JPH11175945A - Magnetic storage device and intrasurface magnetic recording medium - Google Patents

Magnetic storage device and intrasurface magnetic recording medium

Info

Publication number
JPH11175945A
JPH11175945A JP33845197A JP33845197A JPH11175945A JP H11175945 A JPH11175945 A JP H11175945A JP 33845197 A JP33845197 A JP 33845197A JP 33845197 A JP33845197 A JP 33845197A JP H11175945 A JPH11175945 A JP H11175945A
Authority
JP
Japan
Prior art keywords
recording medium
magnetic
magnetic recording
underlayer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33845197A
Other languages
Japanese (ja)
Inventor
Kiwamu Tanahashi
究 棚橋
Ichiro Tamai
一郎 玉井
Tetsuya Kanbe
哲也 神邊
Yuzuru Hosoe
譲 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33845197A priority Critical patent/JPH11175945A/en
Publication of JPH11175945A publication Critical patent/JPH11175945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize low medium noise and high output resolution by constituting of the substrate, which is located between a magnetic layer and a base plate, with a first substrate on the base plate side and a second substrate on the magnetic layer side, constructing the first substrate with a two element alloy having the body centered three-dimensional structure with a complete solid solution equilibrium diagram and constructing the second substrate with a two element alloy having the body centered three-dimensional structure having a non-complete solid solution equilibrium diagram. SOLUTION: It is desired that in the first substrate, Cr is selected as a main component and the element selected from V, Mo and W is included. In the second substrate, Cr is selected as a main component and the element selected from Ti, Ta, Nb and Zr is included. To be more specific, CoCrNi, CoCrTa and CoCrNiPt alloys are suitable for the first substrate and CrTi, CrTa and CrNb alloys are suitable for the second substrate. In order to maintain a good crystal combination and to prevent the increase in the particle diameters, it is desirable that the film thickness of the first substrate is set to 3 to 10 nm and the film thickness of the second substrate is made >=15 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気記憶装置および
面内磁気記録媒体に係り、特に1平方インチあたり3ギ
ガビット以上の記録密度を有する磁気記憶装置と、これ
を実現するための面内磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic storage device and a longitudinal magnetic recording medium, and more particularly to a magnetic storage device having a recording density of 3 gigabits per square inch or more, and a longitudinal magnetic recording for realizing the same. Regarding the medium.

【0002】[0002]

【従来の技術】コンピュータの扱う情報量は増加の一途
をたどっており、外部記憶装置である磁気ディスク装置
にはますますの大容量化が求められている。現在のとこ
ろ最高1平方インチあたり2ギガビットクラスの記録密
度を持つ磁気ディスク装置が製品化されるに到ってい
る。こうした高密度磁気ディスク装置の磁気ヘッドに
は、記録部と再生部を分離し、記録部には電磁誘導型磁
気ヘッドを、再生部には磁気抵抗効果型ヘッドを用いた
複合型ヘッドが採用されている。磁気抵抗効果型ヘッド
は、従来の電磁誘導型ヘッドに比べ再生感度が高いた
め、記録ビットが微小化し漏洩磁束が減少した場合で
も、十分な再生出力を得ることができる。また、さらに
再生感度を高めたスピンバルブ型の巨大磁気抵抗効果型
ヘッドの開発も進んでいる。
2. Description of the Related Art The amount of information handled by computers is steadily increasing, and magnetic disk drives as external storage devices are required to have ever larger capacities. At present, magnetic disk drives having a recording density of a maximum of 2 gigabits per square inch have been commercialized. For the magnetic head of such a high-density magnetic disk device, a recording section and a reproducing section are separated, and a composite type head using an electromagnetic induction type magnetic head for the recording section and a magnetoresistive head for the reproducing section is adopted. ing. Since the magnetoresistive head has higher reproduction sensitivity than the conventional electromagnetic induction type head, a sufficient reproduction output can be obtained even when the recording bits are miniaturized and the leakage magnetic flux is reduced. In addition, the development of a giant magnetoresistive head of the spin valve type with further improved reproduction sensitivity is also progressing.

【0003】一方、磁気記録媒体はCoCrTa,Co
CrPt等のCo合金磁性層と、磁性層の結晶配向性を
制御するCr下地層からなる。Co合金磁性層はc軸を
磁気容易軸とする六方最密(hcp)構造をとるため、
面内磁気記録媒体として用いるには、c軸を面内に向け
るのが望ましい。そこで、基板上にまず体心立方(bc
c)構造をとるCr下地層を形成し、その上にCo合金
磁性層をエピタキシャル成長させ、c軸を面内に向ける
手法が用いられている。また、高い保磁力が必要な高密
度記録媒体の磁性層には、格子定数の大きなCoCrP
t合金が用いられるため、CrにTiやVを添加して格
子間隔を増加させ、磁性層との格子整合性を高め、c軸
をより面内に向ける手法(特開昭62−257618号,特開昭
63−197018号)が提案されている。
On the other hand, a magnetic recording medium is made of CoCrTa, Co
It comprises a Co alloy magnetic layer such as CrPt and a Cr underlayer for controlling the crystal orientation of the magnetic layer. Since the Co alloy magnetic layer has a hexagonal close-packed (hcp) structure with the c-axis as the magnetic easy axis,
For use as an in-plane magnetic recording medium, it is desirable that the c axis be directed in the plane. Therefore, the body-centered cubic (bc
c) A method is used in which a Cr underlayer having a structure is formed, a Co alloy magnetic layer is epitaxially grown thereon, and the c-axis is directed in-plane. In addition, the magnetic layer of a high-density recording medium requiring a high coercive force includes CoCrP having a large lattice constant.
Since a t alloy is used, the lattice spacing is increased by adding Ti or V to Cr, the lattice matching with the magnetic layer is enhanced, and the c-axis is oriented more in-plane (Japanese Patent Laid-Open No. 62-257618, JP
63-197018) has been proposed.

【0004】再生ヘッドに磁気抵抗効果型ヘッドを用い
る場合、媒体の信号のみならず、ノイズも高感度に再生
するため、媒体には従来以上の低ノイズ化が求められ
る。媒体ノイズは、主に記録ビット間の磁化遷移領域に
おける磁化の乱れに起因しており、この領域を狭くする
ことが媒体ノイズの低減につながる。これには、磁性粒
子を微細化し、かつ、粒子間の相互作用を弱め、磁化反
転サイズを小さくすることが有効である。前述したよう
に、磁性層と下地層の間にはエピタキシャル関係が成り
立っているため、下地粒子を微細化することにより磁性
粒子を微細化できる。また、粒子間の相互作用の低減
は、磁性層のCr濃度および成膜温度を高くして、非磁
性のCrを粒界に偏析させることにより可能となる。
When a magnetoresistive head is used as a reproducing head, not only signals from the medium but also noise are reproduced with high sensitivity. Therefore, the medium is required to have lower noise than before. Medium noise is mainly caused by disturbance of magnetization in a magnetization transition region between recording bits, and narrowing this region leads to reduction of medium noise. For this purpose, it is effective to make the magnetic particles finer, weaken the interaction between the particles, and reduce the size of the magnetization reversal. As described above, since an epitaxial relationship is established between the magnetic layer and the underlayer, the magnetic particles can be miniaturized by miniaturizing the underlayer. Further, the interaction between particles can be reduced by increasing the Cr concentration and the film forming temperature of the magnetic layer to segregate nonmagnetic Cr at the grain boundaries.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、下地粒
子を微細化するために、下地層を薄くしたり他の元素を
添加した場合には、下地層の結晶配向性が低下し、それ
に伴い磁性層のc軸の膜面内配向成分が減少する。その
結果、高記録密度化に必須である媒体の出力分解能が低
下する等の問題が生じる。
However, when the underlayer is thinned or other elements are added in order to make the underlayer finer, the crystal orientation of the underlayer is reduced, and the magnetic layer is accordingly reduced. The in-plane orientation component of the c-axis decreases. As a result, there arise problems such as a decrease in output resolution of a medium which is indispensable for higher recording density.

【0006】本発明は、上記の課題を解決するためにな
されたものである。より具体的には、1平方インチあた
り3ギガビット以上の記録密度で高い信頼性を有する磁
気記憶装置と、それを実現するための、媒体ノイズが低
く、かつ、出力分解能が高い面内磁気記録媒体を提供す
ることを目的とする。
The present invention has been made to solve the above problems. More specifically, a magnetic storage device having high reliability at a recording density of 3 gigabits per square inch or more, and a longitudinal magnetic recording medium with low medium noise and high output resolution for realizing the same. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明では、基板上に下
地層を介して形成された磁性層を有する面内磁気記録媒
体と、これを記録方向に駆動する駆動部と、記録部と再
生部からなる磁気ヘッドと、前記磁気ヘッドを前記面内
磁気記録媒体に対して相対運動させる手段と、前記磁気
ヘッドへの信号入力と該磁気ヘッドからの出力信号再生
を行うための記録再生信号処理手段を有する磁気記憶装
置において、前記磁気ヘッドの再生部を磁気抵抗効果型
ヘッドで構成し、前記面内磁気記録媒体の下地層を基板
側の第1下地層と磁性層側の第2下地層の二層で構成
し、前記第1下地層を全率固溶系の平衡状態図を有する
実質的に体心立方構造の二元系合金とし、前記第2下地
層を非全率固溶系の平衡状態図を有する実質的に体心立
方構造の二元系合金とすることにより、上記の目的を達
成する。
According to the present invention, there is provided an in-plane magnetic recording medium having a magnetic layer formed on a substrate via an underlayer, a driving unit for driving the recording medium in a recording direction, a recording unit and a reproducing unit. Magnetic head, means for moving the magnetic head relative to the in-plane magnetic recording medium, and recording / reproduction signal processing for performing signal input to the magnetic head and reproduction of an output signal from the magnetic head A reproducing section of the magnetic head is constituted by a magnetoresistive head, and the underlayer of the longitudinal magnetic recording medium is a first underlayer on the substrate side and a second underlayer on the magnetic layer side. Wherein the first underlayer is a binary alloy having a substantially body-centered cubic structure having an equilibrium diagram of an all-solid solution system, and the second underlayer is an equilibrium of a non-exclusive solid solution system. Substantially body-centered cubic binary alloy with phase diagram By, to achieve the above object.

【0008】前記面内磁気記録媒体の磁性層は、CoC
rNi,CoCrTa,CoCrPt,CoCrNiP
t,CoCrPtTa,CoCrPtTi等、Coを主
成分とする合金を用いることができる。特に、Ptが添
加されたCo合金は、異方性磁界が高く容易に高保磁力
が得られるため、高記録密度に適している。ただし、P
t添加とともに保磁力は増加する傾向にあるため、記録
ヘッドの書き込み能力にあわせてPt濃度を選ぶ必要が
ある。
The magnetic layer of the longitudinal magnetic recording medium is made of CoC.
rNi, CoCrTa, CoCrPt, CoCrNiP
An alloy containing Co as a main component, such as t, CoCrPtTa, and CoCrPtTi, can be used. In particular, a Co alloy to which Pt is added has a high anisotropic magnetic field and can easily obtain a high coercive force, and thus is suitable for high recording density. Where P
Since the coercive force tends to increase with the addition of t, it is necessary to select the Pt concentration in accordance with the write performance of the recording head.

【0009】面内磁気記録媒体として用いるには、Co
合金磁性層のc軸を膜面内に向ける必要がある。このよ
うな結晶配向は、bcc構造を持ち、その(100)面
が概ね膜面と平行に配向した下地層の上に磁性層を形成
することにより得られる。本発明者等は、磁性層の良好
なc軸膜面内配向と粒子微細化を実現するため、下地層
を種々検討したところ、下地層を二層構成とし、第1下
地層に全率固溶系の平衡状態図を有するbcc構造の二
元系合金を用い、第2下地層に非全率固溶系の平衡状態
図を有するbcc構造の二元系合金を用いることが有効
であることがわかった。
For use as an in-plane magnetic recording medium, Co
It is necessary to direct the c-axis of the alloy magnetic layer in the plane of the film. Such a crystal orientation can be obtained by forming a magnetic layer on an underlayer having a bcc structure and having its (100) plane oriented substantially parallel to the film plane. The present inventors have studied various underlayers in order to achieve good c-axis in-plane orientation of the magnetic layer and miniaturization of the particles, and found that the underlayer had a two-layer structure, and the first underlayer had a solid content. It is found that it is effective to use a binary alloy having a bcc structure having an equilibrium diagram of a solution system and to use a binary alloy having a bcc structure having an equilibrium diagram of a non-percentage solid solution for the second underlayer. Was.

【0010】第1下地層に全率固溶系の平衡状態図を有
するbcc構造の二元系合金を用いると、下地粒径を小
さくするため膜厚を薄くした場合でも良好な(100)
配向性が得られる。第1下地層の具体的な材料として
は、CrMo,CrV,CrW等のCr合金が望まし
い。ただし、これらの全率固溶系の平衡状態図を有する
合金は、膜厚とともに粒径が大幅に増加する傾向がある
ため、膜厚が薄い範囲で用いる必要がある。第1下地層
の膜厚は、良好な結晶配向性を保ち、かつ、粒径の肥大
化を抑える点から3nm以上10nm以下とするのが望
ましい。また、第1下地層は三種類の元素からなる合金
を用いても良い。ただし、それらの元素の組み合わせか
らなる二元系平衡状態図が全率固溶系のものを用いる必
要がある。
When a binary alloy having a bcc structure having an equilibrium phase diagram of a solid solution system is used for the first underlayer, good (100) is obtained even when the film thickness is reduced in order to reduce the underlayer grain size.
An orientation is obtained. As a specific material of the first underlayer, a Cr alloy such as CrMo, CrV, or CrW is desirable. However, these alloys having an equilibrium phase diagram of a solid solution system have a tendency that the particle size tends to increase significantly with the film thickness. The thickness of the first underlayer is preferably 3 nm or more and 10 nm or less from the viewpoint of maintaining good crystal orientation and suppressing an increase in particle size. Further, the first underlayer may be made of an alloy composed of three kinds of elements. However, it is necessary to use a binary equilibrium phase diagram composed of a combination of these elements with a solid solution system.

【0011】第2下地層に非全率固溶系の平衡状態図を
有するbcc構造の二元系合金を用いると、全率固溶系
の合金を用いた場合に比べ磁性層の粒子が微細化される
傾向にある。これは、ジャーナル オブ アプライド
フィジクス(J.Appl.Phys.),Vol.73,5566(1
993)等に報告があるように(100)配向した一個
のbcc下地粒子上に(11.0)配向したhcp磁性粒
子が複数個c軸を互いに直交するように成長するいわゆ
るバイクリスタル構造を持つ頻度が異なるためと考えら
れる。バイクリスタル構造を持つ頻度が異なる理由は明
らかではないが、非全率固溶系の合金を用いた場合は、
一つの下地粒子内に組成の揺らぎや欠陥などの不均一性
があり、そうした不均一性がバイクリスタル構造の頻度
を高め、その結果、磁性粒子が微細化したと考えられ
る。
When a binary alloy having a bcc structure having an equilibrium state diagram of a non-percent solid solution system is used for the second underlayer, the particles of the magnetic layer are finer than in the case of using a pertinent solid solution alloy. Tend to be. This is the Journal of Applied
Physics (J. Appl. Phys.), Vol. 73, 5566 (1
993) and the like, a so-called bicrystal structure in which a plurality of (11.0) -oriented hcp magnetic grains grow on one (100) -oriented bcc base grain so that the c-axes are orthogonal to each other. This is probably because the frequencies are different. It is not clear why the frequency of having a bicrystal structure is different, but when a non-percentage solid solution alloy is used,
It is considered that there is non-uniformity such as composition fluctuations and defects in one base particle, and such non-uniformity increases the frequency of the bicrystal structure, and as a result, the magnetic particles are finer.

【0012】第2下地層の具体的な材料としては、Cr
Ti,CrTa,CrNb等のCr合金が望ましい。第
2下地層の膜厚は、粒径の増大を抑える点から15nm
以下とするのが望ましい。また、第2下地層は必ずしも
二元系合金である必要はなく、三種類以上の元素からな
る合金を用いてもよい。ただし、それらの元素の組み合
わせからなる二元系平衡状態図の少なくとも一種類の組
み合わせが非全率固溶系である必要がある。
The specific material of the second underlayer is Cr
Cr alloys such as Ti, CrTa and CrNb are desirable. The thickness of the second underlayer is 15 nm from the viewpoint of suppressing an increase in the particle size.
It is desirable to do the following. The second underlayer does not necessarily need to be a binary alloy, and may be an alloy composed of three or more elements. However, at least one kind of combination in the binary equilibrium diagram consisting of a combination of these elements needs to be a non-percentage solid solution system.

【0013】基板としては表面平滑性に優れたものを使
用する必要があり、具体的にはNiPが表面に形成された
Al−Mg基板,ガラス基板,SiO2 基板,SiC基
板,カーボン基板等を用いることができる。基板の材料
により、第1下地層との密着性が悪い場合や、第1下地
層の望みの結晶配向性が得られない場合は、基板と第1
下地層との間に、実質的に非晶質のプリコート層を形成
することで、こうした問題は解消される。
It is necessary to use a substrate having excellent surface smoothness. Specifically, an Al—Mg substrate, a glass substrate, a SiO 2 substrate, a SiC substrate, a carbon substrate, etc., having NiP formed on the surface thereof may be used. Can be used. If the material of the substrate has poor adhesion to the first underlayer, or if the desired crystal orientation of the first underlayer cannot be obtained, the substrate and the first
Such a problem is solved by forming a substantially amorphous precoat layer between the undercoat layer and the base layer.

【0014】磁性層の保護層としては、10〜30nm
の厚さのカーボンを形成し、さらにパーフルオロアルキ
ルポリエーテル等の潤滑層を2〜20nmの厚さで形成
することにより、信頼性の高い面内磁気記録媒体が得ら
れる。また、保護層の材料として、水素添加したカーボ
ンや炭化シリコン等を用いることにより、耐摺動性,耐
食性を向上することができる。
The protective layer of the magnetic layer has a thickness of 10 to 30 nm.
Is formed, and a lubricating layer of perfluoroalkyl polyether or the like is formed with a thickness of 2 to 20 nm, whereby a highly reliable in-plane magnetic recording medium can be obtained. Further, by using hydrogenated carbon, silicon carbide, or the like as a material for the protective layer, sliding resistance and corrosion resistance can be improved.

【0015】本発明の磁気記憶装置に用いる再生用磁気
抵抗型磁気ヘッドの磁気抵抗センサ部は、互いに0.3
5μm 以下の距離だけ隔てられた軟磁性からなる2枚
のシールド層の間に形成する。前記シールド層の間隔を
0.35μm より大きくすると分解能が低下するので好
ましくない。
The magnetoresistive sensor portions of the reproducing magnetoresistive magnetic head used in the magnetic storage device of the present invention have a mutual resistance of 0.3.
It is formed between two shield layers made of soft magnet and separated by a distance of 5 μm or less. If the distance between the shield layers is larger than 0.35 μm, the resolution is undesirably reduced.

【0016】さらに、前記磁気抵抗効果型磁気ヘッド
を、互いの磁化方向が外部磁界によって相対的に変化す
ることによって大きな抵抗変化を生ずる複数の導電性磁
性層と、該導電性磁性層の間に配置された導電性非磁性
層を含む磁気抵抗センサによって構成することにより、
再生信号を高めることができるため、1平方インチあた
り3ギガビット以上の記録密度で高い信頼性を有する磁
気記憶装置を実現することができる。
Further, the magneto-resistance effect type magnetic head is provided between a plurality of conductive magnetic layers that generate a large resistance change by their magnetization directions relatively changing by an external magnetic field, and the conductive magnetic layers. By being constituted by a magnetoresistive sensor including a conductive nonmagnetic layer disposed,
Since the reproduction signal can be increased, a highly reliable magnetic storage device with a recording density of 3 gigabits per square inch or more can be realized.

【0017】[0017]

【発明の実施の形態】(実施例1)本実施例の磁気記憶
装置の平面模式図および縦断面模式図を図2(a)およ
び図2(b)に示す。この装置は、面内磁気記録媒体2
1と、これを回転駆動する駆動部22と、磁気ヘッド2
3およびその駆動手段24と、前記磁気ヘッドの記録再
生信号処理手段25を有してなる周知の構成を持つ磁気
記憶装置である。
(Embodiment 1) FIGS. 2A and 2B are a schematic plan view and a schematic longitudinal sectional view, respectively, of a magnetic storage device according to this embodiment. This apparatus uses an in-plane magnetic recording medium 2
1, a driving unit 22 for rotating the magnetic head 1 and a magnetic head 2
3 and a magnetic storage device having a well-known configuration including a driving means 24 for the magnetic head and a recording / reproducing signal processing means 25 for the magnetic head.

【0018】この磁気記憶装置に用いた磁気ヘッドの構
造の模式図を図3に示す。この磁気ヘッドは、磁気ヘッ
ドスライダ基体37の上に形成された記録用の電磁誘導
型磁気ヘッドと再生用の磁気抵抗効果型ヘッドを組み合
わせた録再分離型ヘッドである。
FIG. 3 shows a schematic diagram of the structure of the magnetic head used in the magnetic storage device. This magnetic head is a recording / reproducing separation head in which an electromagnetic induction type magnetic head for recording and a magnetoresistive head for reproduction formed on a magnetic head slider base 37 are combined.

【0019】記録用磁気ヘッドは、一対の記録磁極3
1,32とそれに鎖交するコイル33からなる誘導型薄
膜磁気ヘッドであり、記録磁極間のギャップ層厚は0.
3μmとした。また、磁極32はともに厚さ1μmの磁
気シールド層36と対で、再生用の磁気ヘッドの磁気シ
ールドも兼ねており、このシールド層間距離は0.25
μmである。再生用磁気ヘッドは、磁気抵抗効果センサ
34と、電極となる導体層35からなる磁気抵抗効果型
ヘッドである。なお、図3では記録磁極間のギャップ層
およびシールド層は省略してある。
The recording magnetic head includes a pair of recording magnetic poles 3.
This is an inductive type thin-film magnetic head comprising 1, 32 and a coil 33 linked to it, and the gap layer thickness between the recording magnetic poles is 0.3.
It was 3 μm. Each of the magnetic poles 32 is paired with a magnetic shield layer 36 having a thickness of 1 μm, and also serves as a magnetic shield for a reproducing magnetic head. The distance between the shield layers is 0.25.
μm. The reproducing magnetic head is a magnetoresistive head including a magnetoresistive sensor 34 and a conductor layer 35 serving as an electrode. In FIG. 3, the gap layer between the recording magnetic poles and the shield layer are omitted.

【0020】図4に磁気抵抗センサの縦断面構造を示
す。磁気抵抗センサの信号検出領域41は、酸化Alの
ギャップ層42上に横バイアス層43,分離層44,磁
気抵抗強磁性層45が順次形成された部分から構成され
る。磁気抵抗強磁性層45には、20nmのNiFe合
金を用いた。横バイアス層43には25nmのNiFeNbを
用いたが、NiFeRh等の比較的電気抵抗が高く、軟
磁性特性の良好な強磁性合金であればよい。横バイアス
層43は磁気抵抗強磁性層45を流れるセンス電流で誘
起された磁界によって、この電流と垂直な膜面内方向
(横方向)に磁化され、磁気抵抗強磁性層45に横方向
のバイアス磁界を印加する。これにより、媒体からの漏
洩磁界に対して線形な再生出力が得られる磁気センサと
なる。
FIG. 4 shows a longitudinal sectional structure of the magnetoresistive sensor. The signal detection region 41 of the magnetoresistive sensor is composed of a portion in which a lateral bias layer 43, a separation layer 44, and a magnetoresistive ferromagnetic layer 45 are sequentially formed on a gap layer 42 of Al oxide. For the magnetoresistive ferromagnetic layer 45, a 20 nm NiFe alloy was used. Although 25 nm of NiFeNb was used for the lateral bias layer 43, a ferromagnetic alloy such as NiFeRh having a relatively high electric resistance and good soft magnetic properties may be used. The lateral bias layer 43 is magnetized in an in-plane direction (lateral direction) perpendicular to the current by a magnetic field induced by a sense current flowing through the magnetoresistive ferromagnetic layer 45, and a lateral bias is applied to the magnetoresistive ferromagnetic layer 45. Apply a magnetic field. Thus, the magnetic sensor can obtain a linear reproduction output with respect to the leakage magnetic field from the medium.

【0021】磁気抵抗強磁性層45からのセンス電流の
分流を防ぐ分離層44には、比較的電気抵抗が高いTa
を用い、膜厚は5nmとした。信号検出領域41の両端
にはテーパー形状に加工されたテーパー部46がある。
テーパー部46は、磁気抵抗磁性層45を単磁区化する
ための永久磁石層47と、その上に形成された信号を取
り出すための一対の電極48から構成される。永久磁石
47は保磁力が高く、磁化方向が容易に変化しないこと
が重要であり、CoCr,CoCrPt合金等が用いら
れる。
The separation layer 44 for preventing the shunt of the sense current from the magnetoresistive ferromagnetic layer 45 has a relatively high electric resistance of Ta.
And the film thickness was 5 nm. At both ends of the signal detection region 41, there are tapered portions 46 processed into a tapered shape.
The tapered portion 46 includes a permanent magnet layer 47 for converting the magnetoresistive magnetic layer 45 into a single magnetic domain, and a pair of electrodes 48 formed on the permanent magnet layer 47 for extracting a signal. It is important that the permanent magnet 47 has a high coercive force and the magnetization direction does not easily change, and CoCr, CoCrPt alloy, or the like is used.

【0022】図1に本実施例で用いた磁気記録媒体の膜
構成を示す。基板11には外径95mmφのNiPメッキ
が表面に施されたAl−Mg合金基板を用いた。第1下
地層12として5nmのCr−20at%Mo合金層
を、第2下地層13として5nmのCr−20at%T
i合金層を、磁性層14として18nmのCo−22a
t%Cr−10at%Pt合金層を、保護層15として
10nmのカーボン層をDCマグネトロンスパッタリン
グ法により連続的に形成した。成膜条件は、アルゴンガ
スの分圧は5mTorr、投入電力は1kW、基板温度は3
00℃とした。潤滑層16は、パーフルオロアルキルポ
リエーテル系の材料をフルオロカーボン材料で希釈し塗
布した。また、比較例として図5に示すように下地層5
2を単層としたものを作製した。ここで下地層52の膜
厚は10nmとし、Cr−20at%Mo合金層(比較
例1)とCr−20at%Ti合金層(比較例2)の二
種類の組成を用いた。
FIG. 1 shows the film configuration of the magnetic recording medium used in this embodiment. As the substrate 11, an Al—Mg alloy substrate having an outer diameter of 95 mmφ and NiP plating on the surface was used. A 5 nm Cr-20 at% Mo alloy layer is used as the first underlayer 12, and a 5 nm Cr-20 at% T is used as the second underlayer 13.
The i-alloy layer is formed of 18 nm Co-22a as the magnetic layer 14.
A t% Cr-10at% Pt alloy layer and a 10 nm carbon layer as the protective layer 15 were continuously formed by DC magnetron sputtering. The deposition conditions were as follows: the partial pressure of argon gas was 5 mTorr, the input power was 1 kW, and the substrate temperature was 3
The temperature was set to 00 ° C. The lubricating layer 16 was applied by diluting a perfluoroalkyl polyether-based material with a fluorocarbon material. As a comparative example, as shown in FIG.
2 was made into a single layer. Here, the thickness of the underlayer 52 was set to 10 nm, and two kinds of compositions of a Cr-20 at% Mo alloy layer (Comparative Example 1) and a Cr-20 at% Ti alloy layer (Comparative Example 2) were used.

【0023】本実施例と比較例の媒体に225kFCI
の線記録密度で信号を書き込み、媒体ノイズと出力分解
能を測定した。表1に結果を示す。ここで、媒体ノイズ
は、測定された媒体ノイズに再生トラック幅の平方根を
掛け、5kFCIの再生出力で割って規格化した値を用
いた。また、出力分解能は225kFCIの再生出力を
5kFCIの再生出力で割った値を百分率で表示した。
225 kFCI was used for the media of this embodiment and the comparative example.
A signal was written at a linear recording density of, and medium noise and output resolution were measured. Table 1 shows the results. Here, as the medium noise, a value normalized by multiplying the measured medium noise by the square root of the reproduction track width and dividing by the reproduction output of 5 kFCI was used. The output resolution was expressed as a percentage obtained by dividing the reproduction output of 225 kFCI by the reproduction output of 5 kFCI.

【0024】本実施例の媒体は、低い媒体ノイズと高い
出力分解能を実現しており、高密度記録に適しているこ
とが分かる。比較例1の媒体は、出力分解能は比較的高
い値が得られたが、媒体ノイズは増加した。これは、下
地層であるCrMo合金が全率固溶系の平衡状態図を持
つため、下地粒子の粒径がそれほど微細化せず、かつ、
下地粒子内の均一性が高いため磁性粒子がバイクリスタ
ル構造をとる頻度が下がり、その結果、磁性粒子がそれ
ほど微細化しないことによると考えられる。
The medium of this embodiment realizes low medium noise and high output resolution, and it is understood that the medium is suitable for high-density recording. In the medium of Comparative Example 1, the output resolution was relatively high, but the medium noise was increased. This is because the CrMo alloy as the underlayer has an equilibrium diagram of a solid solution system, so that the particle size of the underlayer does not become so fine, and
It is considered that the frequency of the magnetic particles having a bicrystal structure is reduced due to the high uniformity in the underlying particles, and as a result, the magnetic particles are not so fine.

【0025】また、比較例2の媒体は、媒体ノイズは低
い値が得られたが、出力分解能が低下した。媒体ノイズ
の減少は、下地層であるCrTi合金が非全率固溶系の
平衡状態図を持つため、下地粒径が微細化し、かつ、下
地粒子内の不均一性により磁性粒子がバイクリスタル構
造をとる頻度が上がり、その結果、磁性粒子が微細化し
たためと考えられる。
In the medium of Comparative Example 2, the medium noise was low, but the output resolution was low. The medium noise is reduced because the underlayer CrTi alloy has a non-percentage solid solution equilibrium diagram, so that the underlayer particle size becomes finer and the magnetic particles have a bicrystal structure due to non-uniformity in the underlayer. It is considered that the frequency of taking was increased, and as a result, the magnetic particles were miniaturized.

【0026】[0026]

【表1】 [Table 1]

【0027】出力分解能の低下は、下地層の(100)
配向性が弱くなり、その結果、磁性層のc軸の膜面内成
分が減少したためと考えられる。本実施例の媒体は、第
1下地層が全率固溶系の平衡状態図を持つCrMo合金
であるため、膜厚が5nmと薄い場合でも、強い(10
0)配向性を示し、また、薄い膜厚のため下地粒径は小
さい。その上に形成される第2下地層は、エピタキシャ
ル成長するため、(100)配向性を維持し、かつ、非
全率固溶系の状態図を持つCrTi合金であるため、下
地粒子内に不均一性があり、その結果、磁性粒子がバイ
クリスタル構造をとる頻度が高くなる。
The decrease in output resolution is caused by the (100)
It is considered that the orientation became weak, and as a result, the in-plane component of the c-axis of the magnetic layer decreased. In the medium of this embodiment, since the first underlayer is a CrMo alloy having an all-solid-solution system equilibrium diagram, even if the film thickness is as thin as 5 nm, it is strong (10%).
0) It shows orientation and the underlying particle size is small due to the thin film thickness. Since the second underlayer formed thereon is a CrTi alloy having a (100) orientation while maintaining a (100) orientation because of epitaxial growth, non-uniformity is present in the underlayer particles. As a result, the frequency of the magnetic particles having a bicrystal structure increases.

【0028】つまり、本実施例の媒体は、磁性層のc軸
が膜面内に配向し、かつ、粒子が微細化するため、低い
媒体ノイズと高い出力分解能が実現できたと考えられ
る。
That is, it is considered that the medium of the present embodiment can realize low medium noise and high output resolution because the c-axis of the magnetic layer is oriented in the film plane and the particles are finer.

【0029】本実施例の媒体を上記磁気記憶装置に組み
込んで、ヘッド浮上量30nm,線記録密度260kF
CI,トラック密度13kTPIの条件で記録再生特性
を評価したところ1.7 の装置S/Nが得られた。ま
た、磁気ヘッドへの入力信号を8−9符号変調処理を施
すことにより、10℃から50℃の温度範囲において、
1平方インチあたり3ギガビットの記録密度で記録再生
することができた。しかも、内周から外周までのヘッド
シーク試験5万回後のビットエラー数は10ビット/面
以下であり、平均故障間隔で30万時間が達成できた。
The medium of this embodiment is incorporated in the above magnetic storage device, and the head flying height is 30 nm and the linear recording density is 260 kF.
When the recording and reproduction characteristics were evaluated under the conditions of CI and track density of 13 kTPI, an apparatus S / N of 1.7 was obtained. Further, by performing an 8-9 code modulation process on the input signal to the magnetic head, in a temperature range of 10 ° C. to 50 ° C.,
Recording and reproduction could be performed at a recording density of 3 gigabits per square inch. In addition, the number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference was 10 bits / plane or less, and 300,000 hours at an average failure interval could be achieved.

【0030】(実施例2)実施例1の媒体と同様な層構
成で、第1下地層12として5nmのCr−10at%
Mo−10at%Vを、第2下地層13として5nmの
Cr−15at%Ti−5at%Bを用いた。基板1
1,磁性層14,保護層15,潤滑層16および成膜条
件は実施例1の媒体と同様である。
(Embodiment 2) With the same layer structure as the medium of Embodiment 1, the first underlayer 12 is made of Cr-10 at% of 5 nm.
Mo-10 at% V was used, and 5 nm Cr-15 at% Ti-5 at% B was used as the second underlayer 13. Substrate 1
1, the magnetic layer 14, the protective layer 15, the lubricating layer 16, and the film forming conditions are the same as those of the medium of the first embodiment.

【0031】本実施例の媒体に225kFCIの線記録
密度で信号を書き込み、媒体ノイズと出力分解能を測定
した。表1に結果を併せて示す。媒体ノイズおよび出力
分解能は、実施例1の媒体と同等な値が得られた。これ
は、第1下地層のCrMoV合金は、どの元素の組み合
わせでも全率固溶系の平衡状態図を持つこと、また、第
2下地層のCrTiB合金は、BがCrにほとんど固溶
しない非全率固溶系の平衡状態図を持つため、実施例1
の媒体で述べたことと同様な理由により、低い媒体ノイ
ズと高い媒体分解能が得られたと考えられる。
A signal was written to the medium of this embodiment at a linear recording density of 225 kFCI, and the medium noise and output resolution were measured. Table 1 also shows the results. As for the medium noise and the output resolution, values equivalent to those of the medium of Example 1 were obtained. This is because the CrMoV alloy of the first underlayer has an equilibrium diagram of a solid solution system in any combination of elements, and the CrTiB alloy of the second underlayer has a non-total solid solution in which B hardly dissolves in Cr. Example 1 to have the equilibrium diagram of the solid solution system
It is considered that low medium noise and high medium resolution were obtained for the same reason as described for the medium.

【0032】本実施例の媒体を実施例1の磁気記憶装置
に組み込んで、ヘッド浮上量30nm,線記録密度26
0kFCI,トラック密度13kTPIの条件で記録再
生特性を評価したところ1.8 の装置S/Nが得られ
た。また、磁気ヘッドへの入力信号を8−9符号変調処
理を施すことにより、10℃から50℃の温度範囲にお
いて、1平方インチあたり3ギガビットの記録密度で記
録再生することができた。しかも、内周から外周までの
ヘッドシーク試験5万回後のビットエラー数は10ビッ
ト/面以下であり、平均故障間隔で30万時間が達成で
きた。
The medium of this embodiment is incorporated in the magnetic storage device of the first embodiment, and the head flying height is 30 nm and the linear recording density is 26.
When the recording / reproducing characteristics were evaluated under the conditions of 0 kFCI and a track density of 13 kTPI, an apparatus S / N of 1.8 was obtained. Further, by subjecting the input signal to the magnetic head to 8-9 code modulation, recording and reproduction could be performed at a recording density of 3 gigabits per square inch in a temperature range of 10 ° C. to 50 ° C. In addition, the number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference was 10 bits / plane or less, and 300,000 hours at an average failure interval could be achieved.

【0033】(実施例3)図6に本実施例で用いた磁気
記録媒体の膜構成を示す。基板61には外径65mmφの
化学強化ガラスを用い、プリコート層62には50nm
のCo−30at%Cr−10at%Zr合金を用いた。
第1下地層12,第2下地層13,磁性層14,保護層
15,潤滑層16および成膜条件は実施例1の媒体と同
様である。また、比較例としてプリコート層62を用い
ず基板61の上に直接第1下地層12を形成した媒体
(比較例3)を作製した。
(Embodiment 3) FIG. 6 shows a film configuration of a magnetic recording medium used in this embodiment. The substrate 61 is made of chemically strengthened glass having an outer diameter of 65 mmφ, and the precoat layer 62 is made of 50 nm.
Co-30 at% Cr-10 at% Zr alloy was used.
The first underlayer 12, the second underlayer 13, the magnetic layer 14, the protective layer 15, the lubricating layer 16 and the film forming conditions are the same as in the medium of the first embodiment. As a comparative example, a medium (Comparative Example 3) in which the first underlayer 12 was directly formed on the substrate 61 without using the precoat layer 62 was manufactured.

【0034】本実施例と比較例3の媒体に225kFC
Iの記録密度で信号を書き込み、媒体ノイズと出力分解
能を測定した。表1に結果を併せて示す。本実施例の媒
体は、媒体ノイズおよび出力分解能とも実施例1の媒体
と同等な値が得られたが、比較例3の媒体は、媒体ノイ
ズが大幅に増加し、出力分解能は大幅に低下した。
225 kFC was used for the media of this embodiment and Comparative Example 3.
A signal was written at a recording density of I, and medium noise and output resolution were measured. Table 1 also shows the results. In the medium of the present embodiment, both the medium noise and the output resolution were equivalent to those of the medium of the first embodiment. However, in the medium of Comparative Example 3, the medium noise increased significantly and the output resolution decreased significantly. .

【0035】X線回折法により結晶配向性を調べたとこ
ろ、本実施例の媒体では第1および第2下地層が(10
0)配向していたのに対し、比較例3の媒体では、第1
および第2下地層が(110)配向していた。比較例3
のような結晶配向性の場合、磁性層はバイクリスタル構
造をとらないため、磁性粒子は微細化されず、また、c
軸が膜面から約28度立ち上がった配向性となる。これ
により、媒体ノイズが増加し、出力分解能が低下したと
考えられる。なお、本実施例の媒体のプリコート層は、
ハローはピークとなっていることから、非晶質であると
考えられる。
When the crystal orientation was examined by the X-ray diffraction method, it was found that the first and second underlayers of the medium of this embodiment were (10%).
0) While the medium of Comparative Example 3 was oriented,
And the second underlayer was (110) oriented. Comparative Example 3
In the case of such crystal orientation, since the magnetic layer does not have a bicrystal structure, the magnetic particles are not miniaturized, and c
The orientation is such that the axis rises about 28 degrees from the film surface. Thus, it is considered that the medium noise increased and the output resolution decreased. Incidentally, the pre-coat layer of the medium of the present embodiment,
Since the halo has a peak, it is considered to be amorphous.

【0036】以上のように、下地層の(100)配向が
得られにくいガラス等の基板を用いた場合は、非晶質な
プリコート層を基板と第1下地層の間に挿入することが
有効であることがわかる。
As described above, when a substrate made of glass or the like in which the (100) orientation of the underlayer is difficult to obtain is used, it is effective to insert an amorphous precoat layer between the substrate and the first underlayer. It can be seen that it is.

【0037】本実施例の媒体を実施例1の磁気記憶装置
に組み込んで、ヘッド浮上量30nm,線記録密度26
0kFCI,トラック密度13kTPIの条件で記録再
生特性を評価したところ1.8 の装置S/Nが得られ
た。また、磁気ヘッドへの入力信号を8−9符号変調処
理を施すことにより、10℃から50℃の温度範囲にお
いて、1平方インチあたり3ギガビットの記録密度で記
録再生することができた。しかも、内周から外周までの
ヘッドシーク試験5万回後のビットエラー数は10ビッ
ト/面以下であり、平均故障間隔で30万時間が達成で
きた。
The medium of this embodiment is incorporated in the magnetic storage device of the first embodiment, and the head flying height is 30 nm and the linear recording density is 26.
When the recording / reproducing characteristics were evaluated under the conditions of 0 kFCI and a track density of 13 kTPI, an apparatus S / N of 1.8 was obtained. Further, by subjecting the input signal to the magnetic head to 8-9 code modulation, recording and reproduction could be performed at a recording density of 3 gigabits per square inch in a temperature range of 10 ° C. to 50 ° C. In addition, the number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference was 10 bits / plane or less, and 300,000 hours at an average failure interval could be achieved.

【0038】(実施例4)実施例1と同様な構成を持つ
磁気記憶装置において、磁気抵抗センサ24に、図7に
示すようなスピンバルブ型を用いると、より大きな出力
が得られるため好ましい。磁気センサの信号検出領域7
1は、酸化Alのギャップ層72上に5nmのTaバッ
ファ層73,7nmの第1の磁性層74,1.5nm の
Cu中間層75,3nmの第2の磁性層76,10nm
のFe−20at%Mn反強磁性合金層77が順次形成
された構造である。
(Embodiment 4) In a magnetic storage device having a configuration similar to that of Embodiment 1, it is preferable to use a spin valve type as shown in FIG. Signal detection area 7 of magnetic sensor
Reference numeral 1 denotes a 5 nm Ta buffer layer 73, a 7 nm first magnetic layer 74, a 1.5 nm Cu intermediate layer 75, a 3 nm second magnetic layer 76, a 10 nm
Has a structure in which the Fe-20 at% Mn antiferromagnetic alloy layer 77 is sequentially formed.

【0039】第1の磁性層74にはNi−20at%F
e合金を用い、第2の磁性層76にはCoを用いた。反
強磁性合金77からの交換磁界により、第2の磁性層7
6の磁化は一方向に固定されている。これに対し、第2
の磁性層76と非磁性の中間層75を介して接する第1
の磁性層74の磁化の方向は、面内磁気記録媒体からの
漏洩磁界により変化する。このような二つの磁性層の磁
化の相対的な方向の変化に伴い、三層の膜全体の抵抗に
変化が生じる。この現象はスピンバルブ効果と呼ばれて
いる。
The first magnetic layer 74 has Ni-20 at% F
e alloy was used, and Co was used for the second magnetic layer 76. The exchange magnetic field from the antiferromagnetic alloy 77 causes the second magnetic layer 7
The magnetization of No. 6 is fixed in one direction. In contrast, the second
The first magnetic layer 76 and the nonmagnetic intermediate layer 75
The direction of magnetization of the magnetic layer 74 changes due to the leakage magnetic field from the longitudinal magnetic recording medium. With the change in the relative directions of the magnetizations of the two magnetic layers, the resistance of the entire three layers changes. This phenomenon is called a spin valve effect.

【0040】本実施例では、磁気抵抗効果センサにこの
効果を利用したスピンバルブ型磁気ヘッドを用いた。な
お、永久磁石層79と電極80からなるテーパー部78
は、図4に示した磁気抵抗効果センサと同様である。
In this embodiment, a spin-valve magnetic head utilizing this effect is used for the magnetoresistive sensor. In addition, the tapered portion 78 composed of the permanent magnet layer 79 and the electrode 80
Is similar to the magnetoresistive sensor shown in FIG.

【0041】実施例3で述べた媒体を上記磁気記憶装置
に組み込んで、ヘッド浮上量30nm,線記録密度26
0kFCI,トラック密度13kTPIの条件で記録再
生特性を評価したところ2.0 の装置S/Nが得られ
た。また、磁気ヘッドへの入力信号を8−9符号変調処
理を施すことにより、10℃から50℃の温度範囲にお
いて、1平方インチあたり3ギガビットの記録密度で記
録再生することができた。しかも、内周から外周までの
ヘッドシーク試験5万回後のビットエラー数は10ビッ
ト/面以下であり、平均故障間隔で30万時間が達成で
きた。
The medium described in the third embodiment was incorporated in the above-mentioned magnetic storage device, and the head flying height was 30 nm and the linear recording density was 26.
When the recording and reproducing characteristics were evaluated under the conditions of 0 kFCI and a track density of 13 kTPI, an apparatus S / N of 2.0 was obtained. Further, by subjecting the input signal to the magnetic head to 8-9 code modulation, recording and reproduction could be performed at a recording density of 3 gigabits per square inch in a temperature range of 10 ° C. to 50 ° C. In addition, the number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference was 10 bits / plane or less, and 300,000 hours at an average failure interval could be achieved.

【0042】[0042]

【発明の効果】本発明の面内磁気記録媒体は、第1下地
層で結晶配向性を制御し、第2下地層で磁性層のバイク
リスタル構造の頻度を高め、磁性粒子を微細化できるた
め、低い媒体ノイズと高い出力分解能が可能となる。本
発明の面内磁気記録媒体と磁気抵抗効果型ヘッドとを組
み合わせることにより、1平方インチあたり3ギガビッ
ト以上の記録密度で高い信頼性を有する磁気記憶装置が
実現できる。
According to the longitudinal magnetic recording medium of the present invention, the crystal orientation can be controlled by the first underlayer, the frequency of the bicrystal structure of the magnetic layer can be increased by the second underlayer, and the magnetic particles can be miniaturized. , Low medium noise and high output resolution. By combining the longitudinal magnetic recording medium of the present invention and a magnetoresistive head, a highly reliable magnetic storage device with a recording density of 3 gigabits per square inch or more can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の面内磁気記録媒体の層構成
を示す断面図。
FIG. 1 is a sectional view showing a layer structure of a longitudinal magnetic recording medium according to an embodiment of the present invention.

【図2】本発明の一実施例の磁気記憶装置の平面模式図
(a)およびそのA−A′縦断面図(b)。
FIG. 2A is a schematic plan view of a magnetic storage device according to an embodiment of the present invention, and FIG.

【図3】本発明の磁気記憶装置における磁気ヘッドの断
面構造を示す立体模式図。
FIG. 3 is a schematic three-dimensional view showing a cross-sectional structure of a magnetic head in the magnetic storage device of the present invention.

【図4】本発明の磁気記憶装置における磁気ヘッドの磁
気抵抗センサ部の縦断面図。
FIG. 4 is a longitudinal sectional view of a magnetoresistive sensor section of a magnetic head in the magnetic storage device of the present invention.

【図5】本発明の一比較例の面内磁気記録媒体の層構成
を示す断面図。
FIG. 5 is a sectional view showing a layer configuration of a longitudinal magnetic recording medium according to a comparative example of the present invention.

【図6】本発明の一実施例の面内磁気記録媒体の層構成
を示す断面図。
FIG. 6 is a sectional view showing a layer structure of the longitudinal magnetic recording medium according to one embodiment of the present invention.

【図7】本発明の磁気記憶装置における磁気ヘッドのス
ピンバルブ型磁気抵抗センサ部の縦断面図。
FIG. 7 is a longitudinal sectional view of a spin valve type magnetoresistive sensor section of a magnetic head in the magnetic storage device of the present invention.

【符号の説明】[Explanation of symbols]

11…基板、12…第1下地層、13…第2下地層、1
4…磁性層、15…保護層、16…潤滑層、21…面内
磁気記録媒体、22…面内磁気記録媒体駆動部、23…
磁気ヘッド、24…磁気ヘッド駆動部、25…記録再生
信号処理系、31…記録磁極、32…磁極兼磁気シール
ド層、33…コイル、34…磁気抵抗効果素子、35…
導体層、36…磁気シールド層、37…スライダ基体、
41…磁気センサの信号検出領域、42…ギャップ層、
43…横バイアス層、44…分離層、45…磁気抵抗強
磁性層、46…テーパー部、47…永久磁石層、48…
電極、51…下地層、61…基板、62…プリコート
層、71…磁気センサの信号検出領域、72…ギャップ
層、73…バッファ層、74…第1の磁性層、75…中
間層、76…第2の磁性層、77…反強磁性合金層、7
8…テーパー部、79…永久磁石層、80…電極。
11 ... substrate, 12 ... first underlayer, 13 ... second underlayer, 1
4 magnetic layer, 15 protective layer, 16 lubricating layer, 21 in-plane magnetic recording medium, 22 in-plane magnetic recording medium drive, 23
Magnetic head, 24: magnetic head drive unit, 25: recording / reproducing signal processing system, 31: recording magnetic pole, 32: magnetic pole and magnetic shield layer, 33: coil, 34: magnetoresistive element, 35 ...
Conductor layer, 36: magnetic shield layer, 37: slider base,
41: signal detection area of the magnetic sensor, 42: gap layer,
43 ... lateral bias layer, 44 ... separation layer, 45 ... magnetoresistive ferromagnetic layer, 46 ... taper portion, 47 ... permanent magnet layer, 48 ...
Electrodes, 51: Underlayer, 61: Substrate, 62: Precoat layer, 71: Signal detection region of magnetic sensor, 72: Gap layer, 73: Buffer layer, 74: First magnetic layer, 75: Intermediate layer, 76 ... Second magnetic layer, 77... Antiferromagnetic alloy layer, 7
8: tapered portion, 79: permanent magnet layer, 80: electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 細江 譲 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Joe Hosoe 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside Central Research Laboratory, Hitachi, Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】基板上に下地層を介して形成された磁性層
を有する面内磁気記録媒体において、前記下地層が基板
側の第1下地層と磁性層側の第2下地層の二層で構成さ
れ、前記第1下地層が全率固溶系の平衡状態図を有する
実質的に体心立方構造の二元系合金からなり、前記第2
下地層が非全率固溶系の平衡状態図を有する実質的に体
心立方構造の二元系合金からなることを特徴とする面内
磁気記録媒体。
1. An in-plane magnetic recording medium having a magnetic layer formed on a substrate with an underlayer interposed therebetween, wherein the underlayer is formed of a first underlayer on the substrate side and a second underlayer on the magnetic layer side. Wherein the first underlayer is substantially composed of a binary alloy having a body-centered cubic structure having an equilibrium diagram of a solid solution system,
An in-plane magnetic recording medium, wherein the underlayer is made of a binary alloy having a substantially body-centered cubic structure and having a non-percentage solid solution system equilibrium diagram.
【請求項2】前記面内磁気記録媒体の第1下地層がCr
を主成分とし、かつ、V,Mo,Wからなる群から選ば
れた一種類の元素を含むことを特徴とする請求項1記載
の面内磁気記録媒体。
2. The in-plane magnetic recording medium according to claim 1, wherein the first underlayer is Cr.
2. The longitudinal magnetic recording medium according to claim 1, wherein the longitudinal magnetic recording medium contains one element selected from the group consisting of V, Mo, and W.
【請求項3】前記面内磁気記録媒体の第2下地層がCr
を主成分とし、かつ、Ti,Ta,Nb,Zrからなる
群から選ばれた一種類の元素を含むことを特徴とする請
求項1または2記載の面内磁気記録媒体。
3. The in-plane magnetic recording medium according to claim 1, wherein the second underlayer is Cr.
3. The longitudinal magnetic recording medium according to claim 1, wherein the longitudinal magnetic recording medium contains one element selected from the group consisting of Ti, Ta, Nb, and Zr. 4.
【請求項4】前記面内磁気記録媒体の第1下地層が三種
類の元素からなる実質的に体心立方構造の合金で構成さ
れ、前記元素の組み合わせからなる二元系平衡状態図が
全率固溶系であることを特徴とする請求項1記載の面内
磁気記録媒体。
4. A first underlayer of the longitudinal magnetic recording medium is composed of an alloy having a substantially body-centered cubic structure composed of three kinds of elements, and a binary system equilibrium diagram composed of a combination of the above elements is completely formed. 2. The in-plane magnetic recording medium according to claim 1, wherein the medium is a solid solution type.
【請求項5】前記面内磁気記録媒体の第2下地層が少な
くとも三種類以上の元素からなる実質的に体心立方構造
の合金で構成され、前記元素の組み合わせからなる二元
系平衡状態図の少なくとも一種類の組み合わせが非全率
固溶系であることを特徴とする請求項1ないし4のいず
れか記載の面内磁気記録媒体。
5. The binary equilibrium diagram of the longitudinal magnetic recording medium, wherein the second underlayer is made of an alloy having a body-centered cubic structure composed of at least three or more elements, and a combination of the elements. 5. The in-plane magnetic recording medium according to claim 1, wherein at least one of the combinations is a non-percentage solid solution system.
【請求項6】前記面内磁気記録媒体の第1下地層がCr
を主成分とし、かつ、V,Mo,Wからなる群から選ば
れた二種類の元素を含むことを特徴とする請求項4また
は5記載の面内磁気記録媒体。
6. The in-plane magnetic recording medium according to claim 1, wherein the first underlayer is Cr.
6. The longitudinal magnetic recording medium according to claim 4, wherein the longitudinal magnetic recording medium contains two types of elements selected from the group consisting of V, Mo, and W. 5.
【請求項7】前記面内磁気記録媒体の第2下地層がCr
を主成分とし、かつ、Ti,Ta,Nb,Zrからなる
群から選ばれた一種類の元素を含み、さらに、B,C,
Si,Geからなる群から選ばれた一種類の元素を含む
ことを特徴とする請求項6記載の面内磁気記録媒体。
7. The in-plane magnetic recording medium according to claim 1, wherein the second underlayer is Cr.
As a main component, and contains one type of element selected from the group consisting of Ti, Ta, Nb, and Zr.
7. The longitudinal magnetic recording medium according to claim 6, wherein the medium contains one kind of element selected from the group consisting of Si and Ge.
【請求項8】前記面内磁気記録媒体の基板と第1下地層
の間に、実質的に非晶質のプリコート層を有することを
特徴とする請求項1から7のいずれか記載の面内磁気記
録媒体。
8. The in-plane magnetic recording medium according to claim 1, further comprising a substantially amorphous pre-coat layer between the substrate and the first underlayer of the in-plane magnetic recording medium. Magnetic recording medium.
【請求項9】前記面内磁気記録媒体の第1下地層の膜厚
が3nm以上10nm以下であることを特徴とする請求
項1から8のいずれか記載の面内磁気記録媒体。
9. The longitudinal magnetic recording medium according to claim 1, wherein a thickness of the first underlayer of the longitudinal magnetic recording medium is 3 nm or more and 10 nm or less.
【請求項10】基板上に下地層を介して形成された磁性
層を有する面内磁気記録媒体と、これを記録方向に駆動
する駆動部と、記録部と再生部からなる磁気ヘッドと、
前記磁気ヘッドを前記面内磁気記録媒体に対して相対運
動させる手段と、前記磁気ヘッドの信号入力と該磁気ヘ
ッドからの出力信号再生を行うための記録再生信号処理
手段を有する磁気記憶装置において、前記面内磁気記録
媒体が請求項1から9のいずれか記載の面内磁気記録媒
体で構成され、かつ、前記磁気ヘッドの再生部が磁気抵
抗効果型磁気ヘッドで構成されることを特徴とする磁気
記憶装置。
10. A longitudinal magnetic recording medium having a magnetic layer formed on a substrate via an underlayer, a drive unit for driving the medium in a recording direction, a magnetic head comprising a recording unit and a reproducing unit,
A magnetic storage device comprising: means for moving the magnetic head relative to the longitudinal magnetic recording medium; and recording / reproducing signal processing means for reproducing a signal input from the magnetic head and an output signal from the magnetic head. 10. The longitudinal magnetic recording medium is constituted by the longitudinal magnetic recording medium according to claim 1, and a reproducing section of the magnetic head is constituted by a magnetoresistive magnetic head. Magnetic storage device.
【請求項11】前記磁気抵抗効果型磁気ヘッドが、互い
の磁化方向が外部磁界によって相対的に変化することに
よって大きな抵抗変化を生ずる複数の導電性磁性層と該
導電性磁性層の間に配置された導電性非磁性層を含む磁
気抵抗センサによって構成されることを特徴とする請求
項10記載の磁気記憶装置。
11. A magneto-resistance effect type magnetic head is arranged between a plurality of conductive magnetic layers which generate a large resistance change by their magnetization directions relatively changing by an external magnetic field. 11. The magnetic storage device according to claim 10, wherein the magnetic storage device is constituted by a magnetoresistive sensor including a conductive nonmagnetic layer formed.
JP33845197A 1997-12-09 1997-12-09 Magnetic storage device and intrasurface magnetic recording medium Pending JPH11175945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33845197A JPH11175945A (en) 1997-12-09 1997-12-09 Magnetic storage device and intrasurface magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33845197A JPH11175945A (en) 1997-12-09 1997-12-09 Magnetic storage device and intrasurface magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH11175945A true JPH11175945A (en) 1999-07-02

Family

ID=18318288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33845197A Pending JPH11175945A (en) 1997-12-09 1997-12-09 Magnetic storage device and intrasurface magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH11175945A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6753102B2 (en) 2001-12-27 2004-06-22 Fujitsu Limited Magnetic recording medium and magnetic recording apparatus
WO2006090510A1 (en) * 2005-02-25 2006-08-31 Showa Denko K.K. Magnetic recording medium, production method thereof, and magnetic recording and reproducing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6753102B2 (en) 2001-12-27 2004-06-22 Fujitsu Limited Magnetic recording medium and magnetic recording apparatus
WO2006090510A1 (en) * 2005-02-25 2006-08-31 Showa Denko K.K. Magnetic recording medium, production method thereof, and magnetic recording and reproducing apparatus

Similar Documents

Publication Publication Date Title
US7056604B2 (en) Magnetic recording media and magnetic recording system using the same
US5922456A (en) Longitudal magnetic recording medium having a multi-layered underlayer and magnetic storage apparatus using such magnetic recording medium
JP3429972B2 (en) Magnetic recording medium and magnetic storage device using the same
JPH10233016A (en) Intra-surface magnetic recording medium and magnetic memory device formed by using the same
JP5610716B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3764833B2 (en) Magnetic recording medium and magnetic storage device
JP2001184626A (en) Magnetic recording medium and magnetic memory device
JP3648450B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3665221B2 (en) In-plane magnetic recording medium and magnetic storage device
JP3217012B2 (en) Magnetic recording media
JP3359706B2 (en) Magnetic recording media
JP2000020936A (en) Inp-lane magnetic recording medium and magnetic storage device using the same
WO1998006093A1 (en) Magnetic recording medium and magnetic storage device using the medium
JPH11175945A (en) Magnetic storage device and intrasurface magnetic recording medium
JP2000067423A (en) Intra-surface magnetic recording medium and magnetic storage using the same
JPH11306532A (en) Magnetic recording medium and magnetic storage device using the same
JPH10320740A (en) Magnetic storage device and intrasurface magnetic recording medium
JP3429777B2 (en) Magnetic recording medium and magnetic storage device using the same
JP2009064501A (en) Magnetic recording medium and magnetic recording and playback apparatus
KR19980086372A (en) In-plane magnetic recording medium and magnetic memory device using the same
JPH10135039A (en) Magnetic recording medium and magnetic storage device
JP2991688B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JP2918199B2 (en) Magnetic recording medium and magnetic storage device
JP2001195721A (en) Magnetic storage device with magnetic recording medium
JPH11175946A (en) Magnetic recording medium and magnetic storage device