JP3157806B2 - Magnetic recording media - Google Patents

Magnetic recording media

Info

Publication number
JP3157806B2
JP3157806B2 JP04588499A JP4588499A JP3157806B2 JP 3157806 B2 JP3157806 B2 JP 3157806B2 JP 04588499 A JP04588499 A JP 04588499A JP 4588499 A JP4588499 A JP 4588499A JP 3157806 B2 JP3157806 B2 JP 3157806B2
Authority
JP
Japan
Prior art keywords
film
magnetic
recording
alloy
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04588499A
Other languages
Japanese (ja)
Other versions
JP2000251237A (en
Inventor
正昭 二本
信幸 稲葉
義幸 平山
輝明 竹内
幸雄 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP04588499A priority Critical patent/JP3157806B2/en
Priority to US09/413,813 priority patent/US6383667B1/en
Publication of JP2000251237A publication Critical patent/JP2000251237A/en
Application granted granted Critical
Publication of JP3157806B2 publication Critical patent/JP3157806B2/en
Priority to US10/001,995 priority patent/US6541125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高密度磁気記録に
適する磁性膜を有する磁気記録媒体に関する。
The present invention relates to a magnetic recording medium having a magnetic film suitable for high-density magnetic recording.

【0002】[0002]

【従来の技術】従来の実用化されている磁気ディスク装
置は、面内磁気記録方式を採用している。面内磁気記録
方式は、ディスク基板面と平行な方向に磁化し易い磁気
記録媒体に基板と平行な面内磁区を形成する記録方式
で、その記録密度が急速に高まっている。この面内磁気
記録媒体の記録密度の向上は、主に保磁力を向上すると
と磁性膜厚を減少することとによってなされている。
2. Description of the Related Art A conventional magnetic disk drive which has been put to practical use employs an in-plane magnetic recording system. The in-plane magnetic recording method is a recording method in which an in-plane magnetic domain parallel to a substrate is formed on a magnetic recording medium which is easily magnetized in a direction parallel to a disk substrate surface, and its recording density is rapidly increasing. The improvement of the recording density of the longitudinal magnetic recording medium is mainly achieved by improving the coercive force and decreasing the magnetic film thickness.

【0003】Co合金からなる磁性膜の保磁力を向上す
るための手段として、磁性膜と基板の間にCrやCr合金
などの体心立法構造(以下「bcc構造」という)を持
つ材料又はNiAlなどのB2構造を持つ材料による下地
膜を設ける方法が採用されている〔例えば米国文献「ジ
ャーナル・オブ・マグネティズム・アンド・マグネティ
ック・マテリアルズ(Journal of Magnetism and Magne
tic Materials)」第155巻(1996年発行)第1
46頁〜第150頁(David E.Laughlin他 “Design an
d crystallography of multilayered media”)参
照〕。
As a means for improving the coercive force of a magnetic film made of a Co alloy, a material having a body-centered cubic structure (hereinafter referred to as "bcc structure") such as Cr or a Cr alloy between the magnetic film and the substrate or NiAl is used. For example, a method of providing a base film made of a material having a B2 structure such as, for example, U.S. document "Journal of Magnetism and Magne
tic Materials) "Vol. 155 (issued in 1996) No. 1
Pages 46 to 150 (David E. Laughlin et al., “Design an
d crystallography of multilayered media ”).

【0004】bcc構造の下地膜を採用する場合は、エ
ピタキシャル成長するCo合金磁性膜と下地膜との間で
格子定数の条件を合わせることが一層の保磁力向上に有
効となっている〔例えば米国文献「ジャーナル・オブ・
アプライド・フィジックス(Journal of Applied Physi
cs)第79巻第8号(1996年発行)第5354頁〜
第5356頁(N. Inaba他 “Magnetic and crystallog
raphic properties ofCoCrPt thin films formed on Cr
-Ti single crystalline underlayers”)参照〕。
When a bcc structure underlayer is employed, it is effective to further improve the coercive force by adjusting the condition of the lattice constant between the epitaxially grown Co alloy magnetic film and the underlayer. "Journal of
Applied Physics (Journal of Applied Physi)
cs) Vol. 79, No. 8, (issued in 1996) p.
5356 (N. Inaba et al. “Magnetic and crystallog
raphic properties ofCoCrPt thin films formed on Cr
-Ti single crystalline underlayers ”)).

【0005】保磁力向上には、更に、Co合金磁性膜の
結晶性を改善することが効果的であり、そのために、下
地膜と磁性膜の間にCo合金磁性膜と同じ結晶構造を持
つ六方稠密構造(以下「hcp構造」という)の非磁性
材料による新たな下地膜を追加することが有効であり
(例えば特開平4−321919号公報参照))、代表
的な磁性膜の一つであるCo-Cr-Pt磁性膜のための追
加下地膜としてCo−35at(atomic)%Cr膜等が用いられ
ている〔例えば米国文献「IEEEトランザクション・
オン・マグネティックス(IEEE Transactions on Magne
tics)第32巻第5号(1996年発行)第3789頁
〜第3794頁(M.Futamoto他 “High Density Magnet
ic Recording on Highly Oriented CoCr-Alloy Perpend
icular RigidDisk Media”)参照〕。
To improve the coercive force, it is effective to further improve the crystallinity of the Co alloy magnetic film. Therefore, a hexagonal film having the same crystal structure as the Co alloy magnetic film between the underlayer and the magnetic film is effective. It is effective to add a new base film made of a non-magnetic material having a dense structure (hereinafter referred to as "hcp structure") (see, for example, JP-A-4-321919), which is one of typical magnetic films. A Co-35at (atomic)% Cr film or the like is used as an additional underlayer for the Co-Cr-Pt magnetic film [for example, see US Transactions "IEEE Transaction.
On Magnetics (IEEE Transactions on Magne
tics) Vol. 32 No. 5 (issued in 1996) pp. 3789 to 3794 (M. Futamoto et al. “High Density Magnet
ic Recording on Highly Oriented CoCr-Alloy Perpend
icular RigidDisk Media ”).

【0006】[0006]

【発明が解決しようとする課題】面内磁気記録媒体は、
現在10Gb/in2に到達しているが、これを越える
記録密度を得るためには、更なる高保磁力化と共に、耐
熱揺らぎ特性の向上が必要となる。記録密度向上と共に
前記したように磁性膜厚を減少させる必要があるが、膜
厚を小さくし過ぎると熱の影響により、記録磁化が時間
の経過と共に減少し、場合によっては消失すると云う問
題に遭遇する。このような磁化の熱揺らぎによる影響が
顕著になる磁性膜厚は、磁気ディスク装置で盛んに用い
られるCo合金系で通常20nm以下である。
The longitudinal magnetic recording medium is
At present, it has reached 10 Gb / in 2 , but in order to obtain a recording density exceeding this, it is necessary to further increase the coercive force and to improve the heat fluctuation characteristics. As described above, it is necessary to reduce the magnetic film thickness together with the improvement of the recording density. However, if the film thickness is too small, the problem that the recording magnetization decreases with the passage of time due to the influence of heat and disappears in some cases is encountered. I do. The magnetic film thickness at which the influence of the thermal fluctuation of magnetization becomes remarkable is usually 20 nm or less in a Co alloy system which is frequently used in magnetic disk devices.

【0007】記録密度向上のこれまでの傾向を延長する
と、10Gb/in2以上の記録密度を実現するために
は磁性膜の厚さを20nm以下にしなければならない見
通しであり、従って熱の影響が避けられない。
If the trend of the improvement of the recording density is extended, it is expected that the thickness of the magnetic film must be reduced to 20 nm or less in order to realize the recording density of 10 Gb / in 2 or more. Inevitable.

【0008】本発明の目的は、このような従来技術の延
長上で発生する問題点を解消し、保磁力を高めかつ耐熱
揺らぎ特性を向上させることによって10Gb/in2
以上の高密度記録で実用に供し得る新規な磁気記録媒体
を提供することにある。
An object of the present invention is to solve the above-mentioned problems caused by the extension of the prior art, to increase the coercive force and to improve the thermal fluctuation characteristics, thereby achieving 10 Gb / in 2.
It is an object of the present invention to provide a novel magnetic recording medium that can be put to practical use with the above high density recording.

【0009】[0009]

【課題を解決するための手段】従来の面内磁気記録媒体
の耐熱揺らぎ特性を詳細に調べた結果、磁性膜の一部に
磁気異方性エネルギーの低い結晶性の劣る領域が形成さ
れ、この領域から結晶性の劣化が拡大し、記録磁化の減
少が進行することが判明した。結晶性の劣化した部分の
磁気異方性エネルギーは低く、更に、磁気異方性エネル
ギーは媒体の保磁力を形成する要素であるので、結晶性
の劣る領域が存在すると媒体の保磁力が低下することに
なる。即ち、記録磁化が減少する。従って、結晶性の劣
る領域の形成を阻止することが重要である。
As a result of a detailed examination of the heat fluctuation characteristics of the conventional in-plane magnetic recording medium, a region having low magnetic anisotropy energy and poor crystallinity was formed in a part of the magnetic film. It has been found that the crystallinity deteriorates from the region and the recording magnetization decreases. The magnetic anisotropy energy of the portion where the crystallinity has deteriorated is low, and the magnetic anisotropy energy is a factor that forms the coercive force of the medium. Will be. That is, the recording magnetization decreases. Therefore, it is important to prevent the formation of a region having poor crystallinity.

【0010】この観点から、面内磁気記録媒体用に最も
一般的に使用され、また検討されているhcp構造を持
つCo合金材料を調べると、Co合金系の面内磁気記録媒
体において、結晶性が低い領域は膜の成長初期領域に存
在し、この部分の結晶性が磁性膜と接する下地膜に強い
影響を受けることが判った。従って、磁性膜の結晶性が
良好となるように下地膜の構造と組成を設定することが
重要であることが明らかになった。
From this point of view, a Co alloy material having an hcp structure which is most commonly used and studied for a longitudinal magnetic recording medium is examined. It was found that the region having a low value exists in the initial growth region of the film, and the crystallinity of this region was strongly affected by the underlying film in contact with the magnetic film. Therefore, it has become clear that it is important to set the structure and composition of the underlayer so that the crystallinity of the magnetic film is good.

【0011】更に、磁性膜の形成過程に注目して調査し
た結果、磁性膜の形成過程で磁性膜とは別の組成を持つ
少なくとも1層の極薄層を導入することにより、磁性膜
を構成する結晶粒の磁気異方性エネルギーが増大するこ
とを見い出した。
Further, as a result of an investigation focusing on the process of forming the magnetic film, it was found that at least one ultra-thin layer having a composition different from that of the magnetic film was introduced during the process of forming the magnetic film, thereby forming the magnetic film. It has been found that the magnetic anisotropy energy of the growing crystal grains increases.

【0012】本発明は、上記の知見と調査結果に基づい
てなされたものであり、本発明の磁気記録媒体は、下地
膜が基板と接する下部下地膜と磁性膜に接する上部下地
膜の2層構造をなし、上部下地膜がhcp構造を持つC
o-Crx-My合金膜であって、Cr+非磁性元素Mの添加
濃度が25at%≦x+y≦50at%で、かつ、元素Mの添
加量が0.5at%≦yであり、更に、元素MがB,Si,
Ge,C,Al,P,Ti,V,Nb,Zr,Hf,Mn,R
h,Os,Ir,Re,Pd,Pt,Mo,Ta,W,Ag,Au
のいずれかであることを最大の特徴としている。
The present invention has been made based on the above findings and investigation results. The magnetic recording medium of the present invention has two layers: a lower base film in which the base film contacts the substrate and an upper base film in contact with the magnetic film. C having an upper base film having an hcp structure
A o-Cr x -M y alloy film, Cr + in addition concentration is 25at% ≦ x + y ≦ 50at % of the non-magnetic element M, and the added amount of the element M is 0.5 at% ≦ y, further, Element M is B, Si,
Ge, C, Al, P, Ti, V, Nb, Zr, Hf, Mn, R
h, Os, Ir, Re, Pd, Pt, Mo, Ta, W, Ag, Au
The biggest feature is that either.

【0013】更に、本発明の磁気記録媒体は、hcp構
造を持つ少なくとも1層のCo-Crx-My合金による極薄
膜であって、Cr+Mの添加濃度が25at%≦x+y≦5
0at%で、かつ、Mの添加量が0.5at%≦yであり、非
磁性元素MがB,Si,Ge,C,Al,P,Ti,V,N
b,Zr,Hf,Mn,Rh,Os,Ir,Re,Pd,Pt,M
o,Ta,W,Ag,Auのいずれかである極薄膜によって
Co合金磁性膜が分離されていることを別の特徴として
いる。
Furthermore, the magnetic recording medium of the present invention is a very thin film according to Co-Cr x -M y alloy of at least one layer having a hcp structure, the addition concentration of Cr + M is 25at% ≦ x + y ≦ 5
0 at%, the amount of M added is 0.5 at% ≦ y, and the nonmagnetic element M is B, Si, Ge, C, Al, P, Ti, V, N
b, Zr, Hf, Mn, Rh, Os, Ir, Re, Pd, Pt, M
Another feature is that the Co alloy magnetic film is separated by an ultrathin film of any of o, Ta, W, Ag, and Au.

【0014】このような特徴を有する磁気記録媒体の断
面構造の一例を図1に示す。非磁性基板11上に下部下
地膜12aが形成される。下部下地膜12aは、磁性膜の
結晶をエピタキシャル成長させ、結晶の配向と粒径を制
御するために用いられる。そのような下部下地膜12a
として、NiAl,FeAl,FeV,CuZn,CoAl若し
くはCuPd規則相からなるB2構造を持つ材料、又はC
r,Cr-Ti,Cr-Mo,Cr-W,Cr-Nb,Cr-V等から
なるbcc構造を持つ材料、或いは、これらB2構造を
持つ材料とbcc構造を持つ材料を積層したものを用い
るのが適当である。
FIG. 1 shows an example of a sectional structure of a magnetic recording medium having such characteristics. A lower underlayer 12a is formed on the non-magnetic substrate 11. The lower underlayer 12a is used for epitaxially growing the crystal of the magnetic film and controlling the crystal orientation and grain size. Such a lower underlayer 12a
A material having a B2 structure consisting of NiAl, FeAl, FeV, CuZn, CoAl or CuPd ordered phase, or C
Use a material having a bcc structure composed of r, Cr-Ti, Cr-Mo, Cr-W, Cr-Nb, Cr-V, or a material obtained by laminating a material having a B2 structure and a material having a bcc structure. Is appropriate.

【0015】これらの材料からなる膜を基板11上に形
成すると、その膜は、(211)面又は(100)面が
基板と平行である配向膜が成長し易い性質を持つ。更
に、このようなB2構造又はbcc構造を持つ材料から
なる膜を構成する結晶粒の分布は、スパッタ法等で膜形
成を行なう場合に基板温度や製膜速度を調整することに
よって制御することができる。
When a film made of these materials is formed on the substrate 11, the film has such a property that an alignment film whose (211) plane or (100) plane is parallel to the substrate is easily grown. Furthermore, the distribution of crystal grains constituting a film made of a material having such a B2 structure or a bcc structure can be controlled by adjusting the substrate temperature and the film forming speed when forming a film by a sputtering method or the like. it can.

【0016】(211)配向膜又は(100)配向膜の
上にhcp構造を持つCo合金膜を形成すると、エピタ
キシャル成長により、
When a Co alloy film having the hcp structure is formed on the (211) orientation film or the (100) orientation film, the epitaxial growth allows

【0017】[0017]

【数1】 (Equation 1)

【0018】が基板11と平行に成長する。この場合
は、Co合金の磁化容易軸が基板と平行になり、保磁力
が向上するという面内磁気記録媒体として望ましい特性
が得られる。
Grows parallel to the substrate 11. In this case, the axis of easy magnetization of the Co alloy becomes parallel to the substrate, and the coercive force is improved, which is a desirable characteristic for an in-plane magnetic recording medium.

【0019】次に、下部下地層12a上に、hcp構造
を持つCo-Crx-Myの合金材料からなる非磁性又は弱磁
性の上部下地膜12bが形成され、その上にCo合金磁性
膜14及び保護膜15が形成される。
Next, on the lower base layer 12a, Co-Cr x -M y of the non-magnetic or weakly magnetic made of alloy material upper base film 12b having a hcp structure is formed, Co alloy magnetic layer thereon 14 and a protective film 15 are formed.

【0020】ここで、Cr+Mの添加濃度は、25at%≦
x+y≦50at%に設定される。CoにCr+Mを25at%
以上添加すると、その材料は弱磁性化又は非磁性化す
る。また、Cr+Mを50at%以上添加すると、合金のh
cp構造の不安定化が起こる。従って、Co合金系にお
いて、非磁性又は弱磁性のhcp構造を安定に保てる範
囲は、25at%≦x+y≦50at%となる。また、非磁性
元素Mの添加量は、0.5at%≦yで添加の効果を得る
ことができる。
Here, the additive concentration of Cr + M is 25 at% ≦
x + y ≦ 50 at% is set. 25 at% of Cr + M in Co
When added as described above, the material becomes weak or non-magnetic. When Cr + M is added at 50 at% or more, the h
Instability of the cp structure occurs. Therefore, in the Co alloy system, the range in which the nonmagnetic or weak magnetic hcp structure can be stably maintained is 25 at% ≦ x + y ≦ 50 at%. The effect of addition can be obtained when the amount of the nonmagnetic element M is 0.5 at% ≦ y.

【0021】さて、Coの金属原子半径は1.26オン
グストロームであり、また、Crの金属原子半径は1.
28オングストロームと両者が近いため、Co-Cr合金
はCr濃度にあまり依存せずほぼ一定の平均原子半径と
なる。一方、記録磁性膜14に用いるCo-Cr-Ta,Co
-Cr-Pt,Co-Cr-Pt-Ta,Co-Cr-Pt-Ta-Nb,C
o-Cr-Pt-Ta-Bなどの平均の原子半径は、本発明者の
実験によれば、1.265〜1.290オングストロー
ムの範囲にあることが判った。
The metal atom radius of Co is 1.26 angstroms, and the metal atom radius of Cr is 1.26 angstroms.
Since they are close to 28 angstroms, the Co—Cr alloy has an almost constant average atomic radius independent of the Cr concentration. On the other hand, Co—Cr—Ta, Co used for the recording magnetic film 14 are used.
-Cr-Pt, Co-Cr-Pt-Ta, Co-Cr-Pt-Ta-Nb, C
The average atomic radius of o-Cr-Pt-Ta-B and the like was found to be in the range of 1.265 to 1.290 angstroms according to experiments performed by the present inventors.

【0022】これらの中の特にCoにPtを合金元素とし
て添加した媒体においては、Ptの金属原子半径が1.
38オングストロームと大きいため、Ptの添加量にほ
ぼ比例して平均の金属原子半径が増大する。高密度磁気
記録媒体としてCo-Cr系材料にに添加されるPtの量
は、5at%〜30at%の範囲となっている。下地膜と磁性
膜の良好なエピタキシャル成長を実現するためには、下
地膜の平均の金属原子半径を磁性膜の値に近づけること
が望ましい。
Among these, particularly in a medium in which Pt is added to Co as an alloy element, the metal atomic radius of Pt is 1.
Since it is as large as 38 angstroms, the average metal atom radius increases almost in proportion to the added amount of Pt. The amount of Pt added to a Co—Cr-based material as a high-density magnetic recording medium is in the range of 5 at% to 30 at%. In order to realize good epitaxial growth of the underlayer and the magnetic film, it is desirable that the average metal atom radius of the underlayer be close to the value of the magnetic film.

【0023】本発明の第一の対策は、このためにCo-C
r合金に金属原子半径がCo及びCrに比べて大きい元素
を適当量加えることによって下地膜材料の平均金属原子
半径を調整することである。Coと同じhcp結晶構造
を持つRh,Os,Re,Hf又は面心立方構造(fcc構
造)を持つIr,Pd,Ptは、Coに比べて大きい金属原
子半径を持ち、更に固溶範囲も広く、添加元素として適
当である。hcp構造を持つTi,面心立方構造を持つ
Au,Agは、金属原子半径がCoに比べて14%以上大
きいため固溶範囲は大きくないが、添加量が20%以下
の少ない範囲では固溶可能である。このほか、添加元素
として適当な金属元素は、bcc構造を持つV,Mo,
Ta,W,Nb又は立法晶構造を持つMnなどである。
The first measure of the present invention is to use Co-C
The purpose is to adjust the average metal atom radius of the base film material by adding an appropriate amount of an element having a metal atom radius larger than Co and Cr to the r alloy. Rh, Os, Re, Hf having the same hcp crystal structure as Co or Ir, Pd, Pt having a face-centered cubic structure (fcc structure) have a larger metal atom radius than Co and have a wider solid solution range. , Are suitable as additional elements. Ti having the hcp structure and Au and Ag having the face-centered cubic structure have a solid solution range not large because the metal atom radius is 14% or more larger than Co, but form a solid solution in a small range where the addition amount is 20% or less. It is possible. In addition, metal elements suitable as additional elements include V, Mo, and b having a bcc structure.
Examples thereof include Ta, W, Nb, and Mn having a cubic crystal structure.

【0024】これらの添加元素に関して本発明者が行な
った実験によれば、Co-Cr-Pt系磁性材料を対象にPt
量を5at%〜30at%の範囲で変化させた場合、Co-Cr
25-My下地材料の平均の金属原子半径のCo-Cr-Pt系
磁性材料のそれとの差が3%以内となるように調整する
ことが良好なエピタキシャル成長の関係を得るために必
要であり、そのためのCo-Cr25-My下地材料の非磁性
材料の添加量は、以下の範囲が特に好ましいことが判明
した。
According to an experiment conducted by the present inventors on these additional elements, Pt was measured for a Co—Cr—Pt magnetic material.
When the amount is changed in the range of 5 at% to 30 at%, Co-Cr
Be necessary to be adjusted so that the difference between that of 25 -M y underlayer average metal atom radius of Co-Cr-Pt-based magnetic material of the material is within 3% to obtain a relationship between good epitaxial growth, amount of non-magnetic material Co-Cr 25 -M y underlayer material therefor, the following ranges have been found to be particularly preferred.

【0025】即ち、Mn:3at%≦y≦25at%,Rh:3
at%≦y≦25at%,Os:3at%≦y≦25at%,Ir:3
at%≦y≦25at%,V:3at%≦y≦25at%,Re:3at
%≦y≦25at%,Pd:3at%≦y≦25at%,Pt:3at
%≦y≦25at%,Mo:3at%≦y≦22at%,Ta:3at
%≦y≦21at%,W:3at%≦y≦15at%,Au:3at%
≦y≦16at%,Ti:3at%≦y≦15at%,Nb:3at%
≦y≦12at%,Zr:2at%≦y≦20at%,Hf:3at%
≦y≦16at%,Ag:3at%≦y≦16at%,Al:3at%
≦y≦14at%である。このような添加量の範囲でCo-
Cr25-My下地材料のCr添加量を35at%まで変化させ
ても、平均の金属原子半径は殆ど変化しなかった。
That is, Mn: 3 at% ≦ y ≦ 25 at%, Rh: 3
at% ≦ y ≦ 25 at%, Os: 3 at% ≦ y ≦ 25 at%, Ir: 3
at% ≦ y ≦ 25 at%, V: 3 at% ≦ y ≦ 25 at%, Re: 3 at
% ≦ y ≦ 25 at%, Pd: 3 at% ≦ y ≦ 25 at%, Pt: 3 at
% ≦ y ≦ 25 at%, Mo: 3 at% ≦ y ≦ 22 at%, Ta: 3 at
% ≦ y ≦ 21 at%, W: 3 at% ≦ y ≦ 15 at%, Au: 3 at%
≤ y ≤ 16 at%, Ti: 3 at% ≤ y ≤ 15 at%, Nb: 3 at%
≦ y ≦ 12at%, Zr: 2at% ≦ y ≦ 20at%, Hf: 3at%
≤ y ≤ 16 at%, Ag: 3 at% ≤ y ≤ 16 at%, Al: 3 at%
.Ltoreq.y.ltoreq.14 at%. In such a range of the addition amount, Co-
Even when the amount of Cr added in Cr 25 -M y underlayer material is varied from 35 at%, the average of the metal atomic radius hardly changed.

【0026】本発明の関連する他の対策は、Co-Crx-
y合金膜を構成する非磁性元素Mとして金属原子半径
がCo及びCrのそれよりも小さいB,C,Si,Ge,P
の少なくとも1つの元素を採用することである。この場
合、Co合金磁性膜14とその直下に形成するCo-Crx-
y下地膜12bの平均の原子半径の差が拡大し、両者の
膜界面には結晶歪が形成される。
Another related measure of the present invention is Co-Cr x-
M y alloy film metal atomic radii as the non-magnetic element M constituting the is less than that of Co and Cr B, C, Si, Ge , P
Is to employ at least one element of In this case, the Co alloy magnetic film 14 and the Co—Cr x
M y underlayer 12b expanding difference between the average atomic radius of, for both film interface crystal strains is formed.

【0027】しかし、この場合は、下地合金を構成する
Coに比べて原子半径の小さいB,C,Si,Ge,P又
はCoに比べて結晶格子間を移動しやすいCrがCo合金
磁性膜の結晶粒界へ拡散移動することにより、両者の膜
に入る歪が緩和する効果が生ずる。これによって高い磁
気異方性エネルギー状態を実現することができる。
However, in this case, Cr, which has a smaller atomic radius than Co constituting the base alloy and is easily moved between crystal lattices compared to B, C, Si, Ge, P, or Co, is the Co alloy magnetic film. By diffusing and moving to the crystal grain boundaries, an effect of alleviating the strain entering both films is produced. Thereby, a high magnetic anisotropic energy state can be realized.

【0028】この場合のCo-Crx-My合金膜のMの最適
な添加量の範囲は、Cr量を25at%とした場合に、B:
2at%≦y≦14at%,C:1at%≦y≦12at%,Si:
0.5at%≦y≦15at%,Ge:0.5at%≦y≦16at
%,P:0.5at%≦y≦10at%である。Crの添加量を
15〜30at%の範囲で変化させても、Mの適当な添加
量の範囲は殆ど変化しなかった。
[0028] Co-Cr x -M y optimum amount ranging M alloy film in this case, when the Cr amount is 25 at%, B:
2 at% ≦ y ≦ 14 at%, C: 1 at% ≦ y ≦ 12 at%, Si:
0.5at% ≦ y ≦ 15at%, Ge: 0.5at% ≦ y ≦ 16at
%, P: 0.5 at% ≦ y ≦ 10 at%. Even if the amount of added Cr was changed in the range of 15 to 30 at%, the range of the appropriate amount of added M was hardly changed.

【0029】下地膜として許容できる弱磁性の範囲は、
飽和磁化Msが30emu/cc以下である。Co-Cr25
-My下地材料を高い基板温度で製膜すると、Crの結晶
粒界への偏析が生じて磁化が生ずることがあるが、添加
元素Mを上記の量加えたCo-Cr25-My下地材料では、
飽和磁化Msを30emu/cc以下に保てる特長があ
る。
The range of the weak magnetism that can be accepted as the underlayer is as follows.
The saturation magnetization Ms is 30 emu / cc or less. Co-Cr 25
When film the -M y underlayer material at high substrate temperature, segregation of the grain boundaries of Cr is sometimes magnetization occurs occurs, Co-Cr 25 -M y underlayer of the additional element M plus the amount of the In the material,
There is a feature that the saturation magnetization Ms can be kept at 30 emu / cc or less.

【0030】以上、Co合金からなる記録磁性膜14に
接する上部下地膜12bとして、上記のCo-Cr25-My
金膜を設けることにより、記録磁性膜14を構成する結
晶粒の結晶性を改善することができ、かつ保磁力を増大
させることができる。上部下地膜12bの平均の金属原
子半径の磁性膜14のそれとの差が3%以内となるよう
に、Co-Cr25-My膜におけるM(Al,Ti,V,Nb,
Zr,Hf,Mn,Rh,Os,Ir,Re,Pd,Pt,Mo,
Ta,W,Au,Ag)の添加量を調整をすることによ
り、これらの効果を増幅させることができる。
The above, as the upper base film 12b in contact with the recording magnetic film 14 of Co alloy, by providing a Co-Cr 25 -M y alloy film described above, the crystal grains of the crystalline constituting the recording magnetic film 14 It can be improved and the coercive force can be increased. So that the difference between that of the upper base film 12b mean metal atom radius of the magnetic film 14 is within 3%, M in Co-Cr 25 -M y film (Al, Ti, V, Nb ,
Zr, Hf, Mn, Rh, Os, Ir, Re, Pd, Pt, Mo,
These effects can be amplified by adjusting the amount of Ta, W, Au, Ag) added.

【0031】下地膜としてCo-Cr25-Myを設ける場合
に、特に有効な記録用の磁性膜材料は、Ptを含むCo合
金であり、なかでも添加量範囲が5at%〜30at%のPt
を含むCo合金である。この添加量範囲のPt量を含むC
o合金磁性膜は、高い磁気異方性エネルギーを持つと同
時に耐熱揺らぎ性が良好であり、従って高保磁力を有
し、高密度磁気記録媒体として好適である。なお、Co-
Crx-My合金膜においてCoよりも小さい原子半径を持
つM(B,C,Si,Ge,P)の場合は、Mの平均の原
子半径のCoのそれとの差が4%以内であることが望ま
しい。
[0031] When providing the Co-Cr 25 -M y as a base film, is particularly effective magnetic film material for recording, a Co alloy including Pt, among others added weight range of 5at% to 30 at% Pt
It is a Co alloy containing. C containing Pt in this range
The o-alloy magnetic film has high magnetic anisotropy energy and good heat fluctuation resistance, and therefore has a high coercive force and is suitable as a high-density magnetic recording medium. In addition, Co-
Cr x -M y M where the alloy film having a smaller atomic radius than Co (B, C, Si, Ge, P) in the case of the difference between its average atomic radius of Co M is within 4% It is desirable.

【0032】なお、Co-Cr25-My膜の厚さは、0.5
nm以上100nm以下であり、特に望ましい範囲は、
1nm以上30nm以下である。0.5nm以下では、
Co-Cr25-My合金膜の効果が不十分となるため、また
100nm以上になると膜厚が厚くなることに伴って発
生する表面起伏が大きくなるため、高密度磁気記録媒体
として必要な媒体表面の平滑性を確保することが困難に
なる。
[0032] The thickness of the Co-Cr 25 -M y film, 0.5
nm or more and 100 nm or less, a particularly desirable range is:
1 nm or more and 30 nm or less. At 0.5 nm or less,
Co-Cr 25 -M y for the effect of the alloy film becomes insufficient, and because the surface undulations generated in association with the film thickness becomes more than 100nm becomes thicker increases, medium required as a high-density magnetic recording medium It becomes difficult to ensure surface smoothness.

【0033】次に、磁性膜中の結晶歪や応力を緩和し、
高い磁気異方性エネルギーと保持力を実現するための本
発明の更に他の対策として、磁性膜の形成過程において
磁性膜とは別の組成を持つCo-Crx-My合金膜を少なく
とも1層導入することが有効である。図2にこの対策を
取り入れた媒体の断面構造の一例を示す。
Next, the crystal strain and stress in the magnetic film are relaxed,
As a further measure of high magnetic anisotropy energy with the present invention for achieving the holding force, at least a Co-Cr x -M y alloy film having a different composition than the magnetic film in the process of forming the magnetic film It is effective to introduce layers. FIG. 2 shows an example of a cross-sectional structure of a medium incorporating this measure.

【0034】下地膜22として、Cr,V及びこれらの
合金等のbcc構造材料が用いられる。Co合金からな
る磁性膜24aを形成してから、その上に極薄のCo-Cr
x-My合金膜23が形成される。Co-Crx-My合金膜2
3の組成は前述のものが良い。更に、その上に再びCo
合金からなる磁性膜24bが形成され、その上に保護膜
25が形成される。ここで、Co-Crx-My膜23の上下
に設ける磁性膜24a,24bの組成は、同じでも異なっ
ても良いが、Ptを少なくとも5at%、多くとも30at%
含んだhcp構造を持つことが望ましい。
As the base film 22, a bcc structure material such as Cr, V and an alloy thereof is used. After forming a magnetic film 24a made of a Co alloy, an ultra-thin Co-Cr
x -M y alloy film 23 is formed. Co-Cr x -M y alloy film 2
The composition of 3 is preferably as described above. In addition, Co again
A magnetic film 24b made of an alloy is formed, and a protective film 25 is formed thereon. Here, Co-Cr x -M y magnetic layer 24a provided on the upper and lower film 23, the composition of 24b may but be the same or different, a Pt least 5at%, at most 30 at%
It is desirable to have an hcp structure that includes it.

【0035】Co-Crx-My合金膜23の厚さは,0.2
nm以上5nm以下が適当である。0.2nm以下で
は、Co-Crx-My合金膜を導入する効果が小さく、また
5nm以上になると磁性膜の保磁力が低下するなどの高
密度磁気記録媒体として望ましくない影響が生ずる。
[0035] The thickness of the Co-Cr x -M y alloy film 23 is 0.2
The thickness is suitably not less than 5 nm and not more than 5 nm. Hereinafter 0.2nm, Co-Cr x -M y alloy film small effect of introducing and undesirable effects arise as a high-density magnetic recording medium such as a coercive force of the magnetic film is decreased becomes more than 5 nm.

【0036】前述の下地膜を2層にする対策を同時に適
用することにより、高密度磁気記録媒体として更に望ま
しい特性を得ることができる。その例を図3に示す。下
部下地膜32aとしてbcc構造材料層が設けられ、そ
の上にhcp構造を持つCo-Crx-My合金膜からなる上
部下地膜32bを形成される。更にその上にCo合金磁性
膜34a、Co-Crx-My合金膜の極薄層33、Co合金磁
性膜34b、保護膜35が形成される。下部下地膜32a
と基板31の間に接着強化層、結晶粒径制御層、軟磁性
膜、等の複数の膜を目的に応じて形成しても良い。
By simultaneously applying the above-described countermeasures for making the underlayer two layers, more desirable characteristics as a high-density magnetic recording medium can be obtained. An example is shown in FIG. Bcc structure material layer is provided as a lower base film 32a, are formed an upper base film 32b made of Co-Cr x -M y alloy film having a hcp structure thereon. Further Co alloy magnetic layer 34a thereon, Co-Cr x -M y alloy film ultrathin layer 33, Co alloy magnetic layer 34b, the protective film 35 is formed. Lower base film 32a
A plurality of films such as an adhesion strengthening layer, a crystal grain size control layer, and a soft magnetic film may be formed between the substrate and the substrate 31 according to the purpose.

【0037】上記の効果に加えて、記録磁性膜を構成す
る結晶の粒径分布を制御するようにした磁気記録媒体の
構造断面を図4に示す。非磁性基板41上にCr又はCr
合金からなる接着強化層46を設けた後、MgO,LiF
等のNaCl型結晶構造を持つ下部下地膜42aが形成さ
れる。MgO,LiF等の材料膜は、(100)配向膜が
得られ易く、しかも結晶粒径の分布が揃いやすい。成膜
の条件(基板温度、成膜速度など)を調整することによ
り、10Gb/in2以上の記録密度を実現するのに望
ましい結晶粒径10nm程度の下地膜を容易に形成する
ことができる。中間下地膜42cはB2構造を持つ材料
からなり、上部下地膜42bは、hcp構造を持つCo-
Crx-My合金膜からなる。この上にhcp構造を持つC
o合金からなる記録層用の磁性膜44a、極薄のCo-Crx
-My合金膜層43、hcp構造を持つCo合金からなる
記録層用の磁性膜44b及び保護膜45が形成される。
FIG. 4 shows a structural cross section of a magnetic recording medium in which the grain size distribution of the crystal constituting the recording magnetic film is controlled in addition to the above effects. Cr or Cr on the non-magnetic substrate 41
After providing the adhesion strengthening layer 46 made of an alloy, MgO, LiF
A lower base film 42a having a NaCl type crystal structure is formed. For a material film such as MgO or LiF, a (100) oriented film is easily obtained, and the distribution of crystal grain sizes is easily uniform. By adjusting the film formation conditions (substrate temperature, film formation speed, etc.), it is possible to easily form a base film having a crystal grain size of about 10 nm, which is desirable for realizing a recording density of 10 Gb / in 2 or more. The intermediate underlayer 42c is made of a material having a B2 structure, and the upper underlayer 42b is made of Co-
Consisting cr x -M y alloy film. C with hcp structure on this
o Magnetic layer 44a for recording layer made of alloy, ultra-thin Co-Cr x
A -My alloy film layer 43, a magnetic film 44b for a recording layer made of a Co alloy having an hcp structure, and a protective film 45 are formed.

【0038】高密度磁気記録の実現のために、結晶粒径
を記録密度の向上に見合って微細化し、かつ結晶粒径分
布を狭くする必要があるが、上記の磁気記録媒体は、そ
のような条件を満たすものである。
In order to realize high-density magnetic recording, it is necessary to make the crystal grain size finer and narrow the crystal grain size distribution in accordance with the improvement in recording density. It satisfies the condition.

【0039】[0039]

【発明の実施の形態】以下、本発明に係る磁気記録媒体
を幾つかの実施例による発明の実施の形態を参照して更
に詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a magnetic recording medium according to the present invention will be described in more detail with reference to some embodiments of the present invention.

【0040】[0040]

【実施例】<実施例1>直径2.5インチのガラス基板
を用い、直流マグネトロンスパッタ法によって図1に示
す断面構造を持つ面内磁気記録媒体を作製した。基板1
1上に、下部下地膜12a、上部下地膜12b、記録用磁
性膜14、及び保護膜15をこの順序で形成した。
Example 1 An in-plane magnetic recording medium having a cross-sectional structure shown in FIG. 1 was manufactured by a DC magnetron sputtering method using a glass substrate having a diameter of 2.5 inches. Substrate 1
On the substrate 1, a lower underlayer 12a, an upper underlayer 12b, a recording magnetic film 14, and a protective film 15 were formed in this order.

【0041】各膜の成膜のためのターゲットとして、下
部下地膜12a用にNiAlターゲット、上部下地膜12b
用にCo-Crx-Myターゲット、記録磁性膜14用にCo-
21at%Cr-15at%Ptターゲット、保護膜15用にカーボ
ンターゲットを用いた。
As a target for forming each film, a NiAl target for the lower base film 12a and an upper base film 12b
Co-Cr x -M y target use, for the recording magnetic film 14 Co-
A carbon target was used for the 21 at% Cr-15 at% Pt target and the protective film 15.

【0042】Co-Crx-Myターゲットとして、Co-25at
%Cr-6at%B,Co-25at%Cr-8at%Si,Co-25at%Cr-10
at%Ge,Co-25at%Cr-4at%Al,Co-25at%Cr-6at%
P,Co-25at%Cr-6at%Ti,Co-25at%Cr-10at%V,C
o-25at%Cr-4at%Zr,Co-25at%Cr-8at%Nb,Co-25at
%Cr-6at%Hf,Co-25at%Cr-10at%Mn,Co-25at%Cr-
12at%Rh,Co-25at%Cr-18at%Ir,Co-25at%Cr-14at
%Re,Co-25at%Cr-8at%Pd,Co-25at%Cr-6at%Pt,
Co-25at%Cr-4at%Mo,Co-25at%Cr-8at%W,Co-25a
t%Cr-4at%Ag,Co-25at%Cr-6at%Auを用いた。
[0042] as a Co-Cr x -M y target, Co-25at
% Cr-6at% B, Co-25at% Cr-8at% Si, Co-25at% Cr-10
at% Ge, Co-25at% Cr-4at% Al, Co-25at% Cr-6at%
P, Co-25at% Cr-6at% Ti, Co-25at% Cr-10at% V, C
o-25at% Cr-4at% Zr, Co-25at% Cr-8at% Nb, Co-25at
% Cr-6at% Hf, Co-25at% Cr-10at% Mn, Co-25at% Cr-
12at% Rh, Co-25at% Cr-18at% Ir, Co-25at% Cr-14at
% Re, Co-25at% Cr-8at% Pd, Co-25at% Cr-6at% Pt,
Co-25at% Cr-4at% Mo, Co-25at% Cr-8at% W, Co-25a
t% Cr-4at% Ag and Co-25at% Cr-6at% Au were used.

【0043】スパッタのArガス圧力を3mTorr、スパ
ッタパワー10W/cm2、基板温度250℃の条件
で、下部下地膜12aのNiAl膜を15nm、上部下地
膜12bを5nm、磁性膜14を16nm、保護膜15
のカーボン膜を8nmの厚さに各々成膜した。保護膜1
5の上に潤滑膜としてパーフロロポリエーテル系の膜
(図示せず)を塗布した。
Under the conditions of a sputtering Ar gas pressure of 3 mTorr, a sputtering power of 10 W / cm 2 , and a substrate temperature of 250 ° C., the NiAl film of the lower underlayer 12 a is 15 nm, the upper underlayer 12 b is 5 nm, and the magnetic film 14 is 16 nm. Membrane 15
Was formed to a thickness of 8 nm. Protective film 1
5 was coated with a perfluoropolyether-based film (not shown) as a lubricating film.

【0044】比較試料として、上部下地膜12bを設け
ずにNiAl下部下地膜12a上に直接Co-21at%Cr-15at
%Pt磁性膜14を形成した試料(比較例1)、及び上部
下地膜12bは設けるが、同膜に元素Mを添加しないCo
-35at%Crからなる非磁性の上部下地膜をNiAl下部下
地膜12a上に形成し、その上にCo-21at%Cr-15at%Pt
磁性膜14を形成した試料(比較例2)を作製した。
As a comparative sample, Co-21at% Cr-15at was directly provided on the NiAl lower base film 12a without providing the upper base film 12b.
A sample in which the% Pt magnetic film 14 is formed (Comparative Example 1), and the upper underlayer 12b are provided, but the element M is not added to the film.
A nonmagnetic upper underlayer made of -35 at% Cr is formed on the NiAl lower underlayer 12a, and Co-21at% Cr-15at% Pt is formed thereon.
A sample on which the magnetic film 14 was formed (Comparative Example 2) was manufactured.

【0045】これらの試料の保磁力を振動型磁力計(V
SM)で測定し、記録再生特性の評価を記録再生分離型
の磁気ヘッドを用いて行なった。記録ヘッドのギャップ
長は0.2μm、再生用のスピンバルブヘッド(高感度
の磁気抵抗効果型再生ヘッド)のシールド間隔を0.2
μm、測定時のスペーシング(記録媒体とヘッドの間
隔)を0.04μmとした。記録信号の経時変化の測定
は、350kFCI(FCI:1インチ当たりの磁化変
化)の磁気記録信号の記録直後の再生出力(St=0)と
100時間後の再生出力(St=100)の比として評価し
た。
The coercive force of these samples was measured using a vibrating magnetometer (V
SM), and the recording / reproducing characteristics were evaluated using a recording / reproducing separated magnetic head. The gap length of the recording head is 0.2 μm, and the shield interval of the spin valve head for reproduction (highly sensitive magnetoresistive read head) is 0.2.
μm, and the spacing at the time of measurement (the distance between the recording medium and the head) was 0.04 μm. The measurement of the change over time of the recording signal was performed by measuring the reproduction output (St = 0 ) immediately after recording of the magnetic recording signal of 350 kFCI (FCI: change in magnetization per inch) and the reproduction output (St = 100 ) after 100 hours. It was evaluated as a ratio.

【0046】表1に作成した試料の保磁力と記録信号の
残存比率(St=100/St=0)の測定結果を示す。
Table 1 shows the measurement results of the coercive force and the remaining ratio of the recorded signal ( St = 100 / St = 0 ) of the prepared sample.

【0047】[0047]

【表1】 [Table 1]

【0048】本発明の磁気記録媒体は、2.7kOe以
上の高い保磁力が得られており、しかも記録信号の残存
比率がいずれも0.9以上である。これに対し、比較例
1、2の試料の保磁力は、いずれも2.5kOe以下で
あり、しかも記録信号の残存比率が0.85以下と低
い。このようにして、本発明による磁気記録媒体は、記
録信号の劣化の小さい高密度磁気記録媒体として有効で
あることが確認された。
The magnetic recording medium of the present invention has a high coercive force of 2.7 kOe or more, and has a recording signal remaining ratio of 0.9 or more. On the other hand, the coercive force of each of the samples of Comparative Examples 1 and 2 is 2.5 kOe or less, and the residual ratio of the recording signal is as low as 0.85 or less. Thus, it was confirmed that the magnetic recording medium according to the present invention was effective as a high-density magnetic recording medium with little deterioration of a recording signal.

【0049】<実施例2>直径2.5インチのガラス基
板を用い、直流マグネトロンスパッタ法によって図2に
示す断面構造を持つ面内磁気記録媒体を作製した。基板
21上に、下地膜22、基板21に近い側のCo合金系
記録用磁性膜24a、hcp構造を持つ非磁性又は弱磁
性の極薄Co-Crx-My合金膜23、表面に近い側のCo
合金系記録用磁性膜24b、及び保護膜25をこの順序
で形成した。
Example 2 Using a glass substrate having a diameter of 2.5 inches, an in-plane magnetic recording medium having a cross-sectional structure shown in FIG. 2 was manufactured by DC magnetron sputtering. On the substrate 21, the base film 22, the side of the Co alloy system recording magnetic film 24a close to the substrate 21, a non-magnetic or weakly magnetic having an hcp structure ultrathin Co-Cr x -M y alloy film 23, closer to the surface Co on the side
The alloy-based recording magnetic film 24b and the protective film 25 were formed in this order.

【0050】下地膜22形成には、Cr及びCr-15at%T
iの2種類のターゲットを用い、基板21側に5nm厚
のCr膜を形成し、その上に5nm厚のCr-15at%Ti膜
を形成し、これによって下地膜22を2層とした。ま
た、Co合金系記録用磁性膜24aの成膜用としてCo-21
at%Cr-8at%Ptターゲットを用いた。
For forming the under film 22, Cr and Cr-15at% T
Using two types of targets i, a 5 nm-thick Cr film was formed on the substrate 21 side, and a 5 nm-thick Cr-15at% Ti film was formed thereon, thereby forming the base film 22 into two layers. Further, Co-21 is used for forming the Co alloy-based recording magnetic film 24a.
An at% Cr-8at% Pt target was used.

【0051】Co-Crx-My膜23の成膜用ターゲットと
して、Co-30at%Cr-5at%B,Co-30at%Cr-4at%Si,
Co-30at%Cr-6at%Ge,Co-30at%Cr-4at%Al,Co-30
at%Cr-6at%P,Co-30at%Cr-4at%Ti,Co-30at%Cr-
10at%V,Co-30at%Cr-4at%Zr,Co-30at%Cr-6at%N
b,Co-30at%Cr-6at%Hf,Co-30at%Cr-10at%Mn,C
o-30at%Cr-8at%Rh,Co-30at%Cr-8at%Ir,Co-30at
%Cr-7at%Re,Co-30at%Cr-8at%Pd,Co-30at%Cr-6
at%Pt,Co-30at%Cr-4at%Mo,Co-30at%Cr-4at%
W,Co-30at%Cr-3at%Ag,Co-30at%Cr-4at%Auを用
いた。
[0051] Co-Cr x -M as deposition target y film 23, Co-30at% Cr- 5at% B, Co-30at% Cr-4at% Si,
Co-30at% Cr-6at% Ge, Co-30at% Cr-4at% Al, Co-30
at% Cr-6at% P, Co-30at% Cr-4at% Ti, Co-30at% Cr-
10at% V, Co-30at% Cr-4at% Zr, Co-30at% Cr-6at% N
b, Co-30at% Cr-6at% Hf, Co-30at% Cr-10at% Mn, C
o-30at% Cr-8at% Rh, Co-30at% Cr-8at% Ir, Co-30at
% Cr-7at% Re, Co-30at% Cr-8at% Pd, Co-30at% Cr-6
at% Pt, Co-30at% Cr-4at% Mo, Co-30at% Cr-4at%
W, Co-30at% Cr-3at% Ag and Co-30at% Cr-4at% Au were used.

【0052】Co合金系記録用磁性膜24bの成膜用にC
o-21at%Cr-10at%Ptターゲットを用いた。
For forming the Co alloy-based recording magnetic film 24b, C
An o-21at% Cr-10at% Pt target was used.

【0053】スパッタのArガス圧力を3mTorr、スパ
ッタパワー10W/cm2、基板温度270℃の条件
で、下地膜22をCr-15at%Ti(5nm)/Cr(5n
m)の計10nm、磁性膜24aを8nm、Co-Crx-M
y膜23を0.5nm、磁性膜24bを8nm、カーボン
膜25を10nmの厚さに各々成膜した。保護膜25の
上に潤滑膜としてパーフロロポリエーテル系の膜を塗布
した。
Under the conditions of a sputtering Ar gas pressure of 3 mTorr, a sputtering power of 10 W / cm 2 , and a substrate temperature of 270 ° C., the base film 22 is formed of Cr-15at% Ti (5 nm) / Cr (5n
m), a total of 10 nm, a magnetic film 24a of 8 nm, Co-Cr x -M
The y film 23 was formed to a thickness of 0.5 nm, the magnetic film 24b was formed to a thickness of 8 nm, and the carbon film 25 was formed to a thickness of 10 nm. A perfluoropolyether film was applied as a lubricating film on the protective film 25.

【0054】比較試料として、極薄のCo-Crx-My膜2
3を形成しない以外は同様の構造を持つ磁気記録媒体を
作製した。
[0054] As comparative samples, very thin Co-Cr x -M y film 2
A magnetic recording medium having the same structure except that No. 3 was not formed was manufactured.

【0055】実施例1の場合と同様に、これらの試料の
保磁力を振動型磁力計で測定し、記録再生特性の評価を
記録再生分離型の磁気ヘッドを用いて行なった。記録ヘ
ッドのギャップ長は0.2μm、再生用のスピンバルブ
ヘッドのシールド間隔を0.2μm、測定時のスペーシ
ングを0.04μmとした。記録信号の経時変化の測定
は、350kFCIの磁気記録信号の記録直後の再生出
力(St=0)と100時間後の再生出力(St=100)の比
として評価した。
As in the case of Example 1, the coercive force of these samples was measured with a vibrating magnetometer, and the recording / reproducing characteristics were evaluated using a recording / reproducing separated magnetic head. The gap length of the recording head was 0.2 μm, the shield interval of the spin valve head for reproduction was 0.2 μm, and the spacing at the time of measurement was 0.04 μm. The measurement of the change over time of the recording signal was evaluated as the ratio of the reproduction output (St = 0 ) immediately after recording of the magnetic recording signal of 350 kFCI and the reproduction output (St = 100 ) after 100 hours.

【0056】表2に作成した試料の保磁力と記録信号の
残存比率(St=100/St=0)の測定結果を示す。
Table 2 shows the measurement results of the coercive force of the prepared sample and the remaining ratio of the recorded signal ( St = 100 / St = 0 ).

【0057】[0057]

【表2】 [Table 2]

【0058】本発明の磁気記録媒体は、2.5kOe以
上の高い保磁力が得られており、しかも記録信号の残存
比率がいずれも0.9以上である。これに対し、比較例
の試料の保磁力は、2.3kOe以下であり、しかも記
録信号の残存比率が0.8と低い。このようにして、本
発明による磁気記録媒体は、記録信号の劣化の小さい高
密度磁気記録媒体として有効であることが確認された。
The magnetic recording medium of the present invention has a high coercive force of 2.5 kOe or more, and the residual ratio of the recording signal is 0.9 or more. On the other hand, the coercive force of the sample of the comparative example is 2.3 kOe or less, and the residual ratio of the recording signal is as low as 0.8. Thus, it was confirmed that the magnetic recording medium according to the present invention was effective as a high-density magnetic recording medium with little deterioration of a recording signal.

【0059】<実施例3>直径2.5インチのガラス基
板を用い、直流マグネトロンスパッタ法によって図3に
示す断面構造を持つ面内磁気記録媒体を作製した。基板
31上に、下部下地膜32a、hcp構造を持つ非磁性
又は弱磁性のCo-Crx-My上部下地膜32b、基板31
に近い側のCo合金系記録用磁性膜34a、hcp構造を
持つ非磁性又は弱磁性の極薄Co-Crx-My膜33、表面
に近い側のCo合金系記録用磁性膜34b、及び保護膜3
5をこの順序で形成した。
Example 3 Using a glass substrate having a diameter of 2.5 inches, an in-plane magnetic recording medium having a sectional structure shown in FIG. 3 was produced by a DC magnetron sputtering method. On the substrate 31, a lower base film 32a, a non-magnetic or weakly magnetic having an hcp structure Co-Cr x -M y upper base film 32b, the substrate 31
Magnetic or weakly magnetic ultrathin Co-Cr x -M y film 33, the closer to the surface side Co alloy system recording magnetic film 34b having the side of Co alloy system recording magnetic film 34a, an hcp structure close to and, Protective film 3
5 were formed in this order.

【0060】各膜の成膜のためのターゲットとして、下
部下地膜32a用にCrターゲット、上部下地膜32b及
び極薄膜33用にCo-Crx-Myターゲット、記録磁性膜
34a,34b用にCo-21at%Cr-8at%Ptターゲットを用
いた。
[0060] As a target for the formation of the film, Cr target for the lower base film 32a, Co-Cr x -M y target for the upper base film 32b and the very thin film 33, the recording magnetic film 34a, for 34b A Co-21at% Cr-8at% Pt target was used.

【0061】Co-Crx-Myターゲットとして、Co-20at
%Cr-14at%B,Co-20at%Cr-14at%Si,Co-20at%Cr-
10at%Ge,Co-20at%Cr-10at%Al,Co-20at%Cr-10at
%P,Co-20at%Cr-14at%Ti,Co-20at%Cr-13at%V,
Co-20at%Cr-6at%Zr,Co-20at%Cr-10at%Nb,Co-2
0at%Cr-12at%Hf,Co-20at%Cr-16at%Mn,Co-26at%
Cr-12at%Rh,Co-26at%Cr-12at%Ir,Co-26at%Cr-
8at%Re,Co-26at%Cr-8at%Pd,Co-26at%Cr-6at%P
t,Co-20at%Cr-4at%Mo,Co-20at%Cr-8at%W,Co-
26at%Cr-6at%Ag,Co-26at%Cr-4at%Auを用いた。
[0061] as a Co-Cr x -M y target, Co-20at
% Cr-14at% B, Co-20at% Cr-14at% Si, Co-20at% Cr-
10at% Ge, Co-20at% Cr-10at% Al, Co-20at% Cr-10at
% P, Co-20at% Cr-14at% Ti, Co-20at% Cr-13at% V,
Co-20at% Cr-6at% Zr, Co-20at% Cr-10at% Nb, Co-2
0at% Cr-12at% Hf, Co-20at% Cr-16at% Mn, Co-26at%
Cr-12at% Rh, Co-26at% Cr-12at% Ir, Co-26at% Cr-
8at% Re, Co-26at% Cr-8at% Pd, Co-26at% Cr-6at% P
t, Co-20at% Cr-4at% Mo, Co-20at% Cr-8at% W, Co-
26at% Cr-6at% Ag and Co-26at% Cr-4at% Au were used.

【0062】スパッタのArガス圧力を3mTorr、スパ
ッタパワー10W/cm2、基板温度270℃の条件
で、下部下地膜32aのCrを10nm、上部下地膜32
bのCo-Crx-My膜を5nm、下部の磁性膜34aを8n
m、極薄膜33として再び同種のCo-Crx-My膜を0.
3nm、上部磁性膜34bを8nm、カーボン膜35を
10nmの厚さに各々成膜した。保護膜35の上に潤滑
膜としてパーフロロポリエーテル系の膜を塗布した。
Under the conditions of an Ar gas pressure for sputtering of 3 mTorr, a sputtering power of 10 W / cm 2 and a substrate temperature of 270 ° C., the Cr of the lower underlayer 32 a is 10 nm, the upper underlayer 32 is
b of Co-Cr x -M y film 5 nm, the lower magnetic film 34a 8n
m, again Co-Cr x -M y film of the same kind as the very thin film 33 0.
3 nm, the upper magnetic film 34b was formed to a thickness of 8 nm, and the carbon film 35 was formed to a thickness of 10 nm. A perfluoropolyether film was applied as a lubricating film on the protective film 35.

【0063】比較試料として、Co-Crx-My膜32b,
33を形成しない以外は同様の構造を持つ磁気記録媒体
を作製した。
[0063] As comparative samples, Co-Cr x -M y film 32b,
A magnetic recording medium having the same structure except that no 33 was formed was produced.

【0064】実施例1の場合と同様に、これらの試料の
保磁力を振動型磁力計で測定し、記録再生特性の評価を
記録再生分離型の磁気ヘッドを用いて行なった。記録ヘ
ッドのギャップ長は0.2μm、再生用のスピンバルブ
ヘッドのシールド間隔を0.2μm、測定時のスペーシ
ングを0.04μmとした。記録信号の経時変化の測定
は、350kFCIの磁気記録信号の記録直後の再生出
力(St=0)と100時間後の再生出力(St=100)の比
として評価した。
As in the case of Example 1, the coercive force of these samples was measured with a vibrating magnetometer, and the recording / reproducing characteristics were evaluated using a recording / reproducing separation type magnetic head. The gap length of the recording head was 0.2 μm, the shield interval of the spin valve head for reproduction was 0.2 μm, and the spacing at the time of measurement was 0.04 μm. The measurement of the change over time of the recording signal was evaluated as the ratio of the reproduction output (St = 0 ) immediately after recording of the magnetic recording signal of 350 kFCI and the reproduction output (St = 100 ) after 100 hours.

【0065】表3に作成した試料の保磁力と記録信号の
残存比率(St=100/St=0)の測定結果を示す。
Table 3 shows the measurement results of the coercive force of the prepared sample and the remaining ratio of the recording signal ( St = 100 / St = 0 ).

【0066】[0066]

【表3】 [Table 3]

【0067】本発明の磁気記録媒体は、2.5kOe以
上の高い保磁力が得られており、しかも記録信号の残存
比率がいずれも0.9以上である。これに対し、比較例
の試料の保磁力は、2.3kOe以下であり、しかも記
録信号の残存比率が0.8と低い。このようにして、本
発明による磁気記録媒体は、記録信号の劣化の小さい高
密度磁気記録媒体として有効であることが確認された。
The magnetic recording medium of the present invention has a high coercive force of 2.5 kOe or more, and the residual ratio of the recording signal is 0.9 or more. On the other hand, the coercive force of the sample of the comparative example is 2.3 kOe or less, and the residual ratio of the recording signal is as low as 0.8. Thus, it was confirmed that the magnetic recording medium according to the present invention was effective as a high-density magnetic recording medium with little deterioration of a recording signal.

【0068】<実施例4>直径2.5インチのガラス基
板を用い、直流マグネトロンスパッタ法及び高周波マグ
ネトロンスパッタ法によって図4に示す断面構造を持つ
面内磁気記録媒体を作製した。基板41上に接着強化層
46、NaCl構造を持つ下部下地膜42a、中間下地膜
42c、hcp構造を持つ非磁性又は弱磁性のCo-Crx-
y膜からなる上部下地膜42b、基板41に近い側のC
o合金系記録用磁性膜44a、hcp構造を持つ非磁性又
は弱磁性の極薄Co-Crx-My膜43、表面に近い側のC
o合金系記録用磁性膜44b、及び保護膜45をこの順序
で形成した。
Example 4 Using a glass substrate having a diameter of 2.5 inches, an in-plane magnetic recording medium having a sectional structure shown in FIG. 4 was produced by a DC magnetron sputtering method and a high-frequency magnetron sputtering method. On a substrate 41, an adhesion reinforcing layer 46, a lower base film 42a having a NaCl structure, an intermediate base film 42c, and a nonmagnetic or weak magnetic Co-Cr x -having an hcp structure.
Upper base film 42b made of M y film, closer to the substrate 41 side C
o alloy system recording magnetic film 44a, ultrathin Co-Cr x nonmagnetic or weakly magnetic having an hcp structure -M y film 43, the closer to the surface side C
o An alloy-based recording magnetic film 44b and a protective film 45 were formed in this order.

【0069】各膜の成膜のためのターゲットとして、接
着強化層46用にCrターゲット、NaCl構造を持つ下
部下地膜42a用にMgOターゲット、中間下地膜42c
用にCrターゲット、上部下地膜42b及び極薄膜43用
のCo-Crx-MyターゲットとしてCo-23at%Cr-10at%M
nターゲット、磁性膜44a用にCo-21at%Cr-5at%Pt、
磁性膜44b用にCo-20at%Cr-8at%Ptターゲット、保
護膜45用にカーボンターゲットを用いた。
As targets for forming the respective films, a Cr target for the adhesion reinforcing layer 46, an MgO target for the lower base film 42a having a NaCl structure, and an intermediate base film 42c
Cr target use, Co-23at% Cr-10at % M as Co-Cr x -M y target for the upper base film 42b and the very thin film 43
n target, Co-21at% Cr-5at% Pt for magnetic film 44a,
A Co-20at% Cr-8at% Pt target was used for the magnetic film 44b, and a carbon target was used for the protective film 45.

【0070】スパッタのArガス圧力を3mTorr、スパ
ッタパワー10W/cm2、基板温度270℃の条件
で、接着強化層46のCrを10nm、下部下地膜42a
のMgO膜を5nm、中間下地膜42cのCr膜を5n
m、上部下地膜42bのCo-23at%Cr-10at%Mn膜を5n
m、磁性膜44aのCo-21at%Cr-5at%Pt膜を7.5n
m、極薄膜43のCo-23at%Cr-10at%Mn膜を1nm、
磁性膜44bのCo-20at%Cr-8at%Pt膜を8nm、カー
ボン膜45を10nmの厚さに各々成膜した。下部下地
膜42aのMgO膜の形成には高周波マグネトロンスパッ
タ用いた。
Under the conditions of a sputtering Ar gas pressure of 3 mTorr, a sputtering power of 10 W / cm 2 and a substrate temperature of 270 ° C., the Cr of the adhesion reinforcing layer 46 is 10 nm, and the lower underlayer 42 a
MgO film of 5 nm, and Cr film of the intermediate underlayer 42 c of 5 nm
m, 5 nm of Co-23at% Cr-10at% Mn film of the upper underlayer 42b.
m, 7.5n of Co-21at% Cr-5at% Pt film of the magnetic film 44a.
m, the Co-23at% Cr-10at% Mn film of the very thin film 43 is 1 nm,
As the magnetic film 44b, a Co-20at% Cr-8at% Pt film was formed to a thickness of 8 nm, and a carbon film 45 was formed to a thickness of 10 nm. High frequency magnetron sputtering was used to form the MgO film as the lower underlayer 42a.

【0071】実施例1の場合と同様、作成した試料の保
磁力を振動型磁力計で測定し、記録再生特性の評価を記
録再生分離型の磁気ヘッドを用いて行なった。記録ヘッ
ドのギャップ長は0.2μm、再生用のスピンバルブヘ
ッドのシールド間隔を0.2μm、測定時のスペーシン
グを0.04μmとした。記録信号の経時変化の測定
は、350kFCIの磁気記録信号の記録直後の再生出
力(St=0)と100時間後の再生出力(St=100)の比
として評価した。
As in the case of Example 1, the coercive force of the prepared sample was measured by a vibrating magnetometer, and the recording / reproducing characteristics were evaluated using a recording / reproducing separated magnetic head. The gap length of the recording head was 0.2 μm, the shield interval of the spin valve head for reproduction was 0.2 μm, and the spacing at the time of measurement was 0.04 μm. The measurement of the change over time of the recording signal was evaluated as the ratio of the reproduction output (St = 0 ) immediately after recording of the magnetic recording signal of 350 kFCI and the reproduction output (St = 100 ) after 100 hours.

【0072】試料の保磁力は、3.6kOeと非常に高
く、しかも記録信号の残存比率も0.95以上であり、
本発明の記録媒体は、保磁力が高くてしかも記録信号の
劣化の小さい高密度磁気記録媒体として優れた性質を有
していることが確認された。
The coercive force of the sample was as high as 3.6 kOe, and the residual ratio of the recording signal was 0.95 or more.
It has been confirmed that the recording medium of the present invention has excellent properties as a high-density magnetic recording medium having a high coercive force and a small deterioration of a recording signal.

【0073】<実施例5>実施例3の上部下地膜32b
及び極薄膜33であるhcp構造を持つ非磁性又は弱磁
性のCo-Crx-My膜において、添加元素MをMnの一種
類にし、組成をCr:0〜50at%,Mn:0〜50at%の
範囲で変化させ、それによって複数の磁気記録媒体を作
製した。作製条件は実施例3の場合と同様であり、作製
した記録媒体の断面構造も図3と同じである。Co-Crx
-Mny膜形成用ターゲットとして、Coターゲットの上に
ペレット状のCr及びMnチップを置くことにより、組成
の調整を行なった。
<Embodiment 5> Upper underlayer 32b of Embodiment 3
And in the non-magnetic or weakly magnetic in Co-Cr x -M y film having a hcp structure is extremely thin film 33, the additional element M to one type of Mn, the composition Cr: 0~50at%, Mn: 0~50at %, Thereby producing a plurality of magnetic recording media. The manufacturing conditions are the same as in Example 3, and the cross-sectional structure of the manufactured recording medium is the same as that in FIG. Co-Cr x
As -mn y film forming target, by placing the pellets of Cr and Mn chip over the Co target was performed to adjust the composition.

【0074】実施例3の場合と同様、作成した試料の保
磁力を振動型磁力計で測定し、記録再生特性の評価を記
録再生分離型の磁気ヘッドを用いて行なった。記録ヘッ
ドのギャップ長は0.2μm、再生用のスピンバルブヘ
ッドのシールド間隔を0.2μm、測定時のスペーシン
グを0.04μmとした。記録信号の経時変化の測定
は、350kFCIの磁気記録信号の記録直後の再生出
力(St=0)と100時間後の再生出力(St=100)の比
として評価した。
As in the case of Example 3, the coercive force of the prepared sample was measured with a vibrating magnetometer, and the recording / reproducing characteristics were evaluated using a recording / reproducing separated magnetic head. The gap length of the recording head was 0.2 μm, the shield interval of the spin valve head for reproduction was 0.2 μm, and the spacing at the time of measurement was 0.04 μm. The measurement of the change over time of the recording signal was evaluated as the ratio of the reproduction output (St = 0 ) immediately after recording of the magnetic recording signal of 350 kFCI and the reproduction output (St = 100 ) after 100 hours.

【0075】試作した媒体の保磁力及び再生出力の残存
比率(St=100/St=0)の測定結果をそれぞれ、図5及
び図6に示す。Co-Crx-Mnyの組成範囲が25at%≦x
+y≦50at%,0.5at%≦yのときに、特に高い保磁
力と高い再生出力の残存比率が達成されていることが確
認され、上記組成範囲が高密度磁気記録媒体にに特に有
効であることが確認された。
The measurement results of the coercive force and the residual ratio of the reproduction output ( St = 100 / St = 0 ) of the prototype medium are shown in FIGS. 5 and 6, respectively. Co-Cr x -Mn composition range of y is 25 at% ≦ x
When + y ≦ 50 at% and 0.5 at% ≦ y, it was confirmed that a particularly high coercive force and a high residual ratio of reproduction output were achieved, and the above composition range was particularly effective for a high-density magnetic recording medium. It was confirmed that there was.

【0076】[0076]

【発明の効果】本発明によれば、磁気記録媒体の高保磁
力化と耐熱揺らぎ安定性の確保が可能となることによ
り、特に10Gb/in2以上の高密度磁気記録が可能
となり、装置の小型化や大容量化が容易になる。
According to the present invention, the high coercive force of the magnetic recording medium and the stability of the thermal fluctuation can be ensured, so that high-density magnetic recording of 10 Gb / in 2 or more can be achieved, and the size of the apparatus can be reduced. It is easy to increase the capacity and increase the capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る磁気記録媒体の第1の実施例を説
明するための断面図。
FIG. 1 is a sectional view for explaining a first embodiment of a magnetic recording medium according to the present invention.

【図2】本発明の第2の実施例を説明するためにの断面
図。
FIG. 2 is a cross-sectional view for explaining a second embodiment of the present invention.

【図3】本発明の第3の実施例を説明するためにの断面
図。
FIG. 3 is a sectional view for explaining a third embodiment of the present invention.

【図4】本発明の第4の実施例を説明するためにの断面
図。
FIG. 4 is a cross-sectional view for explaining a fourth embodiment of the present invention.

【図5】Co-Crx-Mny組成と媒体保磁力の関係を説明
するための曲線図。
[5] curves for explaining the relationship between Co-Cr x -Mn y composition and medium coercivity.

【図6】Co-Crx-Mny組成と記録信号の残存比率の関
係を説明するための曲線図。
[6] curve diagram for explaining a relationship between residual ratio of Co-Cr x -Mn y composition and the recording signal.

【符号の説明】[Explanation of symbols]

11,21,31,41…基板、12a,32a,42a
…下部下地膜、12b,32b,42b…Co-Crx-My
部下地膜、22…下地膜、42c…中間下地膜、14…
記録用磁性膜、24a,34a,44a…基板側の記録用
磁性膜、24b,34b,44b…表面側の記録用磁性
膜、23,33,43…極薄のCo-Crx-My合金膜、1
5,25,35,45…保護膜、46…接着強化層。
11, 21, 31, 41 ... substrate, 12a, 32a, 42a
... lower underlayer, 12b, 32b, 42b ... Co -Cr x -M y upper base film 22 ... base film, 42c ... intermediate underlayer, 14 ...
Recording magnetic film, 24a, 34a, 44a ... substrate side recording magnetic film, 24b, 34b, 44b ... surface side recording magnetic film, 23,33,43 ... Co-Cr x -M y alloy ultrathin Membrane, 1
5, 25, 35, 45: protective film, 46: adhesion reinforcing layer.

フロントページの続き (72)発明者 竹内 輝明 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所 中央研究所内 (72)発明者 本多 幸雄 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所 中央研究所内 (56)参考文献 特開 平10−334444(JP,A) 特開 平10−233016(JP,A) 特開 平7−57233(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/738 G11B 5/64 - 5/673 Continued on the front page (72) Inventor Teruaki Takeuchi 1-280 Higashi-Koigabo, Kokubunji-shi, Tokyo Inside Hitachi, Ltd. Central Research Laboratory (72) Inventor Yukio Honda 1-280 Higashi-Koigabo, Kokubunji-shi, Tokyo Hitachi, Ltd. (56) References JP-A-10-334444 (JP, A) JP-A-10-233016 (JP, A) JP-A-7-57233 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G11B 5/738 G11B 5/64-5/673

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】bcc構造又はB2構造を有する下部下地
膜と、前記下部下地膜上に形成された上部下地膜と、前
記上部下地膜上に形成された磁性膜とを有し、前記上部
下地膜は、非磁性元素Mを含む六方稠密構造のCo-C
r-M膜であり、かつ、前記非磁性元素Mは、B,S
i,Ge,C及びPからなる群から選ばれた元素であ
り、かつまた前記Co-Cr-M膜の組成をCo-Crx-
yと表したとき、25at%≦x+y≦50at%,0.
5at%≦yであることを特徴とする磁気記録媒体。
A lower base film having 1. A bcc structure or B2 structure, and an upper base film formed on the lower base film and a upper underlayer magnetic film formed on the upper bottom The ground film is made of Co-C with a hexagonal close-packed structure containing the non-magnetic element M.
r-M film, and the non-magnetic element M is B, S
i, Ge, an element selected from C and P or Ranaru group, and also the composition of the Co-Cr-M film Co-Cr x -
When expressed as M y, 25at% ≦ x + y ≦ 50at%, 0.
A magnetic recording medium, wherein 5 at% ≦ y.
【請求項2】前記下部下地膜は、NiAl,FeAl,
FeV,CuZn,CoAl及びCuPdからなる群か
ら選ばれたB2構造を持つ材料からなることを特徴とす
る請求項1に記載の磁気記録媒体。
2. The method according to claim 1, wherein the lower underlayer is made of NiAl, FeAl,
2. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is made of a material having a B2 structure selected from the group consisting of FeV, CuZn, CoAl, and CuPd.
【請求項3】前記下部下地膜は、Cr,Cr-Ti,C
r-Mo,Cr-W,Cr-Nb及びCr-Vからなる群か
ら選ばれたbcc構造を持つ材料からなることを特徴と
する請求項1に記載の磁気記録媒体。
3. The method according to claim 1, wherein the lower underlayer is made of Cr, Cr—Ti, C
The magnetic recording medium according to claim 1, wherein the magnetic recording medium is made of a material having a bcc structure selected from the group consisting of r-Mo, Cr-W, Cr-Nb, and Cr-V.
【請求項4】非磁性元素Mを含む六方稠密構造のCo-C
r-M膜によって上部磁性膜と下部磁性膜に分離された磁
性膜を有し、前記非磁性元素Mは、B,Si,Ge,C
及びPからなる群から選ばれた元素であり、かつ前記C
o-Cr-M膜の組成をCo-Crx-Myと表したとき、2
5at%≦x+y≦50at%,0.5at%≦yであること
を特徴とする磁気記録媒体。
4. Co-C having a hexagonal close-packed structure containing a nonmagnetic element M
an upper magnetic film and the lower magnetic film separated the magnetic film by the r-M film, the non-magnetic element M, B, Si, Ge, C
And P or Ranaru an element selected from the group, and the C
When the composition of the o-Cr-M film was expressed as the Co-Cr x -M y, 2
A magnetic recording medium, wherein 5 at% ≦ x + y ≦ 50 at% and 0.5 at% ≦ y.
JP04588499A 1998-10-09 1999-02-24 Magnetic recording media Expired - Fee Related JP3157806B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP04588499A JP3157806B2 (en) 1999-02-24 1999-02-24 Magnetic recording media
US09/413,813 US6383667B1 (en) 1998-10-09 1999-10-07 Magnetic recording medium
US10/001,995 US6541125B2 (en) 1998-10-09 2001-12-05 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04588499A JP3157806B2 (en) 1999-02-24 1999-02-24 Magnetic recording media

Publications (2)

Publication Number Publication Date
JP2000251237A JP2000251237A (en) 2000-09-14
JP3157806B2 true JP3157806B2 (en) 2001-04-16

Family

ID=12731676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04588499A Expired - Fee Related JP3157806B2 (en) 1998-10-09 1999-02-24 Magnetic recording media

Country Status (1)

Country Link
JP (1) JP3157806B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7273666B2 (en) 2001-06-29 2007-09-25 Fujitsu Limited Magnetic recording medium and magnetic recording medium driving apparatus
JP3993786B2 (en) * 2001-06-29 2007-10-17 富士通株式会社 Magnetic recording medium
JP4626840B2 (en) * 2001-08-31 2011-02-09 富士電機デバイステクノロジー株式会社 Perpendicular magnetic recording medium and manufacturing method thereof

Also Published As

Publication number Publication date
JP2000251237A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
US6541125B2 (en) Magnetic recording medium
EP1675105B1 (en) Magnetic recording medium and magnetic storage device
US5162158A (en) Low noise magnetic thin film longitudinal media
JP4534711B2 (en) Perpendicular magnetic recording medium
US7521136B1 (en) Coupling enhancement for medium with anti-ferromagnetic coupling
JP2911782B2 (en) Magnetic recording medium and method of manufacturing the same
JP2991672B2 (en) Magnetic recording media
US7157162B2 (en) Magnetic recording medium and magnetic recording and reproducing apparatus
JPH08147665A (en) Magnetic recording medium and magnetic memory device using the medium
JP3157806B2 (en) Magnetic recording media
JP3222141B2 (en) Magnetic recording medium and magnetic storage device
JP2000268339A (en) In-plane magnetic recording medium and magnetic storage device
JP3075712B2 (en) Magnetic recording media
US7141272B2 (en) Method of producing magnetic recording medium
JP3041273B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP3136133B2 (en) Magnetic recording media
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JPH10289437A (en) Magnetic recording medium and magnetic storage device
JP2001283427A (en) Magnetic recording medium, its manufacture method, sputtering target and magnetic recording and reproducing device
JP4534402B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPH11110733A (en) Magnetic recording medium and nonmagnetic alloy film
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JP3952379B2 (en) Perpendicular magnetic recording medium
US20040241500A1 (en) Magnetic recording medium, method for producing magnetic recording medium, and magnetic storage device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees