JP2000187825A - Magnetic recording medium and magnetic storage device - Google Patents

Magnetic recording medium and magnetic storage device

Info

Publication number
JP2000187825A
JP2000187825A JP36406398A JP36406398A JP2000187825A JP 2000187825 A JP2000187825 A JP 2000187825A JP 36406398 A JP36406398 A JP 36406398A JP 36406398 A JP36406398 A JP 36406398A JP 2000187825 A JP2000187825 A JP 2000187825A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
layer
recording medium
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36406398A
Other languages
Japanese (ja)
Inventor
Tetsuya Kanbe
哲也 神邊
Ichiro Tamai
一郎 玉井
Kiwamu Tanahashi
究 棚橋
Satoru Matsunuma
悟 松沼
Fumiyoshi Kirino
文良 桐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP36406398A priority Critical patent/JP2000187825A/en
Publication of JP2000187825A publication Critical patent/JP2000187825A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a medium low in noise and suppressed in thermomagnetic relaxation by making a magnetic layer made of an alloy consisting essentially of Co and having a hexagonal dense structure and continuously, step by step or periodically changing the composition of at least one kind of metallic element components contained in the magnetic layer in the vertical direction to a substrate. SOLUTION: The magnetic layer is formed on the substrate, the magnetic layer is an alloy film consisting essentially of Co, containing Cr and having the hexagonal dense structure and the concentration of one of the metallic elements of Co and Cr is changed in the film thickness direction. A magnetic resistance sensor part of a magnetic head is formed from one, which is composed of plural conductive magentic layers producing large resistance change by relatively changing respective magnetization direction by the outside magnetic field and a conductive non-magnetic layer arranged between the conductive magnetic layers and utilizes spin valve effect. In such a case, the gap between 2 pieces of shield layers interposing the resistance sensor part is preferably <=0.25 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気記憶装置、具体
的には1平方インチ当たり8ギガビット以上の記録密度
を有する磁気記憶装置と、これを実現するための高出
力、低ノイズで、かつ熱磁気緩和による再生出力の減衰
が抑制された高い安定性を有す、薄膜磁気記録媒体に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic storage device, specifically, a magnetic storage device having a recording density of 8 gigabits per square inch or more, and a high-power, low-noise, and thermal storage device for realizing the same. The present invention relates to a thin-film magnetic recording medium having high stability in which reproduction output attenuation due to magnetic relaxation is suppressed.

【0002】[0002]

【従来の技術】近年、磁気記憶装置の大容量化に伴い、
磁気記録媒体には一層の高密度化が求められている。媒
体の高密度化には、高保磁力化、低ノイズ化が不可避で
あるが、そのためには磁性層の結晶性、配向性の向上、
磁性結晶粒の微細化等が必要である。磁性層には六方稠
密構造のCo合金が用いられているが、面内磁気記録媒体
の場合、磁化容易軸であるc軸を膜面内方向に向けるた
め、該磁性層は(11.0)面が基板と平行となるような配向
(以後、(11.0)配向と記す)をとることが望ましい。Co
合金の(11.0)面は、体心立方構造のCr合金の(100)面と
格子整合性が良いため、(100)配向させたCr合金が下地
層として用いられている。これにより、磁性層はエピタ
キシャル成長し、(11.0)配向が得られるが、これは結晶
構造の異なる結晶上に成長する、ヘテロエピタキシャル
成長であるため、磁性層の初期成長層では結晶性が崩
れ、十分に良好な磁性層の配向性、結晶性が得られてい
ない。また、Ti下地層上に形成された垂直配向したCo合
金磁性層のように、同一結晶構造の下地層上に形成され
た場合であっても、元素が異なる場合、初期成長層で結
晶性が乱れ、十分な磁気特性が得られない。これに対す
る対策として、磁性層と同じ六方稠密構造をもつ、Coを
主成分とした非磁性中間層を、磁性層と下地層間に形成
する手法が提案されている(特開昭55-122232、特開平1
0-233014、特開平10-233016)。磁性結晶は該中間層中
の結晶粒上に、概ね連続的に成長するため、初期成長の
段階から良好な結晶成長が起こり、結晶性、配向性とも
向上し、良好な磁気特性が得られる。一方、近年、低ノ
イズ化を図るため、一層の磁性結晶粒微細化、磁性膜厚
の薄膜化が進んでいるが、これにより、記録磁化が時間
とともに減衰するという熱磁気緩和現象が深刻化してい
る。これは、磁性粒微細化、薄膜化により、熱擾乱の影
響を極めて強く受け、容易に磁化反転を起こす極微細な
磁性粒の比率が増加しためと考えられている。熱磁気緩
和を引き起こす大きな要因である該極微細粒は、磁性層
の初期成長領域に多く存在しているため、該領域を非磁
性化する、前述の中間層形成は、熱磁気緩和を抑制する
意味でも有効である。
2. Description of the Related Art In recent years, with the increase in the capacity of magnetic storage devices,
Magnetic recording media are required to have higher densities. Increasing the coercive force and lowering the noise are inevitable in increasing the density of the medium. For this purpose, the crystallinity and orientation of the magnetic layer must be improved.
It is necessary to reduce the size of the magnetic crystal grains. For the magnetic layer, a Co alloy having a hexagonal close-packed structure is used.However, in the case of an in-plane magnetic recording medium, the (11.0) plane of the magnetic layer has It is desirable to take an orientation parallel to the substrate (hereinafter referred to as (11.0) orientation). Co
Since the (11.0) plane of the alloy has good lattice matching with the (100) plane of a Cr alloy having a body-centered cubic structure, a (100) -oriented Cr alloy is used as the underlayer. As a result, the magnetic layer grows epitaxially and a (11.0) orientation is obtained.However, since this is a heteroepitaxial growth, which grows on crystals having different crystal structures, the crystallinity is deteriorated in the initial growth layer of the magnetic layer, and the magnetic layer is sufficiently grown. Good orientation and crystallinity of the magnetic layer were not obtained. Also, even when formed on an underlayer having the same crystal structure, such as a vertically oriented Co alloy magnetic layer formed on a Ti underlayer, if the elements are different, the crystallinity in the initial growth layer is low. Disturbance and insufficient magnetic properties cannot be obtained. As a countermeasure against this, there has been proposed a method of forming a nonmagnetic intermediate layer containing Co as a main component and having the same hexagonal close-packed structure as the magnetic layer between the magnetic layer and the underlayer (Japanese Patent Application Laid-Open No. 55-122232, Kaiping 1
0-233014, JP-A-10-233016). Since the magnetic crystal grows almost continuously on crystal grains in the intermediate layer, good crystal growth occurs from the initial growth stage, and both crystallinity and orientation are improved, and good magnetic properties are obtained. On the other hand, in recent years, in order to reduce noise, further miniaturization of magnetic crystal grains and thinning of the magnetic film thickness have been advanced, but this has caused a serious thermomagnetic relaxation phenomenon in which the recording magnetization is attenuated with time. I have. This is considered to be due to the fact that the influence of thermal disturbance is extremely strong due to the miniaturization and thinning of the magnetic grains, and the ratio of ultrafine magnetic grains that easily cause magnetization reversal increases. The ultrafine grains, which are a major factor causing thermomagnetic relaxation, are present in a large amount in the initial growth region of the magnetic layer, and thus the region is demagnetized. It is effective in a sense.

【0003】しかし、中間層と磁性層は異なるカソード
を用いて形成されるため、中間層形成後、磁性層形成ま
での基板搬送中に、チャンバー中の残留不純物ガスによ
り中間層表面の汚染が起こる。このため、中間層から磁
性層にかけての結晶粒の連続性は十分ではない。よっ
て、依然として磁性層の初期成長層には微細結晶粒が存
在し、更なる磁性結晶粒の微細化、磁性膜厚の薄膜化に
伴い、熱磁気緩和を起こす要因となっている。高密度磁
気記録媒体の実現には、このような極微細磁性粒を排除
し、媒体ノイズ低減と、熱磁気緩和の抑制を両立させる
必要がある。
However, since the intermediate layer and the magnetic layer are formed using different cathodes, contamination of the surface of the intermediate layer occurs due to residual impurity gas in the chamber during the transfer of the substrate after the formation of the intermediate layer and before the formation of the magnetic layer. . Therefore, the continuity of crystal grains from the intermediate layer to the magnetic layer is not sufficient. Therefore, fine crystal grains still exist in the initial growth layer of the magnetic layer, which causes thermomagnetic relaxation with further miniaturization of the magnetic crystal grains and thinning of the magnetic film thickness. In order to realize a high-density magnetic recording medium, it is necessary to eliminate such ultra-fine magnetic grains and achieve both reduction of medium noise and suppression of thermal magnetic relaxation.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、磁性
層に、基板と垂直方向に組成変調を設けることにより、
磁性層の結晶性を向上させると同時に、初期成長層の微
細磁性粒を非磁性化し、低ノイズで、かつ熱磁気緩和が
抑制された磁気記録媒体を提供することである。更に高
感度なスピンバルブ型磁気ヘッドと組み合わせ、条件を
最適化することにより、1平方インチ当たり8ギガビッ
ト以上の記録密度を持った信頼性の高い磁気記憶装置を
提供することができる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic layer with a composition modulation in a direction perpendicular to a substrate.
An object of the present invention is to provide a magnetic recording medium in which the crystallinity of a magnetic layer is improved, and at the same time, fine magnetic grains in an initial growth layer are demagnetized to reduce noise and suppress thermomagnetic relaxation. By optimizing the conditions in combination with a highly sensitive spin valve magnetic head, a highly reliable magnetic storage device having a recording density of 8 gigabits per square inch or more can be provided.

【0005】[0005]

【課題を解決するための手段】上記目的は、磁性層がCo
を主成分とする六方稠密構造の合金からなり、該磁性層
に含有される少なくとも一種の金属全素成分の組成が、
基板と垂直方向に対して連続的、段階的、または周期的
に変化していることを特徴とする磁気記録媒体と、これ
を記録方向に駆動する駆動部と、記録部と再生部から成
る磁気ヘッドと、上記磁気ヘッドを上記磁気記録媒体に
対して相対運動させる手段と、上記磁気ヘッドへの信号
入力と該磁気ヘッドからの出力信号再生を行うための記
録再生信号処理手段を有する磁気記憶装置において前記
磁気ヘッドの再生部が磁気抵抗効果型磁気ヘッドで構成
される磁気記憶装置により達成される。上記磁気記録装
置で用いている磁気ヘッドの磁気抵抗センサ部は、互い
の磁化方向が外部磁界によって相対的に変化することに
よって大きな抵抗変化を生じる複数の導電性磁性層と、
その導電性磁性層の間に配置された導電性非磁性層によ
って構成されたスピン・バルブ効果を利用したものとす
る。該抵抗センサ部を挟む2枚のシールド層の間隔(シ
ールド間隔)は0.25μm以下が好ましい。これは、シー
ルド間隔が0.25μm以上になると分解能が低下し、信号
の位相ジッターが大きくなってしまうためである。
SUMMARY OF THE INVENTION The object of the present invention is to provide a magnetic recording medium comprising:
Is composed of an alloy having a hexagonal close-packed structure whose main component is a composition of at least one elemental metal component contained in the magnetic layer,
A magnetic recording medium characterized by changing continuously, stepwise, or periodically with respect to a direction perpendicular to the substrate, a drive unit for driving the magnetic recording medium in the recording direction, and a magnetic unit comprising a recording unit and a reproducing unit A magnetic storage device comprising: a head; a unit for moving the magnetic head relative to the magnetic recording medium; and a recording / reproducing signal processing unit for performing signal input to the magnetic head and reproduction of an output signal from the magnetic head. Is achieved by a magnetic storage device in which a reproducing section of the magnetic head is constituted by a magnetoresistive magnetic head. The magnetic resistance sensor portion of the magnetic head used in the magnetic recording device, a plurality of conductive magnetic layers that cause a large resistance change by the relative change of the magnetization direction by an external magnetic field,
It is assumed that a spin valve effect constituted by a conductive non-magnetic layer disposed between the conductive magnetic layers is used. The distance between the two shield layers sandwiching the resistance sensor section (shield distance) is preferably 0.25 μm or less. This is because when the shield interval is 0.25 μm or more, the resolution is reduced, and the phase jitter of the signal is increased.

【0006】媒体は、基板に対して、複数のカソードか
ら同時にスパッタ粒子が入射する構成の成膜装置を用い
た、所謂多元同時スパッタ法により形成される。各カソ
ードの放電時の投入電力を、時間と共に連続的、または
段階的に変化させることにより、成膜レートを変化さ
せ、膜厚方向に組成変調をもたせることが可能となる。
磁性層の基板側の膜厚5nmから20nm程度までの領域を、
高Cr濃度化することにより非磁性化すると、該領域中の
微細な磁性結晶粒が非磁性化され、熱磁気緩和が抑制さ
れる。該微細結晶粒の粒径は5〜10nm程度なので、該非
磁性領域の膜厚は5nm以上必要である。また、20nm以上
になると磁性結晶粒が肥大化し、媒体ノイズが増加する
ので望ましくない。また、Cr濃度を26at%以下にすると
磁化が生じ、45at%以上にすると六方稠密構造が崩れる
ので、該非磁性領域中のCr濃度は26at%以上、45at%以下
が好ましい。該濃度範囲内であれば、Cr濃度は膜厚方向
に一定でもよいし、濃度勾配をもっていてもよい。ま
た、磁性層が高濃度のPt、Taを含有する場合、該元素濃
度が下地層側では低く、膜厚方向に対して増加するよう
な濃度勾配をもたせることにより、格子定数を連続的に
変化させることができる。これにより、磁性層と下地層
との界面での格子整合性を崩さず、高Pt、高Ta濃度化が
可能となるため、高保磁力で熱磁気緩和が抑制された媒
体が得られる。また、磁性層を、高Cr濃度領域で膜厚方
向に分割した構造とすることもできる。この場合、高Cr
濃度領域は非磁性であってもよいし、若干磁化をもって
いてもよい。非磁性であれば、磁性層を非磁性中間層で
分割した多層磁性層媒体と同様、一ビット内の実効的な
磁性結晶粒数が増加するため、媒体ノイズが低減する。
但し、磁性層は、連続的に成膜された単層膜であるた
め、中間層で分割された多層磁性層のような、不純物ガ
スによる界面の汚染はなく、良好な結晶性が得られる。
高Cr領域が、わずかに磁化している場合は、媒体ノイズ
は若干増大するが、熱磁気緩和が抑制される。これは、
分割された磁性層間にわずかに相互作用を残すことによ
り、相互作用がない場合に比べ、磁化反転体積が増加し
たためであり、特に、磁性層が薄い場合に有効である。
尚、本発明で述べている組成変調は、磁性層に含まれる
主要な金属元素に関するものであり、例えば、下地層と
磁性層の界面に不可避的、または意図的に生じさせた酸
化層や窒化層等と、それらの拡散によって起る濃度勾配
は本発明には含まれない。また、強化ガラス基板のイオ
ン強化層中のアルカリ金属や、基板表面に付着した残留
洗浄剤等が、拡散して膜厚方向に濃度勾配をもつような
場合も、本発明の範囲外である。本発明で述べられてい
る効果は、膜面内方向、垂直方向のいずれに磁気異方性
を持つ媒体に対しても有効であり、特に磁化容易軸の方
向は制限しない。
[0006] The medium is formed by a so-called multiple simultaneous sputtering method using a film forming apparatus having a structure in which sputtered particles are simultaneously incident on a substrate from a plurality of cathodes. By changing the input power at the time of discharge of each cathode continuously or stepwise with time, it is possible to change the film formation rate and to impart composition modulation in the film thickness direction.
The region of the magnetic layer on the substrate side with a thickness of 5 nm to about 20 nm,
When demagnetization is performed by increasing the Cr concentration, fine magnetic crystal grains in the region are demagnetized, and thermomagnetic relaxation is suppressed. Since the diameter of the fine crystal grains is about 5 to 10 nm, the thickness of the nonmagnetic region needs to be 5 nm or more. On the other hand, if the thickness exceeds 20 nm, the magnetic crystal grains are enlarged, and the medium noise is increased, which is not desirable. When the Cr concentration is 26 at% or less, magnetization occurs, and when the Cr concentration is 45 at% or more, the hexagonal dense structure is broken. Therefore, the Cr concentration in the nonmagnetic region is preferably 26 at% or more and 45 at% or less. Within this concentration range, the Cr concentration may be constant in the film thickness direction or may have a concentration gradient. When the magnetic layer contains high concentrations of Pt and Ta, the lattice constant changes continuously by giving a concentration gradient such that the element concentration is low on the underlayer side and increases in the film thickness direction. Can be done. As a result, high Pt and high Ta concentration can be achieved without deteriorating the lattice matching at the interface between the magnetic layer and the underlayer, so that a medium with high coercive force and suppressed thermomagnetic relaxation can be obtained. Further, the magnetic layer may have a structure in which the magnetic layer is divided in the thickness direction in the high Cr concentration region. In this case, high Cr
The concentration region may be non-magnetic or have some magnetization. If it is non-magnetic, the effective number of magnetic crystal grains in one bit increases, as in a multilayer magnetic layer medium in which the magnetic layer is divided by a non-magnetic intermediate layer, so that medium noise is reduced.
However, since the magnetic layer is a single-layer film formed continuously, there is no contamination of the interface by an impurity gas as in a multilayer magnetic layer divided by an intermediate layer, and good crystallinity can be obtained.
When the high Cr region is slightly magnetized, medium noise slightly increases, but thermomagnetic relaxation is suppressed. this is,
This is because leaving a slight interaction between the divided magnetic layers increases the magnetization reversal volume as compared with the case where there is no interaction, and is particularly effective when the magnetic layer is thin.
The composition modulation described in the present invention relates to the main metal element contained in the magnetic layer. For example, the composition modulation described inevitably or intentionally occurs at the interface between the underlayer and the magnetic layer. Layers and the like and the concentration gradient caused by their diffusion are not included in the present invention. Further, the case where the alkali metal in the ion-enhanced layer of the tempered glass substrate, the residual cleaning agent adhered to the substrate surface, and the like diffuse and have a concentration gradient in the film thickness direction is also outside the scope of the present invention. The effect described in the present invention is effective for a medium having magnetic anisotropy in both the in-plane direction and the perpendicular direction, and the direction of the axis of easy magnetization is not particularly limited.

【0007】面内磁気異方性媒体では、下地層にCr等の
体心立方構造を有す元素を主成分とした合金が用いられ
る。該下地合金は、粒径微細化、格子定数向上を目的と
したTi, Mo, V等の添加元素を含有していてもよい。ま
た、該添加元素に、膜厚方向に対して勾配をもたせるこ
ともできる。基板側での添加元素を低濃度とし、磁性層
側にかけて高濃度化すれば、下地層結晶が良好に初期成
長し、結晶性、配向性ともに良好で、かつ表面での格子
定数が大きな下地層が得られる。これにより、下地層の
結晶性、配向性の向上と、磁性層界面での格子ミスフィ
ット低減の両立が可能となる。垂直磁気異方性媒体につ
いては、Ti等の下地層を用いることができる。この場合
でも、濃度勾配をもたせることにより、面内磁気異方性
媒体の場合と同様の効果を得ることができる。更に下地
層の構造制御、密着性向上等を目的とした層を、基板と
下地層間に形成し、多層下地層としてもよい。
In the in-plane magnetic anisotropic medium, an alloy mainly containing an element having a body-centered cubic structure such as Cr is used for the underlayer. The base alloy may contain additional elements such as Ti, Mo, and V for the purpose of reducing the particle size and improving the lattice constant. Further, the additive element can have a gradient in the film thickness direction. If the concentration of the additive element on the substrate side is reduced and the concentration is increased toward the magnetic layer side, the underlayer crystal grows well at the initial stage, and the crystallinity and orientation are good, and the lattice constant on the surface is large. Is obtained. This makes it possible to improve the crystallinity and orientation of the underlayer and reduce lattice misfit at the interface of the magnetic layer. For the perpendicular magnetic anisotropic medium, an underlayer such as Ti can be used. Also in this case, the same effect as that of the in-plane magnetic anisotropic medium can be obtained by providing the concentration gradient. Further, a layer for the purpose of controlling the structure of the underlayer, improving the adhesion, and the like may be formed between the substrate and the underlayer to form a multilayer underlayer.

【0008】基板にはNiPメッキを施したAl-Mg合金基板
のほか、化学強化ガラス基板、結晶化ガラス基板、非晶
質カーボン基板等を用いることができる。磁性層の保護
層としてカーボンを厚さ3nm〜20nm形成し、さらに吸着
性のパーフルオロアルキルポリエーテル等の潤滑層を厚
さ2nm〜10nm設けることにより信頼性が高く、高密度記
録が可能な磁気記録媒体が得られる。保護層としては水
素、または窒素を添加したカーボン膜、或いは、炭化シ
リコン、炭化タングステン、(W-Mo)-C、(Zr-Nb)-N等の
化合物から成る膜、或いは、これらの化合物とカーボン
の混合膜を用いてもよい。
As the substrate, a chemically strengthened glass substrate, a crystallized glass substrate, an amorphous carbon substrate, or the like can be used in addition to an Ni—Pg-plated Al—Mg alloy substrate. By forming carbon as a protective layer of the magnetic layer with a thickness of 3 nm to 20 nm and a lubricating layer of adsorbent perfluoroalkyl polyether etc. with a thickness of 2 nm to 10 nm, high reliability and high density recording are possible. A recording medium is obtained. As the protective layer, a carbon film to which hydrogen or nitrogen is added, or a film made of a compound such as silicon carbide, tungsten carbide, (W-Mo) -C, (Zr-Nb) -N, or a combination of these compounds A mixed film of carbon may be used.

【0009】媒体の磁気特性としては、磁化容易軸方向
に測定した保磁力を2600エルステッド以上とし、残留磁
束密度Brと膜厚 t の積Br×tを40ガウス・ミクロン以
上、100ガウス・ミクロン以下とすると、1平方インチ
当たり8ギガビット以上の記録密度領域において、良好
な記録再生特性が得られるので好ましい。円周方向の保
磁力が2600エルステッドよりも小さくなると、高記録密
度(300kFCI以上)での出力が小さくなり好ましくな
い。また、Br×tが100ガウス・ミクロンより大きくなる
と分解能が低下し、40ガウス・ミクロンよりも小さくな
ると再生出力が小さくなり好ましくない。
The magnetic properties of the medium are as follows: the coercive force measured in the easy axis direction is 2600 Oe or more, and the product Br × t of the residual magnetic flux density Br and the film thickness t is 40 Gauss / micron or more and 100 Gauss / micron or less. This is preferable because good recording / reproducing characteristics can be obtained in a recording density region of 8 gigabits per square inch or more. If the coercive force in the circumferential direction is smaller than 2600 Oe, the output at a high recording density (300 kFCI or more) becomes small, which is not preferable. Also, when Br × t is larger than 100 Gauss / micron, the resolution is reduced, and when it is smaller than 40 Gauss / micron, the reproduction output is undesirably reduced.

【0010】[0010]

【発明の実施の形態】<実施例1>本発明の実施例を図
1、図2、図3を用いて説明する。本実施例の磁気記憶
装置の平面摸式図、断面摸式図を図1(a)、及び図1(b)
に示す。この装置は磁気ヘッド11、及びその駆動部12
と、該磁気ヘッドの記録再生信号処理手段13と磁気記録
媒体14とこれを回転させる駆動部15とからなる周知の構
造を持つ磁気記憶装置である。
<Embodiment 1> An embodiment of the present invention will be described with reference to FIGS. 1, 2 and 3. FIG. FIGS. 1 (a) and 1 (b) are a schematic plan view and a schematic sectional view of the magnetic storage device of this embodiment.
Shown in This device comprises a magnetic head 11 and its driving unit 12
And a recording / reproducing signal processing means 13 for the magnetic head, a magnetic recording medium 14, and a drive unit 15 for rotating the magnetic recording medium, which has a known structure.

【0011】上記磁気ヘッドの構造を図2に示す。この
磁気ヘッドは基体21上に形成された記録用の電磁誘導型
磁気ヘッドと再生用のスピンバルブ型磁気ヘッドを併せ
持つ複合型ヘッドである。前記記録用ヘッドはコイル22
を挟む上部記録磁極23と下部記録磁極兼上部シールド層
24からなり、記録磁極間のギャップ層厚は0.3μmとし
た。また、コイルには厚さ3μmのCuを用いた。前記再生
用ヘッドは磁気抵抗センサ25とその両端の電極パタン26
からなり、磁気抵抗センサは共に1μm厚の下部記録磁極
兼上部シールド層と下部シールド層27で挟まれ、該シー
ルド層間距離は0.22μmである。尚、図2では記録磁極
間のギャップ層、及びシールド層と磁気抵抗センサとの
ギャップ層は省略してある。
FIG. 2 shows the structure of the magnetic head. This magnetic head is a composite type head having both an electromagnetic induction type magnetic head for recording and a spin valve type magnetic head for reproduction formed on the base 21. The recording head is a coil 22
Upper write pole 23 and lower write pole and upper shield layer sandwiching
The gap layer thickness between the recording magnetic poles was set to 0.3 μm. Cu having a thickness of 3 μm was used for the coil. The reproducing head includes a magnetoresistive sensor 25 and electrode patterns 26 at both ends thereof.
Each of the magnetoresistive sensors is sandwiched between a lower recording magnetic pole / upper shield layer 1 μm thick and a lower shield layer 27, and the distance between the shield layers is 0.22 μm. In FIG. 2, the gap layer between the recording magnetic poles and the gap layer between the shield layer and the magnetoresistive sensor are omitted.

【0012】図3に磁気抵抗センサの断面構造を示す。
該センサの信号検出領域31は、酸化Alのギャップ層32上
に、5nmのTaバッファ層33、7nmの第一の磁性層34、1.5n
mのCu中間層35、3nmの第二の磁性層36、10nmのFe-50at%
Mn反強磁性合金層37が順次形成された構造である。前記
第一の磁性層にはNi-20at%Fe合金を使用し、第二の磁性
層にはCoを使用した。反強磁性層からの交換磁界によ
り、第二の磁性層の磁化は一方向に固定されている。こ
れに対し、第二の磁性層と非磁性層を介して接する第一
の磁性層の磁化の方向は、磁気記録媒体からの漏洩磁界
により変化するため、抵抗変化が生じる。再生用ヘッド
には、このような二つの磁性層の磁化の相対的方向の変
化に伴う抵抗変化を利用したスピンバルブ型磁気ヘッド
を使用した。信号検出領域の両端にはテーパー形状に加
工されたテーパー部38がある。テーパー部は、磁気抵抗
強磁性層を単磁区化するための永久磁石層39と、その上
に形成された信号を取り出すための一対の電極11からな
る。永久磁石層は保磁力が大きく、磁化方向が容易に変
化しないことが必要であり、CoCr、CoCrPt合金等が用い
られる。
FIG. 3 shows a sectional structure of the magnetoresistive sensor.
The signal detection region 31 of the sensor has a Ta buffer layer 33 of 5 nm, a first magnetic layer 34 of 7 nm, 1.5 n on the gap layer 32 of Al oxide.
m Cu intermediate layer 35, 3 nm second magnetic layer 36, 10 nm Fe-50at%
It has a structure in which Mn antiferromagnetic alloy layers 37 are sequentially formed. For the first magnetic layer, a Ni-20at% Fe alloy was used, and for the second magnetic layer, Co was used. The magnetization of the second magnetic layer is fixed in one direction by the exchange magnetic field from the antiferromagnetic layer. On the other hand, the direction of magnetization of the first magnetic layer, which is in contact with the second magnetic layer via the non-magnetic layer, changes due to the leakage magnetic field from the magnetic recording medium, so that a resistance change occurs. As a reproducing head, a spin-valve magnetic head utilizing a resistance change accompanying a change in the relative direction of the magnetization of the two magnetic layers was used. At both ends of the signal detection region, there are tapered portions 38 which are processed into a tapered shape. The tapered portion includes a permanent magnet layer 39 for converting the magnetoresistive ferromagnetic layer into a single magnetic domain, and a pair of electrodes 11 formed thereon for extracting a signal. The permanent magnet layer needs to have a large coercive force and the magnetization direction does not easily change, and CoCr, CoCrPt alloy, or the like is used.

【0013】図4に本発明の磁気記録媒体の層構造を示
す。NiPメッキを施したAl基板41を250℃まで加熱し、Cr
-30at%Mo下地層42を30nm、CoCrPt磁性層43を30nm、カー
ボン保護膜44を8nmと順次形成した。磁性層は、図5に
示したような、複数のカソード51を備えた成膜装置によ
り、Co, Cr, Ptターゲット52を独立して放電させる同時
スパッタ法により形成した。尚、図はカソード配置の概
略を示したものであり、搬送機構等は省略してある。各
カソードの投入電力を、経時的に変化させることによ
り、膜厚方向に組成変調をもたせた。成膜は全て10mTor
rの純Ar雰囲気中で行い、基板53は基板回転駆動部54に
より、20rpmで回転させた。また、比較例として、Cr-30
at%Mo下地層形成後、初期成長層の微細結晶粒の影響を
排除するため、10nmのCo-35at%Cr中間膜を挟んで、Co-2
1at%Cr-10at%Pt合金磁性層を15nm形成した媒体を作製し
た。
FIG. 4 shows the layer structure of the magnetic recording medium of the present invention. Heat the Ni-plated Al substrate 41 to 250 ° C
A -30 at% Mo underlayer 42 was formed in order of 30 nm, a CoCrPt magnetic layer 43 was formed in 30 nm, and a carbon protective film 44 was formed in order of 8 nm. The magnetic layer was formed by a simultaneous sputtering method in which the Co, Cr, and Pt targets 52 were independently discharged by a film forming apparatus having a plurality of cathodes 51 as shown in FIG. It should be noted that the figure schematically shows the arrangement of the cathodes, and the transport mechanism and the like are omitted. By varying the input power of each cathode with time, the composition was modulated in the film thickness direction. All films are 10mTor
The process was performed in a pure Ar atmosphere of r, and the substrate 53 was rotated at 20 rpm by the substrate rotation drive unit 54. As a comparative example, Cr-30
After the formation of the at% Mo underlayer, a 10 nm Co-35at% Cr intermediate film is sandwiched between the Co-2
A medium in which a 1 at% Cr-10 at% Pt alloy magnetic layer was formed to a thickness of 15 nm was manufactured.

【0014】本実施例媒体について、2次イオン質量分
析より得られた磁性層中の各元素の膜厚プロファイルを
図6に模式的に示す。Cr濃度は、下地層表面から、膜厚
方向に15nmまでは30at%一定であるが、それ以上では21a
t%となっている。よって、下地層界面からの膜厚方向の
距離が約15nm以内の磁性層領域は、高Cr濃度のため、非
磁性化していると思われる。また、Pt濃度は下地層表面
から膜厚方向に15nmまで連続的に増加し、それ以上では
10at%一定となっている。これに対し、比較例媒体で
は、磁性層内の各元素濃度は全て膜厚方向に対して一定
であった。更に、酸素の濃度プロファイルでは、実施例
媒体では、下地層表面、及び磁性表面でのみ。濃度のピ
ークがみられたが、比較例媒体では上記に加え、中間層
と磁性層界面にもピークが観測された。該中間層磁性層
間のピーク強度の絶対値は200cps程度あり、磁性層内部
での酸素強度の絶対値(70〜90cps)の2倍程度であっ
た。これは、各層の界面が、基板搬送中にチャンバー内
の残留酸素ガスにより汚染されたためと考えられる。本
実施例媒体、比較例媒体について、X線回折測定を行っ
たところ、両媒体とも磁性層からの回折ピークはhcp(1
1.0)ピークのみであり、該ピークのロッキンカーブの半
値幅は、実施例媒体では1.8°であるのに対し、比較例
媒体では4.2°であった。これより、実施例媒体の方
で、より良好な結晶性が得られていることがわかる。
FIG. 6 schematically shows a film thickness profile of each element in the magnetic layer obtained by the secondary ion mass spectrometry for the medium of the present embodiment. The Cr concentration is constant at 30 at% from the underlayer surface up to 15 nm in the film thickness direction, but 21 a
t%. Therefore, it is considered that the magnetic layer region within a distance of about 15 nm from the underlayer interface in the thickness direction is demagnetized due to the high Cr concentration. In addition, the Pt concentration continuously increases from the surface of the underlayer to 15 nm in the film thickness direction.
It is constant at 10at%. On the other hand, in the comparative example medium, the concentration of each element in the magnetic layer was all constant in the film thickness direction. Further, in the oxygen concentration profile, in the example medium, only on the surface of the underlayer and the magnetic surface. Although a peak of the concentration was observed, a peak was also observed at the interface between the intermediate layer and the magnetic layer in the medium of the comparative example in addition to the above. The absolute value of the peak intensity between the intermediate magnetic layers was about 200 cps, which was about twice the absolute value of the oxygen intensity inside the magnetic layer (70 to 90 cps). This is probably because the interface between the layers was contaminated by the residual oxygen gas in the chamber during the transfer of the substrate. When the X-ray diffraction measurement was performed on the medium of this example and the medium of the comparative example, the diffraction peak from the magnetic layer was hcp (1
1.0) Only the peak, and the half width of the rockin curve of the peak was 1.8 ° in the example medium, but was 4.2 ° in the comparative example medium. This indicates that better crystallinity was obtained in the example medium.

【0015】本実施例媒体と比較例媒体の保磁力、規格
化媒体ノイズ、及び再生出力の減衰率を表1に示す。
Table 1 shows the coercive force, normalized medium noise, and reproduction output attenuation rate of the medium of this embodiment and the medium of the comparative example.

【0016】[0016]

【表1】 [Table 1]

【0017】ここで、規格化媒体ノイズとは、線記録密
度300kFCIで記録したときの媒体ノイズを、孤立再生波
の信号強度とトラック幅で規格化した値である。また、
再生出力の減衰率とは、線記録密度300kFCIで記録した
信号の、記録直後の再生出力E0と、72時間後の再生出力
E72hを用いて、(E0-E72h)/E0と定義した値である。以
後、規格化媒体ノイズ、及び再生出力の減衰率として
は、全てこのように定義した値を用いる。両媒体とも、
媒体ノイズは同程度であるが、実施例媒体が保磁力で、
出力の減衰率は低い。よって、磁性層の膜厚方向に組成
変調をもたせることにより、c軸の面内配向性、及び結
晶性が向上し、保磁力が向上し、熱磁気緩和が抑制され
ることがわかった。
Here, the normalized medium noise is a value obtained by standardizing the medium noise when recording at a linear recording density of 300 kFCI by the signal strength of the isolated reproduction wave and the track width. Also,
The reproduction output attenuation factor is the reproduction output E0 of a signal recorded at a linear recording density of 300 kFCI immediately after recording, and the reproduction output 72 hours later.
Using E72h, the value is defined as (E0-E72h) / E0. Hereinafter, the values defined in this way are used as the normalized medium noise and the reproduction output attenuation rate. In both media,
Although the medium noise is almost the same, the medium of the embodiment has a coercive force,
Output decay rate is low. Therefore, it was found that by imparting the composition modulation in the thickness direction of the magnetic layer, the in-plane orientation and the crystallinity of the c-axis were improved, the coercive force was improved, and the thermomagnetic relaxation was suppressed.

【0018】本実施例媒体に潤滑剤45を塗布したのち、
上記磁気ヘッドとともに磁気記憶装置に組み込み、一平
方インチ当たり8ギガビットの条件で記録再生特性を評
価したところ、2.1という高い装置S/Nが得られた。ま
た、コンタクト・スタート・ストップ試験(CSS試験)
を行ったところ、3万回のCSSを行っても摩擦係数は
0.2以下であった。
After applying the lubricant 45 to the medium of the present embodiment,
The recording / reproducing characteristics were evaluated under the conditions of 8 gigabits per square inch together with the above magnetic head in a magnetic storage device. As a result, a high device S / N of 2.1 was obtained. Contact start / stop test (CSS test)
, The coefficient of friction was 0.2 or less even after 30,000 times of CSS.

【0019】<実施例2>化学強化ガラス基板上に、室
温でCrシード層を20nm形成した後、ランプヒーターに
より220℃まで加熱し、更にCr-20at%Ti下地層を30nm、C
oCrPtTa磁性層を14nm、カーボン保護膜を6nmと順次形成
した。磁性層の成膜はCo-2at%Ta合金、Cr、及びPtター
ゲットを用いた同時スパッタ法により行った。初期成長
層より上部の磁性層領域を、幅3nm程度、最大Cr濃度30a
t%の高Cr濃度領域で分断した。分断された各磁性層の膜
厚はともに9nm程度である。また、下地層までを上記媒
体と同一構造とし、磁性層を、3nmのCo-30at%Cr合金中
間層を挟んだ10nmのCo-19at%Cr-8at%Pt合金の二層構造
とした媒体を比較例として作製した。尚、本実施例では
熱減磁に対する効果を比較するために、熱減磁し易いよ
う、意図的に磁性膜厚を薄く形成した。
Example 2 After forming a Cr seed layer at a room temperature of 20 nm on a chemically strengthened glass substrate, the Cr seed layer was heated to 220 ° C. by a lamp heater, and a Cr-20at% Ti underlayer was formed at a thickness of 30 nm.
An oCrPtTa magnetic layer was formed with a thickness of 14 nm, and a carbon protective film was formed with a thickness of 6 nm. The magnetic layer was formed by a simultaneous sputtering method using a Co-2at% Ta alloy, Cr, and a Pt target. The magnetic layer region above the initial growth layer has a width of about 3 nm and a maximum Cr concentration of 30a.
Cutting was performed in the high Cr concentration region of t%. Each of the divided magnetic layers has a thickness of about 9 nm. Further, the medium up to the underlayer has the same structure as the above medium, and the magnetic layer has a two-layer structure of a 10 nm Co-19at% Cr-8at% Pt alloy sandwiching a 3 nm Co-30at% Cr alloy intermediate layer. It was produced as a comparative example. In this example, in order to compare the effect on thermal demagnetization, the magnetic film thickness was intentionally made thin so that thermal demagnetization was easy.

【0020】この媒体を実施例2-1とする。実施例2-1の
媒体について、2次イオン質量分析より得られた磁性層
中のCo, Cr, Ptの膜厚プロファイルを図8に模式的に示
す。また、酸素濃度に関しては、実施例2-1の媒体で
は、界面を除く磁性層内部ではほぼ一定であったのに対
し、比較例媒体では中間層界面に、磁性層内部の酸素濃
度の1.5〜2倍程度の濃度ピークが認められた。これは、
中間層の形成前後に、チャンバー内の残留ガスによって
汚染されたものと思われる。両者の磁気特性、及び規格
化媒体ノイズを表2に示す。
This medium is referred to as Example 2-1. FIG. 8 schematically shows the film thickness profile of Co, Cr, and Pt in the magnetic layer obtained by secondary ion mass spectrometry for the medium of Example 2-1. Regarding the oxygen concentration, in the medium of Example 2-1, the inside of the magnetic layer was almost constant except for the interface, whereas in the medium of the comparative example, the oxygen concentration in the magnetic layer was 1.5 to A concentration peak of about twice was observed. this is,
It is believed that before and after the formation of the intermediate layer, it was contaminated by residual gas in the chamber. Table 2 shows the magnetic characteristics and the normalized medium noise of both.

【0021】[0021]

【表2】 [Table 2]

【0022】実施例2-1の媒体はいずれも比較例媒体に
比べて、低ノイズであり、再生出力の減衰率も低い。一
方、上記実施例において高Cr濃度領域の最大Cr濃度を24
at%とした媒体を作成し、実施例2-2とした。実施例2-1
の媒体と比較した場合、実施例2-2の媒体は若干ノイズ
が高いが出力の減衰率が極めて低い。これに対し、実施
例2-1の媒体は低ノイズであるが、減衰率が高い。これ
は実施例2-2の媒体では磁性層間の磁気的相互作用が若
干残っているのに対し、実施例2-1では完全に切れてい
るためと思われる。よって、高Cr濃度領域のCr濃度を調
整することにより、磁性層間の相互作用を適度に制御
し、低ノイズ化と熱減磁抑制を両立できることがわかっ
た。
The medium of Example 2-1 has lower noise and lower reproduction output decay rate than the medium of the comparative example. On the other hand, in the above embodiment, the maximum Cr concentration in the high Cr
A medium with at% was prepared, and the resultant was designated as Example 2-2. Example 2-1
Compared with the medium of Example 2-2, the medium of Example 2-2 has slightly higher noise, but the output attenuation rate is extremely low. In contrast, the medium of Example 2-1 has low noise, but has a high attenuation rate. This is presumably because the medium of Example 2-2 had some magnetic interaction between the magnetic layers, whereas the medium of Example 2-1 was completely broken. Therefore, it was found that by adjusting the Cr concentration in the high Cr concentration region, the interaction between the magnetic layers can be controlled appropriately, and both noise reduction and suppression of thermal demagnetization can be achieved.

【0023】<実施例3>化学強化ガラス基板を200℃
まで加熱したのち、Ti下地層を30nm形成し、更に50nmの
CoCrPtTa磁性層、10nmのカーボン保護膜と連続して形成
した。CoCrPtTa磁性層はCo-17at%Cr-3at%Ta合金ターゲ
ットとPtターゲットの同時スパッタにより形成した。投
入電力を変化させることにより、Pt濃度を図88に摸式的
に示したように、下地層界面、及び磁性層表面付近5nm
程度の領域でのみ12at%程度、磁性層中央部では8at%と
した。また、比較例として磁性層中のPt濃度が、下地層
界面から磁性層表面まで8at%一定である媒体を作製し
た。X線回折測定の結果、実施例媒体、比較例媒体共に
強いCoCrPt(00.2)ピークを示し、両媒体ともに垂直配向
膜であることがわかった。膜面に対して、垂直方向に磁
場を印加して測定した磁化曲線から得られた保磁力、角
型比Mr/Ms、及び直流消磁状態での規格化媒体ノイズを
表3に示す。
<Example 3> A chemically strengthened glass substrate was heated to 200 ° C.
After heating to a thickness of 30 nm, a 30 nm thick Ti
A CoCrPtTa magnetic layer and a 10 nm carbon protective film were formed continuously. The CoCrPtTa magnetic layer was formed by simultaneous sputtering of a Co-17at% Cr-3at% Ta alloy target and a Pt target. By changing the input power, the Pt concentration was changed to 5 nm near the underlayer interface and the magnetic layer surface as schematically shown in FIG.
Only in a region of about 12 at%, and in the center of the magnetic layer, 8 at%. Further, as a comparative example, a medium was manufactured in which the Pt concentration in the magnetic layer was constant at 8 at% from the interface of the underlayer to the surface of the magnetic layer. As a result of X-ray diffraction measurement, a strong CoCrPt (00.2) peak was exhibited in both the example medium and the comparative example medium, and it was found that both mediums were vertical alignment films. Table 3 shows coercive force, squareness ratio Mr / Ms, and normalized medium noise in a DC demagnetized state obtained from a magnetization curve measured by applying a magnetic field in a direction perpendicular to the film surface.

【0024】[0024]

【表3】 [Table 3]

【0025】磁性層の初期成長層、及び表面付近のPt濃
度を増加させることにより、保磁力、及び角型比が向上
し、媒体ノイズが低減されていることがわかる。これ
は、磁性層の初期成長層、及び表面付近での逆磁区の発
生が抑制されたためと考えられる。
It can be seen that by increasing the Pt concentration in the initial growth layer of the magnetic layer and in the vicinity of the surface, the coercive force and the squareness ratio are improved, and the medium noise is reduced. This is presumably because the generation of reverse magnetic domains near the initial growth layer and the surface of the magnetic layer was suppressed.

【0026】本実施例媒体に潤滑剤を塗布したのち、実
施例1で述べた磁気記憶装置に組み込み、一平方インチ
当たり8ギガビットの条件で記録再生特性を評価したと
ころ、1.9という高い装置S/Nが得られた。更に媒体の内
周から外周なでのヘッドシーク試験5万回後のビットエ
ラー数は10ビット/面以下であり,平均故障間隔で30万
時間以上が達成出来た. <実施例4>結晶化ガラス基板上に室温でCrシード層を
50nm形成したのち、ランプヒーターにより250℃まで加
熱し、CrTi下地層を50nm、Co-18at%Cr-12at%Pt磁性層を
順次形成した。ここで、CrTi下地層の成膜は、Crターゲ
ットとTiターゲットの同時スパッタにより行い、投入電
力を連続的に変化させることにより、膜厚方向に濃度勾
配を設けた。また、下地層をCr-20at%Ti合金ターゲット
のみで形成した媒体を、比較例として作製した。
After the lubricant was applied to the medium of the present embodiment, the medium was incorporated into the magnetic storage device described in the first embodiment, and the recording / reproducing characteristics were evaluated under the condition of 8 gigabits per square inch. N was obtained. Furthermore, the number of bit errors after 50,000 head seek tests from the inner circumference to the outer circumference of the medium was less than 10 bits / surface, and the average failure interval was more than 300,000 hours. <Example 4> A Cr seed layer was formed on a crystallized glass substrate at room temperature.
After the formation of 50 nm, the substrate was heated to 250 ° C. by a lamp heater to form a CrTi underlayer of 50 nm and a Co-18at% Cr-12at% Pt magnetic layer in this order. Here, the CrTi underlayer was formed by simultaneous sputtering of a Cr target and a Ti target, and a concentration gradient was provided in the film thickness direction by continuously changing the input power. Further, a medium in which the underlayer was formed only of the Cr-20at% Ti alloy target was produced as a comparative example.

【0027】本実施例、及び比較例媒体のオージェプロ
ファイルを測定した結果、実施例媒体では、Ti濃度はシ
ード層界面から磁性層界面にかけてほぼ直線的に増加し
ており、シード層界面付近ではほぼ0at%、磁性層界面付
近では20at%であった。これに対し、比較例媒体の下地
層中ではTi濃度はシード層界面から磁性層界面まで、20
at%一定であった。X線回折測定を行ったところ、表4に
示したように実施例媒体の方が、磁性層のCoCrPt(11.0)
面からの回折ピーク強度が強く、該回折ピークのロッキ
ンカーブの半値幅は低かった。
As a result of measuring the Auger profiles of the medium of the present embodiment and the comparative example, in the medium of the example, the Ti concentration increased almost linearly from the interface of the seed layer to the interface of the magnetic layer. 0 at%, and 20 at% near the magnetic layer interface. On the other hand, in the underlayer of the comparative medium, the Ti concentration was 20% from the interface of the seed layer to the interface of the magnetic layer.
at% was constant. When X-ray diffraction measurement was performed, as shown in Table 4, the example medium had a CoCrPt (11.0)
The intensity of the diffraction peak from the surface was strong, and the half width of the rocking curve of the diffraction peak was low.

【0028】[0028]

【表4】 [Table 4]

【0029】これは、実施例媒体の磁性層の方が、結晶
性が良好で、c軸の面内配向性が強いことを示してい
る。また、同表に示したように、下地層中のTiに濃度勾
配を設けることにより、保磁力が向上し、ノイズが低減
されることがわかった。
This indicates that the magnetic layer of the example medium has better crystallinity and stronger c-axis in-plane orientation. Further, as shown in the table, it was found that providing a concentration gradient in Ti in the underlayer improved coercive force and reduced noise.

【0030】本実施例媒体に潤滑剤を塗布したのち、実
施例1で述べた磁気記憶装置に組み込み、一平方インチ
当たり8ギガビットの条件で記録再生特性を評価したと
ころ、2.0という高い装置S/Nが得られた。また、CSS試
験を行ったところ、3万回のCSSを行っても摩擦係数は
0.2以下であった。
After the lubricant was applied to the medium of the present embodiment, the medium was incorporated into the magnetic storage device described in the first embodiment, and the recording / reproducing characteristics were evaluated under the condition of 8 gigabits per square inch. N was obtained. In addition, when the CSS test was performed, the coefficient of friction was not affected even after 30,000 times of CSS.
It was 0.2 or less.

【0031】[0031]

【発明の効果】本発明の磁気記録媒体は、高保磁力化、
高S*化、及び熱磁気緩和による再生出力減衰に対する抑
制効果を持つ。本発明の磁気記録媒体と磁気抵抗効果型
ヘッドを用いることにより、一平方インチ当たり8ギガ
ビット以上の記録密度を有し、かつ平均故障回数が30万
時間以上の磁気記憶装置の実現が可能となる。
The magnetic recording medium of the present invention has a high coercive force,
It has the effect of suppressing the reproduction output attenuation due to high S * and thermal magnetic relaxation. By using the magnetic recording medium and the magnetoresistive head of the present invention, it is possible to realize a magnetic storage device having a recording density of 8 gigabits per square inch or more and an average number of failures of 300,000 hours or more. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の磁気記憶装置の平面模式図
およびそのA-A' 断面図である。
FIG. 1 is a schematic plan view of a magnetic storage device according to an embodiment of the present invention, and a cross-sectional view taken along the line AA ′.

【図2】本発明の磁気記憶装置に用いる磁気ヘッドの断
面構造を示す斜視図である。
FIG. 2 is a perspective view showing a sectional structure of a magnetic head used in the magnetic storage device of the present invention.

【図3】図2の磁気ヘッドの磁気抵抗センサ部の断面構
造を示す模式図である。
FIG. 3 is a schematic diagram illustrating a cross-sectional structure of a magnetoresistive sensor unit of the magnetic head of FIG. 2;

【図4】本発明の一実施例の磁気記録媒体の断面構造を
示す模式図である。
FIG. 4 is a schematic diagram showing a cross-sectional structure of a magnetic recording medium according to one embodiment of the present invention.

【図5】本発明で用いる成膜装置の平面模式図及び断面
模式図である。
FIG. 5 is a schematic plan view and a schematic sectional view of a film forming apparatus used in the present invention.

【図6】本発明の一実施例の磁気記録媒体の磁性結層中
の各元素の膜厚方向に対する濃度プロファイルを示す図
である。
FIG. 6 is a diagram showing a concentration profile of each element in a magnetic layer of a magnetic recording medium according to an embodiment of the present invention in a film thickness direction.

【図7】本発明の一実施例の磁気記録媒体の磁性結層中
の各元素の膜厚方向に対する濃度プロファイルを示す図
である。
FIG. 7 is a diagram showing a concentration profile of each element in a magnetic layer of a magnetic recording medium according to an embodiment of the present invention in a film thickness direction.

【図8】本発明の一実施例の磁気記録媒体の磁性結層中
の各元素の膜厚方向に対する濃度プロファイルを示す図
である。
FIG. 8 is a diagram showing a concentration profile of each element in a magnetic layer of a magnetic recording medium according to an embodiment of the present invention in a film thickness direction.

【符号の説明】[Explanation of symbols]

11...磁気ヘッド、12...磁気ヘッド駆動部、13...記録
再生信号処理系、14...気記録媒体、15...磁気記録媒体
駆動部、21...基体、22...コイル、23...上部記録磁
極、24...下部記録磁極兼上部シールド層、25...磁気抵
抗センサ、26...導体層、27...下部シールド層、31...
信号検出領域、32...シールド層と磁気抵抗センサの間
のギャップ層、33...バッファ層、34...第一の磁性層、
35...中間層、36...第二の磁性層、37...反強磁性層、3
8...テーパー部、39...永久磁石層、41..基板、42...下
地層、43...磁性層、44...保護膜、45...潤滑剤、51...
カソード、52...ターゲット、53...基板、54...基板回
転駆動部。
11 ... magnetic head, 12 ... magnetic head drive, 13 ... recording / reproduction signal processing system, 14 ... air recording medium, 15 ... magnetic recording medium drive, 21 ... substrate, 22 ... coil, 23 ... upper recording pole, 24 ... lower recording pole and upper shield layer, 25 ... magnetoresistive sensor, 26 ... conductor layer, 27 ... lower shield layer, 31 ...
Signal detection area, 32 ... Gap layer between shield layer and magnetoresistive sensor, 33 ... Buffer layer, 34 ... First magnetic layer,
35 ... intermediate layer, 36 ... second magnetic layer, 37 ... antiferromagnetic layer, 3
8 ... tapered section, 39 ... permanent magnet layer, 41 ... substrate, 42 ... underlayer, 43 ... magnetic layer, 44 ... protective film, 45 ... lubricant, 51. ..
Cathode, 52 ... target, 53 ... substrate, 54 ... substrate rotation drive.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 10/16 H01F 10/16 (72)発明者 棚橋 究 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 松沼 悟 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 桐野 文良 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 5D006 BB02 BB07 CA01 CA05 CA06 DA03 EA03 FA09 5D034 AA02 BA02 BA30 5D091 AA10 CC05 DD03 5D112 AA03 AA05 BB05 BD04 FA04 5E049 AA04 AA09 AA10 AC05 BA06 BA12 BA16 CB02 Continuation of the front page (51) Int.Cl. 7 Identification code FI Theme coat II (Reference) H01F 10/16 H01F 10/16 (72) Inventor Inoue Isao 1-280 Higashi-Koikekubo, Kokubunji-shi, Tokyo Hitachi, Ltd. In-house (72) Inventor Satoru Matsunuma 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside the Hitachi, Ltd.Central Research Laboratories (72) Inventor Fumino Kirino 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo F-term in the Central Research Laboratory, Hitachi, Ltd. Reference) 5D006 BB02 BB07 CA01 CA05 CA06 DA03 EA03 FA09 5D034 AA02 BA02 BA30 5D091 AA10 CC05 DD03 5D112 AA03 AA05 BB05 BD04 FA04 5E049 AA04 AA09 AA10 AC05 BA06 BA12 BA16 CB02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】基板上に磁性層が形成され、該磁性層がCo
を主成分しCrを含有する六方稠密構造の合金膜であり、
該磁性層を構成するCoまたはCrのうち少なくとも一方の
金属元素の濃度が、膜厚方向において変化していること
を特徴とする磁気記録媒体。
A magnetic layer is formed on a substrate, and the magnetic layer is made of Co.
Is a hexagonal dense structure alloy film containing Cr as the main component,
A magnetic recording medium, wherein the concentration of at least one metal element of Co or Cr forming the magnetic layer changes in the film thickness direction.
【請求項2】前記磁性層の基板面側に、膜厚が5nm以
上、20nm以下であり、かつ平均Cr濃度が26at%以上45at%
以下である領域が存在することを特徴とする請求項1記
載の磁気記録媒体。
2. The magnetic layer has a thickness of 5 nm or more and 20 nm or less on the substrate surface side of the magnetic layer, and an average Cr concentration of 26 at% or more and 45 at% or more.
2. The magnetic recording medium according to claim 1, wherein the following areas exist.
【請求項3】前記磁性層はPtを含有し、該Ptの濃度が基
板側から膜厚方向に連続的に増加していることを特徴と
する請求項1または2記載の磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the magnetic layer contains Pt, and the concentration of Pt increases continuously from the substrate side in the film thickness direction.
【請求項4】前記磁性層に含有されるCrの濃度が基板側
から膜厚方向に1つ以上のピークをもつように変化する
ことを特徴とする請求項1記載の磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein the concentration of Cr contained in the magnetic layer changes so as to have one or more peaks in the thickness direction from the substrate side.
【請求項5】前記磁性層は酸素を含有し、該磁性層を構
成するCoまたはCrの濃度が変化する領域における酸素の
濃度の最大値が、該磁性層の平均酸素濃度の1.5倍以下
であることを特徴とする請求項1乃至4に記載の磁気記
録媒体。
5. The magnetic layer contains oxygen, and the maximum value of the oxygen concentration in a region where the concentration of Co or Cr constituting the magnetic layer changes is 1.5 times or less the average oxygen concentration of the magnetic layer. 5. The magnetic recording medium according to claim 1, wherein:
【請求項6】前記基板と前記磁性層の間に単層または複
数層の下地層が形成されており、該下地層はTi, Mo, V,
Wから選ばれた少なくとも1種類の添加元素を含有するC
rを主成分とした体心立方構造の合金から構成され、該
添加元素またはCrの濃度が基板側から膜厚方向に変化し
ていることを特徴とする磁気録媒体。
6. A single-layer or multiple-layer underlayer is formed between the substrate and the magnetic layer, and the underlayer is made of Ti, Mo, V,
C containing at least one additional element selected from W
A magnetic recording medium comprising an alloy having a body-centered cubic structure containing r as a main component, wherein the concentration of the added element or Cr changes from the substrate side in the film thickness direction.
【請求項7】請求項1乃至7記載の磁気記録媒体と、こ
れを記録方向に駆動する駆動部と、記録部と再生部から
成り該再生部がスピンバルブ型磁気抵抗センサで構成さ
れる磁気ヘッドと、前記磁気ヘッドを前記磁気記録媒体
に対して相対運動させる手段と、前記磁気ヘッドへの信
号入力と該磁気ヘッドからの出力信号再生を行うための
記録再生信号処理手段を有することを特徴とする磁気記
憶装置。
7. A magnetic recording medium according to claim 1, further comprising a drive unit for driving the magnetic recording medium in a recording direction, a recording unit and a reproducing unit, wherein the reproducing unit comprises a spin-valve magnetoresistive sensor. A head, means for moving the magnetic head relative to the magnetic recording medium, and recording / reproducing signal processing means for performing signal input to the magnetic head and reproduction of an output signal from the magnetic head. Magnetic storage device.
【請求項8】前記スピンバルブ型磁気抵抗センサが、互
いに0.25μm以下の距離だけ隔てられた軟磁性体からな
る2枚のシールド層の間に形成されており、かつ、前記
磁性膜の厚さtと、記録時における該磁気記録媒体に対
する前記磁気ヘッドの相対的な走行方向に磁界を印加し
て測定した残留磁束密度Brの積Br×tが40ガウス・ミク
ロン以上、100ガウス・ミクロン以下であり、前記磁気
記録媒体の保磁力が2600エルステッド以上であることを
特徴とする請求項8記載の磁気記憶装置。
8. The spin-valve magnetoresistive sensor is formed between two shield layers made of a soft magnetic material which are separated from each other by a distance of 0.25 μm or less, and a thickness of the magnetic film. t, the product Br × t of the residual magnetic flux density Br measured by applying a magnetic field in the relative running direction of the magnetic head with respect to the magnetic recording medium during recording is 40 Gauss microns or more, and 100 Gauss microns or less. 9. The magnetic storage device according to claim 8, wherein the coercive force of the magnetic recording medium is 2600 Oe or more.
JP36406398A 1998-12-22 1998-12-22 Magnetic recording medium and magnetic storage device Pending JP2000187825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36406398A JP2000187825A (en) 1998-12-22 1998-12-22 Magnetic recording medium and magnetic storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36406398A JP2000187825A (en) 1998-12-22 1998-12-22 Magnetic recording medium and magnetic storage device

Publications (1)

Publication Number Publication Date
JP2000187825A true JP2000187825A (en) 2000-07-04

Family

ID=18480886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36406398A Pending JP2000187825A (en) 1998-12-22 1998-12-22 Magnetic recording medium and magnetic storage device

Country Status (1)

Country Link
JP (1) JP2000187825A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125764A1 (en) 2006-04-25 2007-11-08 Konica Minolta Opto, Inc. Retardation film, polarizing plate and liquid crystal display
CN110373589A (en) * 2019-07-08 2019-10-25 中国科学院物理研究所 W-Cr alloy and pure spin current device comprising W-Cr alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125764A1 (en) 2006-04-25 2007-11-08 Konica Minolta Opto, Inc. Retardation film, polarizing plate and liquid crystal display
CN110373589A (en) * 2019-07-08 2019-10-25 中国科学院物理研究所 W-Cr alloy and pure spin current device comprising W-Cr alloy

Similar Documents

Publication Publication Date Title
US7056604B2 (en) Magnetic recording media and magnetic recording system using the same
JP4222965B2 (en) Perpendicular magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JP3429972B2 (en) Magnetic recording medium and magnetic storage device using the same
JP2003162806A (en) Perpendicular magnetic recording medium and magnetic storage device
JPH1079113A (en) In-plane magnetic recording medium and magnetic storage device utilizing the same
JP2003085727A (en) Magnetic recording medium and magnetic memory device
JP2004039033A (en) Magnetic recording medium and magnetic recording/reproducing device
JPH10233016A (en) Intra-surface magnetic recording medium and magnetic memory device formed by using the same
US6924048B2 (en) Magnetic recording medium and a magnetic storage apparatus
JP3764833B2 (en) Magnetic recording medium and magnetic storage device
JP2001184626A (en) Magnetic recording medium and magnetic memory device
US6706426B1 (en) Longitudinal magnetic recording media
JP3217012B2 (en) Magnetic recording media
JP2000187825A (en) Magnetic recording medium and magnetic storage device
EP0809238A2 (en) Magnetic recording media and magnetic recording system using the same
JP2000020936A (en) Inp-lane magnetic recording medium and magnetic storage device using the same
JP2001351226A (en) Magnetic recording medium, method for producing the same and magnetic recorder
JPH11306532A (en) Magnetic recording medium and magnetic storage device using the same
JP2002324313A (en) Manufacturing method of magnetic recording medium
JP3429777B2 (en) Magnetic recording medium and magnetic storage device using the same
JP2001250223A (en) Magnetic recording medium and magnetic recorder
JP4283934B2 (en) Magnetic recording medium and magnetic storage device
JP2000067423A (en) Intra-surface magnetic recording medium and magnetic storage using the same
US5766756A (en) Magnetic recording medium for longitudinal recording and method of manufacturing the same
JP3275167B2 (en) Magnetic recording medium and magnetic storage device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041224