343号には、ガラス
基板上に希土類元素と、Ta、Y、Nb、Hfから選択される
一種の元素を含む酸素隔離層を形成することにより、保
磁力が向上することが示されている。更に基板上に非晶
質状のCr合金またはV合金を形成すると、その上に形成
されたCr下地層が(211)配向するため、エピタキシャル
成長によりCo合金磁性層が磁化容易軸を膜面内へ向けた
(10.0)配向をとり、高い保磁力が得られることが特開平
7-73441号に示されている。尚、これらの粒径制御、不
純物侵入防止等を目的として基板上に直接形成された層
を、本明細書では以後、全て第一の下地層と記し、エピ
タキシャル成長による磁性層の配向制御等を目的とした
Cr合金等からなるbcc構造の下地層を第二の下地層と記
す。
In addition, with the spread of notebook personal computers, a glass substrate having high impact resistance that can withstand portable use is substituted for a conventional NiP-plated Al-Mg alloy substrate (hereinafter referred to as Al substrate) medium. Media development is progressing rapidly. However, in the case of a glass substrate medium, due to poor adhesion, intrusion of impurity gas from the substrate into the film, deterioration of orientation, enlargement of particle size, etc.,
Magnetic properties tend to deteriorate compared to Al substrate media. As a remedy for these, formation of new layers called an intermediate film, a seed layer, a barrier layer, etc. between the substrate and the underlying layer has been attempted. For example, Japanese Patent Application No. 62-293511
No., Japanese Patent Application No. 62-293512, Ti, Zr, Hf, V, Nb, Ta, C
It is shown that by forming an intermediate film made of an oxide of a metal containing at least one of r, Mo, W, and Mn, the adhesion is improved and good CSS characteristics can be obtained.
Also, JP-A-4-153910 discloses Y and Ti, Zr, Hf, V, Nb, T
It has been shown that by forming an amorphous or microcrystalline film made of one of a, Cr, Mo, and W, the grain size is reduced and noise is reduced. JP-A-5-135343 discloses that a coercive force is improved by forming an oxygen isolation layer containing a rare earth element and one element selected from Ta, Y, Nb, and Hf on a glass substrate. Have been. Furthermore, when an amorphous Cr alloy or V alloy is formed on the substrate, the Cr underlayer formed thereon is oriented (211), so that the Co alloy magnetic layer is epitaxially grown to move the easy axis of magnetization into the film plane. Toward
(10.0) orientation and high coercive force can be obtained.
It is shown in 7-73441. Note that the layers formed directly on the substrate for the purpose of controlling the particle size and preventing the intrusion of impurities are hereinafter referred to as first underlayers in the present specification, and the purpose is to control the orientation of the magnetic layer by epitaxial growth. Made
An underlayer having a bcc structure made of a Cr alloy or the like is referred to as a second underlayer.

【0004】また、媒体ノイズ低下には磁性粒径の微細
化、粒子間の交換相互作用低減が必要となるが、微細化
された磁性結晶は熱擾乱の影響を強く受けるため、時間
とともに記録磁化が減衰する現象が起こる。これは熱磁
気緩和と呼ばれ、記録密度の向上にともない顕著となる
現象である。よって、高記録密度を実現するには、この
熱磁気緩和の抑制と低ノイズ化を両立させる必要があ
る。
In order to reduce the medium noise, it is necessary to reduce the size of the magnetic particles and to reduce the exchange interaction between the particles. However, since the finely divided magnetic crystal is strongly affected by thermal disturbance, the recording magnetization increases with time. Phenomenon occurs. This phenomenon is called thermomagnetic relaxation and is a phenomenon that becomes significant as the recording density increases. Therefore, in order to achieve a high recording density, it is necessary to achieve both suppression of the thermal magnetic relaxation and low noise.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は磁性層
の結晶配向、平均粒径、及び粒径分散を適切に制御する
ことにより、低ノイズであり、かつ熱磁気緩和に対して
十分な安定性を有す磁気記録媒体を提供し、更にこの磁
気記録媒体と高感度な磁気ヘッドを組み合わせることに
より1平方インチ当たり4ギガビット以上の記録密度を持
った信頼性の高い磁気記憶装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to control the crystal orientation, the average grain size, and the grain size dispersion of a magnetic layer appropriately to achieve low noise and sufficient thermal magnetic relaxation. Providing a stable magnetic recording medium and providing a highly reliable magnetic storage device with a recording density of 4 gigabits per square inch or more by combining this magnetic recording medium with a highly sensitive magnetic head It is in.

【0006】[0006]

【課題を解決するための手段】上記目的は基板上に単
層、または多層の下地層を介して形成された磁性層を有
する磁気記録媒体において、該下地層の少なくとも一層
がNiを主成分とし、かつNb、Taのうち少なくとも一種類
の元素を含有する非晶質、或いは微結晶材料から成るこ
とを特徴とする磁気記録媒体と、これを記録方向に駆動
する駆動部と、記録部と再生部から成る磁気ヘッドと、
上記磁気ヘッドを上記磁気記録媒体に対して相対運動さ
せる手段と、上記磁気ヘッドへの信号入力と該磁気ヘッ
ドからの出力信号再生を行うための記録再生信号処理手
段を有する磁気記憶装置において前記磁気ヘッドの再生
部が磁気抵抗効果型磁気ヘッドで構成される磁気記憶装
置により達成される。
An object of the present invention is to provide a magnetic recording medium having a magnetic layer formed on a substrate with a single-layer or multi-layer underlayer interposed therebetween, wherein at least one of the underlayers contains Ni as a main component. A magnetic recording medium comprising an amorphous or microcrystalline material containing at least one element of Nb and Ta, a drive unit for driving the magnetic recording medium in a recording direction, a recording unit, and a reproduction unit. A magnetic head comprising:
The magnetic storage device includes a magnetic storage device having means for moving the magnetic head relative to the magnetic recording medium, and recording and reproduction signal processing means for performing signal input to the magnetic head and reproduction of an output signal from the magnetic head. This is achieved by a magnetic storage device in which the reproducing section of the head is constituted by a magnetoresistive head.

【0007】ここで、非晶質とはX線回折による明瞭な
ピークが観察されないこと、または、電子線回折による
明瞭な回折スポット、回折リングが観察されず、ハロー
状の回折リングが観察されることを言う。また、微結晶
とは、結晶粒径が磁性層の結晶粒径より小さく、好まし
くは平均粒径が8nm以下の結晶粒から成ることを言う。N
b添加量は20〜70at%、Ta添加量は30〜60at%の範囲内が
それぞれ望ましい。前記組成範囲外では該下地合金の結
晶化、或いは結晶粒の肥大化が起こるため好ましくな
い。第一の下地層として上記の非晶質、または微結晶構
造の合金を用いることにより、磁性層の結晶粒を微細
化、均一化することができ低ノイズかつ、熱磁気緩和に
よる再生出力の減衰が抑制された媒体が得られる。ここ
で、第一の下地層とは前述の様に粒径制御、不純物侵入
防止等を目的として基板上に直接形成された層の総称で
ある。上記第一の下地層合金に更にAl2O3、SiO2、Ti
O2、ZrO2およびTa2O5から選ばれる少なくとも1種の酸
化物を添加すると磁性層の結晶粒がより微細かつ均一に
なり、更に低ノイズな媒体が得られる。これは添加され
た酸化物の相が、母相のNi合金中に均一に析出するた
め、これらが核生成サイトとなり微細かつ均一な結晶粒
がその上に形成されていくためである。また、前記第一
の下地層上に形成したCr、またはCrを主成分とする体心
立方構造(bcc構造)の第二の下地層は(100)配向をとる。
よって、その上に形成された六方稠密構造(hcp構造)の
磁性層はエピタキシャル成長により磁化容易軸であるc
軸をほぼ膜面内に向けた(11.0)配向をとる。このため、
高い保磁力と保磁力角型比S*が得られ、1平方インチ当
たり4ギガビット以上の記録密度が達成できる。本発明
の上記第一の下地層は、更にガラス基板との密着性が良
いという特徴があり、特に、密着性を向上するための層
を設ける必要はない。しかし、媒体の表面に凹凸形状を
形成し、CSS特性を向上させるための連続膜、または島
状成長した不連続膜を基板と第一の下地層の間に形成す
ることも出来る。また、基板として、Ni-Pをメッキした
Al合金基板や、非晶質状のカーボン基板を用いた場合に
も、ガラス基板を用いた場合と同様、磁性層の結晶粒の
微細化、均一化が確認され、媒体ノイズの低減、熱磁気
緩和の抑制効果が確認された。
Here, in the case of amorphous, a clear peak due to X-ray diffraction is not observed, or a clear diffraction spot or diffraction ring due to electron beam diffraction is not observed, but a halo-shaped diffraction ring is observed. Say that. Further, the term “microcrystal” means that the crystal grain has a crystal grain size smaller than the crystal grain size of the magnetic layer, and preferably has an average grain size of 8 nm or less. N
The amount of b added is preferably in the range of 20 to 70 at%, and the amount of Ta added is preferably in the range of 30 to 60 at%. Outside the above composition range, crystallization of the base alloy or enlargement of crystal grains occurs, which is not preferable. By using the above-mentioned amorphous or microcrystalline structure alloy as the first underlayer, crystal grains of the magnetic layer can be made finer and uniform, low noise, and attenuation of reproduction output due to thermomagnetic relaxation. Is obtained. Here, the first underlayer is a general term for layers directly formed on the substrate for the purpose of controlling the particle size, preventing intrusion of impurities, and the like as described above. Al 2 O 3 , SiO 2 , Ti
When at least one oxide selected from O 2 , ZrO 2 and Ta 2 O 5 is added, the crystal grains of the magnetic layer become finer and more uniform, and a low-noise medium can be obtained. This is because the added oxide phase is uniformly precipitated in the Ni alloy of the parent phase, so that these become nucleation sites and fine and uniform crystal grains are formed thereon. The second underlayer of Cr or a body-centered cubic structure (bcc structure) containing Cr as a main component formed on the first underlayer has a (100) orientation.
Therefore, the magnetic layer having a hexagonal close-packed structure (hcp structure) formed thereon has an axis of easy magnetization c by epitaxial growth.
The orientation is (11.0) with the axis oriented substantially in the film plane. For this reason,
A high coercive force and a coercive force squareness ratio S * are obtained, and a recording density of 4 gigabits per square inch or more can be achieved. The first underlayer according to the present invention is characterized in that it has better adhesion to a glass substrate, and it is not particularly necessary to provide a layer for improving the adhesion. However, a continuous film for improving the CSS characteristics by forming an uneven shape on the surface of the medium or a discontinuous film grown in an island shape can be formed between the substrate and the first underlayer. In addition, Ni-P was plated as a substrate
In the case of using an Al alloy substrate or an amorphous carbon substrate, as in the case of using a glass substrate, it was confirmed that the crystal grains of the magnetic layer were fine and uniform, and that the medium noise was reduced and the thermomagnetism was reduced. The effect of suppressing the relaxation was confirmed.

【0008】第一の下地層上に形成され、エピタキシャ
ル成長による磁性層の配向制御等を目的とした第二の下
地層にはCr、またはCrを主成分としTi、V、Moなどを含
有するbcc構造の合金を用いることができる。また、bcc
構造を持つ2つ以上の層で構成することもできる。
The second underlayer formed on the first underlayer and for controlling the orientation of the magnetic layer by epitaxial growth or the like has a bcc containing Cr or Cr as a main component and containing Ti, V, Mo or the like. Structured alloys can be used. Also, bcc
It can be composed of two or more layers having a structure.

【0009】磁性層には、hcp構造のCoを主成分とする
合金を用いることが出来るが、高い保磁力を得るために
は、Ptを含むCo合金を用いることが特に好ましい。ま
た、SmCo、FeSmN等の高い結晶磁気異方性を有す希土類
元素を含む磁性合金を用いることも出来る。更に、磁性
層を単層、或いは非磁性中間層を介した複数の層で構成
することも出来るが、この場合、請求項6のBr×tにおけ
る磁性層の厚さ t は各磁性層の厚さの合計を表すもの
とする。磁性層の磁気的な特性としては、記録方向に磁
界を印加して測定した保磁力を2キロエルステッド以上
とし、残留磁束密度Brと膜厚 t の積Br×tを40ガウス・
ミクロン以上、120ガウス・ミクロン以下とすると、1平
方インチ当たり4ギガビット以上の記録密度領域におい
て、良好な記録再生特性が得られるので好ましい。保磁
力が2400エルステッドよりも小さくなると、高記録密度
(200kFCI以上)での出力が小さくなり好ましくない。
また、Br×tが120ガウス・ミクロンより大きくなると分
解能が低下し、40ガウス・ミクロンよりも小さくなると
再生出力が小さくなり好ましくない。
For the magnetic layer, an alloy containing Co as a main component having an hcp structure can be used, but in order to obtain a high coercive force, it is particularly preferable to use a Co alloy containing Pt. Further, a magnetic alloy containing a rare earth element having high crystal magnetic anisotropy such as SmCo and FeSmN can be used. Furthermore, the magnetic layer may be composed of a single layer or a plurality of layers with a non-magnetic intermediate layer interposed therebetween.In this case, the thickness t of the magnetic layer in Br × t of claim 6 is the thickness of each magnetic layer. Shall represent the sum of As magnetic properties of the magnetic layer, the coercive force measured by applying a magnetic field in the recording direction is 2 kOe or more, and the product Br × t of the residual magnetic flux density Br and the film thickness t is 40 gauss.
It is preferable that the thickness be not less than 120 microns and not more than 120 gauss because good recording / reproducing characteristics can be obtained in a recording density region of not less than 4 gigabits per square inch. If the coercive force is smaller than 2400 Oe, the output at a high recording density (200 kFCI or more) becomes undesirably small.
Also, when Br × t is larger than 120 Gauss / micron, the resolution is reduced, and when it is smaller than 40 Gauss / micron, the reproduction output is undesirably reduced.

【0010】更に、磁性層の保護層としてカーボンを厚
さ5nm〜30nm形成し、さらに吸着性のパーフルオロアル
キルポリエーテル等の潤滑層を厚さ2nm〜20nm設けるこ
とにより信頼性が高く、高密度記録が可能な磁気記録媒
体が得られる。また、保護層として水素、または窒素を
添加したカーボン膜、或いは、炭化シリコン、炭化タン
グステン、(W-Mo)-C、(Zr-Nb)-N等の化合物から成る
膜、或いは、これらの化合物とカーボンの混合膜を用い
ると耐摺動性、耐食性を向上出来るので好ましい。
Further, by forming carbon as a protective layer of a magnetic layer with a thickness of 5 nm to 30 nm and further providing a lubricating layer of an adsorbent perfluoroalkyl polyether or the like with a thickness of 2 nm to 20 nm, high reliability and high density can be achieved. A recordable magnetic recording medium is obtained. Further, a carbon film to which hydrogen or nitrogen is added as a protective layer, or a film made of a compound such as silicon carbide, tungsten carbide, (W-Mo) -C, (Zr-Nb) -N, or a compound of these compounds The use of a mixed film of carbon and carbon is preferred because the sliding resistance and corrosion resistance can be improved.

【0011】また、本発明の磁気記録装置で用いている
磁気抵抗効果型磁気ヘッドの磁気抵抗センサ部を挟む2
枚のシールド層の間隔(シールド間隔)は0.30μm以下
が好ましい。これは、シールド間隔が0.30μm以上にな
ると分解能が低下し、信号の位相ジッターが大きくなっ
てしまうためである。更に、磁気抵抗効果型磁気ヘッド
を、互いの磁化方向が外部磁界によって相対的に変化す
ることによって大きな抵抗変化を生じる複数の導電性磁
性層と、その導電性磁性層の間に配置された導電性非磁
性層を含む磁気抵抗センサによって構成し、巨大磁気抵
抗効果、或いはスピン・バルブ効果を利用したものとす
ることにより、信号強度をさらに高めることができ、1
平方インチ当たり5ギガビット以上の記録密度を持った
信頼性の高い磁気記憶装置の実現が可能となる。
Further, the magneto-resistance effect type magnetic head used in the magnetic recording apparatus of the present invention sandwiches the magneto-resistance sensor section.
The interval between the shield layers (shield interval) is preferably 0.30 μm or less. This is because when the shield interval is 0.30 μm or more, the resolution is reduced, and the phase jitter of the signal is increased. Further, the magneto-resistance effect type magnetic head is composed of a plurality of conductive magnetic layers that generate a large resistance change due to a relative change in their magnetization directions due to an external magnetic field, and a conductive layer disposed between the conductive magnetic layers. By using a magnetoresistive sensor including a conductive nonmagnetic layer and utilizing the giant magnetoresistance effect or the spin valve effect, the signal intensity can be further increased.
A highly reliable magnetic storage device having a recording density of 5 gigabits per square inch or more can be realized.

【0012】[0012]

【発明の実施の形態】<実施例1>本発明の実施例を図
1、図2、図3を用いて説明する。本実施例の磁気記憶装
置の平面摸式図、断面摸式図を図1(a)、及び図1(b)に示
す。この装置は磁気ヘッド1、及びその駆動部2と、該磁
気ヘッドの記録再生信号処理手段3と磁気記録媒体4と
これを回転させる駆動部5とからなる周知の構造を持つ
磁気記憶装置である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS <First Embodiment> FIG.
This will be described with reference to FIG. 1, FIG. 2 and FIG. FIGS. 1 (a) and 1 (b) show a schematic plan view and a schematic sectional view of the magnetic storage device of this embodiment. This device is a magnetic storage device having a well-known structure including a magnetic head 1, a drive unit 2 for the magnetic head, a recording / reproducing signal processing means 3 for the magnetic head, a magnetic recording medium 4, and a drive unit 5 for rotating the magnetic recording medium. .

【0013】上記磁気ヘッドの構造を図2に示す。この
磁気ヘッドは基体6上に形成された記録用の電磁誘導型
磁気ヘッドと再生用の磁気抵抗効果型磁気ヘッドを併せ
持つ複合型ヘッドである。前記記録用ヘッドはコイル7
を挟む上部記録磁極8と下部記録磁極兼上部シールド層9
からなり、記録磁極間のギャップ層厚は0.3μmとした。
また、コイルには厚さ3μmのCuを用いた。前記再生用ヘ
ッドは磁気抵抗センサ10とその両端の電極パタン11から
なり、磁気抵抗センサは共に1μm厚の下部記録磁極兼上
部シールド層と下部シールド層12で挟まれ、該シールド
層間距離は0.25μmである。尚、図2では記録磁極間のギ
ャップ層、及びシールド層と磁気抵抗センサとのギャッ
プ層は省略してある。
FIG. 2 shows the structure of the magnetic head. This magnetic head is a composite type head having both an electromagnetic induction type magnetic head for recording and a magnetoresistive magnetic head for reproduction formed on the base 6. The recording head is a coil 7
Upper write pole 8 and lower write pole and upper shield layer 9 sandwiching
And the thickness of the gap layer between the recording magnetic poles was 0.3 μm.
Cu having a thickness of 3 μm was used for the coil. The reproducing head comprises a magnetoresistive sensor 10 and electrode patterns 11 on both ends thereof.The magnetoresistive sensor is sandwiched between a lower recording magnetic pole / upper shield layer and a lower shield layer 12 each having a thickness of 1 μm, and the distance between the shield layers is 0.25 μm. It is. In FIG. 2, the gap layer between the recording magnetic poles and the gap layer between the shield layer and the magnetoresistive sensor are omitted.

【0014】図3に磁気抵抗センサの断面構造を示す。
磁気センサの信号検出領域13は、酸化Alのギャップ層14
上に横バイアス層15、分離層16、磁気抵抗強磁性層17が
順次形成された部分からなる。磁気抵抗強磁性層には、
20nmのNiFe合金を用いた。横バイアス層には25nmのNiFe
Nbを用いたが、NiFeRh等の比較的電気抵抗が高く、軟磁
気特性の良好な強磁性合金であれば良い。横バイアス層
は磁気抵抗強磁性層を流れるセンス電流がつくる磁界に
よって、該電流と垂直な膜面内方向(横方向)に磁化さ
れ、磁気抵抗強磁性層に横方向のバイアス磁界を印加す
る。これによって、媒体からの漏洩磁界に対して線形な
再生出力を示す磁気センサが得られる。磁気抵抗強磁性
層からのセンス電流の分流を防ぐ分離層には、比較的電
気抵抗が高いTaを用い、膜厚は5nmとした。信号検出領
域の両端にはテーパー形状に加工されたテーパー部18が
ある。テーパー部は、磁気抵抗強磁性層を単磁区化する
ための永久磁石層19と、その上に形成された信号を取り
出すための一対の電極11からなる。永久磁石層は保磁力
が大きく、磁化方向が容易に変化しないことが必要であ
り、CoCr、CoCrPt合金等が用いられる。
FIG. 3 shows a sectional structure of the magnetoresistive sensor.
The signal detection area 13 of the magnetic sensor is a gap layer 14 of Al oxide.
The horizontal bias layer 15, the separation layer 16, and the magnetoresistive ferromagnetic layer 17 are sequentially formed thereon. The magnetoresistive ferromagnetic layer has
A 20 nm NiFe alloy was used. 25nm NiFe for lateral bias layer
Although Nb was used, any ferromagnetic alloy such as NiFeRh having relatively high electric resistance and good soft magnetic properties may be used. The lateral bias layer is magnetized in an in-plane direction (lateral direction) perpendicular to the current by a magnetic field generated by a sense current flowing through the magnetoresistive ferromagnetic layer, and applies a lateral bias magnetic field to the magnetoresistive ferromagnetic layer. As a result, a magnetic sensor showing a linear reproduction output with respect to the leakage magnetic field from the medium can be obtained. For the separation layer for preventing the shunt of the sense current from the magnetoresistive ferromagnetic layer, Ta having relatively high electric resistance was used, and the film thickness was 5 nm. At both ends of the signal detection region, there are tapered portions 18 processed into a tapered shape. The tapered portion includes a permanent magnet layer 19 for converting the magnetoresistive ferromagnetic layer into a single magnetic domain, and a pair of electrodes 11 formed thereon for extracting a signal. The permanent magnet layer needs to have a large coercive force and the magnetization direction does not easily change, and CoCr, CoCrPt alloy, or the like is used.

【0015】図4に本実施例で用いた磁気記録媒体の層
構成を示す。基板20には化学強化されたソーダライムガ
ラスを用い、第一の下地層21に膜厚50nmのNi-35at%Ta、
第二の下地層22に10nmのCr-15at%Ti、磁性層23に22nmの
Co-20at%Cr-10at%Pt合金を用いた。また、保護膜24とし
てカーボン膜を10nm形成し、記録再生特性を評価する媒
体については吸着性のパーフルオロアルキルポリエーテ
ル等の潤滑層を2nm〜20nm設けた。媒体の製造方法は以
下の通りである。まず、アルカリ洗浄済の基板をランプ
ヒータにより300℃まで加熱し、第一の下地層を形成し
た後、これを再度200℃となるまで加熱した。そしてそ
の上に第二の下地層、磁性層、保護膜と順次成膜した。
第一の下地層から保護膜までの成膜は真空中で連続的に
行い、成膜は全てDCスパッタにより10mTorrのArガス雰
囲気中で行った。
FIG. 4 shows the layer configuration of the magnetic recording medium used in this embodiment. The substrate 20 is made of soda lime glass that is chemically strengthened, and the first underlayer 21 is made of Ni-35at% Ta having a thickness of 50 nm,
The second underlayer 22 has a thickness of 10 nm of Cr-15at% Ti, and the magnetic layer 23 has a thickness of 22 nm.
A Co-20at% Cr-10at% Pt alloy was used. Further, a carbon film was formed to a thickness of 10 nm as the protective film 24, and a lubricating layer made of an adsorbent perfluoroalkyl polyether or the like was provided to a thickness of 2 to 20 nm as a medium for evaluating the recording and reproducing characteristics. The method of manufacturing the medium is as follows. First, the alkali-cleaned substrate was heated to 300 ° C. by a lamp heater to form a first underlayer, and then heated again to 200 ° C. Then, a second underlayer, a magnetic layer, and a protective film were sequentially formed thereon.
Film formation from the first underlayer to the protective film was performed continuously in a vacuum, and all film formation was performed in a 10 mTorr Ar gas atmosphere by DC sputtering.

【0016】第一の下地層の膜構造について検討するた
め、まず基板上に上記製造方法でNi-35at%Ta合金のみを
50nm形成した。この単層膜のX線回折プロファイルを図5
に示す。2θ=41.5°付近にハロー状のブロードなピーク
がみられるのみで明瞭な回折ピークはない。このことは
前記Ni-30at%Ta合金が非晶質、または微結晶構造である
ことを示している。また、該単層膜について電子顕微鏡
観察を行ったところ、極めて微細な結晶粒がみられた
が、何れの粒径も4nm以下であった。つぎに上記製造方
法でカーボン保護膜まで成膜した媒体のX線回折プロフ
ァイルを図6に示す。尚、同図には比較例として形成し
た第一の下地層にCrを用いた媒体のX線回折プロファイ
ルも示してある。実施例媒体では第二の下地層からの(2
00)回折ピークと磁性層からの(11.0)回折ピークのみが
見られる。これより、第二の下地層は(100)面を基板と
平行に向けた配向をとっており、磁性層はエピタキシャ
ル成長により、磁化容易軸であるc軸を膜面内に向けた
(11.0)配向をとっていることがわかる。これに対し、比
較例媒体では磁性層からは(10.0)回折ピークの他に(00.
2)や(10.1)回折ピークがみられ、c軸が膜面内から起き
上がった成分が存在していることがわかる。次に電子顕
微鏡観察により磁性層の平均粒径、及び粒径分散を以下
の方法で求めた。まず、媒体を数十ミクロンまで研磨し
た後、イオンシニングにより磁性層の膜厚を10nm程度に
する。次に透過型電子顕微鏡の高分解能モードで格子像
観察を行い、印画紙上に焼き付けた200万倍程度の格子
像を得る。この格子像をスキャナに取り込み、パソコン
画面上に格子像を表示し、格子縞が変化(交差)する部
分を粒界として粒界に沿って線を引き、結晶粒界網を作
製する。このようにして得られた結晶粒界網の一例を図
7に示す。市販の粒子解析ソフトを用い、この粒界網で
囲まれた各結晶粒の面積を求め、これと同一面積の真円
の直径を各結晶粒の粒径とした。100〜300個の結晶粒に
ついて上記手法により結晶粒径を算出した。図8(a)に本
実施例媒体の粒径頻度のヒストグラムを、図8(b)に結晶
粒径と結晶粒径がそれ以下の結晶粒の面積を観察した全
結晶粒の面積で規格化した値(以後、積算面積比率と記
す)の関係を表わす曲線(以後、積算面積比率曲線と記
す)を示す。この積算面積比率曲線において積算面積比
率が0.5となる結晶粒径を平均粒径と定義し、積算面積
比率が0.75となる結晶粒径と積算面積比率が0.25となる
結晶粒径の差を粒径分散と定義した。本実施例媒体の平
均粒径、及び粒径分散はそれぞれ13.8nm、5.4nmであっ
た。これに対し、比較例媒体では平均粒径、及び粒径分
散はそれぞれ17.1nm、7.8nmであり、第一の下地層にNi-
Ta合金を使用した本実施例媒体では平均粒径が20%程度
低減されており、また粒径分散も低減されていることが
わかる。表1に両媒体の磁気特性と規格化媒体ノイズを
示す。
In order to examine the film structure of the first underlayer, first, only the Ni-35at% Ta alloy was formed on the substrate by the above-mentioned manufacturing method.
50 nm was formed. Figure 5 shows the X-ray diffraction profile of this single-layer film.
Shown in There is only a halo-like broad peak around 2θ = 41.5 °, but no clear diffraction peak. This indicates that the Ni-30at% Ta alloy has an amorphous or microcrystalline structure. When the single-layer film was observed with an electron microscope, extremely fine crystal grains were found, but all of the particle diameters were 4 nm or less. Next, FIG. 6 shows the X-ray diffraction profile of the medium on which the carbon protective film was formed by the above-described manufacturing method. The figure also shows the X-ray diffraction profile of a medium using Cr for the first underlayer formed as a comparative example. In the example medium, (2)
Only the (00) diffraction peak and the (11.0) diffraction peak from the magnetic layer are observed. Thus, the second underlayer has an orientation with the (100) plane oriented parallel to the substrate, and the magnetic layer has its c-axis, which is the axis of easy magnetization, oriented in-plane by epitaxial growth.
It turns out that (11.0) orientation is taken. On the other hand, in the comparative example medium, (00.
2) and (10.1) diffraction peaks are observed, indicating that there is a component whose c-axis is raised from within the film plane. Next, the average particle size and the particle size distribution of the magnetic layer were determined by electron microscopy by the following methods. First, after the medium is polished to several tens of microns, the thickness of the magnetic layer is reduced to about 10 nm by ion thinning. Next, a lattice image is observed in a high-resolution mode of a transmission electron microscope to obtain a lattice image of about 2,000,000 times printed on photographic paper. The lattice image is taken into a scanner, the lattice image is displayed on a personal computer screen, and a line where the lattice fringe changes (intersects) is drawn along the grain boundary with a portion where the lattice fringes change (intersect) to form a grain boundary network. Figure 1 shows an example of the grain boundary network obtained in this way.
See Figure 7. Using commercially available particle analysis software, the area of each crystal grain surrounded by the grain boundary network was determined, and the diameter of a perfect circle having the same area as the area was defined as the particle diameter of each crystal grain. The crystal grain size was calculated for 100 to 300 crystal grains by the above method. FIG. 8 (a) is a histogram of the particle size frequency of the medium of the present example, and FIG. 8 (b) is normalized by the crystal grain size and the area of all the crystal grains obtained by observing the area of the crystal grain having the crystal grain size smaller than that. A curve (hereinafter, referred to as an integrated area ratio curve) representing the relationship between the calculated values (hereinafter, referred to as an integrated area ratio curve) is shown. In this integrated area ratio curve, the crystal grain size at which the integrated area ratio is 0.5 is defined as the average particle size, and the difference between the crystal particle size at which the integrated area ratio is 0.75 and the crystal particle size at which the integrated area ratio is 0.25 is the particle size. Defined as variance. The average particle size and the particle size dispersion of the medium of this example were 13.8 nm and 5.4 nm, respectively. On the other hand, in the comparative example medium, the average particle size and the particle size dispersion were 17.1 nm and 7.8 nm, respectively.
It can be seen that in the medium of this example using a Ta alloy, the average particle size was reduced by about 20%, and the particle size dispersion was also reduced. Table 1 shows the magnetic characteristics and normalized medium noise of both media.

【0017】[0017]

【表1】 [Table 1]

【0018】ここで、規格化媒体ノイズは線記録密度26
0kFCIの条件で測定した媒体ノイズを孤立再生波出力と
トラック幅の平方根で規格化した値と定義した値であ
り、以後、媒体ノイズはこの値で以って評価する。本実
施例媒体が保磁力、S*共に大きく、規格化媒体ノイズは
低い。
Here, the normalized medium noise has a linear recording density of 26.
This is a value defined as a value obtained by standardizing the medium noise measured under the condition of 0 kFCI by the isolated reproduction wave output and the square root of the track width, and thereafter, the medium noise is evaluated using this value. The medium of this embodiment has large coercive force and S *, and has low normalized medium noise.

【0019】以上より、第一の下地層にNi-35at%Ta合金
を用いることにより、磁性層の結晶粒が(11.0)配向する
と同時に微細・均一化され、高Hc、高S*、低ノイズな媒
体が得られることが明らかになった。この媒体を上述の
磁気記憶装置に組み込み、一平方インチ当たり4ギガビ
ットの条件で記録再生特性を評価したところ、1.8とい
う高い装置S/Nが得られた。また、CSS試験(コンタクト
・スタート・ストップ試験)を行ったところ,3万回のC
SSを行っても摩擦係数は0.3以下であった。更に媒体の
内周から外周なでのヘッドシーク試験5万回後のビット
エラー数は10ビット/面以下であり,平均故障間隔で30
万時間以上が達成出来た。
As described above, by using the Ni-35 at% Ta alloy for the first underlayer, the crystal grains of the magnetic layer are oriented (11.0) and fine and uniform at the same time, and high Hc, high S * and low noise are obtained. It has become clear that a suitable medium can be obtained. When this medium was incorporated in the above-mentioned magnetic storage device and the recording and reproducing characteristics were evaluated under the condition of 4 gigabits per square inch, a high device S / N of 1.8 was obtained. When a CSS test (contact start / stop test) was performed, 30,000 times of C
Even when SS was performed, the friction coefficient was 0.3 or less. Furthermore, the number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference of the medium is 10 bits / surface or less, and the average failure interval is 30
More than 10,000 hours were achieved.

【0020】<実施例2>実施例1と同様な膜構成の媒体
において、第一の下地層に30nmのNi-Ta合金、またはNi-
Nb合金を使用し、第二の下地層に30nmのCr-20at%Mo合
金、磁性層に18nmのCo-18at%Cr-8at%Pt-2at%Ta合金を使
用した。第一の下地層中のTa、Nb濃度と保磁力、及び実
施例1で定義した規格化媒体ノイズの関係をそれぞれ図
9、図10に示す。
<Embodiment 2> In a medium having the same film configuration as in Embodiment 1, a 30 nm-thick Ni-Ta alloy or Ni-
An Nb alloy was used, a 30 nm Cr-20at% Mo alloy was used for the second underlayer, and a 18 nm Co-18at% Cr-8at% Pt-2at% Ta alloy was used for the magnetic layer. The relationship between the Ta and Nb concentrations in the first underlayer and the coercive force, and the normalized medium noise defined in Example 1, respectively.
9 and shown in FIG.

【0021】第一の下地層にNi-Ta合金を用いた媒体で
はTa濃度が30〜60at%で2400エルステッド以上の高い保
磁力と0.018以下の低い規格化媒体ノイズが得られてい
る。X線回折測定の結果、この組成内ではNi-Ta合金は非
晶質、またはそれに近い微結晶構造であり、磁性層は強
い(11.0)配向を示していた。Ta濃度が30at%以下、また
は60at%以上ではNi-Ta合金は結晶化しており、磁性層の
配向は(11.0)の他に(10.1)や(00.2)配向した結晶粒の混
合相となった。上記組成範囲内ではNi-Ta合金の飽和磁
束密度は100G以下と低く、実用上特に問題とはならな
い。また、より低ノイズな媒体を得るには、Ta濃度は35
〜55at%が特に好ましい。
In a medium using a Ni-Ta alloy for the first underlayer, a high coercive force of 2400 Oe or more and a low normalized medium noise of 0.018 or less are obtained at a Ta concentration of 30 to 60 at%. As a result of X-ray diffraction measurement, within this composition, the Ni-Ta alloy had an amorphous or microcrystalline structure similar thereto, and the magnetic layer showed a strong (11.0) orientation. At a Ta concentration of 30 at% or less or 60 at% or more, the Ni-Ta alloy was crystallized, and the orientation of the magnetic layer became a mixed phase of (10.1) and (10.1) and (00.2) oriented crystal grains. . Within the above composition range, the saturation magnetic flux density of the Ni—Ta alloy is as low as 100 G or less, so that there is no particular problem in practical use. To obtain a lower noise medium, the Ta concentration should be 35
~ 55at% is particularly preferred.

【0022】第一の下地層にNi-Nb合金を用いた媒体で
はNb濃度が20〜70at%で2400エルステッド以上の高い保
磁力と0.018以下の低い規格化媒体ノイズが得られてい
る。X線回折測定の結果、この組成内ではNi-Nb合金はNi
-Ta合金と同様、非晶質、またはそれに近い微結晶構造
であった。飽和磁束密度についても100G以下と実用上問
題とならない値であった。また、特にNb濃度が30〜60at
%の媒体では、磁性層の(11.0)ピーク強度はNi-Ta合金を
用いた媒体より3〜5割程度強く、保磁力も200〜300
エルステッド程度大きい。よって、特に高保磁力な媒体
を得るにはNb濃度を30〜60at%とするのが望ましい。N
b濃度が20at%以下、または70at%以上ではNi-Nb合金は結
晶化しており、磁性層からの回折ピークも(11.0)ピーク
の他に(10.1)や(00.2)ピークが出現した。
In a medium using a Ni--Nb alloy for the first underlayer, a high coercive force of 2400 Oe or more and a low normalized medium noise of 0.018 or less are obtained at an Nb concentration of 20 to 70 at%. As a result of X-ray diffraction measurement, Ni-Nb alloy
Like the -Ta alloy, it had an amorphous or near-crystalline structure. The saturation magnetic flux density was 100 G or less, which was not a problem in practical use. In addition, especially when the Nb concentration is 30 to 60 at
% Medium, the (11.0) peak strength of the magnetic layer is about 30 to 50% stronger than the medium using the Ni-Ta alloy, and the coercive force is also 200 to 300%.
Oersted is big. Therefore, in order to obtain a medium having a particularly high coercive force, it is desirable to set the Nb concentration to 30 to 60 at%. N
At a b concentration of 20 at% or less or 70 at% or more, the Ni-Nb alloy was crystallized, and diffraction peaks from the magnetic layer also appeared at (10.1) and (00.2) peaks in addition to the (11.0) peak.

【0023】<実施例3>実施例1と同様な膜構成の媒体
において、第一の下地層に30nmのNi-40at%Nb合金、第二
の下地層に20nmのCr-20at%V合金、磁性層に14nmのCo-22
at%Cr-6at%Pt合金を使用した。また、比較例として第一
の下地層にV-20at%Ta合金を用いた媒体を形成した。
<Embodiment 3> In a medium having the same film configuration as in Embodiment 1, a 30 nm-thick Ni-40at% Nb alloy was used for a first underlayer, a 20 nm-thickness Cr-20at% V alloy was used for a second underlayer, 14 nm Co-22 for magnetic layer
An at% Cr-6at% Pt alloy was used. As a comparative example, a medium using a V-20at% Ta alloy for the first underlayer was formed.

【0024】ガラス基板上に第一の下地層のみを形成し
た単層膜についてX線回折測定を行ったところ、Ni-Ta合
金膜、V-Ta合金膜共にハロー状のピークしかみられず、
何れも非晶質、または微結晶構造であることがわかっ
た。また、カーボン保護膜まで形成した媒体についてX
線回折測定を行ったところ、実施例媒体の第二の下地
層、磁性層からはそれぞれ強いbcc(200)ピークとhcp(1
1.0)ピークがみられた。しかし、比較例媒体の第二の下
地層、磁性層からはそれぞれ強いbcc(211)ピークとhcp
(10.0)ピークがみられた。実施例1で述べた手法で求め
た両者の磁性層の平均粒径、粒径分散、及び規格化媒体
ノイズを表2に示す。
X-ray diffraction measurement was performed on a single-layer film having only a first underlayer formed on a glass substrate. As a result, only a halo-shaped peak was observed in both the Ni-Ta alloy film and the V-Ta alloy film.
All were found to have an amorphous or microcrystalline structure. In addition, for the medium formed up to the carbon protective film, X
When a line diffraction measurement was performed, a strong bcc (200) peak and hcp (1
1.0) A peak was observed. However, a strong bcc (211) peak and hcp
(10.0) peak was observed. Table 2 shows the average particle size, particle size dispersion, and normalized medium noise of both magnetic layers obtained by the method described in Example 1.

【0025】[0025]

【表2】 [Table 2]

【0026】平均粒径は実施例媒体が小さい。実施例媒
体の格子像には隣接した結晶の格子縞が直行している部
分が幾つか見られた。これは(100)配向した1つの第二の
下地結晶粒上に、(11.0)配向した複数の磁性結晶粒がc
軸を直行させてエピタキシャル成長したバイクリスタル
構造をとっていること示している。これに対し、比較例
媒体ではこのようなバイクリスタル構造はみられなかっ
た。これは比較例媒体の第二の下地結晶表面は2回対称
な(211)面であるため、(10.0)配向した磁性結晶粒は全
てc軸を同じ方向に揃えてしか成長できないためであ
る。よって、実施例媒体が低ノイズであるのは、バイク
リスタル構造により磁性結晶粒が下地結晶粒より更に微
細化されるためと考えられる。
The average particle size of the example medium is small. In the lattice image of the example medium, some portions in which lattice fringes of adjacent crystals were orthogonal were observed. This is because a plurality of (11.0) -oriented magnetic crystal grains are formed on one (100) -oriented second base crystal grain.
This indicates that the crystal has a bicrystal structure grown epitaxially with the axis perpendicular to the axis. On the other hand, such a bicrystal structure was not observed in the medium of the comparative example. This is because the surface of the second base crystal of the medium of the comparative example is a two-fold symmetric (211) plane, and thus all (10.0) -oriented magnetic crystal grains can grow only with the c-axis aligned in the same direction. Therefore, it is considered that the reason why the medium of the example has low noise is that the magnetic crystal grains are further refined than the base crystal grains by the bicrystal structure.

【0027】本実施例媒体と再生用磁気ヘッドに図11に
示すセンサを用いた複合型ヘッドを実施例1で述べた磁
気記憶装置に組み込んだ。このセンサはギャップ層14上
に、5nmのTaバッファ層26、7nmの第一の磁性層27、1.5n
mのCu中間層28、3nmの第二の磁性層29、10nmのFe-50at%
Mn反強磁性合金層30が順次形成された構造である。前記
第一の磁性層にはNi-20at%Fe合金を使用し、第二の磁性
層にはCoを使用した。反強磁性層からの交換磁界によ
り、第二の磁性層の磁化は一方向に固定されている。こ
れに対し、第二の磁性層と非磁性層を介して接する第一
の磁性層の磁化の方向は、磁気記録媒体からの漏洩磁界
により変化するため、抵抗変化が生じる。このような二
つの磁性層の磁化の相対的方向の変化に伴う抵抗変化は
スピンバルブ効果と呼ばれるが、本実施例では再生用ヘ
ッドにこの効果を利用したスピンバルブ型磁気ヘッドを
使用した。テーパー部は実施例1の磁気センサと同一構
成である。一平方インチ当たり5ギガビットの条件で記
録再生特性を評価したところ、2.0という高い装置S/Nが
得られた。
A composite head using the sensor shown in FIG. 11 as a medium and a reproducing magnetic head in this embodiment was incorporated in the magnetic storage device described in the first embodiment. This sensor has a 5 nm Ta buffer layer 26, a 7 nm first magnetic layer 27,
m Cu intermediate layer 28, 3 nm second magnetic layer 29, 10 nm Fe-50at%
It has a structure in which Mn antiferromagnetic alloy layers 30 are sequentially formed. For the first magnetic layer, a Ni-20at% Fe alloy was used, and for the second magnetic layer, Co was used. The magnetization of the second magnetic layer is fixed in one direction by the exchange magnetic field from the antiferromagnetic layer. On the other hand, the direction of magnetization of the first magnetic layer, which is in contact with the second magnetic layer via the non-magnetic layer, changes due to the leakage magnetic field from the magnetic recording medium, so that a resistance change occurs. Such a change in resistance due to a change in the relative direction of magnetization of the two magnetic layers is called a spin valve effect. In this embodiment, a spin valve magnetic head utilizing this effect is used as a reproducing head. The tapered portion has the same configuration as the magnetic sensor of the first embodiment. When the recording and reproducing characteristics were evaluated under the condition of 5 gigabits per square inch, a high device S / N of 2.0 was obtained.

【0028】<実施例4>NiPメッキしたAl-Mg合金基板
(以後、Al基板と記す)を280℃に加熱した後、第一の
下地層として30nmのNi-50at%Nb合金、第二の下地層とし
て10nmのCr-20at%V合金、磁性層として14nmのCo-22at%C
r-6at%Pt合金、保護膜に水素を添加したカーボン膜を10
nm形成した。第一の下地層の成膜はArに窒素を3%添加
した混合ガス雰囲気中で行い、保護膜の成膜にはArに20
%の水素を添加した混合ガスを用いた。それ以外の層は
全て純Ar雰囲気中で行った。また、磁性層形成時にのみ
基板に-300VのDCバイアスを印加した。比較例として第
一の下地層にMo-12at%Y合金を用いた媒体を上記と同様
の条件で形成した。第一の下地層のみを上記と同一条件
で成膜し、TEM観察を行ったところ、Ni-Nb合金、Mo-Y合
金共に粒径5nm以下の微結晶構造であった。
Example 4 After heating a NiP-plated Al-Mg alloy substrate (hereinafter referred to as Al substrate) to 280 ° C., a 30 nm-thick Ni-50at% Nb alloy as a first underlayer, a second 10 nm Cr-20at% V alloy as underlayer, 14 nm Co-22at% C as magnetic layer
r-6at% Pt alloy, 10 carbon films with hydrogen added to the protective film
nm formed. The first underlayer is formed in a mixed gas atmosphere containing 3% nitrogen added to Ar.
% Hydrogen was used. All other layers were performed in a pure Ar atmosphere. A DC bias of -300 V was applied to the substrate only during the formation of the magnetic layer. As a comparative example, a medium using a Mo-12at% Y alloy for the first underlayer was formed under the same conditions as described above. Only the first underlayer was formed under the same conditions as described above, and TEM observation revealed that both the Ni—Nb alloy and the Mo—Y alloy had a microcrystalline structure with a grain size of 5 nm or less.

【0029】また、熱磁気緩和特性について検討するた
め、再生出力の経時変化の測定を行った。図12に線記録
密度260kFCIで記録した信号の再生出力Etを記録直後の
再生出力E0で規格化した値の経時変化を示す。本実施例
媒体では96時間後の再生出力の減衰率(E96h-E0)/E0は2
%以内であるが、比較例媒体では15%程度低下してい
る。TEM観察より求めた本実施例媒体の粒径分散は、比
較例媒体に比べ2割程度低かった。よって、実施例媒体
で再生出力の減衰が抑制されているのは、粒径均一化に
より極微細磁性結晶粒が排除されたためと考えられる。
本実施例媒体と実施例3で述べたスピンバルブ型磁気ヘ
ッドを実施例1で述べた磁気記憶装置に組み込み、一平
方インチ当たり5ギガビットの条件で記録再生特性を評
価したところ、2.1という高い装置S/Nが得られた。ま
た、CSS試験を行ったところ,3万回のCSSを行っても摩
擦係数は0.2以下であった。
Further, in order to examine the thermomagnetic relaxation characteristics, a change with time of the reproduction output was measured. FIG. 12 shows a temporal change in a value obtained by normalizing a reproduction output Et of a signal recorded at a linear recording density of 260 kFCI with a reproduction output E0 immediately after recording. In the present example medium, the decay rate of the reproduction output after 96 hours (E96h-E0) / E0 is 2
%, But about 15% lower in the comparative example medium. The particle size distribution of the medium of this example determined by TEM observation was about 20% lower than that of the medium of the comparative example. Therefore, it is considered that the reason why the attenuation of the reproduction output was suppressed in the example medium is that the ultrafine magnetic crystal grains were eliminated by the uniform particle diameter.
The medium of this embodiment and the spin-valve magnetic head described in Embodiment 3 were incorporated in the magnetic storage device described in Embodiment 1, and the recording and reproduction characteristics were evaluated under the condition of 5 gigabits per square inch. S / N was obtained. In addition, a CSS test showed that the coefficient of friction was less than 0.2 even after 30,000 cycles of CSS.

【0030】<実施例5>実施例1と同様な膜構成の媒
体において、第一の下地層に表3に示す4種類の酸化物を
添加した材料を30nm成膜した。
Example 5 A medium having the same film configuration as that of Example 1 was formed to have a thickness of 30 nm using a material in which four types of oxides shown in Table 3 were added to the first underlayer.

【0031】[0031]

【表3】 [Table 3]

【0032】成膜は10mTorrのArガス雰囲気中で、RFス
パッタにより行い、基板には結晶化ガラス基板を用い
た。第二の下地層に50nmのCr-20at%Ti合金を用い、磁性
層は2nmのCr層を挟んだ二層構造のCo-20at%Cr-7at%Pt-2
at%Ta合金を使用し、膜厚は共に9nmとした。第二の下地
層以後は全てDCスパッタにより5mTorrの純Ar雰囲気中で
行った。基板加熱はランプヒータにより、第一の下地層
形成後にのみ220℃となるよう行った。
Film formation was performed by RF sputtering in an Ar gas atmosphere of 10 mTorr, and a crystallized glass substrate was used as a substrate. Co-20at% Cr-7at% Pt-2 with a two-layer structure sandwiching a 2nm Cr layer using a 50nm Cr-20at% Ti alloy for the second underlayer
An at% Ta alloy was used, and the film thicknesses were both 9 nm. Everything after the second underlayer was performed in a pure Ar atmosphere of 5 mTorr by DC sputtering. The substrate was heated by a lamp heater to 220 ° C. only after the formation of the first underlayer.

【0033】TEM観察の結果、上記第一の下地層は何れ
も非晶質、または平均粒径4nm以下の微結晶構造であっ
た。表3に示したように何れの媒体も、2400エルステッ
ド以上の高い保磁力と0.015以下の低い規格化媒体ノイ
ズを示し、一平方インチ当たり4ギガビット以上の記録
密度を達成するのに十分であることがわかった。特に第
一の下地層にAl2O3を添加した媒体では極めて良好なCSS
特性が得られた。また、SiO2を添加した媒体では保磁力
が高く、ZrO2を添加した媒体では低ノイズとなってい
る。Ta2O5を添加した媒体ではS*が大きかったが、X線回
折測定の結果、該媒体の磁性層のhcp(11.0)回折ピーク
は他の媒体より3〜5割程度高かった。よって、S*が大き
いのは磁化容易軸であるc軸が強く膜面内に向いている
ためと考えられる。更に表3には実施例4で述べた96時間
後の再生出力の減衰率も示してあるが、第一の下地層に
TiO2を添加した媒体が特に低い。
As a result of TEM observation, each of the first underlayers was amorphous or had a microcrystalline structure with an average particle size of 4 nm or less. As shown in Table 3, all media exhibit high coercivity of 2400 Oe or more and low normalized media noise of 0.015 or less, which is sufficient to achieve a recording density of 4 gigabits per square inch or more. I understood. Extremely good CSS especially for media with Al2O3 added to the first underlayer
Characteristics were obtained. The medium to which SiO2 is added has a high coercive force, and the medium to which ZrO2 is added has low noise. In the medium to which Ta2O5 was added, S * was large, but as a result of X-ray diffraction measurement, the hcp (11.0) diffraction peak of the magnetic layer of the medium was about 30 to 50% higher than that of the other medium. Therefore, it is considered that S * is large because the c-axis, which is the easy axis of magnetization, is strongly oriented in the film plane. Further, Table 3 also shows the decay rate of the reproduction output after 96 hours described in Example 4, but the first underlayer
Medium with TiO2 added is particularly low.

【0034】また、第一の下地層として酸素を添加しな
い(Ni-40at%Nb)-16at%Al、(Ni-40at%Nb)-10at%Si、(Ni-
40at%Nb)-16at%Ta、(Ni-40at%Nb)-20at%Ti、(Ni-40at%N
b)-12at%Zrを、Arに酸素を10%添加した混合ガス雰囲気
中で成膜した媒体を形成した。尚、該下地層はガス圧20
mTorrでDCスパッタリングにより行った。これらの媒体
も上記媒体と同様、2400エルステッド以上の高い保磁力
と0.015以下の低い規格化媒体ノイズを示し、一平方イ
ンチ当たり4ギガビット以上の記録密度を達成するのに
十分であることがわかった。
As the first underlayer, no oxygen is added (Ni-40at% Nb) -16at% Al, (Ni-40at% Nb) -10at% Si, (Ni-
40at% Nb) -16at% Ta, (Ni-40at% Nb) -20at% Ti, (Ni-40at% N
b) A medium in which -12 at% Zr was formed into a film in a mixed gas atmosphere containing 10% oxygen added to Ar was formed. In addition, the underlayer has a gas pressure of 20.
DC sputtering was performed at mTorr. These media also showed high coercivity of 2400 Oe or more and low normalized media noise of 0.015 or less, similar to the above media, and were found to be sufficient to achieve a recording density of 4 gigabits per square inch or more. .

【0035】[0035]

【発明の効果】本発明の磁気記録媒体は、媒体ノイズの
低減、及び熱磁気緩和による再生出力減衰に対する抑制
効果を持つ。本発明の磁気記録媒体を磁気抵抗効果型ヘ
ッドと組み合わせて用いることにより、一平方インチ当
たり4ギガビット以上の記録密度を有し、かつ平均故障
回数が30万時間以上の磁気記憶装置の実現が可能とな
る。
The magnetic recording medium of the present invention has the effect of reducing medium noise and suppressing the reproduction output attenuation due to thermomagnetic relaxation. By using the magnetic recording medium of the present invention in combination with a magnetoresistive head, a magnetic storage device having a recording density of 4 gigabits per square inch or more and an average number of failures of 300,000 hours or more can be realized. Becomes

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)および(b)は、それぞれ、本発明の一実施例
の磁気記憶装置の平面模式図およびそのA-A' 断面図で
ある。
FIGS. 1A and 1B are a schematic plan view and a sectional view taken along the line AA ′ of a magnetic storage device according to an embodiment of the present invention, respectively.

【図2】本発明の磁気記憶装置における、磁気ヘッドの
断面構造の一例を示す斜視図である。
FIG. 2 is a perspective view showing an example of a sectional structure of a magnetic head in the magnetic storage device of the present invention.

【図3】本発明の磁気記憶装置における、磁気ヘッドの
磁気抵抗センサ部の断面構造の一例を示す模式図であ
る。
FIG. 3 is a schematic diagram illustrating an example of a cross-sectional structure of a magnetoresistive sensor section of a magnetic head in the magnetic storage device of the present invention.

【図4】本発明の一実施例の磁気記録媒体の断面構造の
一例を示す模式図である。
FIG. 4 is a schematic diagram showing an example of a cross-sectional structure of a magnetic recording medium according to one embodiment of the present invention.

【図5】本発明の一実施例に用いた第一の下地層単層の
X線回折プロファイルを表わす図である。
FIG. 5 shows the first underlayer single layer used in one embodiment of the present invention.
It is a figure showing an X-ray diffraction profile.

【図6】本発明の一実施例、及び比較例の磁気記録媒体
のX線回折プロファイルを表わす図である。
FIG. 6 is a diagram showing X-ray diffraction profiles of magnetic recording media of one example of the present invention and a comparative example.

【図7】本発明の一実施例の磁気記録媒体の透過電子顕
微鏡観察により得た結晶粒界網を表わす図である。
FIG. 7 is a diagram illustrating a grain boundary network obtained by observing a magnetic recording medium according to an embodiment of the present invention with a transmission electron microscope.

【図8】(a)及び(b)は、本発明の一実施例の磁気記録媒
体における磁性結晶粒の面積比率分布,及びその加積曲
線を示す図である。
FIGS. 8A and 8B are diagrams showing an area ratio distribution of magnetic crystal grains in a magnetic recording medium according to one embodiment of the present invention, and a product curve thereof.

【図9】本発明の一実施例媒体の第一の下地層中のTa濃
度と保磁力、及び規格化媒体ノイズの関係を示す図であ
る。
FIG. 9 is a diagram showing the relationship between the Ta concentration in the first underlayer of the medium of one embodiment of the present invention, the coercive force, and the normalized medium noise.

【図10】本発明の一実施例媒体の第一の下地層中のNb
濃度と保磁力、及び規格化媒体ノイズの関係を示す図で
ある。
FIG. 10 shows Nb in a first underlayer of a medium according to an embodiment of the present invention.
FIG. 3 is a diagram illustrating a relationship among a density, a coercive force, and a normalized medium noise.

【図11】本発明の磁気記憶装置における、磁気ヘッド
の磁気抵抗センサ部の断面構造の一例を示す模式図であ
る。
FIG. 11 is a schematic diagram showing an example of a cross-sectional structure of a magnetoresistive sensor section of a magnetic head in the magnetic storage device of the present invention.

【図12】本発明の一実施例媒体の再生出力の経時変化
を示す図である。
FIG. 12 is a diagram showing a change over time in a reproduction output of a medium according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1...磁気ヘッド、2...磁気ヘッド駆動部、3...記録再生
信号処理系、4...気記録媒体、5...磁気記録媒体駆動
部、6...基体、7...コイル、8...上部記録磁極、9...下
部記録磁極兼上部シールド層、10...磁気抵抗センサ、1
1...導体層、12...下部シールド層、13...信号検出領
域、14...シールド層と磁気抵抗センサの間のギャップ
層、15...横バイアス層、16...分離層、17...磁気抵抗
強磁性層、18...テーパー部、19...永久磁石層、20..基
板、21...第一の下地層、22...第二の下地層、23...磁
性層、24...保護膜、25...バッファ層、26...第一の磁
性層、27...中間層、28...第二の磁性層、29...反強磁
性層。
1 ... magnetic head, 2 ... magnetic head drive unit, 3 ... recording / reproduction signal processing system, 4 ... air recording medium, 5 ... magnetic recording medium drive unit, 6 ... substrate, 7 ... coil, 8 ... upper recording magnetic pole, 9 ... lower recording magnetic pole and upper shield layer, 10 ... magnetic resistance sensor, 1
1 ... conductor layer, 12 ... lower shield layer, 13 ... signal detection area, 14 ... gap layer between shield layer and magnetoresistive sensor, 15 ... lateral bias layer, 16. Separation layer, 17 ... Magnetoresistance ferromagnetic layer, 18 ... Tapered section, 19 ... Permanent magnet layer, 20 ... Substrate, 21 ... First underlayer, 22 ... Second layer Underlayer, 23 ... Magnetic layer, 24 ... Protective film, 25 ... Buffer layer, 26 ... First magnetic layer, 27 ... Intermediate layer, 28 ... Second magnetism Layer, 29 ... antiferromagnetic layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 由夫 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 細江 譲 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 棚橋 究 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 松沼 悟 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 小礒 良嗣 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yoshio Takahashi 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory of Hitachi, Ltd. Inside the Central Research Laboratory (72) Inventor Kaoru Tanahashi 1-280 Higashi Koikekubo, Kokubunji City, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. 72) Inventor Yoshitsugu Koiso 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside Central Research Laboratory, Hitachi, Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】基板上に単層または複数の下地層を介して
形成された磁性層を有する磁気記録媒体において、該下
地層の少なくとも一層がNiを主成分とし、かつNb、Taの
うち少なくとも一種類の元素を含有する非晶質、或いは
微結晶材料から成ることを特徴とする磁気記録媒体。
In a magnetic recording medium having a magnetic layer formed on a substrate with a single layer or a plurality of underlayers interposed therebetween, at least one of the underlayers contains Ni as a main component and at least one of Nb and Ta. A magnetic recording medium comprising an amorphous or microcrystalline material containing one kind of element.
【請求項2】上記Niを主成分とする非晶質、或いは微結
晶材料が更にAl2O3、SiO2、 Ta2O5、 TiO2および ZrO2
から選ばれる少なくとも1種の酸化物を含有することを
特徴とする請求項1に記載の磁気記録媒体。
2. The amorphous or microcrystalline material containing Ni as a main component further comprises Al 2 O 3 , SiO 2 , Ta 2 O 5 , TiO 2 and ZrO 2.
2. The magnetic recording medium according to claim 1, comprising at least one oxide selected from the group consisting of:
【請求項3】上記Niを主成分とする下地層の平均結晶粒
径が8nm以下であることを特徴とする請求項1または2に
記載の磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein an average crystal grain size of the underlayer containing Ni as a main component is 8 nm or less.
【請求項4】上記Niを主成分とする下地層と磁性層の間
に実質的に体心立方格子構造を有する下地層が形成され
ており、かつ、前記磁性層が実質的に最密六方格子構造
を有するCoを主成分とする合金であることを特徴とする
請求項1から3までのいずれかに記載の磁気記録媒体。
4. An underlayer having substantially a body-centered cubic lattice structure is formed between the underlayer containing Ni as a main component and a magnetic layer, and the magnetic layer is substantially close-packed hexagonally. 4. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is an alloy mainly containing Co having a lattice structure.
【請求項5】磁気記録媒体と、これを記録方向に駆動す
る駆動部と、記録部と再生部から成る磁気ヘッドと、上
記磁気ヘッドを上記磁気記録媒体に対して相対運動させ
る手段と、上記磁気ヘッドへの信号入力と該磁気ヘッド
からの出力信号再生を行うための記録再生信号処理手段
を有する磁気記憶装置において、前記磁気ヘッドの再生
部が磁気抵抗効果型磁気ヘッドで構成され、かつ、前記
磁気記録媒体が請求項1、2、3もしくは4に記載の磁気記
録媒体で構成されることを特徴とする磁気記憶装置。
5. A magnetic recording medium, a driving unit for driving the magnetic recording medium in a recording direction, a magnetic head comprising a recording unit and a reproducing unit, means for moving the magnetic head relative to the magnetic recording medium, In a magnetic storage device having recording / reproduction signal processing means for performing signal input to a magnetic head and reproduction of an output signal from the magnetic head, a reproduction unit of the magnetic head is constituted by a magnetoresistive magnetic head, and 5. A magnetic storage device comprising the magnetic recording medium according to claim 1, 2, 3, or 4.
【請求項6】前記磁気抵抗効果型磁気ヘッドの磁気抵抗
センサ部が、互いに0.30μm以下の距離だけ隔てられた
軟磁性体からなる2枚のシールド層の間に形成されてお
り、かつ、前記磁性膜の厚さtと、記録時における該磁
気記録媒体に対する上記磁気ヘッドの相対的な走行方向
に磁界を印加して測定した残留磁束密度Brの積Br×tが4
0ガウス・ミクロン以上、120ガウス・ミクロン以下であ
り、さらに、上記の磁界印加方向と同じ方向に磁界を印
加して測定した前記磁気記録媒体の保磁力が2400エルス
テッド以上であることを特徴とする請求項5に記載の磁
気記憶装置。
6. A magnetoresistive sensor of the magnetoresistive effect type magnetic head is formed between two shield layers made of a soft magnetic material separated from each other by a distance of 0.30 μm or less, and The product Br × t of the thickness t of the magnetic film and the residual magnetic flux density Br measured by applying a magnetic field in the direction of travel of the magnetic head relative to the magnetic recording medium during recording is 4
0 gauss micron or more, 120 gauss micron or less, and the coercive force of the magnetic recording medium measured by applying a magnetic field in the same direction as the above magnetic field application direction is 2400 Oe or more. The magnetic storage device according to claim 5.
【請求項7】前記磁気抵抗効果型磁気ヘッドが、互いの
磁化方向が外部磁界によって相対的に変化することによ
って大きな抵抗変化を生じる複数の導電性磁性層と、該
導電性磁性層の間に配置された導電性非磁性層を含む磁
気抵抗センサによって構成されていることを特徴とする
請求項5または6に記載の磁気記憶装置。
7. A magneto-resistance effect type magnetic head comprising: a plurality of conductive magnetic layers which generate a large resistance change when their magnetization directions are relatively changed by an external magnetic field; 7. The magnetic storage device according to claim 5, wherein the magnetic storage device is configured by a magnetoresistive sensor including a conductive nonmagnetic layer disposed.
JP10603198A 1997-12-09 1998-04-16 Magnetic recording medium and magnetic storage device using the same Expired - Fee Related JP3716097B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10603198A JP3716097B2 (en) 1998-04-16 1998-04-16 Magnetic recording medium and magnetic storage device using the same
US09/206,869 US6221508B1 (en) 1997-12-09 1998-12-08 Magnetic recording media
US09/799,073 US6574060B2 (en) 1997-12-09 2001-03-06 Magnetic storage apparatus
US10/404,071 US7050253B2 (en) 1997-12-09 2003-04-02 Magnetic recording media and magnetic storage apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10603198A JP3716097B2 (en) 1998-04-16 1998-04-16 Magnetic recording medium and magnetic storage device using the same

Publications (2)

Publication Number Publication Date
JPH11306532A true JPH11306532A (en) 1999-11-05
JP3716097B2 JP3716097B2 (en) 2005-11-16

Family

ID=14423278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10603198A Expired - Fee Related JP3716097B2 (en) 1997-12-09 1998-04-16 Magnetic recording medium and magnetic storage device using the same

Country Status (1)

Country Link
JP (1) JP3716097B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472047B1 (en) * 1999-06-28 2002-10-29 Hitachi, Ltd. Magnetic recording disk
US6689496B1 (en) 2000-04-07 2004-02-10 Fujitsu Limited Magnetic recording medium, method of producing magnetic recording medium, and magnetic storage apparatus
US6756113B2 (en) 2001-06-26 2004-06-29 Hitachi Storage Technologies Japan, Ltd. Magnetic recording medium and manufacturing method thereof
US6759148B2 (en) * 2000-09-01 2004-07-06 Hitachi, Ltd. Perpendicular magnetic recording media and magnetic storage apparatus using the same
US6902835B2 (en) 2002-06-25 2005-06-07 Kabushiki Kaisha Toshiba Perpendicular magnetic recording medium and magnetic recording apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472047B1 (en) * 1999-06-28 2002-10-29 Hitachi, Ltd. Magnetic recording disk
US6746749B2 (en) 1999-06-28 2004-06-08 Hitachi, Ltd. Magnetic recording disk
US6689496B1 (en) 2000-04-07 2004-02-10 Fujitsu Limited Magnetic recording medium, method of producing magnetic recording medium, and magnetic storage apparatus
US6759148B2 (en) * 2000-09-01 2004-07-06 Hitachi, Ltd. Perpendicular magnetic recording media and magnetic storage apparatus using the same
US7138195B2 (en) 2000-09-01 2006-11-21 Hitachi, Ltd. Perpendicular magnetic recording media and magnetic storage
US6756113B2 (en) 2001-06-26 2004-06-29 Hitachi Storage Technologies Japan, Ltd. Magnetic recording medium and manufacturing method thereof
US6902835B2 (en) 2002-06-25 2005-06-07 Kabushiki Kaisha Toshiba Perpendicular magnetic recording medium and magnetic recording apparatus

Also Published As

Publication number Publication date
JP3716097B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
JP3665261B2 (en) Perpendicular magnetic recording medium and magnetic storage device
US7056604B2 (en) Magnetic recording media and magnetic recording system using the same
US7348078B2 (en) Perpendicular magnetic recording medium and magnetic storage apparatus
US6221508B1 (en) Magnetic recording media
US5922456A (en) Longitudal magnetic recording medium having a multi-layered underlayer and magnetic storage apparatus using such magnetic recording medium
JP3429972B2 (en) Magnetic recording medium and magnetic storage device using the same
JPH10233016A (en) Intra-surface magnetic recording medium and magnetic memory device formed by using the same
JP2000113418A (en) Magneto-resistive head based on spin valve effect and magnetic recording and reproducing device using the same
JP3764833B2 (en) Magnetic recording medium and magnetic storage device
JP2000020937A (en) Magnetic recording medium and magnetic storage device using the same
JP2001184626A (en) Magnetic recording medium and magnetic memory device
JP3648450B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3217012B2 (en) Magnetic recording media
JP3716097B2 (en) Magnetic recording medium and magnetic storage device using the same
JP3665221B2 (en) In-plane magnetic recording medium and magnetic storage device
JPH10334440A (en) Magnetic recording medium and magnetic recording and reproducing device
EP0809238B1 (en) Magnetic recording media and magnetic recording system using the same
JP3921052B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3340420B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2000067423A (en) Intra-surface magnetic recording medium and magnetic storage using the same
JP2000020936A (en) Inp-lane magnetic recording medium and magnetic storage device using the same
JP2003030812A (en) Magnetic recording medium and magnetic recorder
JP3429777B2 (en) Magnetic recording medium and magnetic storage device using the same
JP4283934B2 (en) Magnetic recording medium and magnetic storage device
JP3721754B2 (en) Magnetic recording medium and magnetic storage device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080902

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100902

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110902

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees