JP2000067423A - Intra-surface magnetic recording medium and magnetic storage using the same - Google Patents

Intra-surface magnetic recording medium and magnetic storage using the same

Info

Publication number
JP2000067423A
JP2000067423A JP10233829A JP23382998A JP2000067423A JP 2000067423 A JP2000067423 A JP 2000067423A JP 10233829 A JP10233829 A JP 10233829A JP 23382998 A JP23382998 A JP 23382998A JP 2000067423 A JP2000067423 A JP 2000067423A
Authority
JP
Japan
Prior art keywords
magnetic
layer
recording medium
magnetic layer
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10233829A
Other languages
Japanese (ja)
Inventor
Kiwamu Tanahashi
究 棚橋
Yuzuru Hosoe
譲 細江
Ichiro Tamai
一郎 玉井
Tetsuya Kanbe
哲也 神邊
Satoru Matsunuma
悟 松沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10233829A priority Critical patent/JP2000067423A/en
Publication of JP2000067423A publication Critical patent/JP2000067423A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic storage having high reliability at a recording density of >=4 giga-bit per square inch. SOLUTION: This intra-surface magnetic recording medium has a structure obtd. by forming a first magnetic layer 13 via a ground surface layer 12 on a substrate 11, forming an intermediate layer 14 on this first magnetic layer 13 and forming a second magnetic layer 15 on this intermediate layer 14. The coercive force of the first magnetic layer 13 is 100 to 2,000 Oe. The intermediate layer 14 is nonmagnetic or has the saturation magnetization smaller than that of the first magnetic layer 13 and the second magnetic layer 15. All of the first magnetic layer 13, the intermediate layer 14 and the second magnetic layer 15 are composed of crystal grains having substantially a hexagonal close- packed structure. The preferential growth bearings of the crystal grains of the first magnetic layer 13, the crystal grains of the intermediate layer 14 and the crystal grains of the second magnetic layer 15 are equal. The intra-surface magnetic recording medium described above is used. As a result, the high device S/N and low bit error rate are obtd. at the recording density of >=4 giga-bit per square inch and the average fault intervals may be made to >=300,000 hours.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気記憶装置および
面内磁気記録媒体に係り、特に1平方インチあたり4ギ
ガビット以上の記録密度を有する磁気記憶装置と、これ
を実現するための面内磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic storage device and a longitudinal magnetic recording medium, and more particularly to a magnetic storage device having a recording density of 4 gigabits per square inch or more, and a longitudinal magnetic recording for realizing the same. Regarding the medium.

【0002】[0002]

【従来の技術】コンピュータの扱う情報量は増加の一途
をたどっており、外部記憶装置である磁気ディスク装置
にはますますの大容量化が求められている。現在のとこ
ろ最高1平方インチあたり2ギガビットクラスの記録密
度を持つ磁気ディスク装置が製品化されるに到ってい
る。こうした高密度磁気ディスク装置の磁気ヘッドに
は、記録部と再生部を分離し、記録部には電磁誘導型磁
気ヘッドを、再生部には磁気抵抗効果型ヘッドを用いた
複合型ヘッドが採用されている。磁気抵抗効果型ヘッド
は、従来の電磁誘導型ヘッドに比べ再生感度が高いた
め、記録ビットが微小化し漏洩磁束が減少した場合で
も、十分な再生出力を得ることができる。また、さらに
再生感度を高めたスピンバルブ型の巨大磁気抵抗効果型
ヘッドの開発も進められている。
2. Description of the Related Art The amount of information handled by computers is steadily increasing, and magnetic disk drives as external storage devices are required to have ever larger capacities. At present, magnetic disk drives having a recording density of a maximum of 2 gigabits per square inch have been commercialized. For the magnetic head of such a high-density magnetic disk device, a recording section and a reproducing section are separated, and a composite type head using an electromagnetic induction type magnetic head for the recording section and a magnetoresistive head for the reproducing section is adopted. ing. Since the magnetoresistive head has higher reproduction sensitivity than the conventional electromagnetic induction type head, a sufficient reproduction output can be obtained even when the recording bits are miniaturized and the leakage magnetic flux is reduced. Further, the development of a giant magnetoresistive head of the spin valve type with further improved reproduction sensitivity is also underway.

【0003】再生ヘッドに磁気抵抗効果型ヘッドを用い
る場合、媒体の信号のみならずノイズも高感度に再生す
るため、媒体には従来以上の低ノイズ化が求められてい
る。媒体ノイズは主に記録ビット間の磁化遷移領域にお
ける磁化の乱れに起因しており、この領域を狭くするこ
とが媒体ノイズの低減につながる。これには、磁性粒子
を微細化し、かつ、粒子間の相互作用を弱め、磁化反転
サイズを小さくすることが有効である。
When a magnetoresistive head is used as a reproducing head, not only signals from the medium but also noise are reproduced with high sensitivity. Therefore, the medium is required to have lower noise than before. Medium noise is mainly caused by disturbance of magnetization in a magnetization transition region between recording bits, and narrowing this region leads to reduction of medium noise. For this purpose, it is effective to make the magnetic particles finer, weaken the interaction between the particles, and reduce the size of the magnetization reversal.

【0004】磁化反転サイズを小さくすることはノイズ
を低減する上では必要不可欠であるが、一方で磁化が熱
的に揺らぎ、記録された磁化が時間とともに減衰するこ
とが懸念され始めた。こうした熱揺らぎの影響を抑える
方法としては、磁性粒子の粒径分散を低減し、過度に微
細な粒子の生成を抑え、さらに、磁気異方性定数の大き
な材料を用いることがあげられる。磁性層にCoCrPt合金
を用いる場合は、Pt濃度を高めることにより、大きな結
晶磁気異方性が得られる。
Although reducing the magnetization reversal size is indispensable for reducing noise, on the other hand, it has begun to be concerned that the magnetization fluctuates thermally and the recorded magnetization attenuates with time. As a method of suppressing the influence of such thermal fluctuation, there is a method of reducing the particle size dispersion of magnetic particles, suppressing the generation of excessively fine particles, and using a material having a large magnetic anisotropy constant. When a CoCrPt alloy is used for the magnetic layer, a large crystal magnetic anisotropy can be obtained by increasing the Pt concentration.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、CoCrPt
合金のPt濃度を高めると保磁力も同時に大きくなるた
め、記録ヘッドの書き込み能力の範囲内でPt濃度を高め
る必要がある。すなわち、こうした方法による媒体ノイ
ズの低減と記録磁化の熱的な安定性の両立には限度があ
ると考えられる。 本発明は、上記の課題を解決するた
めになされたものである。より具体的には、1平方イン
チあたり4ギガビット以上の記録密度で高い信頼性を有
する磁気記憶装置と、それを実現するための、媒体ノイ
ズが低く、かつ、熱揺らぎの影響を受けにくい面内磁気
記録媒体を提供することを目的とする。
SUMMARY OF THE INVENTION However, CoCrPt
When the Pt concentration of the alloy is increased, the coercive force also increases at the same time, so it is necessary to increase the Pt concentration within the range of the writing capability of the recording head. That is, it is considered that there is a limit to achieving both the reduction of the medium noise and the thermal stability of the recording magnetization by such a method. The present invention has been made to solve the above problems. More specifically, a highly reliable magnetic storage device with a recording density of 4 gigabits per square inch or more, and an in-plane magnetic recording medium with low medium noise and less susceptible to thermal fluctuations. It is an object to provide a magnetic recording medium.

【0006】[0006]

【課題を解決するための手段】本発明では、基板上に下
地層を介して形成された第一磁性層と、前記第一磁性層
の上に形成された中間層と、前記中間層の上に形成され
た第二磁性層を有する面内磁気記録媒体と、これを記録
方向に駆動する駆動部と、記録部と再生部から成る磁気
ヘッドと、前記磁気ヘッドを前記面内磁気記録媒体に対
して相対運動させる手段と、前記磁気ヘッドへの信号入
力と該磁気ヘッドからの出力信号再生を行うための記録
再生信号処理手段を有する磁気記憶装置において、前記
磁気ヘッドの再生部を磁気抵抗効果型磁気ヘッドで構成
し、前記面内磁気記録媒体の第一磁性層の保磁力を10Oe
以上200Oe以下とし、前記中間層を非磁性、または、前
記第一磁性層および前記第二磁性層の飽和磁化よりも小
さくし、前記第一磁性層と前記中間層と前記第二磁性層
を全て実質的に六方最密(hcp)構造を有する結晶粒から
構成し、かつ、前記第一磁性層の結晶粒と前記中間層の
結晶粒と前記第二磁性層の結晶粒の優先成長方位を等し
くすることにより、上記の目的を達成する。
According to the present invention, there is provided a first magnetic layer formed on a substrate via an underlayer, an intermediate layer formed on the first magnetic layer, and a first magnetic layer formed on the first magnetic layer. An in-plane magnetic recording medium having a second magnetic layer formed on a magnetic recording medium, a driving unit for driving the magnetic recording medium in a recording direction, a magnetic head including a recording unit and a reproducing unit, and the magnetic head being attached to the in-plane magnetic recording medium. A read / write signal processing unit for performing a signal input to the magnetic head and a read / write signal processing unit for reproducing an output signal from the magnetic head; And a coercive force of the first magnetic layer of the longitudinal magnetic recording medium of 10 Oe.
More than 200 Oe or less, the intermediate layer is non-magnetic, or smaller than the saturation magnetization of the first magnetic layer and the second magnetic layer, all the first magnetic layer and the intermediate layer and the second magnetic layer Consisting of crystal grains having a substantially hexagonal close-packed (hcp) structure, and the preferred growth orientation of the crystal grains of the first magnetic layer, the crystal grains of the intermediate layer, and the crystal grains of the second magnetic layer is equal. By doing so, the above object is achieved.

【0007】本発明者等は、体心立方(bcc)構造のCrTi
合金下地層とhcp構造のCoCrPt磁性層という一般的な層
構成を持つ面内磁気記録媒体を用い記録磁化の安定性を
調べたところ、図2に示すように磁性層を薄くすると記
録した信号が時間とともに減衰することが明らかとなっ
た。これは、bcc構造を持つ下地層の上にエピタキシャ
ル成長させたhcp構造の磁性層の初期成長部には、過度
に微細な粒子や結晶性が乱れた粒子が存在し、これらが
熱的に揺らぐためと考えられる。特に、記録磁化が向き
あう磁化遷移領域では、局所的に保磁力に近い大きさの
反磁界がかかっているため、熱揺らぎによる磁化反転が
起こる確率が高くなっていると考えられる。本発明者等
は、磁性層のPt濃度を高める以外の方法で熱揺らぎの影
響を抑える方法を種々検討したところ、図1に示すよう
に下地層の上にhcp構造の第一磁性層と中間層と第二磁
性層を順にエピタキシャル成長させ、かつ、第一磁性層
の飽和磁化および保磁力を第二磁性層のそれらにくらべ
十分低くし、さらに、非磁性もしくは十分に低い飽和磁
化を持つ中間層により、第一磁性層と第二磁性層の間に
働く交換結合を切ることで、記録した信号の減衰を抑制
できることがわかった。これには以下の理由が考えられ
る。一つは、記録層として働く第二磁性層が、hcp構造
という同じ結晶構造を持つ中間層の上にエピタキシャル
成長しているため、第二磁性層の初期成長部における結
晶性の乱れが少なく、かつ、過度に微細な粒子の生成を
抑えることができる。さらに、低い飽和磁化および保磁
力を持つ第一磁性層の磁化が、第二磁性層の磁化と逆向
きになることで、磁化遷移領域の強い反磁界を低減で
き、その結果、記録磁化の熱的な安定性が高まると考え
られる。第一磁性層の保磁力は10Oe以上200Oe以下の範
囲を用いるのが望ましい。第一磁性層の保磁力を10Oeよ
り低くすると浮遊磁界などの外乱により、第一磁性層の
磁化が不安定になる可能性があり好ましくない。また、
第一磁性層の保磁力を200Oeより大きくすると、第二磁
性層の磁化遷移領域からの漏洩磁界で反転できなくなる
割合が高まり、その結果、反磁界の低減作用が弱くなる
ため好ましくない。第一磁性層および中間層の材料に
は、第一磁性層と中間層の格子整合性および中間層と第
二磁性層の格子整合性を高め、磁化遷移領域における反
磁界の低減作用を持たせるために、CoとCrを主成分と
し、そのCrの濃度を26at%以上40at%以下とするのが望ま
しい。CoCr合金はバルクの状態ではCr濃度が約25at%で
非磁性となるが、数百度に加熱された状態で形成された
薄膜では、Crが結晶粒界などに偏析し、その結果、組成
の変調によりCr濃度が25at%より低い領域が生じ磁性を
示す。Cr濃度を26at%より低くすると飽和磁化が大きく
なり、媒体ノイズが増加するので好ましくない。また、
Cr濃度を40at%より高くするとhcp構造で良好な結晶性を
得ることが困難となり、さらに磁化が非常に小さくなり
反磁界低減の効果がなくなるので好ましくない。第一磁
性層および中間層の材料は必ずしもCoCr二元合金である
必要はなく、第二磁性層の格子定数にあわせてTa、Ti、
Mo、W等を添加してもよい。また、保磁力の値を適正化
するためにGeやSi等を添加してもよい。ただし、これら
の元素の添加量を大きくしすぎると非晶質になる場合が
あるため、結晶性が劣化しない範囲で用いる必要があ
る。第一磁性層と中間層の膜厚の和は、良好な結晶性を
保ち、かつ、粒子サイズの増大を抑える観点から5nm以
上20nm以下とするのが望ましい。20nmより厚くすると粒
子サイズが増大するとともに、第一磁性層と中間層の磁
化が大きくなりすぎ、媒体ノイズが増大するため好まし
くない。5nmより薄くすると、第二磁性層の初期成長部
の結晶性改善効果と反磁界低減効果が共に弱まるため好
ましくない。また、中間層のCr濃度を第一磁性層のCr濃
度に比べ高くし、中間層で第一磁性層と第二磁性層との
間に働く交換結合を切ることで、第一磁性層の持つ反磁
界低減作用を効果的に利用することができる。
The present inventors have proposed a CrTi having a body-centered cubic (bcc) structure.
When the stability of the recording magnetization was examined using an in-plane magnetic recording medium having a general layer configuration of an alloy underlayer and a CoCrPt magnetic layer having an hcp structure, as shown in FIG. It became clear that it decayed with time. This is because in the initial growth area of the hcp-structured magnetic layer epitaxially grown on the bcc-structured underlayer, there are excessively fine particles or particles with disordered crystallinity, which fluctuate thermally. it is conceivable that. In particular, in the magnetization transition region where the recorded magnetizations face each other, a demagnetizing field having a magnitude close to the coercive force is locally applied, so that it is considered that the probability of occurrence of magnetization reversal due to thermal fluctuation is high. The present inventors have studied various methods for suppressing the effect of thermal fluctuation by a method other than increasing the Pt concentration of the magnetic layer. As shown in FIG. 1, the first magnetic layer having the hcp structure and the intermediate layer were formed on the underlayer as shown in FIG. The layer and the second magnetic layer are sequentially grown epitaxially, and the saturation magnetization and the coercive force of the first magnetic layer are sufficiently lower than those of the second magnetic layer. Further, the intermediate layer has a non-magnetic or sufficiently low saturation magnetization. As a result, it was found that by cutting the exchange coupling between the first magnetic layer and the second magnetic layer, the attenuation of the recorded signal can be suppressed. This can be for the following reasons. One is that the second magnetic layer serving as the recording layer is epitaxially grown on the intermediate layer having the same crystal structure as the hcp structure, so that the crystallinity in the initial growth portion of the second magnetic layer is small, and In addition, generation of excessively fine particles can be suppressed. Furthermore, since the magnetization of the first magnetic layer having low saturation magnetization and coercive force is in the opposite direction to the magnetization of the second magnetic layer, a strong demagnetizing field in the magnetization transition region can be reduced. It is thought that the global stability is improved. It is desirable that the coercive force of the first magnetic layer be in the range of 10 Oe to 200 Oe. If the coercive force of the first magnetic layer is lower than 10 Oe, the magnetization of the first magnetic layer may become unstable due to disturbance such as a stray magnetic field, which is not preferable. Also,
If the coercive force of the first magnetic layer is larger than 200 Oe, the ratio of being unable to be reversed by the leakage magnetic field from the magnetization transition region of the second magnetic layer increases, and as a result, the effect of reducing the demagnetizing field is weakened, which is not preferable. The material of the first magnetic layer and the intermediate layer has a lattice matching property between the first magnetic layer and the intermediate layer and a lattice matching property between the intermediate layer and the second magnetic layer, and has a function of reducing the demagnetizing field in the magnetization transition region. For this reason, it is desirable that Co and Cr be the main components, and the concentration of Cr be 26 at% or more and 40 at% or less. CoCr alloys become non-magnetic when the Cr concentration is about 25 at% in the bulk state, but in a thin film formed when heated to several hundred degrees, Cr segregates at the grain boundaries and the like, resulting in modulation of the composition. As a result, a region in which the Cr concentration is lower than 25 at% is generated, and magnetism is exhibited. If the Cr concentration is lower than 26 at%, the saturation magnetization increases, and the medium noise increases, which is not preferable. Also,
If the Cr concentration is higher than 40 at%, it is difficult to obtain good crystallinity in the hcp structure, and furthermore, the magnetization becomes extremely small, and the effect of reducing the demagnetizing field is lost, which is not preferable. The material of the first magnetic layer and the intermediate layer does not necessarily have to be a CoCr binary alloy, and Ta, Ti,
Mo, W, etc. may be added. Ge or Si may be added to optimize the coercive force. However, if the added amount of these elements is too large, the element may become amorphous, so that it is necessary to use the element within a range where the crystallinity is not deteriorated. The sum of the thicknesses of the first magnetic layer and the intermediate layer is desirably 5 nm or more and 20 nm or less from the viewpoint of maintaining good crystallinity and suppressing an increase in particle size. If the thickness is more than 20 nm, the particle size increases, and the magnetizations of the first magnetic layer and the intermediate layer become too large, and the medium noise increases, which is not preferable. If the thickness is less than 5 nm, both the effect of improving the crystallinity of the initial growth portion of the second magnetic layer and the effect of reducing the demagnetizing field are undesirably reduced. Also, by increasing the Cr concentration of the intermediate layer compared to the Cr concentration of the first magnetic layer, and cutting the exchange coupling between the first magnetic layer and the second magnetic layer in the intermediate layer, the first magnetic layer has The demagnetizing field reduction effect can be effectively used.

【0008】本発明の面内磁気記録媒体で、より高い出
力分解能を得るためには、記録層のc軸を膜面内に向け
るのが望ましい。このような記録層の結晶配向は、bcc
構造を持ち、その(001)面が基板と平行な下地層を用
い、その上に第一磁性層の(11.0)面をエピタキシャル成
長させることにより得られる。また、(211)面が基板と
平行な下地層を用い、その上に第一磁性層の(10.0)面を
エピタキシャル成長させてもよい。どちらの成長方位を
用いた場合も第二磁性層のc軸を膜面内に向けることが
できる。
In order to obtain a higher output resolution in the longitudinal magnetic recording medium of the present invention, it is desirable that the c-axis of the recording layer be oriented in the film plane. The crystal orientation of such a recording layer is bcc
It has a structure, and is obtained by using a base layer whose (001) plane is parallel to the substrate and epitaxially growing the (11.0) plane of the first magnetic layer thereon. In addition, an underlayer whose (211) plane is parallel to the substrate may be used, and the (10.0) plane of the first magnetic layer may be epitaxially grown thereon. In either case, the c-axis of the second magnetic layer can be directed in the film plane.

【0009】基板としては表面平滑性に優れたものを使
用する必要があり、具体的にはNiPが表面に形成されたA
l-Mg基板、ガラス基板、SiO2基板、SiC基板、カーボン
基板等を用いることができる。基板の材料により、下地
層との密着性が悪い場合や、下地層の望みの結晶配向性
が得られない場合は、基板と下地層との間に、実質的に
非晶質のプリコート層を形成することで、こうした問題
は解消される。
It is necessary to use a substrate having excellent surface smoothness. Specifically, A substrate having NiP formed on the surface is required.
An l-Mg substrate, a glass substrate, a SiO2 substrate, a SiC substrate, a carbon substrate, or the like can be used. If the substrate material has poor adhesion to the underlayer or the desired crystal orientation of the underlayer cannot be obtained, a substantially amorphous precoat layer is provided between the substrate and the underlayer. Forming solves these problems.

【0010】磁性層の保護層としては、5〜20nmの厚さ
のカーボンを形成し、さらにパーフルオロアルキルポリ
エーテル等の潤滑層を2〜20nmの厚さで形成することに
より、信頼性の高い面内磁気記録媒体が得られる。ま
た、保護層の材料として、水素添加したカーボンや窒素
添加したカーボン等を用いることにより、耐摺動性、耐
食性を向上することができる。
As a protective layer of the magnetic layer, carbon having a thickness of 5 to 20 nm is formed, and a lubricating layer of perfluoroalkyl polyether or the like is formed with a thickness of 2 to 20 nm, so that a highly reliable layer is formed. An in-plane magnetic recording medium is obtained. In addition, by using hydrogenated carbon, nitrogen-added carbon, or the like as a material for the protective layer, sliding resistance and corrosion resistance can be improved.

【0011】本発明の磁気記憶装置に用いる再生用磁気
抵抗型磁気ヘッドの磁気抵抗センサ部は、互いに0.25μ
m以下の距離だけ隔てられた軟磁性からなる2枚のシール
ド層の間に形成する。前記シールド層の間隔を0.25μm
より大きくすると分解能が低下するので好ましくない。
The magnetoresistive sensor portions of the reproducing magnetoresistive magnetic head used in the magnetic storage device of the present invention have a mutual resistance of 0.25 μm.
It is formed between two soft magnetic shield layers separated by a distance of not more than m. 0.25μm spacing between the shield layers
A larger value is not preferable because the resolution is reduced.

【0012】さらに、前記磁気抵抗効果型磁気ヘッド
を、互いの磁化方向が外部磁界によって相対的に変化す
ることによって大きな抵抗変化を生ずる複数の導電性磁
性層と、該導電性磁性層の間に配置された導電性非磁性
層を含む磁気抵抗センサによって構成することにより再
生信号を高めることができるため、1平方インチあたり4
ギガビット以上の記録密度で高い信頼性を有する磁気記
憶装置を実現することができる。
Further, the magneto-resistance effect type magnetic head is provided between a plurality of conductive magnetic layers which generate a large resistance change when their magnetization directions are relatively changed by an external magnetic field, and between the conductive magnetic layers. Since the reproduction signal can be increased by configuring with a magnetoresistive sensor including a conductive nonmagnetic layer arranged, the
A highly reliable magnetic storage device with a recording density of gigabit or more can be realized.

【0013】[0013]

【発明の実施の形態】実施例1:本実施例の磁気記憶装
置の平面模式図および縦断面模式図を図3(a)および図
3(b)に示す。この装置は、面内磁気記録媒体31と、
これを回転駆動する駆動部32と、磁気ヘッド33およ
びその駆動手段34と、前記磁気ヘッドの記録再生信号
処理手段35を有してなる周知の構成を持つ磁気記憶装
置である。この磁気記憶装置に用いた磁気ヘッドの構造
の模式図を図4に示す。この磁気ヘッドは、磁気ヘッド
スライダ基体47の上に形成された記録用の電磁誘導型
磁気ヘッドと再生用の磁気抵抗効果型ヘッドを組み合わ
せた録再分離型ヘッドである。記録用磁気ヘッドは、一
対の記録磁極41、42とそれに鎖交するコイル43か
らなる誘導型薄膜磁気ヘッドであり、記録磁極間のギャ
ップ層厚は0.3μmとした。また、磁極42はともに厚さ
1μmの磁気シールド層46と対で、再生用の磁気ヘッド
の磁気シールドも兼ねており、このシールド層間距離は
0.2μmである。再生用磁気ヘッドは、磁気抵抗効果セン
サ44と、電極となる導体層45からなる磁気抵抗効果
型ヘッドである。なお、図4では記録磁極間のギャップ
層およびシールド層は省略してある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIGS. 3 (a) and 3 (b) are a schematic plan view and a schematic longitudinal sectional view of a magnetic storage device according to this embodiment. This device includes an in-plane magnetic recording medium 31 and
This is a magnetic storage device having a well-known configuration including a driving unit 32 that rotationally drives the magnetic head 33, a magnetic head 33 and its driving unit 34, and a recording / reproducing signal processing unit 35 for the magnetic head. FIG. 4 shows a schematic diagram of the structure of the magnetic head used in the magnetic storage device. This magnetic head is a recording / reproducing separation head in which an electromagnetic induction type magnetic head for recording and a magnetoresistive head for reproduction formed on a magnetic head slider base 47 are combined. The recording magnetic head is an inductive type thin film magnetic head including a pair of recording magnetic poles 41 and 42 and a coil 43 interlinked with the recording magnetic poles, and the thickness of the gap layer between the recording magnetic poles is 0.3 μm. The magnetic poles 42 are both thick.
A pair with the magnetic shield layer 46 of 1 μm also serves as a magnetic shield for a magnetic head for reproduction.
0.2 μm. The reproducing magnetic head is a magnetoresistive head including a magnetoresistive sensor 44 and a conductor layer 45 serving as an electrode. In FIG. 4, the gap layer and the shield layer between the recording magnetic poles are omitted.

【0014】図5に磁気抵抗センサの縦断面構造を示
す。磁気抵抗センサの信号検出領域51は、酸化Alのギ
ャップ層52上に横バイアス層53、分離層54、磁気
抵抗強磁性層55が順次形成された部分から構成され
る。磁気抵抗強磁性層55には、20nmのNiFe合金を用い
た。横バイアス層53には25nmのNiFeNbを用いたが、Ni
FeRh等の比較的電気抵抗が高く、軟磁性特性の良好な強
磁性合金であればよい。横バイアス層53は磁気抵抗強
磁性層55を流れるセンス電流で誘起された磁界によっ
て、この電流と垂直な膜面内方向(横方向)に磁化さ
れ、磁気抵抗強磁性層55に横方向のバイアス磁界を印
加する。これにより、媒体からの漏洩磁界に対して線形
な再生出力が得られる磁気センサとなる。磁気抵抗強磁
性層55からのセンス電流の分流を防ぐ分離層54に
は、比較的電気抵抗が高いTaを用い、膜厚は5nmとし
た。信号検出領域51の両端にはテーパー形状に加工さ
れたテーパー部56がある。テーパー部56は、磁気抵
抗磁性層55を単磁区化するための永久磁石層57と、
その上に形成された信号を取り出すための一対の電極5
8から構成される。永久磁石57は保磁力が高く、磁化
方向が容易に変化しないことが重要であり、CoCr、CoCr
Pt合金等が用いられる。
FIG. 5 shows a longitudinal sectional structure of the magnetoresistive sensor. The signal detection region 51 of the magnetoresistive sensor is composed of a portion in which a lateral bias layer 53, a separation layer 54, and a magnetoresistive ferromagnetic layer 55 are sequentially formed on a gap layer 52 of Al oxide. For the magnetoresistive ferromagnetic layer 55, a 20 nm NiFe alloy was used. For the lateral bias layer 53, 25 nm of NiFeNb was used.
Any ferromagnetic alloy such as FeRh having relatively high electric resistance and good soft magnetic properties may be used. The lateral bias layer 53 is magnetized in an in-plane direction (lateral direction) perpendicular to the current by a magnetic field induced by a sense current flowing through the magnetoresistive ferromagnetic layer 55, and a lateral bias is applied to the magnetoresistive ferromagnetic layer 55. Apply a magnetic field. Thus, the magnetic sensor can obtain a linear reproduction output with respect to the leakage magnetic field from the medium. For the separation layer 54 for preventing the shunt of the sense current from the magnetoresistive ferromagnetic layer 55, Ta having relatively high electric resistance was used, and the film thickness was 5 nm. At both ends of the signal detection region 51, there are tapered portions 56 which are processed into a tapered shape. The tapered portion 56 includes a permanent magnet layer 57 for turning the magnetoresistive magnetic layer 55 into a single magnetic domain,
A pair of electrodes 5 for taking out signals formed thereon
8. It is important that the permanent magnet 57 has a high coercive force and the magnetization direction does not change easily.
Pt alloy or the like is used.

【0015】図1に本実施例で用いた磁気記録媒体の層
構成を示す。基板11には外径95mmφのNiPメッキが表
面に施されたAl-Mg合金基板を用いた。下地層12とし
て10nmのCr-15at%Ti合金層を、第一磁性層13として10
nmのCo-30at%Cr合金層を、中間層14として5nmのCo-40
at%Cr合金層を、第二磁性層15として14nmのCo-22at%C
r-10at%Pt合金層を、保護層16として6nmのカーボン層
を用い、DCマグネトロンスパッタリング法により連続的
に形成した。製膜条件は、アルゴンガスの分圧は5mTor
r、投入電力は1kW、基板温度は300℃とした。潤滑層1
7は、パーフルオロアルキルポリエーテル系の材料をフ
ルオロカーボン材料で希釈し塗布した。また、比較例と
して、図6に示すように第一磁性層および中間層を用い
ず、下地層12の上に磁性層61を直接形成した媒体を
作製した。ここで、磁性層61の膜厚は14nmとし、Co-2
2at%Cr-10at%Pt合金層(比較例1)を用いた。
FIG. 1 shows the layer structure of the magnetic recording medium used in this embodiment. As the substrate 11, an Al-Mg alloy substrate having an outer diameter of 95 mmφ and NiP plating on the surface was used. A 10 nm Cr-15at% Ti alloy layer as the underlayer 12 and a 10 nm
Co-30at% Cr alloy layer of 5 nm, Co-40 of 5 nm as the intermediate layer 14
The at% Cr alloy layer was used as the second magnetic layer 15 with 14 nm of Co-22 at% C.
An r-10at% Pt alloy layer was continuously formed by a DC magnetron sputtering method using a carbon layer of 6 nm as the protective layer 16. The film formation conditions were as follows: partial pressure of argon gas was 5 mTor
r, the input power was 1 kW, and the substrate temperature was 300 ° C. Lubrication layer 1
In No. 7, a perfluoroalkyl polyether-based material was diluted with a fluorocarbon material and applied. As a comparative example, as shown in FIG. 6, a medium was prepared in which the magnetic layer 61 was directly formed on the underlayer 12 without using the first magnetic layer and the intermediate layer. Here, the film thickness of the magnetic layer 61 is 14 nm, and Co-2
A 2 at% Cr-10 at% Pt alloy layer (Comparative Example 1) was used.

【0016】本実施例と比較例の媒体に225kFCIの線記
録密度で信号を書き込み、再生信号の経時変化を測定す
ることにより、記録された信号の安定性を調べた。図7
に示すように、比較例1の媒体では時間とともに再生出
力が減少し、4日後には約4%の低下が見られたのに対
し、本実施例の媒体では、4日後ではほとんど低下せ
ず、18日後の低下量も約2%と小さく抑えることができ
た。比較例1の媒体で再生出力の低下量が大きいのは、
磁性層の初期成長部に過度に微細な粒子や結晶性が悪い
粒子が存在し、これらの磁化が熱的に揺らぐためと考え
られる。特に、記録磁化の向き合っている磁化遷移領域
では反磁界が働くため、熱揺らぎによる磁化反転の起こ
る確率が高くなっている可能性がある。本実施例の媒体
は、第二磁性層と中間層が同じ結晶構造を持ち格子間隔
も近いので、第二磁性層の初期成長部の結晶性の乱れが
少なく、また、過度に微細な粒子の生成を抑えることが
できる。さらに、弱い磁化および保磁力を持つ第一磁性
層が第二磁性層と逆向きの磁化を形成することにより、
磁化遷移領域の反磁界を低減していることが、第二磁性
層の記録磁化の安定性に寄与していると考えられる。
Signals were written at a linear recording density of 225 kFCI on the media of this embodiment and the comparative example, and the stability of the recorded signals was examined by measuring the change over time of the reproduced signals. FIG.
As shown in the figure, in the medium of Comparative Example 1, the reproduction output decreased with time, and a decrease of about 4% was observed after 4 days. On the other hand, in the medium of the present example, it hardly decreased after 4 days. However, the decrease after 18 days could be reduced to about 2%. The large decrease in the reproduction output of the medium of Comparative Example 1
It is considered that excessively fine particles or particles having poor crystallinity exist in the initial growth portion of the magnetic layer, and these magnetizations fluctuate thermally. In particular, since a demagnetizing field acts in a magnetization transition region where recording magnetizations face each other, there is a possibility that the probability of occurrence of magnetization reversal due to thermal fluctuations is increased. In the medium of the present embodiment, since the second magnetic layer and the intermediate layer have the same crystal structure and a close lattice spacing, the disorder of the crystallinity of the initial growth portion of the second magnetic layer is small, and excessively fine particles are formed. Generation can be suppressed. Further, the first magnetic layer having a weak magnetization and coercive force forms a magnetization opposite to that of the second magnetic layer,
It is considered that the reduction of the demagnetizing field in the magnetization transition region contributes to the stability of the recording magnetization of the second magnetic layer.

【0017】本実施例の媒体を上記磁気記憶装置に組み
込んで、ヘッド浮上量30nm、線記録密度240kFCI、トラ
ック密度13kTPIの条件で記録再生特性を評価したところ
1.9の装置S/Nが得られた。また、磁気ヘッドへの入力信
号を16-17符号変調処理を施すことにより、10℃から50
℃の温度範囲において、1平方インチあたり3ギガビッ
トの記録密度で記録再生することができた。しかも、内
周から外周までのヘッドシーク試験5万回後のビットエ
ラー数は10ビット/面以下であり、平均故障間隔で30万
時間が達成できた。
The recording / reproducing characteristics of the medium of this embodiment were evaluated under the conditions of a head flying height of 30 nm, a linear recording density of 240 kFCI, and a track density of 13 kTPI by incorporating the medium of the present invention into the magnetic storage device.
An apparatus S / N of 1.9 was obtained. Also, the input signal to the magnetic head is subjected to 16-17 code modulation processing, so that
Recording and reproduction could be performed at a recording density of 3 gigabits per square inch in a temperature range of ° C. In addition, the number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference was 10 bits / plane or less, and 300,000 hours were averaged between failures.

【0018】実施例2:図8に本実施例で用いた磁気記
録媒体の層構成を示す。基板11には外径95mmφのNiP
メッキが表面に施されたAl-Mg合金基板を用いた。第一
下地層81として10nmのCr層を、第二下地層82として
10nmのCr-15at%Ti層を、第一磁性層13として10nmのCo
-30at%Cr合金層を、中間層14として5nmのCo-40at%Cr
合金層を、第二磁性層15として14nmのCo-22at%Cr-10a
t%Pt合金層を、保護層16として6nmのカーボン層を用
い、DCマグネトロンスパッタリング法により連続的に形
成した。製膜条件、潤滑層17は実施例1の媒体と同様
である。
Embodiment 2 FIG. 8 shows the layer structure of the magnetic recording medium used in this embodiment. The substrate 11 has an outer diameter of 95 mmφ NiP
An Al-Mg alloy substrate having a plated surface was used. A 10 nm Cr layer as the first underlayer 81 and a second underlayer 82
A 10 nm Cr-15at% Ti layer is used as the first magnetic layer 13 with a 10 nm Co
-30at% Cr alloy layer, 5nm Co-40at% Cr as the intermediate layer 14
14 nm of Co-22at% Cr-10a alloy layer as the second magnetic layer 15
A t% Pt alloy layer was continuously formed by a DC magnetron sputtering method using a 6 nm carbon layer as the protective layer 16. The film forming conditions and the lubrication layer 17 are the same as in the medium of the first embodiment.

【0019】本実施例の媒体と実施例1の媒体に225kFC
Iの線記録密度で信号を書き込み、媒体ノイズと出力分
解能を測定した。表1に結果を示す。ここで、媒体ノイ
ズは測定された媒体ノイズに再生トラック幅の平方根を
掛け、5kFCIの再生出力で割って規格化した値を用い
た。また、出力分解能は225kFCIの再生出力を5kFCIの再
生出力で割った値を百分率で表示した。本実施例の媒体
は、実施例1の媒体と比べ媒体ノイズは同等の値を示
し、出力分解能は3%増加した。X線回折法により両媒体
の結晶配向性を調べたところ、本実施例の媒体の方が下
地層の(001)配向性が強く、その結果、第二磁性層の(1
1.0)配向性が強くなっていた。この結果より、出力分解
能の向上には磁性層のc軸を膜面内に配向させることが
有効であることがわかる。
The medium of the present embodiment and the medium of the first embodiment
A signal was written at a linear recording density of I, and medium noise and output resolution were measured. Table 1 shows the results. Here, as the medium noise, a value normalized by multiplying the measured medium noise by the square root of the reproduction track width and dividing by the reproduction output of 5 kFCI was used. The output resolution was expressed as a percentage obtained by dividing the reproduction output of 225 kFCI by the reproduction output of 5 kFCI. The medium of the present embodiment showed the same value of the medium noise as the medium of the first embodiment, and the output resolution was increased by 3%. Examination of the crystal orientation of both media by X-ray diffraction revealed that the media of this example had a stronger (001) orientation of the underlayer, and as a result, the (1)
1.0) The orientation was strong. From this result, it can be seen that it is effective to orient the c-axis of the magnetic layer in the film plane to improve the output resolution.

【0020】本実施例の媒体を実施例1の磁気記憶装置
に組み込んで、ヘッド浮上量30nm、線記録密度240kFC
I、トラック密度13kTPIの条件で記録再生特性を評価し
たところ2.0の装置S/Nが得られた。また、磁気ヘッドへ
の入力信号を16-17符号変調処理を施すことにより、10
℃から50℃の温度範囲において、1平方インチあたり3
ギガビットの記録密度で記録再生することができた。し
かも、内周から外周までのヘッドシーク試験5万回後の
ビットエラー数は10ビット/面以下であり、平均故障間
隔で30万時間が達成できた。
The medium of this embodiment is incorporated in the magnetic storage device of the first embodiment, and the head flying height is 30 nm and the linear recording density is 240 kFC.
When the recording and reproducing characteristics were evaluated under the conditions of I and a track density of 13 kTPI, an apparatus S / N of 2.0 was obtained. In addition, by subjecting the input signal to the magnetic head to 16-17 code modulation processing, 10
3 ° C per square inch in the temperature range of 50 ° C to 50 ° C
Recording and reproduction were possible at a gigabit recording density. In addition, the number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference was 10 bits / plane or less, and 300,000 hours were averaged between failures.

【0021】実施例3:図9に本実施例で用いた磁気記
録媒体の層構成を示す。基板91には外径65mmφの化学
強化ガラスを用いた。プリコート層92として50nmのCo
-30at%Cr-10at%Zr合金を、下地層12として10nmのCr-1
5at%Ti合金層を、第一磁性層13として10nmのCo-30at%
Cr合金層を、中間層14として5nmのCo-40at%Cr合金層
を、第二磁性層15として14nmのCo-22at%Cr-10at%Pt合
金層を、保護層16として6nmのカーボン層を用い、DC
マグネトロンスパッタリング法により連続的に形成し
た。製膜条件、潤滑層17は実施例1の媒体と同様であ
る。また、比較例としてプリコート層92を用いず基板
91の上に直接下地層12を形成した媒体(比較例2)
を作製した。
Embodiment 3 FIG. 9 shows the layer configuration of the magnetic recording medium used in this embodiment. A chemically strengthened glass having an outer diameter of 65 mmφ was used for the substrate 91. 50 nm of Co as the precoat layer 92
-30at% Cr-10at% Zr alloy, 10nm Cr-1
5at% Ti alloy layer, 10nm Co-30at% as the first magnetic layer 13
A Cr alloy layer, a 5 nm Co-40at% Cr alloy layer as the intermediate layer 14, a 14nm Co-22at% Cr-10at% Pt alloy layer as the second magnetic layer 15, and a 6nm carbon layer as the protective layer 16. Used, DC
It was formed continuously by magnetron sputtering. The film forming conditions and the lubrication layer 17 are the same as in the medium of the first embodiment. As a comparative example, a medium in which the underlayer 12 was formed directly on the substrate 91 without using the precoat layer 92 (Comparative Example 2)
Was prepared.

【0022】本実施例と比較例2の媒体に225kFCIの記
録密度で信号を書き込み、媒体ノイズと出力分解能を測
定した。表1に結果を併せて示す。
Signals were written at a recording density of 225 kFCI on the media of this embodiment and Comparative Example 2, and the media noise and output resolution were measured. Table 1 also shows the results.

【0023】[0023]

【表1】 [Table 1]

【0024】本実施例の媒体は、媒体ノイズおよび出力
分解能とも実施例1の媒体と同等な値が得られたが、比
較例2の媒体は、媒体ノイズが大幅に増加し、出力分解
能は大幅に低下した。X線回折法により結晶配向性を調
べたところ、本実施例の媒体では下地層12が(001)配
向していたのに対し、比較例2の媒体では、下地層12
が(110)配向していた。比較例2のような結晶配向性の
場合、第二磁性層のc軸は膜面から約28度立ち上がる。
これにより、媒体ノイズが増加し、出力分解能が低下し
たと考えられる。なお、本実施例の媒体のプリコート層
は、ハローはピークとなっていることから、非晶質であ
ると考えられる。以上のように、下地層の(001)配向が
得られにくいガラス等の基板を用いた場合は、非晶質な
プリコート層を基板と下地層の間に挿入することが有効
であることがわかる。
In the medium of this embodiment, both the medium noise and the output resolution were equivalent to those of the medium of the first embodiment. However, the medium of Comparative Example 2 had a large increase in the medium noise and a large output resolution. Has dropped. When the crystal orientation was examined by the X-ray diffraction method, the underlayer 12 was (001) oriented in the medium of the present example, whereas the underlayer 12 was
Was (110) oriented. In the case of the crystal orientation as in Comparative Example 2, the c-axis of the second magnetic layer rises about 28 degrees from the film surface.
Thus, it is considered that the medium noise increased and the output resolution decreased. It should be noted that the precoat layer of the medium of this embodiment is considered to be amorphous because the halo peaks. As described above, when a substrate made of glass or the like in which the (001) orientation of the underlayer is difficult to obtain is used, it can be seen that it is effective to insert an amorphous precoat layer between the substrate and the underlayer. .

【0025】本実施例の媒体を実施例1の磁気記憶装置
に組み込んで、ヘッド浮上量30nm、線記録密度240kFC
I、トラック密度13kTPIの条件で記録再生特性を評価し
たところ1.9の装置S/Nが得られた。また、磁気ヘッドへ
の入力信号を16-17符号変調処理を施すことにより、10
℃から50℃の温度範囲において、1平方インチあたり3
ギガビットの記録密度で記録再生することができた。し
かも、内周から外周までのヘッドシーク試験5万回後の
ビットエラー数は10ビット/面以下であり、平均故障間
隔で30万時間が達成できた。
The medium of this embodiment is incorporated in the magnetic storage device of the first embodiment, and the head flying height is 30 nm and the linear recording density is 240 kFC.
When the recording and reproduction characteristics were evaluated under the conditions of I and a track density of 13 kTPI, an apparatus S / N of 1.9 was obtained. In addition, by subjecting the input signal to the magnetic head to 16-17 code modulation processing, 10
3 ° C per square inch in the temperature range of 50 ° C to 50 ° C
Recording and reproduction were possible at a gigabit recording density. In addition, the number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference was 10 bits / plane or less, and 300,000 hours were averaged between failures.

【0026】実施例4:実施例1と同様な構成を持つ磁
気記憶装置において、磁気抵抗センサ24に、図10に
示すようなスピンバルブ型を用いると、より大きな出力
が得られるため好ましい。磁気センサの信号検出領域1
01は、酸化Alのギャップ層102上に5nmのTaバッフ
ァ層103、7nmの第一の磁性層104、1.5nmのCu中間
層105、3nmの第二の磁性層106、10nmのFe-20at%M
n反強磁性合金層107が順次形成された構造である。
第一の磁性層104にはNi-20at%Fe合金を用い、第二の
磁性層106にはCoを用いた。反強磁性合金107から
の交換磁界により、第二の磁性層106の磁化は一方向
に固定されている。これに対し、第二の磁性層106と
非磁性の中間層105を介して接する第一の磁性層10
4の磁化の方向は、面内磁気記録媒体からの漏洩磁界に
より変化する。このような二つの磁性層の磁化の相対的
な方向の変化に伴い、三層の膜全体の抵抗に変化が生じ
る。この現象はスピンバルブ効果と呼ばれている。本実
施例では、磁気抵抗効果センサにこの効果を利用したス
ピンバルブ型磁気ヘッドを用いた。なお、永久磁石層1
09と電極110からなるテーパー部108は、図5に
示した磁気抵抗効果センサと同様である。
Embodiment 4 In a magnetic storage device having a configuration similar to that of Embodiment 1, it is preferable to use a spin valve type as shown in FIG. 10 for the magnetoresistive sensor 24 because a larger output can be obtained. Signal detection area 1 of magnetic sensor
01, a 5 nm Ta buffer layer 103, a 7 nm first magnetic layer 104, a 1.5 nm Cu intermediate layer 105, a 3 nm second magnetic layer 106, and a 10 nm Fe-20at% on the Al oxide gap layer 102. M
This is a structure in which n antiferromagnetic alloy layers 107 are sequentially formed.
For the first magnetic layer 104, a Ni-20at% Fe alloy was used, and for the second magnetic layer 106, Co was used. The magnetization of the second magnetic layer 106 is fixed in one direction by the exchange magnetic field from the antiferromagnetic alloy 107. On the other hand, the first magnetic layer 10 in contact with the second magnetic layer 106 via the non-magnetic intermediate layer 105
The direction of magnetization 4 changes due to the leakage magnetic field from the longitudinal magnetic recording medium. With the change in the relative directions of the magnetizations of the two magnetic layers, the resistance of the entire three layers changes. This phenomenon is called a spin valve effect. In this embodiment, a spin-valve magnetic head utilizing this effect is used for a magnetoresistive sensor. In addition, the permanent magnet layer 1
The tapered portion 108 composed of 09 and the electrode 110 is the same as that of the magnetoresistive sensor shown in FIG.

【0027】実施例1の媒体を上記磁気記憶装置に組み
込んで、ヘッド浮上量30nm、線記録密度274kFCI、トラ
ック密度15.6kTPIの条件で記録再生特性を評価したとこ
ろ2.0の装置S/Nが得られた。また、磁気ヘッドへの入力
信号を16-17符号変調処理を施すことにより、10℃から5
0℃の温度範囲において、1平方インチあたり4ギガビッ
トの記録密度で記録再生することができた。しかも、内
周から外周までのヘッドシーク試験5万回後のビットエ
ラー数は10ビット/面以下であり、平均故障間隔で30万
時間が達成できた。
The medium of Example 1 was incorporated into the above magnetic storage device, and the recording and reproduction characteristics were evaluated under the conditions of a head flying height of 30 nm, a linear recording density of 274 kFCI, and a track density of 15.6 kTPI. As a result, an apparatus S / N of 2.0 was obtained. Was. Also, the input signal to the magnetic head is subjected to 16-17 code modulation processing, so that
Recording and reproduction could be performed at a recording density of 4 gigabits per square inch in a temperature range of 0 ° C. In addition, the number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference was 10 bits / plane or less, and 300,000 hours were averaged between failures.

【0028】[0028]

【発明の効果】本発明の面内磁気記録媒体は、記録層の
初期成長部の結晶性の乱れが少なく、また、過度に微細
な粒子の生成を抑えることができる。さらに、第一磁性
層が第二磁性層と逆向きの磁化を形成することにより、
磁化遷移領域の反磁界を低減し、記録磁化の安定性が得
られる。本発明の面内磁気記録媒体と磁気抵抗効果型ヘ
ッドとを組み合わせることにより、1平方インチあたり4
ギガビット以上の記録密度で高い信頼性を有する磁気記
憶装置が実現できる。
According to the longitudinal magnetic recording medium of the present invention, the disorder of the crystallinity in the initial growth portion of the recording layer is small, and the generation of excessively fine particles can be suppressed. Further, the first magnetic layer forms a magnetization opposite to that of the second magnetic layer,
The demagnetizing field in the magnetization transition region is reduced, and the stability of the recorded magnetization is obtained. By combining the in-plane magnetic recording medium of the present invention with a magnetoresistive head,
A highly reliable magnetic storage device with a recording density of gigabit or more can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の面内磁気記録媒体の層構成
を示す図。
FIG. 1 is a diagram showing a layer structure of a longitudinal magnetic recording medium according to an embodiment of the present invention.

【図2】規格化された再生信号の経時変化を示す図。FIG. 2 is a diagram showing a temporal change of a standardized reproduction signal.

【図3】(a)および(b)はそれぞれ本発明の一実施例の磁
気記憶装置の平面模式図およびそのA-A'縦断面図。
FIGS. 3A and 3B are a schematic plan view and a vertical sectional view taken along the line AA ′ of a magnetic storage device according to an embodiment of the present invention, respectively.

【図4】本発明の磁気記憶装置における磁気ヘッドの断
面構造を示す立体模式図。
FIG. 4 is a schematic three-dimensional view showing a sectional structure of a magnetic head in the magnetic storage device of the present invention.

【図5】本発明の磁気記憶装置における磁気ヘッドの磁
気抵抗センサ部の縦断面構造の模式図。
FIG. 5 is a schematic view of a longitudinal sectional structure of a magnetoresistive sensor section of a magnetic head in the magnetic storage device of the present invention.

【図6】本発明の一比較例の面内磁気記録媒体の層構成
を示す図。
FIG. 6 is a diagram showing a layer configuration of a longitudinal magnetic recording medium according to a comparative example of the present invention.

【図7】規格化された再生信号の経時変化を示す図。FIG. 7 is a diagram showing a temporal change of a standardized reproduction signal.

【図8】本発明の一実施例の面内磁気記録媒体の層構成
を示す図。
FIG. 8 is a diagram showing a layer configuration of a longitudinal magnetic recording medium according to one embodiment of the present invention.

【図9】本発明の一実施例の面内磁気記録媒体の層構成
を示す図。
FIG. 9 is a diagram showing a layer configuration of a longitudinal magnetic recording medium according to one embodiment of the present invention.

【図10】本発明の磁気記憶装置における磁気ヘッドの
スピンバルブ型磁気抵抗センサ部の縦断面構造の模式
図。
FIG. 10 is a schematic diagram of a longitudinal sectional structure of a spin valve type magnetoresistive sensor section of a magnetic head in the magnetic storage device of the present invention.

【符号の説明】[Explanation of symbols]

11・・・基板、12・・・下地層、13・・・キーパ
ー層、14・・・記録層、15・・・保護層、16・・
・潤滑層、31・・・面内磁気記録媒体、32・・・面
内磁気記録媒体駆動部、33・・・磁気ヘッド、34・
・・磁気ヘッド駆動部、35・・・記録再生信号処理
系、41・・・記録磁極、42・・・磁極兼磁気シール
ド層、43・・・コイル、44・・・磁気抵抗効果素
子、45・・・導体層、46・・・磁気シールド層、4
7・・・スライダ基体、51・・・磁気センサの信号検
出領域、52・・・ギャップ層、53・・・横バイアス
層、54・・・分離層、55・・・磁気抵抗強磁性層、
56・・・テーパー部、57・・・永久磁石層、58・
・・電極、81・・・第一下地層、82・・・第二下地
層、91・・・基板、92・・・プリコート層、101
・・・磁気センサの信号検出領域、102・・・ギャッ
プ層、103・・・バッファ層、104・・・第一の磁
性層、105・・・中間層、106・・・第二の磁性
層、107・・・反強磁性合金層、108・・・テーパ
ー部、109・・・永久磁石層、110・・・電極。
11 ... substrate, 12 ... underlayer, 13 ... keeper layer, 14 ... recording layer, 15 ... protective layer, 16 ...
・ Lubricating layer, 31 ・ ・ ・ In-plane magnetic recording medium, 32 ・ ・ ・ In-plane magnetic recording medium drive, 33 ・ ・ ・ Magnetic head, 34 ・
..Magnetic head drive unit, 35 ... recording / reproducing signal processing system, 41 ... recording magnetic pole, 42 ... magnetic pole / magnetic shield layer, 43 ... coil, 44 ... magnetoresistive element, 45 ... conductor layer, 46 ... magnetic shield layer, 4
7 ... slider base, 51 ... signal detection area of magnetic sensor, 52 ... gap layer, 53 ... lateral bias layer, 54 ... separation layer, 55 ... magnetoresistive ferromagnetic layer,
56: tapered portion; 57: permanent magnet layer;
..Electrode, 81 ... first underlayer, 82 ... second underlayer, 91 ... substrate, 92 ... precoat layer, 101
... Signal detection area of magnetic sensor, 102 ... Gap layer, 103 ... Buffer layer, 104 ... First magnetic layer, 105 ... Intermediate layer, 106 ... Second magnetic layer Reference numeral 107 denotes an antiferromagnetic alloy layer, 108 denotes a tapered portion, 109 denotes a permanent magnet layer, 110 denotes an electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 玉井 一郎 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 神邊 哲也 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 松沼 悟 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 5D006 BB02 BB07 BB08 CA05 DA03 FA09 5D034 AA02 BA02 BB20  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Ichiro Tamai 1-280 Higashi Koigakubo, Kokubunji, Tokyo, Japan Inside the Central Research Laboratory, Hitachi, Ltd. (72) Inventor Satoru Matsunuma 1-280 Higashi-Koigakubo, Kokubunji-shi, Tokyo F-term in Central Research Laboratory, Hitachi, Ltd. 5D006 BB02 BB07 BB08 CA05 DA03 FA09 5D034 AA02 BA02 BB20

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】基板上に下地層を介して第一磁性層が形成
され、前記第一磁性層の上に中間層が形成され、さら
に、前記中間層の上に第二磁性層が形成された構造を有
する面内磁気記録媒体において、前記第一磁性層の保磁
力が10Oe以上200Oe以下であり、かつ、前記中間層が非
磁性、または、前記第一磁性層および前記第二磁性層よ
りも小さな飽和磁化を有し、かつ、前記第一磁性層と前
記中間層と前記第二磁性層が全て実質的に六方最密構造
を有する結晶粒から成り、かつ、前記第一磁性層の結晶
粒と前記中間層の結晶粒と前記第二磁性層の結晶粒の優
先成長方位が等しいことを特徴とする面内磁気記録媒
体。
A first magnetic layer formed on a substrate via an underlayer, an intermediate layer formed on the first magnetic layer, and a second magnetic layer formed on the intermediate layer. In the in-plane magnetic recording medium having the structure described above, the coercive force of the first magnetic layer is 10 Oe or more and 200 Oe or less, and the intermediate layer is non-magnetic, or more than the first magnetic layer and the second magnetic layer. Also has a small saturation magnetization, and the first magnetic layer, the intermediate layer and the second magnetic layer are all made of crystal grains having a hexagonal close-packed structure, and the crystal of the first magnetic layer 2. The longitudinal magnetic recording medium according to claim 1, wherein the crystal grains of the intermediate layer and the crystal grains of the second magnetic layer have the same preferential growth orientation.
【請求項2】前記面内磁気記録媒体の第一磁性層と中間
層と第二磁性層を構成する実質的に六方最密構造の結晶
粒のc軸が基板と概ね平行であることを特徴とする請求
項1記載の面内磁気記録媒体。
2. A c-axis of substantially hexagonal close-packed crystal grains constituting a first magnetic layer, an intermediate layer, and a second magnetic layer of the longitudinal magnetic recording medium is substantially parallel to the substrate. 2. The longitudinal magnetic recording medium according to claim 1, wherein:
【請求項3】前記面内磁気記録媒体の第一磁性層と中間
層がCoとCrを主成分とし、該Crの濃度が26at%以上40at%
以下であり、かつ、該第一磁性層のCr濃度が該中間層の
Cr濃度に比べ低いことを特徴とする請求項1または2記
載の面内磁気記録媒体。
3. The longitudinal magnetic recording medium according to claim 1, wherein the first magnetic layer and the intermediate layer are mainly composed of Co and Cr, and the concentration of Cr is 26 at% or more and 40 at%.
And the Cr concentration of the first magnetic layer is
3. The in-plane magnetic recording medium according to claim 1, wherein the concentration is lower than the Cr concentration.
【請求項4】前記面内磁気記録媒体の第一磁性層と中間
層の膜厚の和が5nm以上20nm以下であることを特徴とす
る請求項1から3までのいずれかに記載の面内磁気記録
媒体。
4. The in-plane magnetic recording medium according to claim 1, wherein the sum of the thicknesses of the first magnetic layer and the intermediate layer of the in-plane magnetic recording medium is 5 nm or more and 20 nm or less. Magnetic recording medium.
【請求項5】前記面内磁気記録媒体の下地層が実質的に
体心立方構造の結晶粒で構成され、かつ、該結晶粒の(0
01)面が基板と概ね平行であることを特徴とする請求項
2記載の面内磁気記録媒体。
5. The underlayer of the longitudinal magnetic recording medium is substantially composed of crystal grains having a body-centered cubic structure, and (0)
The in-plane magnetic recording medium according to claim 2, wherein the (01) plane is substantially parallel to the substrate.
【請求項6】前記面内磁気記録媒体の下地層が実質的に
体心立方構造の結晶粒で構成され、かつ、該結晶粒の(2
11)面が基板と概ね平行であることを特徴とする請求項
2記載の面内磁気記録媒体。
6. The underlayer of the longitudinal magnetic recording medium is substantially composed of crystal grains having a body-centered cubic structure, and (2)
11. The longitudinal magnetic recording medium according to claim 2, wherein the surface is substantially parallel to the substrate.
【請求項7】前記面内磁気記録媒体の基板と下地層の間
に、実質的に非晶質のプリコート層を有することを特徴
とする請求項1から6までのいずれかに記載の面内磁気
記録媒体。
7. The in-plane magnetic recording medium according to claim 1, further comprising a substantially amorphous precoat layer between the substrate and the underlayer of the in-plane magnetic recording medium. Magnetic recording medium.
【請求項8】基板上に下地層を介して形成された磁性層
を有する面内磁気記録媒体と、これを記録方向に駆動す
る駆動部と、記録部と再生部から成る磁気ヘッドと、前
記磁気ヘッドを前記面内磁気記録媒体に対して相対運動
させる手段と、前記磁気ヘッドの信号入力と該磁気ヘッ
ドからの出力信号再生を行うための記録再生信号処理手
段を有する磁気記憶装置において、前記面内磁気記録媒
体が請求項1から7のいずれかに記載の面内磁気記録媒
体で構成され、かつ、前記磁気ヘッドの再生部が磁気抵
抗効果型磁気ヘッドで構成されることを特徴とする磁気
記憶装置。
8. An in-plane magnetic recording medium having a magnetic layer formed on a substrate via an underlayer, a drive unit for driving the medium in a recording direction, a magnetic head comprising a recording unit and a reproducing unit, A magnetic storage device comprising: a means for moving a magnetic head relative to the longitudinal magnetic recording medium; and a recording / reproducing signal processing means for reproducing a signal input from the magnetic head and an output signal from the magnetic head. A longitudinal magnetic recording medium is constituted by the longitudinal magnetic recording medium according to any one of claims 1 to 7, and a reproducing section of the magnetic head is constituted by a magnetoresistive magnetic head. Magnetic storage device.
【請求項9】前記磁気抵抗効果型磁気ヘッドが、互いの
磁化方向が外部磁界によって相対的に変化することによ
って大きな抵抗変化を生ずる複数の導電性磁性層と該導
電性磁性層の間に配置された導電性非磁性層を含む磁気
抵抗センサによって構成されることを特徴とする請求項
8記載の磁気記憶装置。
9. The magneto-resistance effect type magnetic head is disposed between a plurality of conductive magnetic layers which generate a large resistance change due to their magnetization directions relatively changing by an external magnetic field. 9. The magnetic storage device according to claim 8, comprising a magnetoresistive sensor including a conductive nonmagnetic layer formed.
JP10233829A 1998-08-20 1998-08-20 Intra-surface magnetic recording medium and magnetic storage using the same Pending JP2000067423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10233829A JP2000067423A (en) 1998-08-20 1998-08-20 Intra-surface magnetic recording medium and magnetic storage using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10233829A JP2000067423A (en) 1998-08-20 1998-08-20 Intra-surface magnetic recording medium and magnetic storage using the same

Publications (1)

Publication Number Publication Date
JP2000067423A true JP2000067423A (en) 2000-03-03

Family

ID=16961224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10233829A Pending JP2000067423A (en) 1998-08-20 1998-08-20 Intra-surface magnetic recording medium and magnetic storage using the same

Country Status (1)

Country Link
JP (1) JP2000067423A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016945A1 (en) * 1999-09-01 2001-03-08 Mitsubishi Chemical Corporation Magnetic recording medium and magnetic recording device
WO2002045081A1 (en) * 2000-11-29 2002-06-06 Fujitsu Limited Magnetic recording medium and magnetic storage device
US7141272B2 (en) 2004-02-02 2006-11-28 Fujitsu Limited Method of producing magnetic recording medium
US7427446B2 (en) 2004-02-02 2008-09-23 Fujitsu Limited Magnetic recording medium with antiparallel magnetic layers and CrN based underlayer, magnetic storage apparatus and method of producing magnetic recording medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016945A1 (en) * 1999-09-01 2001-03-08 Mitsubishi Chemical Corporation Magnetic recording medium and magnetic recording device
US6607848B1 (en) 1999-09-01 2003-08-19 Showa Denko K.K. Magnetic recording medium and magnetic recording device
WO2002045081A1 (en) * 2000-11-29 2002-06-06 Fujitsu Limited Magnetic recording medium and magnetic storage device
US7141272B2 (en) 2004-02-02 2006-11-28 Fujitsu Limited Method of producing magnetic recording medium
US7427446B2 (en) 2004-02-02 2008-09-23 Fujitsu Limited Magnetic recording medium with antiparallel magnetic layers and CrN based underlayer, magnetic storage apparatus and method of producing magnetic recording medium

Similar Documents

Publication Publication Date Title
US7348078B2 (en) Perpendicular magnetic recording medium and magnetic storage apparatus
US5922456A (en) Longitudal magnetic recording medium having a multi-layered underlayer and magnetic storage apparatus using such magnetic recording medium
EP1302933B1 (en) Magnetic recording medium
US6001447A (en) Longitudinal magnetic recording media and magnetic storage apparatus using the same
JP3429972B2 (en) Magnetic recording medium and magnetic storage device using the same
US20050014028A1 (en) Magnetic recording medium, magnetic storage apparatus and recording method
JP3764833B2 (en) Magnetic recording medium and magnetic storage device
JP2001184626A (en) Magnetic recording medium and magnetic memory device
JP3665221B2 (en) In-plane magnetic recording medium and magnetic storage device
JP3217012B2 (en) Magnetic recording media
JP2000067423A (en) Intra-surface magnetic recording medium and magnetic storage using the same
JP3716097B2 (en) Magnetic recording medium and magnetic storage device using the same
WO1998006093A1 (en) Magnetic recording medium and magnetic storage device using the medium
JPWO2002045081A1 (en) Magnetic recording medium and magnetic storage device
JP2000020936A (en) Inp-lane magnetic recording medium and magnetic storage device using the same
JPH10320740A (en) Magnetic storage device and intrasurface magnetic recording medium
JP3340420B2 (en) Perpendicular magnetic recording medium and magnetic storage device
KR19980086372A (en) In-plane magnetic recording medium and magnetic memory device using the same
JP3429777B2 (en) Magnetic recording medium and magnetic storage device using the same
JP2918199B2 (en) Magnetic recording medium and magnetic storage device
JPH10135039A (en) Magnetic recording medium and magnetic storage device
JPH11175945A (en) Magnetic storage device and intrasurface magnetic recording medium
JP2001118234A (en) Perpendicular magnetic recording medium and magnetic storage device
JP4283934B2 (en) Magnetic recording medium and magnetic storage device
JP2001034926A (en) Magnetic recording medium and magnetic storage device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050615

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050720

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050812

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060511