JP3222141B2 - Magnetic recording medium and magnetic storage device - Google Patents

Magnetic recording medium and magnetic storage device

Info

Publication number
JP3222141B2
JP3222141B2 JP52613396A JP52613396A JP3222141B2 JP 3222141 B2 JP3222141 B2 JP 3222141B2 JP 52613396 A JP52613396 A JP 52613396A JP 52613396 A JP52613396 A JP 52613396A JP 3222141 B2 JP3222141 B2 JP 3222141B2
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
underlayer
magnetic recording
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP52613396A
Other languages
Japanese (ja)
Inventor
朋生 山本
信幸 稲葉
一助 山中
恵美 萬行
正昭 二本
譲 細江
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Application granted granted Critical
Publication of JP3222141B2 publication Critical patent/JP3222141B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/012Recording on, or reproducing or erasing from, magnetic disks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/657Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing inorganic, non-oxide compound of Si, N, P, B, H or C, e.g. in metal alloy or compound
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7369Two or more non-magnetic underlayers, e.g. seed layers or barrier layers
    • G11B5/737Physical structure of underlayer, e.g. texture
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7373Non-magnetic single underlayer comprising chromium
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7377Physical structure of underlayer, e.g. texture

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 技術分野 こ発明は、磁気ドラム、磁気テープ、磁気ディスク、
磁気カード等の磁気記録媒体及び磁気記憶装置に係り、
特に超高密度記録に適した薄膜型磁気記録媒体及びこれ
を用いた磁気記憶装置に関する。
Description: TECHNICAL FIELD The present invention relates to a magnetic drum, a magnetic tape, a magnetic disk,
According to a magnetic recording medium such as a magnetic card and a magnetic storage device,
In particular, the present invention relates to a thin-film magnetic recording medium suitable for ultra-high density recording and a magnetic storage device using the same.

背景技術 近年、計算機が広く一般に浸透した結果、高度情報化
社会が発達し、個人で扱う情報量は増加の一途を辿って
いる。これに伴い、外部記憶装置の小型大容量化、高速
アクセス化、低ビットコスト化は必要不可欠な課題とな
っている。特に、磁気ディスク装置は情報の書き換えが
可能で、記録情報へのアクセスが高速であり、しかも大
容量に適しており、外部記憶装置の主流であると言え
る。実際これまでに面記録密度を10年で約10倍のトレン
ドで高密度化し、磁気ディスク装置は外部記憶装置の主
流であり続けている。磁気記憶装置に用いられる磁気記
録媒体としては、酸化物磁性体の粉末を基板上に塗布し
た塗布型磁気記録媒体と、金属磁性体の薄膜を基板上に
蒸着又はスパッタリングした薄膜磁気記録媒体とが知ら
れている。この薄膜磁気記録媒体は、塗布型磁気記録媒
体に比べて記録膜中の磁性体の密度が高くより高密度の
記録に適している。そのため、例えば磁気ディスク装置
ではその大半が薄膜磁気記録媒体を用いている。
BACKGROUND ART In recent years, as a result of widespread use of computers in the general public, a highly information-oriented society has been developed, and the amount of information handled by individuals is steadily increasing. Accordingly, miniaturization and large capacity of external storage devices, high-speed access, and low bit cost have become indispensable issues. In particular, the magnetic disk device is capable of rewriting information, has high speed access to recorded information, and is suitable for a large capacity, and can be said to be the mainstream of external storage devices. Actually, the areal recording density has been increased by about ten times in ten years, and the magnetic disk device has been the mainstream of the external storage device. The magnetic recording medium used in the magnetic storage device includes a coating type magnetic recording medium in which powder of an oxide magnetic material is applied on a substrate, and a thin film magnetic recording medium in which a thin film of a metal magnetic material is deposited or sputtered on a substrate. Are known. This thin film magnetic recording medium has a higher density of the magnetic substance in the recording film than the coating type magnetic recording medium and is suitable for higher density recording. Therefore, for example, most of the magnetic disk devices use a thin-film magnetic recording medium.

薄膜磁気記録媒体の一般的な構造としては、特開昭62
−226414号、特開昭63−201911号に記載されるような基
板上に、下地膜、磁性膜、保護膜を順次積層した構造が
よく知られている。また、最近、より優れたノイズ特性
を有する媒体として、特開昭63−241717号、特開平1−
173313号に記載されるような基板上に下地膜を形成し、
この上に磁性層と非磁性中間層とを交互に積層する多層
磁気記録媒体が知られている。
The general structure of a thin film magnetic recording medium is disclosed in
A structure in which a base film, a magnetic film, and a protective film are sequentially laminated on a substrate as described in JP-A-226414 and JP-A-63-201911 is well known. Recently, as a medium having more excellent noise characteristics, Japanese Patent Application Laid-Open No. 63-241717,
Forming a base film on a substrate as described in 173313,
A multilayer magnetic recording medium in which a magnetic layer and a non-magnetic intermediate layer are alternately laminated thereon is known.

磁気ディスク装置の記憶容量を増大するためには、薄
膜磁気記録媒体の保磁力を高くする必要がある。この保
磁力を高くする手法として、下地膜や磁性膜の成膜時に
基板に負のバイアス電圧を印加し、成膜と同時に基板面
にスパッタガスを衝突させるバイアススパッタリング法
が最近注目されている。これらは例えばアイ・イー・イ
ー トランサクション オン マグネティクス、26巻、
1282頁、1990発行や、日本応用磁気学会誌、16巻、541
頁、1992年発行に記載されている。
In order to increase the storage capacity of the magnetic disk drive, it is necessary to increase the coercive force of the thin-film magnetic recording medium. As a technique for increasing the coercive force, a bias sputtering method in which a negative bias voltage is applied to a substrate when a base film or a magnetic film is formed and a sputtering gas collides with a substrate surface simultaneously with the film formation has attracted attention. These are, for example, IEE Transactions on Magnetics, Volume 26,
1282 pages, 1990 issue, Journal of the Japan Society of Applied Magnetics, 16, 541
Page 1992.

今後、1平方インチ当たり1ギガビット以上の高密度
記録を実現するには、ビット境界からの反磁界を小さく
するために、磁気記録媒体の残留磁束密度と磁性体の膜
厚の積(以下、残留磁束密度磁性体膜厚積と略記する)
を150G・μm以下にすることが必須条件である。このと
き保磁力は、最低でも2000Oeを確保する必要がある。さ
らに、保磁力を高くできても、媒体のノイズを小さくで
きなければ、結果として記録再生特性が不充分となり、
磁気記録媒体として使用できない。従来の手法のみでは
上記の条件を満足することは非常に困難である。
To realize high-density recording of 1 gigabit or more per square inch in the future, the product of the residual magnetic flux density of the magnetic recording medium and the film thickness of the magnetic material (hereinafter referred to as residual Magnetic flux density Abbreviated as magnetic product film thickness)
Is an essential condition to be 150 G · μm or less. At this time, the coercive force must be at least 2000 Oe. Further, even if the coercive force can be increased, if the noise of the medium cannot be reduced, as a result, the recording / reproducing characteristics become insufficient,
Cannot be used as a magnetic recording medium. It is very difficult to satisfy the above condition only by the conventional method.

この問題を解決するため、本願発明では、磁性膜の結
晶成長を制御する下地膜を改良し、さらに磁性膜との結
晶の整合性を高め、これにより磁性膜の保磁力を高め、
媒体ノイズを小さくする。従来の技術では、下地膜と磁
性膜の結晶格子の整合性についてはいずれも言及されて
いない。この整合性の向上により優れた記録再生特性を
有する磁気記録媒体を提供できる。
In order to solve this problem, in the present invention, the underlayer film for controlling the crystal growth of the magnetic film is improved, and further, the coherence of the crystal with the magnetic film is improved, thereby increasing the coercive force of the magnetic film.
Reduce media noise. The prior art does not mention any matching between the crystal lattices of the underlying film and the magnetic film. A magnetic recording medium having excellent recording / reproducing characteristics can be provided by improving the consistency.

磁気記録媒体の残留磁束密度膜厚積が150G・μm以下
になると、従来の誘導型磁気ヘッドや磁気抵効果を用い
て再生する記録再生分離型ヘッドでは、感度が必ずしも
充分ではない。そこで、さらに再生感度の高いヘッドを
使用することが望ましい。また、信号変調/復調回路も
高密度記録に対応する方式がより好ましい。
When the product of the residual magnetic flux density and the film thickness of the magnetic recording medium is 150 G · μm or less, the sensitivity is not always sufficient in a conventional inductive magnetic head or a recording / reproducing separation type head for reproducing using the magnetoresistance effect. Therefore, it is desirable to use a head with higher reproduction sensitivity. In addition, it is more preferable that the signal modulation / demodulation circuit is compatible with high-density recording.

本発明の第1の目的は、保磁力が高く高密度記録時に
おける媒体のノイズが小さな磁気記録媒体を提供するこ
とにある。また、本発明の第2の目的は、磁気記録媒体
の特性を充分に活かすした大容量の磁気記憶装置を提供
することにある。
A first object of the present invention is to provide a magnetic recording medium having a high coercive force and low medium noise during high-density recording. A second object of the present invention is to provide a large-capacity magnetic storage device that makes full use of the characteristics of a magnetic recording medium.

発明の開示 上記第1の目的は、非磁性基板上に立方晶からなる下
地層、六方晶からなる磁性層を少なくとも順次形成する
磁気記録媒体(面内記録媒体)において、その残留磁束
密度膜厚積が10G・μm以上150G・μm以下、保持力が2
000Oe以上であり、磁性層はCoを主たる成分とし、磁性
層のc軸長が4.105オングストローム以上であり、下地
層のa軸長の長さの が磁性層のc軸長よりも0.1%以上1.5%以下の範囲で大
となる構成によって達成される。
DISCLOSURE OF THE INVENTION The first object is to provide a magnetic recording medium (in-plane recording medium) in which at least a cubic underlayer and a hexagonal magnetic layer are sequentially formed on a nonmagnetic substrate. Product is 10G ・ μm or more and 150G ・ μm or less, holding force is 2
000 Oe or more, the magnetic layer contains Co as a main component, the c-axis length of the magnetic layer is 4.105 angstroms or more, and the a-axis length of the underlayer is Is larger in the range of 0.1% to 1.5% than the c-axis length of the magnetic layer.

下地膜の膜厚は、磁性膜の結晶粒径を小さくするため
に50nm以下であることが好ましく、28nm以下であること
がより好ましい。但し、下地膜の膜厚が1nm以下である
と良好な結晶成長ができず好ましくない。
The thickness of the underlayer is preferably 50 nm or less, and more preferably 28 nm or less, in order to reduce the crystal grain size of the magnetic film. However, if the thickness of the underlayer is 1 nm or less, favorable crystal growth cannot be performed, which is not preferable.

磁気記録媒体の磁性膜は一軸異方性を有することが好
ましく、稠密六方格子の結晶構造をもつCoではc軸が磁
化容易軸となり、このc軸方向に一軸異方性を有する。
このc軸の方向を下地膜により制御して、優れた記録再
生特性をもつ磁気記録媒体を作製する。
The magnetic film of the magnetic recording medium preferably has uniaxial anisotropy. In Co having a dense hexagonal lattice crystal structure, the c-axis becomes the easy axis of magnetization, and has uniaxial anisotropy in the c-axis direction.
By controlling the direction of the c-axis by the base film, a magnetic recording medium having excellent recording / reproducing characteristics is manufactured.

磁性膜であるCoのc軸の方向の制御のためには、下地
膜は体心立方格子を有する結晶であることが好ましい
が、下地膜は面心立方格子及びNaCl型の結晶であって
も、Coのc軸の方向の制御は原理的には可能である。体
心立方格子の構造をもつ下地膜としては、V、Cr、Zr、
Nb、Mo、Hf、Ta、Wから選ばれた少なくとも1種を主た
る成分とすることが好ましい。また、これらを合金とし
て用いる場合には、Cr−P、Cr−Ti、Cr−V、Cr−Zr、
Cr−Nb、Cr−Mo、Cr−Hf、Cr−Ta、Cr−W、Cr−Fe、Mo
−Nb、Mo−Pt、Mo−Ge、W−Ta、W−Si等が特に好まし
いが、下地膜の結晶が体心立方格子を呈していれば、こ
れら組成に限定するものではない。
In order to control the direction of the c-axis of Co, which is a magnetic film, the base film is preferably a crystal having a body-centered cubic lattice, but the base film may be a face-centered cubic lattice and a NaCl-type crystal. , Co can be controlled in principle in the direction of the c-axis. V, Cr, Zr, and underlayers with a body-centered cubic lattice structure
It is preferable that at least one selected from Nb, Mo, Hf, Ta, and W is a main component. When these are used as alloys, Cr-P, Cr-Ti, Cr-V, Cr-Zr,
Cr-Nb, Cr-Mo, Cr-Hf, Cr-Ta, Cr-W, Cr-Fe, Mo
-Nb, Mo-Pt, Mo-Ge, W-Ta, W-Si and the like are particularly preferable, but the composition is not limited as long as the crystal of the base film exhibits a body-centered cubic lattice.

下地膜のa軸長の長さの 磁性層のc軸長よりも0.1%以上1.5%以下の範囲で大と
する手法としては、上述したような下地膜に別の元素を
添加する合金化の他に、成膜時に基板側にも電圧を印加
するバイアススパッタリングを採用できる。むろんバイ
アスの印加の手法としては、DCバイアス、RFバイアスの
どちらを用いてもよい。バイアススパッタリングを行っ
て作製した膜の特徴としては、バイアススパッタリング
を行わずに作製した膜に比べ、膜中から検出されるスパ
ッタガスの濃度が高くなる。バイアススパッタリングを
行って作製した膜から検出されるスパッタガスの濃度
は、およそ100ppm以上である。
The length of the a-axis length of the base film As a technique for increasing the c-axis length of the magnetic layer in the range of 0.1% or more and 1.5% or less, in addition to the alloying of adding another element to the underlayer as described above, Bias sputtering for applying a voltage can be employed. Of course, either DC bias or RF bias may be used as a bias application method. As a feature of the film manufactured by performing the bias sputtering, the concentration of the sputter gas detected from the film is higher than that of the film manufactured without performing the bias sputtering. The concentration of the sputtering gas detected from the film formed by performing the bias sputtering is about 100 ppm or more.

下地膜のa軸長の変化させる調整方法としては、上記
の他に、スパッタガスをHe、Ne、Ar、Kr、Xe、Rnと変え
て成膜する、スパッタ時のガス圧力、基板温度、成膜時
の投入電力、成膜レート等成膜条件を変更する手法もあ
る。成膜条件を変化させた場合にも、膜中から検出され
るスパッタガスの濃度が変化するが、バイアススパッタ
リングを行なう場合ほど取り込まれない。
As an adjustment method for changing the a-axis length of the base film, in addition to the above, a film is formed by changing the sputtering gas to He, Ne, Ar, Kr, Xe, or Rn. There is also a method of changing film forming conditions such as input power during film formation and a film forming rate. When the film forming conditions are changed, the concentration of the sputter gas detected in the film changes, but is not captured as much as when the bias sputtering is performed.

以上説明した下地膜のa軸長を調整する手法を、磁性
層のc軸長を4.105オングストローム以上にするための
手法として用いてもよい。
The method for adjusting the a-axis length of the underlayer described above may be used as a method for setting the c-axis length of the magnetic layer to 4.105 angstroms or more.

媒体ノイズを小さくするために磁性層の組成を、CoCr
Ta、CoCrPt、CoSiTa、CoSiPt、CoCrPtTa、CoCrTaSi、Co
CrPtSi、CoCrTaB、CoCrPtBとすることが特に好ましい。
The composition of the magnetic layer should be changed to CoCr to reduce the medium noise.
Ta, CoCrPt, CoSiTa, CoSiPt, CoCrPtTa, CoCrTaSi, Co
It is particularly preferable to use CrPtSi, CoCrTaB, and CoCrPtB.

磁性層は、単層又は多層とするが、磁性層を多層構造
とする場合には、磁性層の間に非磁性中間層を設けるの
が好ましい。非磁性中間層は上述の下地層と同様なアプ
ローチで作製する。磁性層の組成が1層目と2層目の組
成が異なる場合には、非磁性中間層はその上に成膜され
る磁性層との関係でa軸長を決める必要がある。さら
に、磁性膜の組成が1層目と2層目が同じ場合にも、非
磁性中間層と下地層の組成又は成膜条件を変えてもよ
い。
The magnetic layer is a single layer or a multilayer. When the magnetic layer has a multilayer structure, it is preferable to provide a non-magnetic intermediate layer between the magnetic layers. The non-magnetic intermediate layer is formed by the same approach as the above-described underlayer. When the composition of the magnetic layer is different from the composition of the first layer and the composition of the second layer, it is necessary to determine the a-axis length of the nonmagnetic intermediate layer in relation to the magnetic layer formed thereon. Furthermore, even when the composition of the magnetic film is the same for the first layer and the second layer, the composition of the nonmagnetic intermediate layer and the underlayer or the film forming conditions may be changed.

基板と下地層の間には下地制御膜を設けてもよい。下
地制御膜としては、P、Ni、V、Cr、Zr、Nb、Mo、Hf、
Ta、Wから選ばれた少なくとも1種を主成分とすること
が好ましい。また、これらの元素を合金として用いる場
合には、Ni−P、Cr−P、Cr−Ti、Cr−V、Cr−Zr、Cr
−Nb、Cr−Mo、Cr−Hf、Cr−Ta、Cr−W、Cr−Fe、Mo−
Nb、Mo−Pt、Mo−Ge、W−Ta、W−Si等が、下地膜の結
晶配向を制御する上で特に好ましい。
An underlayer control film may be provided between the substrate and the underlayer. P, Ni, V, Cr, Zr, Nb, Mo, Hf,
It is preferable that at least one selected from Ta and W is a main component. When these elements are used as an alloy, Ni-P, Cr-P, Cr-Ti, Cr-V, Cr-Zr,
-Nb, Cr-Mo, Cr-Hf, Cr-Ta, Cr-W, Cr-Fe, Mo-
Nb, Mo-Pt, Mo-Ge, W-Ta, W-Si and the like are particularly preferable in controlling the crystal orientation of the underlayer.

上記第2の目的は、本発明の媒体と、少なくとも磁極
の一部に1.2T以上の飽和磁束密度を有する磁性材料を用
いた記録専用の誘導型磁気ヘッドと、巨大磁気抵抗素子
を備える再生専用の磁気抵抗効果ヘッドとを組み合わせ
た磁気ヘッドを使用して達成される。磁気ヘッドに対す
る入力信号及び出力信号を波形処理する記録再生信号処
理手段は、最尤符号による信号処理回路、及び巨大磁気
抵抗効果を利用した磁気ヘッドの再生信号の非対称性を
修正する回路を含み、磁気ヘッドが搭載されるスライダ
の浮上高さを0.05μm以下にすることが好ましい。
The second object is to provide a recording-only inductive magnetic head using a medium of the present invention, a magnetic material having a saturation magnetic flux density of at least 1.2 T in at least a part of a magnetic pole, and a read-only magnetic disk having a giant magnetoresistive element. This is achieved by using a magnetic head in combination with the magnetoresistive head of the present invention. The recording / reproducing signal processing means for performing waveform processing on an input signal and an output signal with respect to the magnetic head includes a signal processing circuit using maximum likelihood codes, and a circuit for correcting asymmetry of the reproduced signal of the magnetic head using the giant magnetoresistance effect, The flying height of the slider on which the magnetic head is mounted is preferably set to 0.05 μm or less.

下地膜は、磁性膜の結晶成長の制御のために設けてい
る。例えば、下地膜に体心立方構造をもつCrを用い、磁
性膜に稠密六方構造をもつCo系合金を用いた場合、下地
膜と磁性膜の間には、(1)Cr(100)面が基板と平行
に成長し、Co(110)面がエタキシャル成長する、
(2)Cr(110)面が基板と平行に成長し、Co(100)
面、Co(001)面、Co(101)面がエピタキシャル成長す
る、というエピタキシャル成長の関係がある。これは下
地膜、磁性膜が上記の(1)、(2)の関係で成長した
ときに、それぞれの面の格子定数が最も近くなるためで
ある。この関係をうまく利用して磁性膜の結晶成長を制
御できる。
The underlayer is provided for controlling crystal growth of the magnetic film. For example, when Cr having a body-centered cubic structure is used for the underlayer and a Co-based alloy having a dense hexagonal structure is used for the magnetic film, the (1) Cr (100) plane is formed between the underlayer and the magnetic film. Growing parallel to the substrate, the Co (110) plane grows epitaxially,
(2) Cr (110) plane grows parallel to the substrate, and Co (100)
Surface, Co (001) surface, and Co (101) surface are epitaxially grown. This is because when the underlying film and the magnetic film are grown in the relationship of the above (1) and (2), the lattice constant of each surface becomes closest. By utilizing this relationship well, the crystal growth of the magnetic film can be controlled.

磁性膜は一般的には純粋なCoのみでは用いられず、保
磁力の向上又は記録再生特性のノイズの低下を目的とし
て、例えば、Cr、Ta、Pt等の元素が添加される。純粋な
Coのc軸長((001)面の面間隔)は4.046オングストロ
ームであるが、上記の元素を添加した場合にはc軸長は
大きくなる。すなわち、上記の元素の添加により磁性膜
の格子が大きくなる。従って、前述した下地膜との格子
の整合性が合わなくなり、磁性膜の結晶成長(配向)の
制御ができなくなる。そこで、下地膜の格子の大きさも
磁性膜の格子の大きさに合わせて調整する必要がある。
The magnetic film is not generally used only with pure Co, but is added with an element such as Cr, Ta, or Pt for the purpose of improving coercive force or reducing noise in recording / reproducing characteristics. Pure
The c-axis length of Co (plane spacing between (001) planes) is 4.046 angstroms, but the c-axis length increases when the above elements are added. That is, the lattice of the magnetic film is increased by the addition of the above elements. Therefore, the lattice matching with the underlayer described above does not match, and the crystal growth (orientation) of the magnetic film cannot be controlled. Therefore, it is necessary to adjust the size of the lattice of the base film in accordance with the size of the lattice of the magnetic film.

また、下地膜の格子の大きさと磁性膜の格子の大きさ
を同じにするよりは、下地膜の格子の大きさを、0.1%
以上1.5%以下の範囲で大きくする方が、保磁力は高く
なり、ノイズが小さくなる。この範囲よりも格子を大き
くすると、逆に保磁力は劣化し、ノイズは大きくなる。
この理由は明確ではないが、格子に歪みを与えたことに
よって、磁気歪みが程好く誘起されたためと考えられ
る。格子の歪みをさらに大きくするために、下地膜の格
子の大きさをさらに大きくすると、上述した下地膜と磁
性膜の整合性が悪くなり、エピタキシャルな関係が壊
れ、結晶成長(配向)の制御ができなくなる。そのため
に、下地膜の格子の大きさを0.1%以上1.5%以下の範囲
で大きくすることが好ましい。
Also, rather than making the size of the underlying film lattice equal to the size of the magnetic film lattice, the size of the underlying film lattice is reduced by 0.1%.
The larger the value is in the range of 1.5% or more, the higher the coercive force and the smaller the noise. If the grating is made larger than this range, the coercive force will be degraded and noise will increase.
The reason for this is not clear, but it is considered that magnetostriction was favorably induced by applying strain to the lattice. If the size of the lattice of the underlayer is further increased to further increase the lattice distortion, the above-described consistency between the underlayer and the magnetic film is deteriorated, the epitaxial relationship is broken, and the control of crystal growth (orientation) is prevented. become unable. Therefore, it is preferable to increase the size of the lattice of the underlayer in the range of 0.1% or more and 1.5% or less.

下地膜及び磁性膜の格子の大きさを制御する手法とし
ては、(1)別の元素を添加して合金化する、(2)バ
イアススパッタリングを行う(磁性膜中にスパッタガス
が取り込まれ、実質的な基板温度の上昇を伴う)、
(3)スパッタガスをHe、Ne、Ar、Kr、Xe、Rnと変えて
成膜する、(それぞれのガスを100%の純ガスとして用
いず、混合ガスとしてもよい。ガスの種類によって原子
半径が異なるため、膜中に取り込まれた際に格子の歪み
が変化する)、(4)スパッタ時のガス圧力、基板温
度、成膜時の投入電力、成膜レート等の成膜条件を最適
化する、等がある。この他にも様々な手法が考えられる
が、基本的には下地層が実質的に立方格子の結晶構造を
もつ結晶粒からなり、磁性膜は実質的に稠密六方格子の
結晶構造をもつ結晶粒からなるという条件を遵守すれ
ば、どのような手法を用いてもよい。さらに、下地層
は、体心立方格子の結晶構造であることが好ましいが、
原理的には面心立方格子及びNaCl型の結晶構造でもよ
い。
As a method of controlling the lattice size of the underlayer film and the magnetic film, (1) alloying by adding another element, (2) bias sputtering is performed (a sputtering gas is taken into the magnetic film, and With a significant increase in substrate temperature),
(3) A film is formed by changing the sputtering gas to He, Ne, Ar, Kr, Xe, and Rn. (Each gas is not used as 100% pure gas, but may be a mixed gas. The atomic radius depends on the type of gas. (4) Optimization of film formation conditions such as gas pressure during sputtering, substrate temperature, input power during film formation, film formation rate, etc. Yes, there are. Various other methods are conceivable. Basically, the underlayer is composed of crystal grains having a substantially cubic lattice crystal structure, and the magnetic film is substantially composed of crystal grains having a dense hexagonal lattice crystal structure. Any method may be used as long as the condition is satisfied. Further, the underlayer preferably has a body-centered cubic crystal structure,
In principle, a face-centered cubic lattice and a NaCl-type crystal structure may be used.

磁性膜のc軸の配向は、面内に寝かせる、つまり基板
と平行にc軸を向かせる必要がなく、一部垂直に立って
いるものが混在してもよい。本発明では下地膜と磁性膜
の結晶格子の大きさの関係の一つの目安として、基板と
平行なCr(100)面がCo(110)面とエピタキシャル成長
する点に着目し、これを規定するものである。つまり、
結晶のある特定の軸のみが大きくなったのではなく、結
晶全体が大きくなったと考え、この関係にある下地膜と
磁性膜の結晶格子が大きくなれば、他の面の結晶格子も
大きくなり、そちらの面の整合性も向上していると考え
る。ただし、結晶の全ての軸が同じ割合で大きくなって
いるかは不明である。
The orientation of the c-axis of the magnetic film need not be laid in the plane, that is, the c-axis does not need to be oriented parallel to the substrate, and some may be vertically standing. The present invention focuses on the point that the Cr (100) plane parallel to the substrate grows epitaxially with the Co (110) plane as one measure of the relationship between the size of the crystal lattice of the base film and the magnetic film, and defines this. It is. That is,
It is considered that not only a specific axis of the crystal has increased, but the entire crystal has increased.If the crystal lattice of the underlying film and the magnetic film in this relationship increases, the crystal lattice of the other surface also increases. We believe that the consistency of that aspect has also improved. However, it is unknown whether all axes of the crystal are growing at the same rate.

通常のX線等の評価方法では、基板と平行な面の下地
膜のa軸長の測定は困難であるため、上記理由から基板
と平行な面と垂直なa軸長を測定して代用することがで
きる。平面TEM(透過電子顕微鏡)像のDiffractionパタ
ーンから、本来知りたい基板と平行な面の下地膜のa軸
長を測定できる。
Since it is difficult to measure the a-axis length of the base film in a plane parallel to the substrate by the usual evaluation method of X-rays or the like, the a-axis length perpendicular to the plane parallel to the substrate is measured and substituted for the above-described reason. be able to. From the Diffraction pattern of a planar TEM (transmission electron microscope) image, it is possible to measure the a-axis length of the base film on a plane parallel to the substrate which is originally desired to be known.

本発明の磁気記録媒体では、保磁力を2000Oe以上に保
持したまま、残留磁束密度膜厚積を150G・μm以下にで
き、高いS/N(信号対雑音比)を確保できる。しかし、
残留磁束密度膜厚積を10G・μmより小さくすると、熱
揺らぎの影響が大きくなり著しく保磁力が劣化する。し
かも、残留磁束密度膜厚積を10G・μm以下とすると、
あまりにも再生出力が小さくなり好ましくない。
In the magnetic recording medium of the present invention, the product of the residual magnetic flux density and the film thickness can be reduced to 150 G · μm or less while the coercive force is maintained at 2000 Oe or more, and a high S / N (signal to noise ratio) can be secured. But,
When the residual magnetic flux density film thickness product is smaller than 10 G · μm, the influence of thermal fluctuation increases and the coercive force is significantly deteriorated. In addition, if the residual magnetic flux density film thickness is set to 10 G · μm or less,
The reproduction output becomes too small, which is not preferable.

下地膜の結晶粒径の大きさは、ほぼ磁性膜の結晶粒径
を決定し、ノイズを小とするには下地膜の結晶粒径を小
さくした方がよい。下地膜の結晶粒径を制御するために
は、組成や成膜条件にもよるが、膜厚も大きな要因の一
つである。あまり膜厚を厚くし過ぎると、結晶粒が肥大
化するので、下地膜の膜厚は1nm以上50nm以下が好まし
い。さらに、1nm以上28nm以下とする方がより好まし
い。
The crystal grain size of the underlayer substantially determines the crystal grain size of the magnetic film. To reduce noise, it is better to reduce the crystal grain size of the underlayer. In order to control the crystal grain size of the base film, the film thickness is one of the major factors depending on the composition and the film formation conditions. If the film thickness is too large, the crystal grains are enlarged, so that the thickness of the base film is preferably 1 nm or more and 50 nm or less. Further, the thickness is more preferably 1 nm or more and 28 nm or less.

媒体ノイズを小さくするために磁性層の組成は、CoCr
Ta、CoCrPt、CoSiTa、CoSiPt、CoCrPtTa、CoCrTaSi、Co
CrPtSi、CoCrTaB、CoCrPtBとすることが特に好ましい。
The composition of the magnetic layer is CoCr to reduce the medium noise.
Ta, CoCrPt, CoSiTa, CoSiPt, CoCrPtTa, CoCrTaSi, Co
It is particularly preferable to use CrPtSi, CoCrTaB, and CoCrPtB.

本手法を用いて作製する媒体の構造は、下地層、磁性
層、保護層といった磁性層が単層である構造だけではな
く、下地層、磁性層、非磁性中間層、磁性層、非磁性中
間層、……、保護層とする多層構造であってもよい。多
層磁性構造では個々の磁性層を薄くし、磁性層間に膜厚
0.1nm以上の非磁性中間層を介在させて、結晶粒を微細
化したまま磁性層を積層でき、しかも実質的に各層をほ
ぼ独立とみなせるまでに交換相互作用を低減できる。こ
の場合には、磁性層間の磁気的な相互作用も弱めること
もでき、ノイズを統計和に従って減少でき、単層媒体に
比べてさらに低ノイズ化を実現できる。出力に関して
も、磁性層を多層積層して再生出力を高めることができ
る。
The structure of a medium manufactured using this method is not limited to a structure in which the magnetic layer such as an underlayer, a magnetic layer, and a protective layer is a single layer, but also includes an underlayer, a magnetic layer, a nonmagnetic intermediate layer, a magnetic layer, and a nonmagnetic intermediate layer. It may have a multilayer structure of layers,..., Protective layers. In a multilayer magnetic structure, the thickness of each magnetic layer is reduced, and the thickness between the magnetic layers is reduced.
With a nonmagnetic intermediate layer of 0.1 nm or more interposed, the magnetic layers can be laminated while the crystal grains are refined, and the exchange interaction can be reduced until each layer can be regarded as substantially independent. In this case, the magnetic interaction between the magnetic layers can be weakened, the noise can be reduced according to the statistical sum, and the noise can be further reduced as compared with the single-layer medium. Regarding the output, the reproduction output can be increased by laminating the magnetic layers in multiple layers.

非磁性中間層は上述した下地層と同様なアプローチで
作製すればよい。磁性層の1層目と2層目の組成が異な
る場合には、非磁性中間層はその上に成膜される磁性層
との関係でa軸長を決める必要がある。さらに、磁性膜
の組成が1層目と2層目が同じ場合にも、ノイズの低減
等を目的に、非磁性中間層と下地層の組成又は成膜条件
を変えてもよい。
The non-magnetic intermediate layer may be manufactured by the same approach as the underlayer described above. When the compositions of the first and second magnetic layers are different, it is necessary to determine the a-axis length of the non-magnetic intermediate layer in relation to the magnetic layer formed thereon. Further, even when the composition of the magnetic film is the same for the first layer and the second layer, the composition or the film forming conditions of the nonmagnetic intermediate layer and the underlayer may be changed for the purpose of noise reduction or the like.

基板と下地層の間には、下地制御膜を設けてもよい。
例えば、下地膜の組成や成膜条件を同じにしても、基板
を変えることによって結晶配向性等が変化することがあ
る。逆に、基板を同じにしても下地膜の組成や成膜条件
を変化させることによっても、結晶配向性等が変化する
ことがある。このような現象を極力なくすためには、下
地制御膜を設けることが有効である。
An underlayer control film may be provided between the substrate and the underlayer.
For example, even when the composition and the film forming conditions of the underlayer are the same, the crystal orientation and the like may be changed by changing the substrate. Conversely, even when the substrates are the same, the crystal orientation and the like may be changed by changing the composition of the base film or the film forming conditions. In order to minimize such a phenomenon, it is effective to provide a base control film.

本発明の媒体と、少なくとも磁極の一部に1.2T以上の
飽和磁束密度を有する磁性材料を用いた記録専用の誘導
型磁気ヘッドと、巨大磁気抵抗素子を備える再生専用の
磁気抵抗効果ヘッドを組み合わせた磁気ヘッドを用いる
ことにより、高品位の再生出力が得られ、従来に比べて
2倍以上の大容量磁気記憶装置を実現できる。
Combination of the medium of the present invention, an inductive magnetic head dedicated to recording using a magnetic material having a saturation magnetic flux density of 1.2 T or more in at least a part of a magnetic pole, and a read-only magnetoresistive head including a giant magnetoresistive element By using the magnetic head, a high-quality reproduction output can be obtained, and a large-capacity magnetic storage device more than twice as large as the conventional one can be realized.

これは、少なくとも磁極の一部に1.2T以上の飽和磁束
密度を有する磁性材料を用いた記録専用の誘導型磁気ヘ
ッドでは、飽和磁束密度が1.0T程度である従来の磁気ヘ
ッドに比べ記録磁界が大きくなり、高い保磁力の媒体で
も充分な記録が可能となり、オーバーライト特性が著し
く向上する。これは記録磁界が急峻になり媒体ノイズが
低く抑えられたことによる。さらに、巨大磁気抵抗効果
を利用した再生専用の磁気ヘッドでは、従来の誘導型磁
気ヘッドに比べ5倍以上の再生出力が得られることも大
きな要因の一つである。この磁気記録媒体と磁気ヘッド
の組み合わせに、さらに最尤符号による信号処理回路、
及び巨大磁気抵抗効果を利用した磁気ヘッドの再生信号
の非対称性を修正する回路を組み合わせ、磁気ヘッドが
搭載されるスライダの浮上高さを0.05μm以下とするこ
とにより、従来に比べて3倍以上の大容量磁気記憶装置
を実現できる。
This is because a recording-only induction magnetic head using a magnetic material having a saturation magnetic flux density of at least 1.2 T in at least a part of the magnetic pole has a higher recording magnetic field than a conventional magnetic head having a saturation magnetic flux density of about 1.0 T. As a result, sufficient recording becomes possible even with a medium having a high coercive force, and the overwrite characteristics are significantly improved. This is because the recording magnetic field becomes steep and the medium noise is suppressed low. Furthermore, one of the major factors is that a read-only magnetic head utilizing the giant magnetoresistance effect can obtain a reproduction output five times or more as compared with a conventional inductive magnetic head. A signal processing circuit using the maximum likelihood code is further added to the combination of the magnetic recording medium and the magnetic head,
And a circuit that corrects the asymmetry of the reproduction signal of the magnetic head using the giant magnetoresistance effect, and the flying height of the slider on which the magnetic head is mounted is set to 0.05 μm or less, so that it is three times or more as compared with the conventional case. Large-capacity magnetic storage device can be realized.

本発明の磁気記録媒体は、Coを主たる成分とする磁性
膜を用い、hcp構造を呈する該磁性膜のc軸長を4.105オ
ングストローム以上とし、立方晶からなる下地膜のa軸
の長さの を磁性膜のc軸長よりも0.1%以上1.5%以下の範囲で大
きくすることにより、残留磁束密度膜厚積が150G・μm
以下となっても、2000Oe以上の高い保磁力を有し、高密
度記録に対応する記録再生特性を実現できる。
The magnetic recording medium of the present invention uses a magnetic film containing Co as a main component, has a c-axis length of 4.105 angstroms or more of the magnetic film exhibiting the hcp structure, and has an a-axis length of a cubic underlayer film. Is larger than the c-axis length of the magnetic film by 0.1% or more and 1.5% or less, so that the residual magnetic flux density film thickness product is 150 G · μm.
Even if it becomes less than the above, it has a high coercive force of 2000 Oe or more and can realize recording / reproducing characteristics corresponding to high-density recording.

さらに、この磁気記録媒体と少なくとも磁極の一部に
1.2T以上の飽和磁束密度を有する磁性材料を用いた記録
専用の磁気ヘッド、巨大磁気抵抗効果を利用した再生専
用の磁気ヘッド、最尤復号による信号処理回路、及び巨
大磁気抵抗効果を利用した磁気ヘッドの再生信号の非対
称性を修正する回路を組み合わせ、磁気ヘッドのスライ
ダの浮上高さを0.05μm以下とすることにより、高品位
な再生出力、及び極めて低いエラーレートが得られ、従
来の磁気記憶装置に比較して大容量高密度の磁気記憶装
置が得られる。
Furthermore, the magnetic recording medium and at least a part of the magnetic pole
A recording-only magnetic head using a magnetic material having a saturation magnetic flux density of 1.2 T or more, a reproduction-only magnetic head using the giant magnetoresistance effect, a signal processing circuit using maximum likelihood decoding, and a magnetism using the giant magnetoresistance effect By combining a circuit that corrects the asymmetry of the read signal of the head and by setting the flying height of the slider of the magnetic head to 0.05 μm or less, a high-quality read output and an extremely low error rate can be obtained. A large-capacity, high-density magnetic storage device can be obtained as compared with the device.

図面の簡単な説明 第1図は、本発明による磁気記録媒体の一実施例の断
面を模式的に示す図であり、第2図は、実施例1の磁気
記録媒体での磁性膜のX線回折図であり、第3図は、実
施例1の磁気記録媒体の保磁力と下地膜の の関係を示す図であり、第4図は、本発明による下地膜
Crに添加する元素濃度と の関係を示す図であり、第5図は、実施例2の磁気記録
媒体の磁性膜のc軸長と保磁力の関係を示す図であり、
第6図は、本発明による磁気記録媒体の下地膜のa軸長
を、スパッタガスの変更により、変化させた下地膜のX
回折図であり、第7図は、本発明による磁気記録媒体の
下地制御膜の有無による結晶配向性の相違を示すX回折
図であり、第8図、第9図はそれぞれ、本発明の記録再
生分離型磁気ヘッドの構造を示す模式的に示す図であ
り、第10図は、本発明の磁気記憶装置の構造を示す模式
的に示す図であり、第11図は、記録再生信号処理系の一
例を示すブロック図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram schematically showing a cross section of one embodiment of a magnetic recording medium according to the present invention, and FIG. 2 is an X-ray of a magnetic film in the magnetic recording medium of the first embodiment. FIG. 3 is a diffraction diagram. FIG. FIG. 4 is a diagram showing the relationship between
Element concentration added to Cr and FIG. 5 is a diagram showing the relationship between the c-axis length of the magnetic film of the magnetic recording medium of Example 2 and the coercive force;
FIG. 6 shows the X-axis of the underlying film of the magnetic recording medium according to the present invention in which the a-axis length of the underlying film was changed by changing the sputtering gas.
FIG. 7 is an X-ray diffraction diagram showing a difference in crystal orientation depending on the presence or absence of a base control film of the magnetic recording medium according to the present invention. FIGS. 8 and 9 are recording diagrams of the present invention, respectively. FIG. 10 is a diagram schematically illustrating the structure of a read / separation type magnetic head, FIG. 10 is a diagram schematically illustrating the structure of a magnetic storage device of the present invention, and FIG. FIG. 4 is a block diagram showing an example of the above.

発明を実施するための最良の形態 本発明をより詳細に説明するために、添付の図面に従
ってこれを説明する。なお、本実施例に示す磁気記録媒
体の残留磁束密度膜厚積は全て150G・μm以下であり、
残留磁束密度膜厚積は以下の各実施例では、100G・μm
から120G・μmの範囲であった。(実施例1) 本発明による磁気記録媒体の一実施例の断面図を第1
図に示す。以下に本実施例の磁気記録媒体の作製方法を
述べる。外径95mmφのNi−PメッキAl合金からなる基板
11に、RF30Wにて10秒間の条件でエッチングを施した
後、基板温度を300℃、Arガス圧力を2.5mTorr、投入電
力密度を5W/cm2とする成膜条件で、DCマグネトロンスパ
ッタリング法により下地層12、12′としてCr−xat%Ti
(x=0、5、10、15、20)を50nm成膜した。次いで、
同成膜条件のもとで、磁性層13、13′としてCo−19at%
Cr−8at%Ptを25nm成膜し、最後に保護層14、14′とし
てCを10nm成膜した後、ディップ法により3nmのパーフ
ルオロアルキルポリエーテル系の潤滑層15、15′を形成
した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the accompanying drawings. Incidentally, the residual magnetic flux density film thickness product of the magnetic recording medium shown in this embodiment is all 150G · μm or less,
The residual magnetic flux density film thickness product is 100 G
From 120 G · μm. (Embodiment 1) A cross-sectional view of an embodiment of a magnetic recording medium according to the present invention is shown in FIG.
Shown in the figure. Hereinafter, a method for manufacturing the magnetic recording medium of this embodiment will be described. Substrate made of Ni-P plated Al alloy with outer diameter 95mmφ
11, after etching under RF30W for 10 seconds under the conditions of a substrate temperature of 300 ° C., an Ar gas pressure of 2.5 mTorr, and an input power density of 5 W / cm 2 , by DC magnetron sputtering. Cr-xat% Ti as underlayers 12 and 12 '
(X = 0, 5, 10, 15, 20) was deposited to a thickness of 50 nm. Then
Under the same film forming conditions, as the magnetic layers 13 and 13 ', Co-19 at%
After forming a film of Cr-8 at% Pt to a thickness of 25 nm, and finally forming a film of C to a thickness of 10 nm as the protective layers 14 and 14 ', lubricating layers 15 and 15' of 3 nm perfluoroalkylpolyether were formed by dipping.

まず、本実施例で用いたCo−19at%Cr−8at%Pt磁性
膜のc軸長を測定した。通常、Ni−PメッキAl合金上に
基板温度300℃で下地膜、磁性膜と順次形成した場合、
磁性膜は稠密六方格子(hcp)の結晶構造を呈し、その
配向は基板と平行な面が(110)となる。つまり、c軸
が面内(基板と平行)にある状態となる。面間隔の測定
は一般にはx線のθ−2θスキャン法を用いるが、本測
定法では基板と平行な面の面間隔を測定するため、c軸
の長さが測定できない。しかも、基板にNi−PメッキAl
合金を用いると、丁度(002)面の2θ位置にNi−Pの
ピークが重なってしまう。そこで、基板温度は300℃に
し、ガラス基板上に直接磁性膜のみを成膜した試料を作
製し、この試料のc軸長を測定した。測定結果を第2図
に示す。
First, the c-axis length of the Co-19 at% Cr-8 at% Pt magnetic film used in this example was measured. Normally, when a base film and a magnetic film are sequentially formed on a Ni-P plated Al alloy at a substrate temperature of 300 ° C.,
The magnetic film has a dense hexagonal lattice (hcp) crystal structure, and its orientation is (110) in a plane parallel to the substrate. That is, the c-axis is in the plane (parallel to the substrate). In general, the distance between planes is measured by an x-ray θ-2θ scanning method. However, in this measurement method, the length of the c-axis cannot be measured because the distance between planes parallel to the substrate is measured. Moreover, Ni-P plated Al
When an alloy is used, the peak of Ni-P just overlaps the 2θ position of the (002) plane. Therefore, the substrate temperature was set to 300 ° C., a sample in which only a magnetic film was formed directly on a glass substrate was prepared, and the c-axis length of this sample was measured. FIG. 2 shows the measurement results.

第2図から、(002)面の面間隔が2.054オングストロ
ームであることがわかる。従って、c軸の長さはこの2
倍の4.108オングストロームとなる。
From FIG. 2, it can be seen that the spacing between the (002) planes is 2.054 angstroms. Therefore, the length of the c-axis is 2
Doubled to 4.108 angstroms.

本磁性膜を用いて、下地層のCrにTiの添加濃度を変え
て作製した媒体の保磁力を調べて見ると、第3図に示す
結果となった。Tiの添加濃度が10at%で保磁力は最大値
を示している。これを下地膜の との関係を調べて見ると、下地膜の は4.138オングストロームである。およそ磁性膜のc軸
長よりも0.73%大きい。さらに下地膜の を大きくしていくと、下地膜の が磁性膜のc軸長よりも1.5%以上大きくなると、保磁
力は2000(Oe)よりも低くなる。
When the coercive force of the medium manufactured by using this magnetic film and changing the additive concentration of Ti to Cr in the underlayer was examined, the results shown in FIG. 3 were obtained. The coercive force shows the maximum value when the concentration of Ti added is 10 at%. This is the base film Investigating the relationship between Is 4.138 angstroms. It is about 0.73% larger than the c-axis length of the magnetic film. In addition, As the value of Becomes 1.5% or more larger than the c-axis length of the magnetic film, the coercive force becomes lower than 2000 (Oe).

以上の結果から、少なくとも基板と平行な面に垂直な
下地膜(立方晶)のa軸の長さの 磁性膜(六方晶)のc軸長よりも0.1%以上1.5%以下の
大きさのときに、保磁力が高くなることがわかった。
From the above results, at least the length of the a-axis of the underlying film (cubic) perpendicular to the plane parallel to the substrate It was found that the coercive force increased when the size was 0.1% or more and 1.5% or less than the c-axis length of the magnetic film (hexagonal).

なお、先に示した実施例では下地膜のCrにTiを添加し
て、基板と平行な面に垂直なa軸長を大きくしたが、代
表的な元素として第4図に示すようにMo、W、Vを用い
ても同様な結果となることがわかる。また、この他にも
Zr、Hf、Nb、Ta、についても同様な結果が得られた。主
成分であるCrはbccの結晶構造を呈し、この結晶構造が
崩れない程度に他の元素を添加する限りには、如何なる
元素を用いてa軸長を大きくしてもよい。さらに言え
ば、主成分をCrに限定する必要はなく、例えばCrと同じ
bcc構造を呈するV、Zr、Nb、Mo、Hf、Ta、Wを主成分
としてもよい。合金下地膜を用いる場合には、Cr−P、
Cr−Ti、Cr−V、Cr−Zr、Cr−Nb、Cr−Mo、Cr−Hf、Cr
−Ta、Cr−Ta、Cr−W、Cr−Fe、Mo−Nb、Mo−Pt、Mo−
Ge、W−Ta、W−Si等が結晶を制御する上で特に好まし
い。
In the above-described embodiment, Ti was added to Cr of the base film to increase the a-axis length perpendicular to the plane parallel to the substrate. However, as shown in FIG. It can be seen that similar results are obtained when W and V are used. Also, besides this
Similar results were obtained for Zr, Hf, Nb, and Ta. Cr as a main component has a bcc crystal structure, and any element may be used to increase the a-axis length as long as other elements are added to such an extent that this crystal structure is not broken. Furthermore, it is not necessary to limit the main component to Cr, for example, the same as Cr
V, Zr, Nb, Mo, Hf, Ta, and W exhibiting a bcc structure may be used as a main component. When an alloy underlayer is used, Cr-P,
Cr-Ti, Cr-V, Cr-Zr, Cr-Nb, Cr-Mo, Cr-Hf, Cr
-Ta, Cr-Ta, Cr-W, Cr-Fe, Mo-Nb, Mo-Pt, Mo-
Ge, W—Ta, W—Si, etc. are particularly preferred for controlling the crystal.

また、磁性層の結晶配向を制御する上では、bcc構造
のみが有効であるのでなく、例えば面心立方格子(fc
c)やNaCl型の結晶構造のものであってもよい。
In controlling the crystal orientation of the magnetic layer, not only the bcc structure is effective but also, for example, a face-centered cubic lattice (fc
It may have a crystal structure of c) or NaCl type.

(実施例2) 実施例2の媒体として、実施例1と同様な第1図に示
すような媒体を作製した。以下、本実施例の媒体の作製
方法を詳細に説明する。外径65mmφのNi−PメッキAl合
金からなる基板11に、基板温度を300℃、Arガス圧力を
2.0mTorr、投入電力密度を6W/cm2とする成膜条件で、DC
マグネトロンスパッタリング法により下地層12、12′を
25nm成膜し、次いで磁性層13、13′を20nm、保護層14、
14′を5nm順次形成した後、ディップ法により潤滑層1
5、15′を形成した。このとき、磁性層13、13′として
はc軸長を変化させるために様々な組成のものを用い
た。例えば、Co−16at%Cr−4at%Ta、Co−16at%Cr−6
at%Ta、Co−16at%Cr−8at%Ta、Co−19at%Cr−8at%
Pt、Co−15at%Cr−12at%Pt、Co−19at%Cr−12at%Pt
等を用いた。これら磁性膜を用いたときに実施例1で示
したように、立方晶からなる下地膜のa軸の長さの hcp構造を呈する磁性膜のc軸長よりも0.1%以上1.5%
以下の大きさになるように、下地膜の組成を調整した。
Example 2 As a medium of Example 2, a medium similar to that shown in FIG. Hereinafter, a method for producing the medium of this example will be described in detail. A substrate temperature of 300 ° C. and Ar gas pressure were applied to a substrate 11 made of Ni-P plated Al alloy having an outer diameter of 65 mmφ.
DC deposition under the conditions of 2.0 mTorr and input power density of 6 W / cm 2
Underlayers 12 and 12 'are formed by magnetron sputtering.
25 nm, then the magnetic layers 13 and 13 'are 20nm, the protective layer 14,
14 'is sequentially formed to a thickness of 5 nm.
5, 15 'were formed. At this time, magnetic layers 13 and 13 'having various compositions were used to change the c-axis length. For example, Co-16at% Cr-4at% Ta, Co-16at% Cr-6
at% Ta, Co-16at% Cr-8at% Ta, Co-19at% Cr-8at%
Pt, Co-15at% Cr-12at% Pt, Co-19at% Cr-12at% Pt
Were used. When these magnetic films were used, as shown in Example 1, the length of the a-axis of the cubic base film was reduced. 0.1% or more 1.5% longer than c-axis length of magnetic film showing hcp structure
The composition of the underlayer was adjusted to have the following sizes.

本実施例により作製した媒体の保磁力を第5図に示
す。第5図から、2000Oe以上の保磁力を確保するために
は、c軸長が4.105オングストローム以上必要であるこ
とがわかる。磁性膜の組成としては本実施例に示したも
のに限定する訳ではなく、c軸長が4.105オングストロ
ーム以上あればいずれの組成のものでもよい。但し、媒
体ノイズを小さくする上では、磁性膜組成をCoCrTa、Co
CrPt、CoSiTa、CoSiPt、CoCrPtTa、CoCrTaSi、CoCrPtS
i、CoCrTaB、CoCrPtBとした方がより好ましい。
FIG. 5 shows the coercive force of the medium manufactured according to this example. From FIG. 5, it can be seen that a c-axis length of 4.105 Å or more is necessary to secure a coercive force of 2000 Oe or more. The composition of the magnetic film is not limited to the composition shown in this embodiment, but may be any composition as long as the c-axis length is equal to or greater than 4.105 angstroms. However, in order to reduce the medium noise, the composition of the magnetic film should be CoCrTa or CoCrTa.
CrPt, CoSiTa, CoSiPt, CoCrPtTa, CoCrTaSi, CoCrPtS
i, CoCrTaB, and CoCrPtB are more preferable.

立方格子を呈する下地膜のa軸長を大きくする手法と
して、元素添加によるものを説明してきたが、他の手法
によっても可能である。その一例を第6図に示す。第6
図は、Ni−PメッキAl合金基板上に下地膜としてCr−15
at%Tiを成膜した媒体のX線回折の測定結果を示してい
る。第6図に示す回折チャートの下から順に、1)スパ
ッタガスにArを用いた媒体(比較例)、2)下地膜成膜
時に基板側に負のDCバイアスを200V印加して作製した媒
体、3)スパッタガスにKrを用いた媒体、4)スパッタ
ガスにXeを用いた媒体の結果を、それぞれ示している。
上の3つの媒体ではいずれも単なるArで作製した媒体よ
りも、CrTi(200)の2θ角度が低角側へシフトしてい
る。この結果を数値で第1表に表す(第1表中で、Aは
オングストロームの単位を示す)。
As a method of increasing the a-axis length of the underlying film exhibiting a cubic lattice, a method by adding an element has been described, but another method is also possible. One example is shown in FIG. Sixth
The figure shows Cr-15 as a base film on a Ni-P plated Al alloy substrate.
The X-ray diffraction measurement result of the medium on which at% Ti is formed is shown. In order from the bottom of the diffraction chart shown in FIG. 6, 1) a medium using Ar as a sputtering gas (Comparative Example), 2) a medium manufactured by applying a negative DC bias of 200 V to the substrate side when forming an underlayer film, The results of 3) a medium using Kr as a sputtering gas and 4) a medium using Xe as a sputtering gas are shown, respectively.
In each of the above three media, the 2θ angle of CrTi (200) is shifted to a lower angle side than in the media made of simple Ar. The results are shown numerically in Table 1 (in Table 1, A represents the unit of Angstroms).

Arで作製した媒体の は4.146オングストローム、Arを用いバイアスを印加し
た媒体では4.178オングストローム、Krで作製した媒体
では4.163オングストローム、Xeで作製した媒体では4.1
97オングストロームである。以上のことから、基板バイ
アスの印加やスパッタガスの変更も下地膜のa軸長を調
整するのに有効であることがわかる。また、スパッタガ
スにHe、Ne、Rnを用いても、同様な効果が得られること
は言うまでもない。
Of media made with Ar Is 4.146 angstroms, 4.178 angstroms for a medium made of Ar, and 4.163 angstroms for a medium made of Kr, and 4.116 angstroms for a medium made of Xe.
97 angstroms. From the above, it is understood that the application of the substrate bias and the change of the sputtering gas are also effective in adjusting the a-axis length of the base film. Needless to say, the same effect can be obtained even if He, Ne, or Rn is used as the sputtering gas.

この内、HeとNeはArよりもa軸長を小さくする作用が
ある。その他にも、スパッタ時のガス圧力や、基板温
度、成膜時の投入電力、成膜レート等下地膜のa軸長の
調整には様々な手法を用いることができる。むろん磁性
膜のc軸長を変化させる手法としても、これらの手法を
使用できることは言うまでもない。ただし、hcp構造の
磁性膜のc軸長は4.105オングストローム以上とし、下
地膜(立方晶)のa軸の長さの 磁性膜のc軸長よりも0.1%以上1.5%以下の範囲で大き
くなるように調整する必要がある。
Of these, He and Ne have the effect of making the a-axis length smaller than Ar. In addition, various methods can be used to adjust the a-axis length of the base film, such as the gas pressure during sputtering, the substrate temperature, the input power during film formation, and the film formation rate. Needless to say, these methods can also be used as a method for changing the c-axis length of the magnetic film. However, the c-axis length of the hcp-structured magnetic film is set to 4.105 angstroms or more, and the length of the a-axis of the underlying film (cubic crystal) is It is necessary to adjust the length of the magnetic film to be larger than the c-axis length in the range of 0.1% to 1.5%.

なお、本発明の媒体を非磁性中間層を設けた多層磁気
記録媒体に応用することも充分に可能である。この場合
には、非磁性中間層を上述した下地膜と同様なアプロー
チで作製すればよい。1層目と2層目の磁性膜の組成が
異なった場合には、非磁性中間層としては上に成膜され
る磁性層との関係でa軸長を決める必要がある。さら
に、磁性膜の組成が1層目と2層目が同じであっても、
媒体のノイズ特性等の改善のために、わざと非磁性中間
層の組成又は成膜条件を下地膜とは変えて、結果として
a軸長を揃えるような手法を用いてもよい。
The medium of the present invention can be sufficiently applied to a multilayer magnetic recording medium provided with a non-magnetic intermediate layer. In this case, the non-magnetic intermediate layer may be manufactured by the same approach as the above-described underlayer. When the compositions of the first and second magnetic films are different, it is necessary to determine the a-axis length in relation to the magnetic layer formed thereon as the non-magnetic intermediate layer. Furthermore, even if the composition of the magnetic film is the same for the first layer and the second layer,
In order to improve the noise characteristics and the like of the medium, a method may be used in which the composition or film forming conditions of the non-magnetic intermediate layer are intentionally changed from those of the base film, and as a result, the a-axis lengths are made uniform.

(実施例3) 実施例3として下地制御膜の効果について述べる。以
下に本実施例として作製した媒体(媒体の構造は第1図
と同じである)の作製法を説明する。外径65mmφの強化
ガラスからなる基板11に、基板温度を室温、Arガス圧力
を1.7mTorr、投入電力密度を6W/cm2とする成膜条件で、
DCマグネトロンスパッタリング法により成膜したCrの表
面を僅かに酸化させた下地制御膜を設け、これを新たな
基板11として用いた。本基板上に基板温度を300℃、Ar
ガス圧力を1.7mTorr、投入電力密度を6W/cm2とする成膜
条件で、DCマグネトロンスパッタリング法により下地層
12、12′、磁性層13、13′、保護層14、14′を順次形成
した後、ディップ法により潤滑層15、15′を形成した。
このとき、下地層12、12′としてCrを用い、磁性層13、
13′としてはCo−16at%Cr−4at%Taを用いた。
Third Embodiment As a third embodiment, the effect of the underlayer control film will be described. Hereinafter, a method of manufacturing a medium (the structure of the medium is the same as that of FIG. 1) manufactured as the present example will be described. On a substrate 11 made of tempered glass having an outer diameter of 65 mmφ, under the film forming conditions of a substrate temperature of room temperature, an Ar gas pressure of 1.7 mTorr, and an input power density of 6 W / cm 2 ,
An underlayer control film was formed by slightly oxidizing the surface of Cr formed by DC magnetron sputtering, and this was used as a new substrate 11. The substrate temperature is set to 300 ° C and Ar
Under the condition that the gas pressure is 1.7 mTorr and the input power density is 6 W / cm 2 , the underlayer is formed by DC magnetron sputtering.
After sequentially forming 12, 12 ', magnetic layers 13, 13' and protective layers 14, 14 ', lubricating layers 15, 15' were formed by dipping.
At this time, Cr was used for the underlayers 12 and 12 ′, and the magnetic layers 13 and 12 ′ were used.
As 13 ', Co-16at% Cr-4at% Ta was used.

第7図に下地制御膜の有無による結晶配向性の違いを
示す。第7図から下地制御膜の有無により、結晶配向に
大きな違いがあることがわかる。下地制御膜を設けない
媒体では、Cr(200)のX線強度が弱く、下地制御膜を
設けた媒体では、Cr(200)のX線強度が強い。このよ
うに、下地制御膜を設けることによって、基板材質にか
かわらず結晶配向性を制御できる。なお、これらの媒体
のどちらの結晶配向が良いかは一概には言えず、記録密
度(記録ビット長)や信号処理回路等を含めた装置の設
計思想によって最適にする必要がある。
FIG. 7 shows the difference in crystal orientation depending on the presence or absence of the underlayer control film. FIG. 7 shows that there is a great difference in the crystal orientation depending on the presence or absence of the underlayer control film. The medium without the underlayer control film has a low X-ray intensity of Cr (200), and the medium with the underlayer control film has a high X-ray intensity of Cr (200). Thus, by providing the underlayer control film, the crystal orientation can be controlled regardless of the material of the substrate. It should be noted that it is not clear which crystal orientation of these media is better, and it is necessary to optimize the crystal orientation based on the design concept of the device including the recording density (recording bit length) and the signal processing circuit.

この下地制御膜の材料については、必ずしも下地膜と
同じ組成に合わせる必要はなく、P、Ni、V、Cr、Zr、
Nr、Nb、Mo、Hf、Ta、Wを主成分とすることが好まし
い。また、これら元素を合金として用いる場合には、Ni
−P、Cr−P、Cr−Ti、Cr−V、Cr−Zr、Cr−Nb、Cr−
Mo、Cr−Hf、Cr−Ta、Cr−Ta、Cr−W、Cr−Fe、Mo−N
b、Mo−Pt、Mo−Ge、W−Ta、W−Si等が下地膜の結晶
配向を制御する上で特に好ましい。
The material of the underlayer control film does not necessarily need to be adjusted to the same composition as that of the underlayer film. P, Ni, V, Cr, Zr,
It is preferable that Nr, Nb, Mo, Hf, Ta, and W are the main components. When these elements are used as an alloy, Ni
-P, Cr-P, Cr-Ti, Cr-V, Cr-Zr, Cr-Nb, Cr-
Mo, Cr-Hf, Cr-Ta, Cr-Ta, Cr-W, Cr-Fe, Mo-N
b, Mo-Pt, Mo-Ge, W-Ta, W-Si and the like are particularly preferable in controlling the crystal orientation of the underlayer.

(実施例4) 前記実施例1及び実施例2記載の磁気記録媒体の記録
再生特性を、第8図に略示する記録再生分離型磁気ヘッ
ドを用いて測定した。記録用磁気ヘッドは、一対の記録
磁極81、82とそれに鎖交するコイル83からなる誘導型薄
膜磁気ヘッドであり、磁極が飽和するのを回避するため
に磁極81、82の一部に1.2T以上の飽和磁束密度を有する
CoNiFe等の磁性材料84、85を用いている。1.2T以上の飽
和磁束密度を有する磁性材料は、一方の磁極のみに設け
てもよいし、磁極全体を1.2T以上の飽和磁束密度を有す
る磁性材料で作製してもよい。再生専用の磁気ヘッド
は、NiFeにNiO等を積層した巨大磁気抵抗効果素子86
と、電極となる導体層87からなる磁気抵抗効果ヘッドで
あり、一対の磁気シールド層88、89によって挟まれてい
る。この磁気ヘッドは磁気ヘッドスライダ基体810上に
設けられている。
Example 4 The recording / reproducing characteristics of the magnetic recording media described in Example 1 and Example 2 were measured using a recording / reproducing separation type magnetic head schematically shown in FIG. The recording magnetic head is an inductive type thin-film magnetic head including a pair of recording magnetic poles 81 and 82 and a coil 83 interlinking with the recording magnetic poles.In order to avoid saturation of the magnetic poles, a part of the magnetic poles 81 and 82 has 1.2T. Has the above saturation magnetic flux density
Magnetic materials 84 and 85 such as CoNiFe are used. The magnetic material having a saturation magnetic flux density of 1.2 T or more may be provided on only one magnetic pole, or the entire magnetic pole may be made of a magnetic material having a saturation magnetic flux density of 1.2 T or more. The read-only magnetic head is a giant magnetoresistive element 86 composed of NiFe laminated with NiO, etc.
And a magnetoresistive effect head including a conductor layer 87 serving as an electrode, which is sandwiched between a pair of magnetic shield layers 88 and 89. This magnetic head is provided on a magnetic head slider base 810.

記録再生特性の測定条件としては、線記録密度は200k
FCI、トラック幅は2μm、記録用ヘッドのギャップ長
は0.4μm、再生用ヘッドのシールド間隔は0.3μm、磁
気ヘッドのスライダの浮上高さは0.04μmとした。
The linear recording density is 200k
The FCI, the track width was 2 μm, the gap length of the recording head was 0.4 μm, the shield interval of the reproducing head was 0.3 μm, and the flying height of the slider of the magnetic head was 0.04 μm.

このような記録再生条件のもとで測定したS/N(信号
対雑音比)は、実施例1の媒体では、Cr−10at%Ti下地
膜のものが最も優れ、26dBを確保できた。これに対し、
Cr下地の媒体では20dB程度しか得られなかった。また、
実施例2の媒体では、c軸が最も大きい媒体が優れ、28
dBを確保できた。磁性膜のc軸長を4.105オングストロ
ーム以上とし、hcp構造を呈する磁性膜のc軸長よりも
立方晶からなる下地膜のa軸の長さの 0.1%以上1.5%以下の範囲で大きくした媒体では、優れ
た記録再生特性をもつことがわかった。
In the medium of Example 1, the S / N (signal-to-noise ratio) measured under such recording / reproducing conditions was the most excellent for the Cr-10at% Ti underlayer, and 26 dB could be secured. In contrast,
Only about 20 dB was obtained with the medium under Cr. Also,
In the medium of Example 2, the medium having the largest c-axis is excellent,
dB was secured. The c-axis length of the magnetic film is set to 4.105 angstroms or more, and the a-axis length of the cubic underlayer is smaller than the c-axis length of the magnetic film having the hcp structure. It was found that the medium increased in the range of 0.1% to 1.5% had excellent recording / reproducing characteristics.

なお、記録再生分離型磁気ヘッドとして、第9図に示
すような記録用の下部磁極と、再生用の磁気抵抗効果ヘ
ッドを挟む磁気シールドの片側を兼用した層92を設けた
構造のヘッドでも、同様な結果が得られた。第9図にお
いて、91は記録磁極、93はコイル、94は飽和磁束密度の
大きな磁性材料、95は巨大磁気抵抗効果素子、96は導体
層、97は磁気シールド層、98はスライダ基体である。
(実施例5) 磁気記憶装置の一例の上面図を第10図(a)に、その
AA′線断面図を第10図(b)に略示する。磁気記録媒体
101は、磁気記録媒体駆動部102に連結する保持具によっ
て保持され、磁気記録媒体101のそれぞれの面に対向し
て、第8図もしくは第9図に略示する磁気ヘッド103が
配置される。磁気ヘッド103は浮上高さ0.05μm以下で
安定低浮上させ、さらに0.4μm以下のヘッド位置決め
精度で所望のトラックに磁気ヘッド駆動部105により駆
動される。
As a recording / reproducing separation type magnetic head, as shown in FIG. 9, even a head having a structure in which a lower magnetic pole for recording and a layer 92 serving as one side of a magnetic shield sandwiching a magnetoresistive head for reproduction is provided. Similar results were obtained. In FIG. 9, reference numeral 91 denotes a recording magnetic pole, 93 denotes a coil, 94 denotes a magnetic material having a large saturation magnetic flux density, 95 denotes a giant magnetoresistive element, 96 denotes a conductor layer, 97 denotes a magnetic shield layer, and 98 denotes a slider base.
Fifth Embodiment FIG. 10A is a top view of an example of a magnetic storage device.
A sectional view taken along the line AA 'is schematically shown in FIG. Magnetic recording media
The magnetic head 101 is held by a holder connected to the magnetic recording medium drive unit 102, and a magnetic head 103 schematically shown in FIG. 8 or FIG. 9 is arranged to face each surface of the magnetic recording medium 101. The magnetic head 103 is stably low-flying with a flying height of 0.05 μm or less, and is driven by the magnetic head drive unit 105 to a desired track with a head positioning accuracy of 0.4 μm or less.

磁気ヘッド103によって再生した信号は、記録再生信
号処理系104によって波形処理される。記録再生信号処
理系は、第11図に示すような増幅器1、アナログ等価器
2、ADコンバータ3、ディジタル等価器4、最尤復号器
5を含んで構成されている。巨大磁気抵抗効果を利用し
たヘッドの再生波形は、ヘッドの特性により正と負の大
きさが非対称となったり、記録再生系の周波数特性の影
響を受けたりして、記録した信号とは異なった信号とし
て誤読されることがある。アナログ等価器2は再生波形
を整えて、再生波形を修復する機能を有する。この修復
された波形をADコンバータ3を通してディジタル変換
し、ディジタル等価器4によってさらに波形を整える。
最後にこの修復された信号を最尤復号器5によって、最
も確からしいデータに復調する。以上の構成の再生信号
処理系によって、極めて低いエラーレートで信号の記録
再生が行われる。なお、等価器や最尤復号器は既存のも
のを用いてもよい。
The signal reproduced by the magnetic head 103 is subjected to waveform processing by a recording / reproducing signal processing system 104. The recording / reproducing signal processing system includes an amplifier 1, an analog equalizer 2, an AD converter 3, a digital equalizer 4, and a maximum likelihood decoder 5 as shown in FIG. The reproduced waveform of the head using the giant magnetoresistive effect differs from the recorded signal because the positive and negative magnitudes are asymmetrical due to the characteristics of the head and are affected by the frequency characteristics of the recording / reproducing system. It may be misread as a signal. The analog equalizer 2 has a function of adjusting a reproduced waveform and restoring the reproduced waveform. The restored waveform is converted into a digital signal through the AD converter 3, and the waveform is further adjusted by the digital equalizer 4.
Finally, the restored signal is demodulated by the maximum likelihood decoder 5 into the most likely data. With the reproduction signal processing system having the above configuration, recording and reproduction of signals are performed at an extremely low error rate. Note that existing ones may be used for the equalizer and the maximum likelihood decoder.

以上の装置構成により、従来の磁気記憶装置に比べ3
倍以上の記憶容量を持った高密度磁気記憶装置を実現で
きた。また、記録再生信号処理系から最尤復号器を取り
除き、従来の波形弁別回路に変えた場合にも従来に比べ
2倍以上の記憶容量を持った磁気記憶装置を実現でき
た。
With the above-described device configuration, three times as compared with the conventional magnetic storage device,
A high-density magnetic storage device having more than twice the storage capacity was realized. Further, even when the maximum likelihood decoder is removed from the recording / reproducing signal processing system and replaced with a conventional waveform discrimination circuit, a magnetic storage device having a storage capacity twice or more as compared with the conventional one can be realized.

以上の実施例では、ディスク状の磁気記録媒体とそれ
を用いた磁気記憶装置について例を述べてきたが、本発
明は片面のみに磁性層を有するテープ状、カード状の磁
気記録媒体、及びそれら磁気記録媒体を用いた磁気記憶
装置にも適用できることは言うまでもない。
In the above embodiments, examples of a disk-shaped magnetic recording medium and a magnetic storage device using the same have been described. However, the present invention provides a tape-shaped or card-shaped magnetic recording medium having a magnetic layer on only one side, and It goes without saying that the present invention can be applied to a magnetic storage device using a magnetic recording medium.

さらに、磁気記録媒体の作製方法に関してもDCマグネ
トロンスパッタリング法に限らず、ECRスパッタリング
法、イオンビームスパッタリング法、真空蒸着法、プラ
ズマCVD法、塗布法、メッキ法等如何なる手法を用いて
もよい。ECRスパッタリング法では、金属材料の結晶成
長を容易に制御できるので、とくに好ましい。
Further, the method of manufacturing the magnetic recording medium is not limited to the DC magnetron sputtering method, and any method such as an ECR sputtering method, an ion beam sputtering method, a vacuum evaporation method, a plasma CVD method, a coating method, and a plating method may be used. ECR sputtering is particularly preferable because crystal growth of a metal material can be easily controlled.

フロントページの続き (72)発明者 二本 正昭 神奈川県津久井郡城山町原宿4−18−2 (72)発明者 細江 譲 東京都日野市平山6−45−10 (56)参考文献 特開 平7−29144(JP,A) 特開 平7−14143(JP,A) 特開 平7−37237(JP,A) 特開 平7−176027(JP,A) 特開 平2−113419(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/64 - 5/65 G11B 5/31 G11B 5/738 Continued on the front page (72) Inventor Masaaki Nihon 4-18-2 Harajuku, Shiroyama-cho, Tsukui-gun, Kanagawa (72) Inventor Joe Hosoe 6-45-10, Hirayama, Hino-shi, Tokyo (56) References JP-A-7 JP-A-29144 (JP, A) JP-A-7-14143 (JP, A) JP-A-7-37237 (JP, A) JP-A-7-176027 (JP, A) JP-A-2-113419 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) G11B 5/64-5/65 G11B 5/31 G11B 5/738

Claims (19)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非晶質基板上に、立方晶からなる下地層
と、六方晶からなる磁性層とが順次形成された磁気記録
媒体において、該磁気記録媒体の残留磁束密度と前記磁
性層の膜厚の積が10G・μm以上150G・μm以下、保持
力が2000Oe以上であり、前記磁性層はCoを主成分としc
軸長が4.105オングストローム以上であり、前記下地層
のa軸長の 前記磁性層のc軸長よりも0.1%以上1.5%以下の範囲で
大であることを特徴とする磁気記録媒体。
In a magnetic recording medium in which a cubic underlayer and a hexagonal magnetic layer are sequentially formed on an amorphous substrate, the residual magnetic flux density of the magnetic recording medium and the magnetic layer The product of the film thickness is 10 Gm or more and 150 Gm or less, the coercive force is 2000 Oe or more, and the magnetic layer contains Co as a main component and c
The axis length is 4.105 angstroms or more, and the a-axis length of the underlayer is A magnetic recording medium characterized by being larger than the c-axis length of the magnetic layer by 0.1% or more and 1.5% or less.
【請求項2】前記下地層の膜厚が1nm以上50nm以下であ
ることを特徴とする請求の範囲第1項記載の磁気記録媒
体。
2. The magnetic recording medium according to claim 1, wherein said underlayer has a thickness of 1 nm or more and 50 nm or less.
【請求項3】前記下地層の膜厚が1nm以上28nm以下であ
ることを特徴とする請求の範囲第1項記載の磁気記録媒
体。
3. The magnetic recording medium according to claim 1, wherein said underlayer has a thickness of 1 nm or more and 28 nm or less.
【請求項4】前記磁性層は稠密六方格子の結晶構造を持
つ結晶粒からなることを特徴とする請求の範囲第一項記
載の磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein said magnetic layer comprises crystal grains having a crystal structure of a dense hexagonal lattice.
【請求項5】前記下地層は体心立方構造を持つ結晶粒か
らなることを特徴とする請求の範囲第一項記載の磁気記
録媒体。
5. The magnetic recording medium according to claim 1, wherein said underlayer is made of crystal grains having a body-centered cubic structure.
【請求項6】前記下地層はV,Cr,Zr,Nb,Mo,Hf,Ta,Wから
選ばれた少なくとも1種を主たる成分とすることを特徴
とする請求の範囲第1項記載の磁気記録媒体。
6. A magnetic device according to claim 1, wherein said underlayer mainly comprises at least one selected from V, Cr, Zr, Nb, Mo, Hf, Ta and W. recoding media.
【請求項7】前記下地層は、Cr−P,Cr−Ti,Cr−V,kCr−
Zr,Cr−Nb,Cr−Mo、Cr−Hf、Cr−Ta、Cr−W、Cr−Fe、
Mo−Nb、Mo−Pt、Mo−Ge、W−Ta、またはW−Siである
ことを特徴とする請求の範囲第1項記載の磁気記録媒
体。
7. The underlayer according to claim 1, wherein the underlayer is Cr-P, Cr-Ti, Cr-V, kCr-
Zr, Cr-Nb, Cr-Mo, Cr-Hf, Cr-Ta, Cr-W, Cr-Fe,
2. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is Mo-Nb, Mo-Pt, Mo-Ge, W-Ta, or W-Si.
【請求項8】前記下地層は面心立方格子の結晶構造を持
つ結晶粒からなることを特徴とする請求の範囲第1項記
載の磁気記録媒体。
8. The magnetic recording medium according to claim 1, wherein said underlayer comprises crystal grains having a face-centered cubic crystal structure.
【請求項9】前記下地層は、NaCl型の結晶構造を持つ結
晶粒からなることを特徴とする請求の範囲第1項記載の
磁気記録媒体。
9. The magnetic recording medium according to claim 1, wherein said underlayer is made of crystal grains having a NaCl-type crystal structure.
【請求項10】前記磁性層の組織がCoCrTa、CoCrPt、Co
SiTa、CoSiPt、CoCrTaPt、CoCrTaSi、CoCrPtSi、CoCrYT
aB,CoCrPtBであることを特徴とする請求の範囲第1項記
載の磁気記録媒体。
10. The structure of said magnetic layer is CoCrTa, CoCrPt, CoCrPt.
SiTa, CoSiPt, CoCrTaPt, CoCrTaSi, CoCrPtSi, CoCrYT
2. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is aB, CoCrPtB.
【請求項11】前記磁性層中、下地層中の少なくとも一
方にはHe,Ne,Xe,Rnからなる群から選ばれた少なくとも
一種の元素が含まれていることを特徴とする請求の範囲
第1項記載の磁気記録媒体。
11. The magnetic layer, wherein at least one of the underlayers contains at least one element selected from the group consisting of He, Ne, Xe, and Rn. 2. The magnetic recording medium according to claim 1.
【請求項12】前記磁性層中、下地層中の少なくとも一
方にはHe,Ne,Xe,Rnからなる群から選ばれた少なくとも
一種の元素が100ppm以上含まれていることを特徴とする
請求の範囲第1項記載の磁気記録媒体。
12. The magnetic layer, wherein at least one of the underlayers contains 100 ppm or more of at least one element selected from the group consisting of He, Ne, Xe, and Rn. 2. The magnetic recording medium according to claim 1, wherein:
【請求項13】前記磁性層は、複数の磁性膜を非磁性中
間層を介して複数層形成した構造を有することを特徴と
する請求の範囲第1項記載の磁気記録媒体。
13. The magnetic recording medium according to claim 1, wherein said magnetic layer has a structure in which a plurality of magnetic films are formed via a non-magnetic intermediate layer.
【請求項14】前記基板と前記下地層の間に下地制御膜
を有することを特徴とする請求の範囲第1項記載の磁気
記録媒体。
14. The magnetic recording medium according to claim 1, further comprising a base control film between said substrate and said base layer.
【請求項15】前記基板と前記下地層の間に下地制御膜
を有し、該下地制御膜はP,Ni,V,Cr,Zr,Nb,Mo,Hf,Ta,W、
Ni−P,Cr−P,Cr−Ti,Cr−V、Cr−Zr,Cr−Nb、Cr−Mo,C
r−Hf,Cr−Ta,Cr−W,Cr−Fe,Mo−Nb,Mo−Pt,Mo−Ge,W−
Ta,W−Siからなることを特徴とする請求の範囲第1項記
載の磁気記録媒体。
15. A base control film between the substrate and the base layer, wherein the base control film is P, Ni, V, Cr, Zr, Nb, Mo, Hf, Ta, W,
Ni-P, Cr-P, Cr-Ti, Cr-V, Cr-Zr, Cr-Nb, Cr-Mo, C
r-Hf, Cr-Ta, Cr-W, Cr-Fe, Mo-Nb, Mo-Pt, Mo-Ge, W-
2. The magnetic recording medium according to claim 1, comprising Ta, W-Si.
【請求項16】請求の範囲第1項記載の磁気記録媒体
と、該磁気記録媒体を記録方向に駆動する駆動部と、該
磁気記録媒体のそれぞれの面に対抗して配置された磁気
ヘッドと、該磁気ヘッドを前記磁気記録媒体に対して相
対運動させる手段と、前記磁気ヘッドに対する入力信号
及び出力信号を波形処理する記録再生信号手段とを含む
ことを特徴とする磁気記憶装置。
16. A magnetic recording medium according to claim 1, a driving unit for driving said magnetic recording medium in a recording direction, and a magnetic head arranged to face each surface of said magnetic recording medium. A magnetic storage device comprising: means for moving the magnetic head relative to the magnetic recording medium; and recording / reproducing signal means for waveform-processing an input signal and an output signal to the magnetic head.
【請求項17】前記磁気ヘッドは誘導型磁気ヘッドと、
磁気抵抗効果を利用したヘッドとを備える記録再生分離
型磁気ヘッドであることを特徴とする請求の範囲第16項
記載の磁気記憶装置。
17. An inductive magnetic head, wherein:
17. The magnetic storage device according to claim 16, wherein the magnetic storage device is a read / write separated magnetic head including a head using a magnetoresistance effect.
【請求項18】前記磁気ヘッドは、誘導型磁気ヘッド
と、磁気抵抗効果を利用したヘッドとを備える記録再生
分離型磁気ヘッドであり、前記誘導型磁気ヘッドは、少
なくとも一部に1.2T以上の飽和磁束密度を有する磁性材
料を含む磁極を備え、前記磁気抵抗効果を利用したヘッ
ドは巨大磁気抵抗効果素子を備えることを特徴とする請
求の範囲第16項記載の磁気記憶装置。
18. The recording / reproducing separation type magnetic head comprising an induction type magnetic head and a head utilizing a magnetoresistive effect, wherein the induction type magnetic head has at least a part of 1.2T or more. 17. The magnetic storage device according to claim 16, further comprising a magnetic pole including a magnetic material having a saturation magnetic flux density, wherein the head using the magnetoresistance effect includes a giant magnetoresistance effect element.
【請求項19】前記記録再生信号処理手段は、最尤信号
による信号処理回路及び巨大磁気抵抗効果を利用した磁
気ヘッドの再生信号の非対称性を修正する回路を含み、
磁気ヘッドが搭載されるスライダの浮上高さは0.05μm
以下であることを特徴とする請求の範囲第16項記載の磁
気記憶装置。
19. The recording / reproducing signal processing means includes a signal processing circuit using a maximum likelihood signal and a circuit for correcting asymmetry of a reproduced signal of a magnetic head utilizing a giant magnetoresistance effect.
Flying height of slider on which magnetic head is mounted is 0.05 μm
17. The magnetic storage device according to claim 16, wherein:
JP52613396A 1995-02-27 1995-02-27 Magnetic recording medium and magnetic storage device Expired - Lifetime JP3222141B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000297 WO1996027187A1 (en) 1995-02-27 1995-02-27 Magnetic recording medium and magnetic storage device

Publications (1)

Publication Number Publication Date
JP3222141B2 true JP3222141B2 (en) 2001-10-22

Family

ID=14125674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52613396A Expired - Lifetime JP3222141B2 (en) 1995-02-27 1995-02-27 Magnetic recording medium and magnetic storage device

Country Status (2)

Country Link
JP (1) JP3222141B2 (en)
WO (1) WO1996027187A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2756964B1 (en) * 1996-12-11 1999-03-05 Silmag Sa OPTIMIZED MAGNETIC HEAD RECORDING MEDIUM ASSEMBLY
JP3549429B2 (en) 1999-03-19 2004-08-04 富士通株式会社 Magnetic recording medium and method for manufacturing the same
US6562489B2 (en) 1999-11-12 2003-05-13 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
JP2001143250A (en) 1999-11-12 2001-05-25 Fujitsu Ltd Magnetic memory medium and magnetic storage device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236115A (en) * 1984-05-08 1985-11-22 Olympus Optical Co Ltd Vertical magnetic recording medium
JPH03132004A (en) * 1989-10-18 1991-06-05 Hitachi Metals Ltd Fe-ta-c magnetic film and magnetic head
JPH04341908A (en) * 1991-05-20 1992-11-27 Sanyo Electric Co Ltd Composite magnetic head
JPH05314453A (en) * 1992-05-15 1993-11-26 Fuji Photo Film Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
WO1996027187A1 (en) 1996-09-06

Similar Documents

Publication Publication Date Title
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
JP5401069B2 (en) Perpendicular magnetic recording medium
JP3846900B2 (en) Multilayer magnetic recording medium and magnetoresistive drive system
US6403240B1 (en) Magnetic recording media and magnetic recording system using the same
US20090117408A1 (en) Perpendicular magnetic recording disk and method of manufacturing the same
US20090311557A1 (en) Perpendicular magnetic recording disk and method of manufacturing the same
JP2008176858A (en) Perpendicular magnetic recording medium and hard disk drive using the same
JPWO2007129687A1 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP4534711B2 (en) Perpendicular magnetic recording medium
US6524730B1 (en) NiFe-containing soft magnetic layer design for multilayer media
US8557408B2 (en) Perpendicular media with dual soft magnetic layers
JP2001344740A (en) Magnetic recording medium and magnetic storage device
JP3222141B2 (en) Magnetic recording medium and magnetic storage device
US6706426B1 (en) Longitudinal magnetic recording media
JP3588039B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JP3052915B2 (en) Perpendicular magnetic recording medium and method of manufacturing the same
EP0809238B1 (en) Magnetic recording media and magnetic recording system using the same
JP2004310944A (en) Vertical magnetic recording medium and magnetic storage device
JP3340420B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3157806B2 (en) Magnetic recording media
JP3372101B2 (en) Magnetic recording medium, magnetic recording / reproducing device, and method of manufacturing magnetic recording medium
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
US6821654B1 (en) CrMoTa underlayer
JP2002216338A (en) Perpendicular magnetic recording media and magnetic storage
JP2000339657A (en) Magnetic recording medium

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term