JP3041273B2 - Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same - Google Patents

Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same

Info

Publication number
JP3041273B2
JP3041273B2 JP10198408A JP19840898A JP3041273B2 JP 3041273 B2 JP3041273 B2 JP 3041273B2 JP 10198408 A JP10198408 A JP 10198408A JP 19840898 A JP19840898 A JP 19840898A JP 3041273 B2 JP3041273 B2 JP 3041273B2
Authority
JP
Japan
Prior art keywords
film
magnetic recording
magnetic
recording medium
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10198408A
Other languages
Japanese (ja)
Other versions
JP2000030236A (en
Inventor
義幸 平山
正昭 二本
幸雄 本多
研也 伊藤
信幸 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10198408A priority Critical patent/JP3041273B2/en
Publication of JP2000030236A publication Critical patent/JP2000030236A/en
Application granted granted Critical
Publication of JP3041273B2 publication Critical patent/JP3041273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンピュータの補
助記憶装置などに用いられる磁気記録再生装置、及びそ
れに用いる磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording / reproducing device used for an auxiliary storage device of a computer and a magnetic recording medium used for the same.

【0002】[0002]

【従来の技術】情報化時代の進行により、日常的に扱う
情報量は増加の一途を辿っている。これに伴い、磁気記
録装置に対する高記録密度化と大容量化の要求が強くな
っている。磁気記録装置を高密度化していった場合、記
録ビット当たりの媒体面積が小さくなるため、再生出力
が低下し、再生が困難になる。この問題を解決するた
め、記録と再生を別のヘッドで行い、再生用ヘッドとし
て高い感度を持つ磁気抵抗効果を利用したヘッドを用い
る方式が実用化されている。さらに、高密度化を進める
ために、より高い感度を持つ巨大磁気抵抗効果を利用し
たヘッドも検討されている。このような高感度の再生ヘ
ッドを用いることにより、再生出力は大きくできるが、
同時にノイズも増幅してしまい、ノイズの大きな媒体を
用いた場合には、記録された情報の読み取りが不可能に
なる。したがって、高密度の記録と再生を行うための磁
気記録媒体としては、媒体ノイズを低く抑えることが必
須である。
2. Description of the Related Art With the advance of the information age, the amount of information handled on a daily basis has been steadily increasing. Along with this, the demand for higher recording density and higher capacity for magnetic recording devices has become stronger. When the density of the magnetic recording device is increased, the medium area per recording bit is reduced, so that the reproduction output is reduced and the reproduction becomes difficult. In order to solve this problem, a system has been put to practical use in which recording and reproduction are performed by different heads, and a head using a magnetoresistive effect having high sensitivity is used as a reproducing head. Further, in order to increase the density, a head using a giant magnetoresistance effect having higher sensitivity is also being studied. By using such a high-sensitivity reproducing head, the reproducing output can be increased,
At the same time, noise is also amplified, and when a medium with large noise is used, it becomes impossible to read recorded information. Therefore, as a magnetic recording medium for performing high-density recording and reproduction, it is essential to suppress medium noise.

【0003】現在の磁気ディスクに用いられている面内
磁気記録方式では、媒体ノイズの低減のために、結晶粒
の微細化が不可欠であり、今後保磁力の確保や記録磁化
状態の熱的安定性が問題になることが予想される。一
方、垂直磁気記録方式は記録密度が高くなるにつれて反
磁界が減少するという特徴があり、高密度に記録した場
合に、記録磁化状態が安定で媒体ノイズも小さく、高密
度記録に適した方式であると考えられる。従来、垂直磁
気記録媒体は連続薄膜型磁気テープを中心に研究や開発
が進められており、この場合には磁性層の膜厚が100
nm以上と厚く、またトラック幅の広いヘッドで記録再
生を行うため、再生出力が大きく、媒体ノイズのレベル
をそれほど抑える必要がなかった。これに対して磁気デ
ィスクとして垂直磁気記録媒体を用いる場合、トラック
方向にも高密度化する必要があることから、記録ビット
面積は小さくなり、再生出力は非常に小さくなる。この
小さな出力を高感度ヘッドにより再生することから、必
然的に媒体ノイズに対する制限は厳しくなり、また出力
の減衰も極力抑える必要がある。
In the in-plane magnetic recording method used for the current magnetic disk, it is essential to make crystal grains fine in order to reduce medium noise. In the future, it will be necessary to secure coercive force and thermally stabilize the recording magnetization state. Sex is expected to be a problem. On the other hand, the perpendicular magnetic recording method has the characteristic that the demagnetizing field decreases as the recording density increases, and when recording at high density, the recording magnetization state is stable and the medium noise is small, and this method is suitable for high density recording. It is believed that there is. Conventionally, perpendicular magnetic recording media have been researched and developed mainly on continuous thin-film magnetic tapes.
Since recording and reproduction are performed with a head having a thickness of at least nm and a wide track width, the reproduction output is large, and it is not necessary to suppress the level of medium noise so much. On the other hand, when a perpendicular magnetic recording medium is used as the magnetic disk, it is necessary to increase the density in the track direction, so that the recording bit area becomes small and the reproduction output becomes very small. Since this small output is reproduced by a high-sensitivity head, it is inevitable that the limit to the medium noise becomes severe, and it is necessary to suppress the output attenuation as much as possible.

【0004】垂直磁気ディスク媒体のノイズに関する検
討結果は、例えば、IEEE Transactions on Magnetics3
3巻3079〜3081頁(1997年)に記載されて
おり、CoCrPt垂直媒体について、100kFCI
における媒体S/Nが37dBと示されている。しかし
ながら、1平方インチ当たり10ギガビット以上の高い
面記録密度の記録再生をするためには、300kFCI
以上の高い線記録密度においても十分高い媒体S/Nが
必要であり、さらなる媒体ノイズの低減が求められてい
る。また、出力の減衰に関する報告は、例えば、IEEE T
ransactions onMagnetics31巻2755〜2757頁
(1995年)に記載されており、垂直媒体でも出力減
衰を抑える工夫が必要であると考えられる。
[0004] The results of a study on noise in a perpendicular magnetic disk medium are described in, for example, IEEE Transactions on Magnetics3.
3, pp. 3079-3081 (1997), and for CoCrPt perpendicular media, 100 kFCI.
Is shown as 37 dB. However, in order to perform recording and reproduction at a high areal recording density of 10 gigabits per square inch or more, 300 kFCI is required.
Even at the above high linear recording density, a sufficiently high medium S / N is required, and further reduction in medium noise is required. In addition, reports on output attenuation can be found, for example, in IEEE T
This is described in Transactions on Magnetics, Vol. 31, pp. 2755-2775 (1995), and it is considered that a device for suppressing output attenuation even in a perpendicular medium is required.

【0005】CoCr垂直磁化膜のMgOの(100)
面上への成長に関しては、Journalof Applied Physics
57巻4003〜4005頁(1985年)に記載され
ている。MgO単結晶基板上へCoCrを室温で形成す
ると垂直配向性に優れた磁性膜が得られるが、その保磁
力は高々700エルステッドであり、磁気記録媒体とし
て用いるには不十分である。
The (100) of MgO in the CoCr perpendicular magnetization film
For the growth on the surface, see Journal of Applied Physics
57, pages 4003 to 4005 (1985). When CoCr is formed on an MgO single crystal substrate at room temperature, a magnetic film having excellent perpendicular orientation can be obtained, but its coercive force is at most 700 Oersted, which is insufficient for use as a magnetic recording medium.

【0006】[0006]

【発明が解決しようとする課題】我々の検討によると、
Co−Cr−Pt磁性膜をCo−35at%Crのよう
な最密六方構造の非磁性下地膜の(0001)面上にエ
ピタキシャル成長させ、かつ膜厚を薄くすることによっ
て磁性膜の結晶粒を微細化すれば、ノイズを低減できる
ことがわかっている。ただし、膜厚が約25nm以下で
は膜厚を小さくしてもノイズの低減が見られず、結晶粒
微細化によるノイズの低減には限界がある。さらに膜厚
が15nm以下になると、熱揺らぎによる記録磁化の不
安定性が問題となってくる。このように、ただ単に膜厚
を小さくして結晶粒を微細化するだけでは、高密度記録
に適した高S/Nの媒体を作ることはできない。
According to our studies,
A Co—Cr—Pt magnetic film is epitaxially grown on the (0001) plane of a nonmagnetic underlayer having a close-packed hexagonal structure such as Co-35 at% Cr, and the film thickness is reduced to make crystal grains of the magnetic film fine. It is known that the noise reduction can be achieved by using such a method. However, when the film thickness is about 25 nm or less, no reduction in noise is observed even when the film thickness is reduced, and there is a limit to the reduction in noise due to the refinement of crystal grains. Further, when the film thickness becomes 15 nm or less, instability of recording magnetization due to thermal fluctuation becomes a problem. Thus, a medium having a high S / N ratio suitable for high-density recording cannot be produced simply by reducing the film thickness and refining the crystal grains.

【0007】本発明の目的は、十分に高い媒体S/Nを
持ち、かつ記録情報の長期間保持が可能な磁気記録媒体
及びその製造方法、並びにその磁気記録媒体を用いた記
録再生装置を提供することにある。
An object of the present invention is to provide a magnetic recording medium having a sufficiently high medium S / N and capable of holding recorded information for a long period of time, a method of manufacturing the same, and a recording / reproducing apparatus using the magnetic recording medium. Is to do.

【0008】[0008]

【課題を解決するための手段】上記目的は、(100)
面がおおむね膜面と平行であるように結晶配向したMg
O多結晶体薄膜を第1の下地膜とし、(0001)面が
おおむね膜面と平行であるように結晶配向した最密六方
構造の多結晶体薄膜を第2の下地膜として、それらを順
に形成した上にCo及びCrを主たる成分とした垂直磁
化膜を磁性膜として形成して得られる磁気記録媒体によ
り達成される。特に、上記第2の下地膜の主たる成分が
Coであるとき本発明による媒体S/N向上の効果が大
きく、また上記第1の下地膜が金属薄膜を介して基体上
に形成されているとき磁気記録媒体として必要な膜の強
度を得やすい。
SUMMARY OF THE INVENTION The above object is attained by (100)
Mg crystal-oriented so that the plane is almost parallel to the film plane
The polycrystalline thin film of O is used as a first base film, and the polycrystalline thin film having a close-packed hexagonal structure in which the (0001) plane is oriented substantially parallel to the film surface is used as a second base film. This is achieved by a magnetic recording medium obtained by forming a perpendicular magnetic film mainly composed of Co and Cr as a magnetic film on the formed magnetic film. In particular, when the main component of the second underlayer is Co, the effect of improving the medium S / N according to the present invention is great, and when the first underlayer is formed on a substrate via a metal thin film. It is easy to obtain the required film strength as a magnetic recording medium.

【0009】本発明の垂直磁気記録媒体は、スパッタリ
ング法により100℃以下で上記第1の下地膜及び上記
第2の下地膜を形成し、200℃以上で上記磁性膜を形
成する製造方法により得られる。すなわち、本発明によ
る垂直磁気記録媒体は、基体上に順次積層して形成され
た第1の下地膜、第2の下地膜、及び磁性膜を備え、第
1の下地膜は(100)面がおおむね膜面と平行である
ように結晶配向したMgO多結晶体薄膜であり、第2の
下地膜は(0001)面がおおむね膜面と平行であるよ
うに結晶配向した最密六方構造の多結晶体薄膜であり、
磁性膜はCo及びCrを主たる成分とした垂直磁化膜で
あることを特徴とする。磁性膜の上には保護潤滑層が設
けられる。
The perpendicular magnetic recording medium of the present invention is obtained by a manufacturing method in which the first underlayer and the second underlayer are formed at 100 ° C. or lower by a sputtering method, and the magnetic layer is formed at 200 ° C. or higher. Can be That is, a perpendicular magnetic recording medium according to the present invention includes a first underlayer, a second underlayer, and a magnetic layer formed sequentially on a substrate, and the first underlayer has a (100) plane. The second base film is a closest-packed hexagonal polycrystal in which the (0001) plane is crystallographically oriented so as to be substantially parallel to the film surface. Body thin film,
The magnetic film is a perpendicular magnetization film containing Co and Cr as main components. A protective lubrication layer is provided on the magnetic film.

【0010】第1の下地膜は、金属薄膜を介して基体上
に形成するのが好ましい。また、第2の下地膜は、主た
る成分がCoである膜とすることができる。本発明によ
る垂直磁気記録媒体の製造方法は、基体上に、スパッタ
リング法により100℃以下で(100)面がおおむね
膜面と平行であるように結晶配向したMgO多結晶体薄
膜を形成するステップと、100℃以下で(0001)
面がおおむね膜面と平行であるように結晶配向した最密
六方構造の多結晶体薄膜を形成するステップと、200
℃以上でCo及びCrを主たる成分とした垂直磁化膜を
形成するステップとを含むことを特徴とする。
[0010] The first underlayer is preferably formed on a substrate via a metal thin film. Further, the second base film may be a film whose main component is Co. The method for producing a perpendicular magnetic recording medium according to the present invention comprises the steps of forming a MgO polycrystalline thin film having a (100) plane crystallized at 100 ° C. or less on a substrate such that the (100) plane is substantially parallel to the film plane by sputtering. Below 100 ° C, (0001)
Forming a close-packed hexagonal polycrystalline thin film crystal oriented so that the plane is substantially parallel to the film plane;
Forming a perpendicular magnetization film containing Co and Cr as main components at a temperature of not less than ° C.

【0011】本発明による磁気記録再生装置は、磁気記
録媒体と、磁気記録媒体駆動部と、磁気ヘッドと、磁気
ヘッド駆動部と、記録再生信号処理系とを含む磁気記録
再生装置において、磁気記録媒体として前述した本発明
の垂直磁気記録媒体を用い、磁気ヘッドの再生部は磁気
抵抗効果又は巨大磁気抵抗効果を利用して再生を行うも
のであることを特徴とする。
A magnetic recording / reproducing apparatus according to the present invention is a magnetic recording / reproducing apparatus including a magnetic recording medium, a magnetic recording medium driving section, a magnetic head, a magnetic head driving section, and a recording / reproducing signal processing system. The above-described perpendicular magnetic recording medium of the present invention is used as a medium, and the reproducing section of the magnetic head performs reproduction using a magnetoresistance effect or a giant magnetoresistance effect.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1及び図2は、本発明による垂
直磁気記録媒体の基本的な構成を示す断面模式図であ
る。図1及び図2において、11は強化ガラス、シリコ
ン、カーボン、セラミックス、チタン合金、有機樹脂、
Ni−P合金メッキアルミ合金基板などの非磁性基板で
ある。12は(100)面がおおむね膜面と平行である
ように結晶配向したMgO多結晶体下地膜。13は(0
001)面がおおむね膜面と平行であるように結晶配向
した最密六方構造の多結晶体下地膜で、例えば非磁性C
oCrやCoRuなどである。14はコバルトとクロム
を主成分とし、例えばCo−Cr−Ta,Co−Cr−
Pt,Co−Cr−Pt−Ta,Co−Cr−Nb,C
o−Cr−Wなどのような強磁性薄膜を用いた磁気記録
層である。15はカーボン、シリコン−カーボン、ボロ
ン−カーボンなどの保護膜と有機系潤滑膜とから成る保
護潤滑層である。また、図2において16はTi,V,
Cr,Ge,Si,Al,Zr,Nb,Mo,Ru,P
d,Ag,Hf,Ta,W,Pt,Auなどの金属薄膜
である。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are schematic sectional views showing the basic structure of a perpendicular magnetic recording medium according to the present invention. 1 and 2, reference numeral 11 denotes tempered glass, silicon, carbon, ceramics, a titanium alloy, an organic resin,
A non-magnetic substrate such as a Ni-P alloy-plated aluminum alloy substrate. Reference numeral 12 denotes an MgO polycrystalline underlayer whose crystal orientation is such that the (100) plane is substantially parallel to the film plane. 13 is (0
001) is a close-packed hexagonal polycrystalline underlayer in which the crystal orientation is substantially parallel to the film surface.
oCr and CoRu. 14 is mainly composed of cobalt and chromium, for example, Co-Cr-Ta, Co-Cr-.
Pt, Co-Cr-Pt-Ta, Co-Cr-Nb, C
This is a magnetic recording layer using a ferromagnetic thin film such as o-Cr-W. Reference numeral 15 denotes a protective lubricating layer comprising a protective film of carbon, silicon-carbon, boron-carbon or the like and an organic lubricating film. In FIG. 2, reference numeral 16 denotes Ti, V,
Cr, Ge, Si, Al, Zr, Nb, Mo, Ru, P
It is a metal thin film of d, Ag, Hf, Ta, W, Pt, Au or the like.

【0013】〔実施例1〕図1に断面模式図を示す磁気
記録媒体を作製した。非磁性基板11としては基板表面
粗さRaが3nm以下の直径2.5インチの強化ガラス
製ディスクを用い、下地層12,13、磁性層14及び
保護層15の膜形成は直流マグネトロンスパッタ法によ
り、以下の条件で行った。スパッタ装置内の到達真空度
は1×10-8トール以下、放電用アルゴンガス圧力は3
×10-3トール、投入電力は直径6インチのターゲット
に対して1kWとした。なお、本実施例において作製し
た媒体の評価は、結晶配向性に関してはX線回折法で測
定した回折強度によって、磁気特性に関しては振動試料
型磁力計を用いて磁場を膜面垂直方向に印加して求めた
保磁力によって行った。高分解能で高S/Nの垂直磁気
記録媒体であるためには、磁性膜の垂直配向性が優れて
いて、かつ、少なくとも1kOe以上の保磁力が必要で
ある。
[Example 1] A magnetic recording medium having a schematic sectional view shown in FIG. 1 was manufactured. As the non-magnetic substrate 11, a 2.5 inch diameter tempered glass disk having a substrate surface roughness Ra of 3 nm or less is used, and the underlayers 12, 13, the magnetic layer 14, and the protective layer 15 are formed by a DC magnetron sputtering method. Was performed under the following conditions. The ultimate degree of vacuum in the sputtering apparatus is 1 × 10 −8 Torr or less, and the argon gas pressure for discharge is 3
× 10 -3 Torr, and the input power was 1 kW for a target having a diameter of 6 inches. The evaluation of the medium manufactured in this example was performed by applying a magnetic field in the direction perpendicular to the film surface using a vibrating sample magnetometer for the crystal orientation based on the diffraction intensity measured by the X-ray diffraction method. The coercive force was determined as described above. In order to be a high-resolution and high-S / N perpendicular magnetic recording medium, the magnetic film must have excellent perpendicular orientation and a coercive force of at least 1 kOe.

【0014】厚さ10nmのMgO下地膜をいろいろな
基板温度の下で基板上に形成して、MgO膜の垂直配向
性をMgO(100)面からのX線回折強度によって調
べた結果、図3のようになった。すなわち、100℃以
下の基板温度で形成したときに、良好な(100)配向
膜が形成されているが、100℃以上の基板温度で形成
したときには(100)方向の配向性は良くなかった。
As a result of forming a 10-nm-thick MgO base film on the substrate at various substrate temperatures and examining the vertical orientation of the MgO film by X-ray diffraction intensity from the MgO (100) plane, FIG. It became like. That is, when formed at a substrate temperature of 100 ° C. or lower, a good (100) orientation film was formed, but when formed at a substrate temperature of 100 ° C. or higher, the orientation in the (100) direction was not good.

【0015】次に、基板温度30℃で形成して(10
0)配向性の優れたMgO膜と、基板温度210℃で形
成して(100)配向性の劣ったMgO膜の2種類を下
地として用いて、これらの上に磁性膜を垂直配向させる
ことを目的に、厚さ25nmのCo−19at%Cr−
12at%Pt磁性膜をいろいろな基板温度の下で形成
した。形成されたCoCrPt膜の(0001)面から
のX線回折強度の基板温度依存性を測定したところ、基
板温度210℃で形成したMgO膜を下地としたCoC
rPt磁性膜は垂直配向しなかった。基板温度30℃で
形成したMgO膜を下地としたCoCrPt磁性膜の場
合は図4に示すように、100℃以下の基板温度で形成
した場合に良好な垂直配向性が得られた。すなわち、垂
直配向性に優れたCoCrPt磁性膜を得るためには、
基板温度100℃以下で(100)配向したMgO膜上
に形成するにする必要があることがわかった。しかしな
がら、基板温度30℃で形成したMgO膜を下地とした
CoCrPt磁性膜の保磁力の基板温度依存性を測定す
ると図5のようになり、磁気記録媒体として用いるのに
十分な保磁力を得るためには基板温度を200℃以上に
する必要があり、垂直配向性と保磁力の両方の条件を満
たすことはできなかった。
Next, the substrate is formed at a substrate temperature of 30 ° C. (10
0) Using two types of MgO film having excellent orientation and an MgO film formed at a substrate temperature of 210 ° C. and having poor (100) orientation as bases, and vertically aligning a magnetic film on them. For the purpose, a 25 nm thick Co-19 at% Cr-
12 at% Pt magnetic films were formed at various substrate temperatures. The substrate temperature dependence of the X-ray diffraction intensity from the (0001) plane of the formed CoCrPt film was measured.
The rPt magnetic film was not vertically aligned. As shown in FIG. 4, in the case of a CoCrPt magnetic film having an MgO film formed at a substrate temperature of 30 ° C. as a base, good vertical alignment was obtained when formed at a substrate temperature of 100 ° C. or less. That is, in order to obtain a CoCrPt magnetic film having excellent vertical orientation,
It has been found that it is necessary to form on a (100) -oriented MgO film at a substrate temperature of 100 ° C. or lower. However, the substrate temperature dependence of the coercive force of a CoCrPt magnetic film with an MgO film formed at a substrate temperature of 30 ° C. is as shown in FIG. 5. Requires a substrate temperature of 200 ° C. or higher, and could not satisfy both the conditions of the vertical orientation and the coercive force.

【0016】この問題を解決するために、MgO下地と
磁性膜の間に最密六方構造の下地膜を形成することを行
った。最密六方構造の膜としては、CoCr系の磁性膜
とのエピタキシャル関係から判断すると、Coを含んだ
合金膜が良いと考えられ、本実施例ではCrを35at
%含んだ非磁性のCoCr合金を用いた。MgO上での
非磁性CoCr膜の配向は、図6に示したとおりで、前
記のCoCrPt磁性膜の場合とまったく同じ傾向であ
った。図6の縦軸は、非磁性CoCr下地膜の(000
1)面からのX線回折強度である。結果として、100
℃以下の基板温度でMgO下地膜とCoCr下地膜を順
に形成することで、最密六方構造の(0001)面を最
表面に持った構造の下地膜が得られた。
To solve this problem, an underlayer film having a close-packed hexagonal structure was formed between an MgO underlayer and a magnetic film. Judging from the epitaxial relationship with the CoCr-based magnetic film, it is considered that the alloy film containing Co is preferable as the film having the densest hexagonal structure.
% Non-magnetic CoCr alloy was used. The orientation of the non-magnetic CoCr film on MgO was as shown in FIG. 6 and had exactly the same tendency as in the case of the CoCrPt magnetic film. The vertical axis in FIG. 6 indicates (000) of the nonmagnetic CoCr underlayer.
1) X-ray diffraction intensity from a plane. As a result, 100
By sequentially forming an MgO base film and a CoCr base film at a substrate temperature of not more than ℃, a base film having a (0001) plane of the closest packed hexagonal structure on the outermost surface was obtained.

【0017】この2層の下地上に厚さ25nmのCoC
rPt磁性膜を形成したところ、磁性膜の結晶配向は図
7に示したとおりで、おおむね優れた垂直配向が得られ
た。特に200℃以上の基板温度で成膜した場合に、よ
り良い配向性を示した。また、これらの膜の保磁力を測
定すると図8のようになり、基板温度200℃以上で成
膜したときに磁気記録媒体として十分大きな保磁力が得
られた。
Under the two layers, a 25 nm-thick CoC
When the rPt magnetic film was formed, the crystal orientation of the magnetic film was as shown in FIG. 7, and generally excellent vertical orientation was obtained. In particular, when the film was formed at a substrate temperature of 200 ° C. or more, better orientation was exhibited. FIG. 8 shows the measured coercive force of these films. When the film was formed at a substrate temperature of 200 ° C. or higher, a sufficiently large coercive force was obtained as a magnetic recording medium.

【0018】結果として、100℃以下の基板温度でM
gO下地膜とCoCr下地膜を順に形成した後、200
℃以上の基板温度で磁性膜を形成することで、垂直磁気
記録媒体に適した垂直配向性と保磁力を兼ね備えた磁性
膜をMgO下地上に作製することができた。次に、Mg
O下地を用いることの記録再生特性への影響を調べるた
めに、後述の3種類のディスク試料を比較した。記録再
生特性の評価はスピンスタンドにおいて行い、媒体S/
Nと再生出力の経時変化を調べた。評価の条件として
は、ギャップ長0.2μm、トラック幅1μm、巻線数
20ターンの誘導電磁型ヘッドにより記録し、シールド
間隔0.2μm、トラック幅0.9μmの磁気抵抗効果
型ヘッドにより再生を行った。ヘッドと媒体の磁気スペ
ーシングは40nmとした。再生出力Sは線記録密度2
kFCIの孤立波出力を、媒体ノイズNは300kFC
Iを記録した場合の0〜50MHzの積算ノイズを測定
して求め、これらの比を媒体S/Nとして評価した。ま
た、線記録密度50kFCIの信号を、記録してから5
秒後から1時間後まで再生出力を測定し、時間の対数に
対してプロットして直線で近似したときの5秒後に対す
る1時間後の再生出力の比を求め、再生出力の経時変化
の指標とした。
As a result, at a substrate temperature of 100 ° C. or less, M
After sequentially forming a gO underlayer and a CoCr underlayer, 200 g
By forming the magnetic film at a substrate temperature of not less than ° C., a magnetic film having both perpendicular orientation and coercive force suitable for a perpendicular magnetic recording medium could be formed on an MgO base. Next, Mg
In order to examine the effect of the use of the O underlayer on the recording / reproducing characteristics, three types of disk samples described below were compared. The evaluation of the recording / reproducing characteristics was performed in a spin stand, and the medium S /
The change with time of N and the reproduction output was examined. The evaluation conditions were as follows. Recording was performed by an induction electromagnetic head having a gap length of 0.2 μm, track width of 1 μm, and 20 turns, and reproduction was performed by a magnetoresistive head having a shield interval of 0.2 μm and a track width of 0.9 μm. went. The magnetic spacing between the head and the medium was 40 nm. Reproduction output S is linear recording density 2
kFCI solitary wave output, medium noise N is 300 kFC
The integrated noise of 0 to 50 MHz when I was recorded was measured and obtained, and these ratios were evaluated as the medium S / N. After recording a signal with a linear recording density of 50 kFCI,
The reproduction output was measured from the second to one hour later, plotted against the logarithm of time, and approximated by a straight line to obtain the ratio of the reproduction output after one hour to the one after five seconds. And

【0019】ディスク試料は、試料Aとして280℃で
膜厚30nmのTi下地膜と膜厚25nmのCo−19
at%Cr−12at%Pt磁性膜を順に形成した媒
体、試料Bとして280℃で膜厚30nmのTi下地膜
と膜厚20nmの非磁性Co−35at%Cr下地膜と
膜厚25nmのCo−19at%Cr−12at%Pt
磁性膜を順に形成した媒体、試料Cとして30℃で膜厚
10nmのMgO下地膜と膜厚20nmの非磁性Co−
35at%Cr下地膜を形成した後280℃で膜厚25
nmのCo−19at%Cr−12at%Pt磁性膜を
順に形成した媒体である。
A disk sample was prepared as a sample A at 280 ° C. with a 30 nm-thick Ti underlayer film and a 25 nm-thick Co-19 film.
A medium on which an at% Cr-12 at% Pt magnetic film was sequentially formed, a sample B having a Ti underlayer of 30 nm thickness at 280 [deg.] C., a non-magnetic Co-35 at% Cr underlayer of 20 nm thickness, and a Co-19at of 25 nm thickness. % Cr-12at% Pt
A medium on which a magnetic film was sequentially formed, a sample C having a thickness of 10 nm and a non-magnetic Co—
After forming a 35 at% Cr underlayer, a film thickness of 25 at 280 ° C.
This is a medium in which a Co-19 at% Cr-12 at% Pt magnetic film having a thickness of 10 nm is sequentially formed.

【0020】結果は表1に示したとおりで、下地膜とし
てMgOを用いた試料Cにおいて、より高いS/Nと記
録磁化の安定性が得られた。この結果は、磁性膜として
Co−Cr−Ta,Co−Cr−Pt−Ta,Co−C
r−Nb,Co−Cr−Wを用いた場合にもほぼ同じで
あり、また、第2の下地膜としてCo−Ruを用いた場
合にも同じであった。
The results are shown in Table 1. In Sample C using MgO as the underlayer, higher S / N and higher stability of recording magnetization were obtained. This result indicates that Co-Cr-Ta, Co-Cr-Pt-Ta, Co-C
The results were almost the same when r-Nb and Co-Cr-W were used, and also when Co-Ru was used as the second underlayer.

【0021】[0021]

【表1】 [Table 1]

【0022】このように、MgOを下地として用いるこ
とで、S/Nと記録磁化の安定性が向上するのは、Mg
O薄膜が金属薄膜に比べて、その結晶粒の大きさがより
均一にしかも粒界がより明瞭に分離した形態で成長する
ことにより、磁性膜の結晶粒の大きさもより均一にしか
も結晶粒間の磁気的相互作用もより切れたような媒体が
得られることによると考えられる。
As described above, the use of MgO as a base improves the stability of S / N and recording magnetization.
Since the O thin film grows in a form in which the crystal grain size is more uniform and the grain boundaries are more clearly separated than the metal thin film, the crystal size of the magnetic film is more uniform and the crystal grain size is larger. This is considered to be due to the fact that a medium in which the magnetic interaction of.

【0023】〔実施例2〕実施例1に記載した試料Cと
同じ構造のディスク試料を数多く作製したところ、その
中には膜の付着強度が弱く、ヘッドの衝撃に耐えられな
いものが存在した。これでは磁気記録媒体として用いる
ことができないので、基板とMgO下地膜の間に厚さ3
nmの金属薄膜を基板温度30℃で直流マグネトロンス
パッタ法により形成することを試みた。金属薄膜の材料
としてはTi,V,Cr,Ge,Si,Al,Zr,N
b,Mo,Ru,Pd,Ag,Hf,Ta,W,Pt,
Auなどについて検討したが、いずれの場合も再現性良
く膜の強度が向上し、ヘッドの衝撃に対しても問題がな
かった。記録再生特性も実施例1に記載した試料Cとほ
とんど変わらなかった。したがって、基板とMgO下地
膜の間に金属薄膜を形成することが望ましい。ただし、
基板温度100℃以上で金属薄膜を10nm以上形成し
た場合には、MgO下地膜の付着強度の点では問題がな
かったものの、MgOの(100)方向の配向性が良く
なかったため、実施例1の試料CのようなS/N向上の
効果は生じなかった。
Example 2 When a number of disk samples having the same structure as the sample C described in Example 1 were prepared, some of them had weak film adhesion strength and could not withstand the impact of the head. . This cannot be used as a magnetic recording medium.
An attempt was made to form a thin metal film having a thickness of 30 nm by a DC magnetron sputtering method at a substrate temperature of 30 ° C. As the material of the metal thin film, Ti, V, Cr, Ge, Si, Al, Zr, N
b, Mo, Ru, Pd, Ag, Hf, Ta, W, Pt,
Au and the like were examined, but in each case, the strength of the film was improved with good reproducibility, and there was no problem with the impact of the head. The recording and reproducing characteristics were almost the same as those of the sample C described in Example 1. Therefore, it is desirable to form a metal thin film between the substrate and the MgO underlayer. However,
When the metal thin film was formed at a substrate temperature of 100 ° C. or higher at a thickness of 10 nm or more, although there was no problem in the adhesion strength of the MgO underlayer, the orientation of MgO in the (100) direction was not good. The effect of improving S / N as in Sample C did not occur.

【0024】〔実施例3〕実施例1及び実施例2におい
て作製した垂直磁気記録媒体の中から媒体S/Nが36
dB以上の媒体を選び、これらを用いた磁気記録再生装
置を作製した。磁気記録再生装置は、図9(a)に平面
模式図を、図9(b)にそのAA断面模式図を示す周知
の構造のもので、磁気記録媒体91、磁気記録媒体91
を回転駆動する磁気記録媒体駆動部92、回転する磁気
記録媒体上を移動して記録及び再生を行う磁気ヘッド9
3、磁気ヘッド93を磁気記録媒体91上で駆動する磁
気ヘッド駆動部94、磁気ヘッドに記録信号を供給し、
また磁気ヘッドからの再生信号を処理する記録再生信号
処理系95を備える。磁気ヘッド93としては、実施例
1で使用したのと同様のものを用い、磁気ヘッド93と
磁気記録媒体91の間の磁気スペーシングは50nm以
下となるように調整した。その結果、1平方インチ当た
り4ギガビット以上の面記録密度での情報の記録と再生
が可能であることを確認できた。これに対して、媒体S
/Nが36dBに満たない磁気記録媒体を用いた場合
は、高記録密度での再生が困難であった。
[Embodiment 3] Among the perpendicular magnetic recording media manufactured in the embodiment 1 and the embodiment 2, the medium S / N is 36.
A medium of dB or more was selected, and a magnetic recording / reproducing apparatus using these media was manufactured. The magnetic recording / reproducing apparatus has a well-known structure in which a schematic plan view is shown in FIG. 9A and a schematic cross-sectional view of the magnetic recording medium is shown in FIG. 9B.
And a magnetic head 9 for recording and reproducing by moving on a rotating magnetic recording medium
3. A magnetic head driving unit 94 that drives the magnetic head 93 on the magnetic recording medium 91, supplies a recording signal to the magnetic head,
Further, a recording / reproducing signal processing system 95 for processing a reproducing signal from the magnetic head is provided. The magnetic head 93 used was the same as that used in Example 1, and the magnetic spacing between the magnetic head 93 and the magnetic recording medium 91 was adjusted to be 50 nm or less. As a result, it was confirmed that information could be recorded and reproduced at an areal recording density of 4 gigabits per square inch or more. On the other hand, medium S
When a magnetic recording medium having a / N of less than 36 dB was used, reproduction at a high recording density was difficult.

【0025】磁気ヘッドの再生ヘッドとして誘導電磁型
ヘッドを用いた場合には、本実施例で見られるような媒
体間の媒体S/Nの差異が見られず、また高密度に記録
された情報の再生も不可能であった。再生ヘッドとして
巨大磁気抵抗効果を利用したヘッドを用いた場合には、
本実施例においてみられた媒体S/Nの違いがより明確
に現れ、本発明が有効であることが確認された。
When an induction electromagnetic head is used as a reproducing head of a magnetic head, there is no difference in medium S / N between the media as seen in the present embodiment, and information recorded at high density It was impossible to regenerate. When a head using the giant magnetoresistance effect is used as the reproducing head,
The difference in medium S / N observed in the present example appeared more clearly, and it was confirmed that the present invention was effective.

【0026】[0026]

【発明の効果】本発明によると、高密度記録に適した十
分に高い媒体S/Nを持ち、かつ記録情報の長期間保持
が可能な垂直磁気記録媒体、及び高性能な磁気記録再生
装置を提供することができる。
According to the present invention, a perpendicular magnetic recording medium having a sufficiently high medium S / N suitable for high-density recording and capable of holding recorded information for a long period of time, and a high-performance magnetic recording / reproducing apparatus are provided. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による垂直磁気記録媒体の基本的な断面
の構造を示す模式図。
FIG. 1 is a schematic diagram showing a basic cross-sectional structure of a perpendicular magnetic recording medium according to the present invention.

【図2】実施例2の垂直磁気記録媒体の基本的な断面の
構造を示す模式図。
FIG. 2 is a schematic diagram illustrating a basic cross-sectional structure of a perpendicular magnetic recording medium according to a second embodiment.

【図3】基板上に形成したMgO下地膜の(100)面
からのX線回折強度の膜形成時における基板温度依存性
を示した図。
FIG. 3 is a view showing the substrate temperature dependence of the X-ray diffraction intensity from the (100) plane of the MgO underlayer film formed on the substrate when the film is formed.

【図4】(100)配向したMgO下地上に形成したC
oCrPt磁性膜の(0001)面からのX線回折強度
の膜形成時における基板温度依存性を示した図。
FIG. 4 shows C formed on a (100) -oriented MgO substrate.
The figure which showed the substrate temperature dependence at the time of film formation of the X-ray diffraction intensity from the (0001) plane of an oCrPt magnetic film.

【図5】(100)配向したMgO下地上に形成したC
oCrPt磁性膜の保磁力の膜形成時における基板温度
依存性を示した図。
FIG. 5 shows C formed on a (100) -oriented MgO substrate.
FIG. 4 is a diagram showing the substrate temperature dependence of the coercive force of an oCrPt magnetic film during film formation.

【図6】(100)配向したMgO下地上に形成した非
磁性CoCr下地膜の(0001)面からのX線回折強
度の膜形成時における基板温度依存性を示した図。
FIG. 6 is a diagram showing the substrate temperature dependence of the X-ray diffraction intensity from the (0001) plane of the nonmagnetic CoCr underlayer formed on the (100) -oriented MgO underlayer at the time of film formation.

【図7】(0001)配向した非磁性CoCr下地膜上
に形成したCoCrPt磁性膜の(0001)面からの
X線回折強度の膜形成時における基板温度依存性を示し
た図。
FIG. 7 is a diagram showing the substrate temperature dependence of the X-ray diffraction intensity from the (0001) plane of a CoCrPt magnetic film formed on a (0001) -oriented nonmagnetic CoCr underlayer film during film formation.

【図8】(0001)配向した非磁性CoCr下地膜上
に形成したCoCrPt磁性膜の保磁力の膜形成時にお
ける基板温度依存性を示した図。
FIG. 8 is a diagram showing the substrate temperature dependence of the coercive force of a CoCrPt magnetic film formed on a (0001) -oriented non-magnetic CoCr underlayer during film formation.

【図9】磁気記録再生装置の概略図。FIG. 9 is a schematic diagram of a magnetic recording / reproducing apparatus.

【符号の説明】[Explanation of symbols]

11…非磁性基板、12…(100)面がおおむね膜面
と平行であるように結晶配向したMgO多結晶体薄膜
(第1の下地膜)、13…(0001)面がおおむね膜
面と平行であるように結晶配向した最密六方構造の多結
晶体薄膜(第2の下地膜)、14…CoとCrを主たる
成分とした垂直磁化膜、15…保護潤滑層、16…金属
薄膜、91…磁気記録媒体、92…磁気記録媒体駆動
部、93…磁気ヘッド、94…磁気ヘッド駆動部、95
…記録再生信号処理系
11: non-magnetic substrate; 12: MgO polycrystalline thin film (first underlayer) crystal-oriented so that the (100) plane is substantially parallel to the film plane; 13 ... (0001) plane is substantially parallel to the film plane A polycrystalline thin film (second underlayer) having a close-packed hexagonal structure with crystal orientation as follows: 14 ... a perpendicular magnetization film mainly containing Co and Cr; 15 ... a protective lubricating layer; 16 ... a metal thin film; ... magnetic recording medium, 92 ... magnetic recording medium drive unit, 93 ... magnetic head, 94 ... magnetic head drive unit, 95
... Recording / reproducing signal processing system

フロントページの続き (72)発明者 伊藤 研也 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社 日立製作所 中央研究所内 (72)発明者 稲葉 信幸 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社 日立製作所 中央研究所内 (56)参考文献 特開 平7−334832(JP,A) 特開 平9−320847(JP,A) 特開 平10−275320(JP,A) 特開 平10−334444(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/738 G11B 5/64 G11B 5/851 Continuing from the front page (72) Inventor Kenya Ito 1-280 Higashi-Koigabo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. In-house (56) References JP-A-7-334832 (JP, A) JP-A-9-320847 (JP, A) JP-A-10-275320 (JP, A) JP-A-10-334444 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) G11B 5/738 G11B 5/64 G11B 5/851

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基体上に順次積層して形成された第1の
下地膜、第2の下地膜、及び磁性膜を備え、前記第1の
下地膜は(100)面がおおむね膜面と平行であるよう
に結晶配向したMgO多結晶体薄膜であり、前記第2の
下地膜は(0001)面がおおむね膜面と平行であるよ
うに結晶配向した最密六方構造の多結晶体薄膜であり、
前記磁性膜はCo及びCrを主たる成分とした垂直磁化
膜であることを特徴とする垂直磁気記録媒体。
A first base film, a second base film, and a magnetic film which are sequentially formed on a substrate, wherein the first base film has a (100) plane substantially parallel to a film surface. Wherein the second undercoat film is a polycrystalline thin film having a close-packed hexagonal structure in which the (0001) plane is oriented substantially parallel to the film plane. ,
The perpendicular magnetic recording medium according to claim 1, wherein the magnetic film is a perpendicular magnetization film containing Co and Cr as main components.
【請求項2】 前記第1の下地膜は、金属薄膜を介して
基体上に形成されていることを特徴とする請求項1記載
の垂直磁気記録媒体。
2. The perpendicular magnetic recording medium according to claim 1, wherein the first underlayer is formed on a base via a metal thin film.
【請求項3】 前記第2の下地膜は、主たる成分がCo
であることを特徴とする請求項1及び2記載の垂直磁気
記録媒体。
3. The second undercoat film according to claim 1, wherein the main component is Co.
3. The perpendicular magnetic recording medium according to claim 1, wherein:
【請求項4】 基体上に、スパッタリング法により10
0℃以下で(100)面がおおむね膜面と平行であるよ
うに結晶配向したMgO多結晶体薄膜を形成するステッ
プと、 100℃以下で(0001)面がおおむね膜面と平行で
あるように結晶配向した最密六方構造の多結晶体薄膜を
形成するステップと、 200℃以上でCo及びCrを主たる成分とした垂直磁
化膜を形成するステップとを含むことを特徴とする垂直
磁気記録媒体の製造方法。
4. The method according to claim 1, further comprising the steps of:
Forming a MgO polycrystalline thin film having a crystal orientation such that the (100) plane is substantially parallel to the film surface at 0 ° C. or less, and the (0001) plane is substantially parallel to the film surface at 100 ° C. or less. A step of forming a polycrystalline thin film having a close-packed hexagonal structure with crystal orientation, and a step of forming a perpendicular magnetic film mainly containing Co and Cr at 200 ° C. or higher. Production method.
【請求項5】 磁気記録媒体と、磁気記録媒体駆動部
と、磁気ヘッドと、磁気ヘッド駆動部と、記録再生信号
処理系とを含む磁気記録再生装置において、 前記磁気記録媒体として請求項1〜3のいずれか1項記
載の垂直磁気記録媒体を用い、前記磁気ヘッドの再生部
は磁気抵抗効果又は巨大磁気抵抗効果を利用して再生を
行うものであることを特徴とする磁気記録再生装置。
5. A magnetic recording / reproducing apparatus including a magnetic recording medium, a magnetic recording medium driving unit, a magnetic head, a magnetic head driving unit, and a recording / reproducing signal processing system, wherein the magnetic recording medium is used. 4. A magnetic recording / reproducing apparatus using the perpendicular magnetic recording medium according to claim 3, wherein the reproducing section of the magnetic head performs reproduction using a magnetoresistance effect or a giant magnetoresistance effect.
JP10198408A 1998-07-14 1998-07-14 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same Expired - Fee Related JP3041273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10198408A JP3041273B2 (en) 1998-07-14 1998-07-14 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10198408A JP3041273B2 (en) 1998-07-14 1998-07-14 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same

Publications (2)

Publication Number Publication Date
JP2000030236A JP2000030236A (en) 2000-01-28
JP3041273B2 true JP3041273B2 (en) 2000-05-15

Family

ID=16390638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10198408A Expired - Fee Related JP3041273B2 (en) 1998-07-14 1998-07-14 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same

Country Status (1)

Country Link
JP (1) JP3041273B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3220116B2 (en) 1999-07-06 2001-10-22 株式会社日立製作所 Perpendicular magnetic recording medium and magnetic storage device
JP3665261B2 (en) 2000-09-01 2005-06-29 株式会社日立製作所 Perpendicular magnetic recording medium and magnetic storage device
AU2003211604A1 (en) * 2003-02-20 2004-09-09 Fujitsu Limited Vertical magnetic recording medium
US7884403B2 (en) 2004-03-12 2011-02-08 Japan Science And Technology Agency Magnetic tunnel junction device and memory device including the same

Also Published As

Publication number Publication date
JP2000030236A (en) 2000-01-28

Similar Documents

Publication Publication Date Title
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
US7282278B1 (en) Tilted recording media with L10 magnetic layer
US5879783A (en) Low noise magnetic recording medium and method of manufacturing
JPH10188278A (en) Production of high-performance low-noise isotropic magnetic medium having chromium lower layer
EP1675105B1 (en) Magnetic recording medium and magnetic storage device
US6221481B1 (en) High Cr, low saturation magnetization intermediate magnetic layer for high coercivity and low medium noise
US6403241B1 (en) CoCrPtB medium with a 1010 crystallographic orientation
JPH09293227A (en) Magnetic recording medium and magnetic disk device
EP1655724A2 (en) Magnetic recording medium and magnetic storage apparatus
US6759149B1 (en) Laminated medium with antiferromagnetic stabilization layers
US7521136B1 (en) Coupling enhancement for medium with anti-ferromagnetic coupling
US6156422A (en) High density magnetic recording medium with high Hr and low Mrt
JP2991672B2 (en) Magnetic recording media
JP3041273B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JPH11219511A (en) Magnetic recording medium and magnetic recording device
JP3663289B2 (en) Magnetic recording medium and magnetic storage device
JP3308239B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing device
JP3222141B2 (en) Magnetic recording medium and magnetic storage device
JP2991689B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JP3157806B2 (en) Magnetic recording media
JP3138453B2 (en) Perpendicular magnetic recording medium and magnetic storage device using the same
JP3136133B2 (en) Magnetic recording media
JP3867351B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees