JP3372101B2 - Magnetic recording medium, magnetic recording / reproducing device, and method of manufacturing magnetic recording medium - Google Patents

Magnetic recording medium, magnetic recording / reproducing device, and method of manufacturing magnetic recording medium

Info

Publication number
JP3372101B2
JP3372101B2 JP04909094A JP4909094A JP3372101B2 JP 3372101 B2 JP3372101 B2 JP 3372101B2 JP 04909094 A JP04909094 A JP 04909094A JP 4909094 A JP4909094 A JP 4909094A JP 3372101 B2 JP3372101 B2 JP 3372101B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic recording
recording medium
head
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04909094A
Other languages
Japanese (ja)
Other versions
JPH07262546A (en
Inventor
朋生 山本
譲 細江
恵美 萬行
正昭 二本
信幸 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP04909094A priority Critical patent/JP3372101B2/en
Priority to US08/380,792 priority patent/US5650889A/en
Publication of JPH07262546A publication Critical patent/JPH07262546A/en
Application granted granted Critical
Publication of JP3372101B2 publication Critical patent/JP3372101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/012Recording on, or reproducing or erasing from, magnetic disks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/001Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/001Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure
    • G11B2005/0013Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation
    • G11B2005/0016Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation of magnetoresistive transducers

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ドラム、磁気テー
プ、磁気ディスク、磁気カード等の磁気記録媒体及び磁
気記録再生装置に係り、特に超高記録密度に適した薄膜
型の磁気記録媒体及びその磁気記録媒体を用いた磁気記
録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium such as a magnetic drum, a magnetic tape, a magnetic disk and a magnetic card and a magnetic recording / reproducing apparatus, and more particularly to a thin film type magnetic recording medium suitable for an ultra high recording density and The present invention relates to a magnetic recording / reproducing device using the magnetic recording medium.

【0002】[0002]

【従来の技術】近年、電子計算機等、情報処理装置の目
覚ましい発展により情報化社会が進展し、個人で扱う情
報量は増加の一途をたどっている。それに伴い、情報処
理装置の外部記憶装置には、大容量化、高速アクセス化
が求められている。特に、磁気ディスク装置は高密度記
憶に適した外部記憶装置であり、高速、小型大容量化が
強く求められている。
2. Description of the Related Art In recent years, the information-oriented society has advanced due to the remarkable development of information processing devices such as electronic computers, and the amount of information handled by individuals has been increasing. Accordingly, the external storage device of the information processing device is required to have a large capacity and high speed access. In particular, the magnetic disk device is an external storage device suitable for high-density storage, and high speed, small size, and large capacity are strongly demanded.

【0003】磁気ディスク装置に用いられる磁気記録媒
体としては、酸化物磁性体の粉末を基板上に塗布した塗
布型磁気記録媒体と、金属磁性体の薄膜を基板上に蒸着
あるいはスパッタリングした薄膜型磁気記録媒体とが知
られている。この薄膜型磁気記録媒体は、塗布型磁気記
録媒体に比べて記録膜中の磁性体の密度が高いため、よ
り高密度の記録に適している。そのため、現在製造され
ている磁気ディスク装置は、その大半が薄膜型磁気記録
媒体を用いている。
As a magnetic recording medium used in a magnetic disk device, a coating type magnetic recording medium in which a powder of an oxide magnetic material is coated on a substrate and a thin film type magnetic recording medium in which a thin film of a metal magnetic material is deposited or sputtered on the substrate. A recording medium is known. This thin film type magnetic recording medium is suitable for higher density recording because the density of the magnetic substance in the recording film is higher than that of the coating type magnetic recording medium. Therefore, most of currently manufactured magnetic disk devices use a thin film magnetic recording medium.

【0004】薄膜型磁気記録媒体の一般的な構造として
は、基板上に下地層、磁性層、保護層を順次形成したも
のがよく知られている。磁気ディスク装置の記憶容量を
増大するためには、薄膜型磁気記録媒体の保磁力を高く
する必要がある。最近、この保磁力を高くする手法とし
て、下地層及び磁性層の成膜時に、基板に負のバイアス
電圧を印加し、成膜すると同時に基板面にスパッタガス
であるArを衝突させるバイアススパッタリング法が注
目されている。この方法は、例えば「アイ・イー・イー
・イー トランサクション オン マグネティクス」2
6巻(1990年)、1282頁〔IEEE Transaction o
n Magnetics, Mg26, 1282(1990) 〕や、「日本応用磁気
学会誌」16巻(1992年)、541頁に記載されて
いる。
As a general structure of a thin film type magnetic recording medium, it is well known that an underlayer, a magnetic layer and a protective layer are sequentially formed on a substrate. In order to increase the storage capacity of the magnetic disk device, it is necessary to increase the coercive force of the thin film magnetic recording medium. Recently, as a method of increasing the coercive force, there is a bias sputtering method in which a negative bias voltage is applied to a substrate during the film formation of an underlayer and a magnetic layer so that Ar, which is a sputtering gas, collides with the substrate surface at the same time as the film formation. Attention has been paid. This method can be used, for example, in "I-E-E-Transaction on Magnetics" 2
Volume 6 (1990), page 1282 [IEEE Transaction o
n Magnetics, Mg26, 1282 (1990)] and "Journal of Japan Applied Magnetics", Vol. 16 (1992), p. 541.

【0005】また、「日本応用磁気学会誌」17巻(1
993年)、サプラメント、No.S2、125頁に
は、Krガスを用いたスパッタリング法が記載されてい
る。ただし、この方法は基板にバイアス電圧を印加して
おらず、通常のスパッタリング法で磁性膜を作製してい
る。
In addition, "Journal of Applied Magnetics of Japan" Vol. 17 (1
993), Supplement, No. S2, page 125 describes a sputtering method using Kr gas. However, in this method, the bias voltage is not applied to the substrate, and the magnetic film is formed by the usual sputtering method.

【0006】[0006]

【発明が解決しようとする課題】今後、1平方インチ当
たり1ギガビット以上の高記録密度を実現するには、ビ
ット境界からの反磁界を小さくするために、磁気記録媒
体の残留磁化膜厚積は150G・μm以下にする必要が
あると考えられる。このとき保磁力は、最低でも200
0Oeを確保する必要がある。しかし、通常のスパッタ
リング法による成膜でこの基準を満たすことは難しい。
In order to realize a high recording density of 1 gigabit per square inch or more in the future, the remanent magnetization film thickness product of the magnetic recording medium must be reduced in order to reduce the demagnetizing field from the bit boundary. It is thought that it is necessary to make it 150 G · μm or less. At this time, the coercive force is at least 200.
It is necessary to secure 0 Oe. However, it is difficult to meet this criterion by film formation by a normal sputtering method.

【0007】高い保磁力を得る手段として、前述のよう
に、下地層及び磁性層の成膜時に基板に負のバイアス電
圧を印加するバイアススパッタリング法が知られてい
る。しかし、従来のバイアススパッタリング法によって
も、未だ上記のような高密度記録に対応できる充分な電
磁変換特性(記録再生特性)を有する磁気記録媒体は得
られていない。また、バイアススパッタリング法により
作製した媒体について、耐食性等の信頼性に関する十分
な検討も行われていない。
As a means for obtaining a high coercive force, as described above, a bias sputtering method is known in which a negative bias voltage is applied to the substrate when the underlayer and the magnetic layer are formed. However, even with the conventional bias sputtering method, a magnetic recording medium having sufficient electromagnetic conversion characteristics (recording / reproducing characteristics) capable of coping with the above high density recording has not yet been obtained. In addition, the medium prepared by the bias sputtering method has not been sufficiently examined for reliability such as corrosion resistance.

【0008】また、磁気記録媒体の残留磁化膜厚積が1
50G・μm以下になると、従来の誘導型磁気ヘッドや
磁気抵抗効果を用いて再生する記録再生分離型ヘッドで
は、感度が必ずしも充分とはいえない。そこで、さらに
再生感度が高い磁気ヘッドを使用するのが望ましく、信
号処理回路もその磁気ヘッドに応じたものとするのが望
ましい。また、信号変調/復調回路も高密度記録に対応
するものにするのが好ましい。
The remanent magnetization film thickness product of the magnetic recording medium is 1
When it is 50 G · μm or less, the sensitivity is not always sufficient in the conventional induction type magnetic head and the recording / reproducing separated type head reproducing by using the magnetoresistive effect. Therefore, it is desirable to use a magnetic head having higher reproduction sensitivity, and it is desirable that the signal processing circuit also be adapted to the magnetic head. Further, it is preferable that the signal modulation / demodulation circuit also be compatible with high density recording.

【0009】本発明の第1の目的は、保磁力が高く、高
密度記録時の電磁変換特性が良好で、耐食性等の信頼性
に優れた磁気記録媒体を提供することにある。本発明の
第2の目的は、上記磁気記録媒体の特性を充分に活かす
ことのできる大容量の磁気記録再生装置を提供すること
にある。
A first object of the present invention is to provide a magnetic recording medium having a high coercive force, good electromagnetic conversion characteristics during high density recording, and excellent reliability such as corrosion resistance. A second object of the present invention is to provide a large-capacity magnetic recording / reproducing apparatus capable of fully utilizing the characteristics of the magnetic recording medium.

【0010】[0010]

【課題を解決するための手段】上記第1の目的は、非磁
性基板上に直接もしくは下地層を介して磁性層を積層
し、最後に保護層を積層した磁気記録媒体を製造するに
際し、磁性層成膜時にスパッタガスとしてKr,Xe又
はRnあるいは少なくともこれらの中の一種のガスとA
rとの混合ガスを用い、基板に負のバイアス電圧を印加
するバイアススパッタリング法を採用することによって
達成される。
The first object of the present invention is to manufacture a magnetic recording medium in which a magnetic layer is laminated directly on a non-magnetic substrate or via an underlayer and finally a protective layer is laminated. Kr, Xe or Rn or at least one of these gases as a sputtering gas at the time of forming the layer and A
This is achieved by employing a bias sputtering method in which a gas mixture with r is used and a negative bias voltage is applied to the substrate.

【0011】バイアススパッタリングにおけるバイアス
の印加方法としてはDCバイアス、RFバイアスのどち
らを用いても構わない。バイアス電圧は−400V以
上、−30V未満のDCバイアス又はRFバイアスとす
るのが好ましい。バイアスの印加は磁性層成膜時のみで
も構わない。この場合には、下地層中のKr,Xe,R
nの濃度が磁性層中よりも低濃度になる。一方、下地層
成膜時にのみバイアスを印加した場合には殆ど効果が得
られないため好ましくない。また、磁性層の上の保護層
を形成するときにバイアスを印加すると、保磁力の増大
が数割小さくなる。さらにこの場合には、媒体の耐食性
も低下するため好ましくない。
As a bias application method in bias sputtering, either a DC bias or an RF bias may be used. The bias voltage is preferably DC bias or RF bias of −400V or higher and lower than −30V. The bias may be applied only when forming the magnetic layer. In this case, Kr, Xe, R in the underlayer
The concentration of n becomes lower than that in the magnetic layer. On the other hand, if a bias is applied only during the formation of the underlayer, almost no effect can be obtained, which is not preferable. Further, when a bias is applied when forming the protective layer on the magnetic layer, the increase in coercive force is reduced by several tenths. Further, in this case, the corrosion resistance of the medium also decreases, which is not preferable.

【0012】スパッタガスをArとの混合ガスとする場
合には、Arに2at%以上のRn,Xe,Krを混合
したガスとする。本発明による磁気記録媒体は、磁性層
中に100ppm以上のKr,Xe又はRnを含有し、
磁性層は実質的に六方晶型の結晶構造を有するCoを含
有した結晶粒から成り、膜面に平行な六方晶構造の(1
10)面の面間隔が膜面から20度以上傾斜した六方晶
構造の(110)面の面間隔よりも大きい。
When the sputtering gas is a mixed gas with Ar, Ar is mixed with 2 at% or more of Rn, Xe and Kr. The magnetic recording medium according to the present invention contains 100 ppm or more of Kr, Xe or Rn in the magnetic layer,
The magnetic layer is composed of crystal grains containing Co having a substantially hexagonal crystal structure, and has a hexagonal crystal structure (1
The interplanar spacing of the (10) plane is larger than the interplanar spacing of the (110) plane having a hexagonal crystal structure inclined by 20 degrees or more from the film plane.

【0013】残留磁化膜厚積は10G・μm以上150
G・μm以下、保磁力は2000Oe以上4000Oe
以下であることが好ましい。基板がガラス等の非導電性
基板の場合には、基板上に予め導電性のある膜を形成し
ておくことによってバイアス電圧を有効に印加すること
ができる。
The remanent magnetization film thickness product is 10 G · μm or more 150
G · μm or less, coercive force of 2000 Oe or more and 4000 Oe
The following is preferable. When the substrate is a non-conductive substrate such as glass, a bias voltage can be effectively applied by forming a conductive film on the substrate in advance.

【0014】導電膜としては、C,Ti,V,Cr,C
u,Zn,Nb,Mo,Ru,Rh,Pd,Ag,T
a,W,Pt,Au,Ni−P,Cr−Pが下地層、磁
性層の結晶性、結晶配向性、及び結晶粒径を制御する上
で好ましい。また、これら元素を2種類あるいは3種類
以上混ぜ合わせたものを用いても構わない。さらに、導
電膜の表面に酸化物層、窒素含有層、もしくは炭素含有
層を形成すると、保磁力が5〜20%増大するのでより
好ましい。これ等の酸化物層、窒素含有層、もしくは炭
素含有層の厚さは0.1〜10nmであることが好まし
い。
As the conductive film, C, Ti, V, Cr, C
u, Zn, Nb, Mo, Ru, Rh, Pd, Ag, T
a, W, Pt, Au, Ni-P, and Cr-P are preferable in controlling the crystallinity, crystal orientation, and crystal grain size of the underlayer and the magnetic layer. Moreover, you may use what mixed these elements 2 types or 3 types or more. Further, it is more preferable to form an oxide layer, a nitrogen-containing layer, or a carbon-containing layer on the surface of the conductive film because the coercive force increases by 5 to 20%. The thickness of these oxide layer, nitrogen-containing layer, or carbon-containing layer is preferably 0.1 to 10 nm.

【0015】導電膜12,12’は、導電性のある基板
を用いた場合には設けなくてもよい。但し、導電膜は下
地層の結晶構造の制御膜としても作用し、膜構成、成膜
条件によっては保磁力が向上するため、導電性基板を用
いた場合にも導電膜を設けることが好ましい。下地層と
しては、Cr,Mo,W,Ta,Nb又はこれらを主た
る成分とするCr−P,Cr−Ti,Cr−V,Cr−
Mo,Mo−Nb,Mo−Pt,Mo−Ge,W−C
r,W−Ta,W−Si等の合金とすることが、磁性層
の結晶性、結晶配向性、及び結晶粒径を制御する上で好
ましい。下地層の膜厚は0.1〜500nmの範囲であ
ることがS/Nを高める上で好ましい。下地層の材料は
磁性層の材料に応じて決められる。
The conductive films 12 and 12 'need not be provided when a conductive substrate is used. However, the conductive film also functions as a control film of the crystal structure of the underlayer, and the coercive force is improved depending on the film configuration and film formation conditions. Therefore, it is preferable to provide the conductive film even when a conductive substrate is used. As the underlayer, Cr, Mo, W, Ta, Nb or Cr-P, Cr-Ti, Cr-V, Cr- containing these as the main components is used.
Mo, Mo-Nb, Mo-Pt, Mo-Ge, WC
An alloy of r, W-Ta, W-Si or the like is preferable in controlling the crystallinity, crystal orientation, and crystal grain size of the magnetic layer. The thickness of the underlayer is preferably in the range of 0.1 to 500 nm in order to improve S / N. The material of the underlayer is determined according to the material of the magnetic layer.

【0016】磁性層としては、CoCrPt,CoCr
Ta,CoNiPt,CoNiTa,CoSiPt,C
oSiTa,CoCrPtB,CoCrTaB等のCo
を主たる成分とする磁性合金を用いることが、高い保磁
力及び記録密度特性を得る点で好ましい。磁性層の膜厚
は、多層媒体も考慮すると1層当たり0.2nm〜50
nmの範囲とするのがS/Nを高める上で好ましい。
As the magnetic layer, CoCrPt, CoCr
Ta, CoNiPt, CoNiTa, CoSiPt, C
Co such as oSiTa, CoCrPtB, CoCrTaB
It is preferable to use a magnetic alloy containing as a main component from the viewpoint of obtaining high coercive force and recording density characteristics. The thickness of the magnetic layer is 0.2 nm to 50 per layer in consideration of the multilayer medium.
The range of nm is preferable for increasing S / N.

【0017】磁性層は、単層であっても多層であっても
よい。磁性層を多層構造とする場合には、磁性層間に中
間層を設けることが好ましい。中間層は下地層と同様の
組成とするのが好ましいが酸化物層、窒素含有層又は炭
素含有層であっても構わない。中間層の膜厚は0.1〜
5nmとすることが、オーバーライト特性を高める上で
好ましい。中間層は物理的な成膜法で実際に成膜しなく
とも、磁性層の成膜を一旦停止して再び成膜するという
ことを繰り返すだけで、磁性層間に0.1nm以上の酸
化物層が形成されるため、このような方法で形成しても
よい。
The magnetic layer may be a single layer or a multilayer. When the magnetic layer has a multilayer structure, it is preferable to provide an intermediate layer between the magnetic layers. The intermediate layer preferably has the same composition as the underlayer, but may be an oxide layer, a nitrogen-containing layer or a carbon-containing layer. The thickness of the intermediate layer is 0.1
The thickness of 5 nm is preferable for improving the overwrite characteristic. Even if the intermediate layer is not actually formed by a physical film-forming method, the process of temporarily stopping the film formation of the magnetic layer and then forming the film again is repeated. Therefore, it may be formed by such a method.

【0018】保護層としては、C、WC,(WMo)
C,(ZrNb)N,B4C,水素含有カーボン等を用
いることができる。上記第2の目的は、少なくとも磁極
の一部に1.2T以上の飽和磁束密度を有する磁性材料
を用いた記録専用の誘導型磁気ヘッドと、巨大磁気抵抗
効果素子を備える磁気抵抗効果ヘッドを組み合わせた磁
気ヘッドを用いることによって達成される。磁気ヘッド
に対する入力信号及び出力信号を波形処理する記録再生
信号処理手段は、最尤復号による信号処理回路及び巨大
磁気抵抗効果を利用した磁気ヘッドの再生信号の非対称
性を修正する回路を含み、磁気ヘッドを固定したスライ
ダの浮上高さは0.05μm以下であることが好まし
い。
As the protective layer, C, WC, (WMo)
C, it can be used (ZrNb) N, B 4 C , a hydrogen-containing carbon. The second purpose is to combine an inductive magnetic head dedicated to recording using a magnetic material having a saturation magnetic flux density of 1.2 T or more in at least a part of the magnetic pole with a magnetoresistive effect head including a giant magnetoresistive effect element. It is achieved by using a magnetic head. The recording / reproducing signal processing means for waveform-processing the input signal and the output signal for the magnetic head includes a signal processing circuit by maximum likelihood decoding and a circuit for correcting the asymmetry of the reproducing signal of the magnetic head utilizing the giant magnetoresistive effect. The flying height of the slider to which the head is fixed is preferably 0.05 μm or less.

【0019】[0019]

【作用】バイアススパッタリング法を用いることによっ
て保磁力が高くなる起源については現在のところ十分に
解明されてはいないが、以下のような理由が考えられ
る。 (1)磁性膜中にスパッタガス元素が取り込まれ、磁性
結晶粒内にひずみが誘起される。これと同時に、磁性結
晶粒の孤立化を促進させ、結晶粒間の相互作用を断ち切
る。 (2)基板表面にイオンが高速で衝突するため、膜表面
の実効的な温度が上昇しCr等の非磁性元素の結晶粒界
への偏析が促進される。 (3)結合の弱い結晶の成長が抑制され、結晶成長が選
択的に進行する。 (4)積層面を清浄にする。(不純物の除去)
The function of increasing the coercive force by using the bias sputtering method has not been sufficiently clarified at present, but the following reasons are considered. (1) Sputtering gas elements are taken into the magnetic film, and strain is induced in the magnetic crystal grains. At the same time, the isolation of the magnetic crystal grains is promoted, and the interaction between the crystal grains is cut off. (2) Since the ions collide with the substrate surface at a high speed, the effective temperature of the film surface rises, and segregation of nonmagnetic elements such as Cr to the crystal grain boundaries is promoted. (3) The growth of crystals with weak bonds is suppressed, and the crystal growth proceeds selectively. (4) Clean the laminated surface. (Removal of impurities)

【0020】以上の作用によって、磁性膜の実効的な異
方性磁界が大きくなり、保磁力が高くなると解釈でき
る。これらの作用にはスパッタガスが持つエネルギー、
すなわち原子量が関係しており、本発明においては従来
からスパッタガスとして一般的に用いられているArガ
スよりも原子量の大きなKr,Xe又はRnガスを使う
とことによって、さらに大きな効果が得られたものと考
えられる。また、Kr,Xe,Rnをスパッタガスとし
て用いた場合には、Arを用いた時とはプラズマの励起
状態が異なり、このプラズマ中を飛来して基板に到達す
るスパッタ粒子に影響を与える。そのため、成膜した膜
の結晶性が良くなるとも考えられ、バイアスの効果だけ
ではなくKr,Xe又はRnをスパッタガスとして用い
た方がよい。
It can be construed that the above action increases the effective anisotropic magnetic field of the magnetic film and increases the coercive force. The energy of the sputter gas has these effects,
That is, the atomic weight is related, and in the present invention, by using Kr, Xe, or Rn gas having a larger atomic weight than Ar gas which has been generally used as a sputtering gas from the past, a larger effect can be obtained. It is considered to be a thing. Further, when Kr, Xe, or Rn is used as the sputtering gas, the excited state of plasma is different from that when Ar is used, and it affects the sputtered particles flying in the plasma and reaching the substrate. Therefore, the crystallinity of the formed film may be improved, and it is better to use Kr, Xe, or Rn as the sputtering gas in addition to the effect of the bias.

【0021】しかしながら、このKr,Xe又はRnの
100%純ガスをスパッタガスとして用いると、磁気特
性は向上するものの製造コストが上がってしまう。これ
に対しては、Kr,Xe又はRnをArに混合した混合
ガスを用いることによって、重希ガスの消費量を減ら
し、コストを下げることができる。混合ガスを用いた場
合にも、Kr,Xe,Rnのような重希ガスを用いた効
果がそれほど損なわず、優れた磁気特性を有する媒体を
作製することができる。ここで、特に希ガスをスパッタ
ガスとして選んでいる理由は、前述のようにこのガスは
膜中に多く取り込まれてしまうため、膜に影響を与えな
いように電気的、化学的にも安定なガスが望ましいこと
からである。
However, when 100% pure gas of Kr, Xe or Rn is used as the sputtering gas, the magnetic properties are improved but the manufacturing cost is increased. On the other hand, by using a mixed gas in which Kr, Xe, or Rn is mixed with Ar, the consumption amount of the heavy rare gas can be reduced and the cost can be reduced. Even when a mixed gas is used, the effect of using a heavy rare gas such as Kr, Xe, or Rn is not significantly impaired, and a medium having excellent magnetic characteristics can be manufactured. Here, in particular, the reason why the rare gas is selected as the sputtering gas is that this gas is taken into the film as described above, so that it is stable electrically and chemically so as not to affect the film. This is because gas is desirable.

【0022】バイアススパッタリング法には、DCバイ
アススパッタリング法とRFバイアススパッタリング法
の2種類がある。DCバイアススパッタリング法は導電
性基板に有効であり、RFバイアススパッタリング法は
非導電性の基板に有効である。しかし、予め基板に導電
性のある膜を形成しておき、この導電膜と基板電極との
間で電気的接触を持たせて導通が確保できれば非導電性
の基板に対してもDCバイアススパッタリング法を適用
できる。さらにこの導電膜の表面に0.1nm以上10
nm以下程度の酸化物層、窒素含有層、もしくは炭素含
有層を形成すると保磁力がより向上するために好まし
い。この程度の薄い酸化物層、窒素含有層、もしくは炭
素含有層では、基板にバイアスを印加するための治具を
接触したときによる傷、もしくはトンネル現象により導
通が確保でき、充分バイアスが印加できるためバイアス
印加上の問題はない。
There are two types of bias sputtering methods, DC bias sputtering method and RF bias sputtering method. The DC bias sputtering method is effective for a conductive substrate, and the RF bias sputtering method is effective for a non-conductive substrate. However, if a conductive film is formed on the substrate in advance and electrical continuity can be secured by providing electrical contact between the conductive film and the substrate electrode, the DC bias sputtering method can be applied to a non-conductive substrate. Can be applied. Furthermore, 0.1 nm or more 10
It is preferable to form an oxide layer, a nitrogen-containing layer, or a carbon-containing layer of about nm or less because the coercive force is further improved. In such thin oxide layer, nitrogen-containing layer, or carbon-containing layer, conduction can be secured by scratches or tunnel phenomenon caused when a jig for applying bias to the substrate is contacted, and sufficient bias can be applied. There is no problem in applying the bias.

【0023】本発明のバイアススパッタリング法による
と、保磁力は2000Oe以上を確保したまま、残留磁
化膜厚積を150G・μm以下とすることができ、高い
記録密度特性を得ることができる。しかしながら、残留
磁化膜厚積を10G・μmよりも小さくすると、熱揺ら
ぎの影響が大きくなり、バイアススパッタリング法を用
いても著しく保磁力が劣化してしまう。しかも、10G
・μm以下とすると、あまりにも再生出力が小さくなり
過ぎてしまうため好ましくない。また、保磁力は200
0Oe以上とすることで、高記録密度時に高い再生出力
が得られるが、4000Oeよりも高くすると磁気ヘッ
ドの書き込み能力を遥かに超えてしまうため、オーバー
ライト特性が著しく劣化し好ましくない。
According to the bias sputtering method of the present invention, the residual magnetization film thickness product can be set to 150 G · μm or less while maintaining the coercive force of 2000 Oe or more, and high recording density characteristics can be obtained. However, if the remanent magnetization film thickness product is smaller than 10 G · μm, the effect of thermal fluctuation increases, and the coercive force is significantly deteriorated even when the bias sputtering method is used. Moreover, 10G
・ If it is less than μm, the reproduction output becomes too small, which is not preferable. The coercive force is 200
When it is 0 Oe or more, a high reproduction output can be obtained at a high recording density, but when it is higher than 4000 Oe, the writing capability of the magnetic head is far exceeded, and the overwrite characteristic is remarkably deteriorated, which is not preferable.

【0024】本手法を用いて作製する媒体の構造は、下
地層、磁性層、保護層といった磁性層が単層である構造
だけでなく、下地層、磁性層、中間層、磁性層、中間
層、……、保護層といったように多層磁性構造であって
も構わない。多層磁性構造では個々の磁性層を薄くし、
磁性層間に膜厚0.1nm以上の中間層を介在させるこ
とによって、結晶粒を微細化したまま磁性層を積層で
き、しかも実質的に各層をほぼ磁気的に独立とみなせる
までに交換相互作用を低減できる。この場合には磁性層
間の磁気的な相互作用を弱めることができ、ノイズを統
計和に従って減少できるため、単層媒体に比べてさらに
低ノイズ化を実現することができる。出力についても磁
性層を多数積層することによって、再生出力を高めるこ
とができる。
The structure of the medium produced by this method is not limited to the structure in which the magnetic layer such as the underlayer, the magnetic layer and the protective layer is a single layer, but also the underlayer, the magnetic layer, the intermediate layer, the magnetic layer and the intermediate layer. , ....., may have a multilayer magnetic structure such as a protective layer. In the multi-layer magnetic structure, each magnetic layer is thinned,
By interposing an intermediate layer having a film thickness of 0.1 nm or more between the magnetic layers, the magnetic layers can be stacked while the crystal grains are made finer, and further, the exchange interaction occurs until each layer can be regarded as substantially magnetically independent. It can be reduced. In this case, the magnetic interaction between the magnetic layers can be weakened and the noise can be reduced according to the statistical sum, so that the noise can be further reduced as compared with the single layer medium. Regarding the output, the reproduction output can be increased by stacking a large number of magnetic layers.

【0025】本発明の磁気記録媒体と、少なくとも磁極
の一部に1.2T以上の飽和磁束密度を有する磁性材料
を用いた記録専用の誘導型磁気ヘッドと、巨大磁気抵抗
効果を利用した再生専用の磁気ヘッドを組み合わせるこ
とにより、高品位の再生信号が得られ、従来に比べて2
倍以上の大容量磁気ディスク装置を実現することができ
る。
A magnetic recording medium of the present invention, an inductive magnetic head dedicated to recording using a magnetic material having a saturation magnetic flux density of 1.2 T or more in at least a part of a magnetic pole, and a reproducing only utilizing a giant magnetoresistive effect. By combining these magnetic heads, a high-quality reproduction signal can be obtained, and
It is possible to realize a large-capacity magnetic disk device that is more than double the capacity.

【0026】これは、少なくとも磁極の一部に1.2T
以上の飽和磁束密度を有する磁性材料を用いた記録専用
の磁気ヘッドでは、飽和磁束密度が1T程度である従来
の磁気ヘッドに比べ記録磁界が大きくなり、高い保磁力
の媒体でも充分な記録が可能となり、オーバーライト特
性が著しく向上し、しかも記録磁界が急峻になることに
よって媒体ノイズが低く抑えられることによる。さらに
巨大磁気抵抗効果を利用した再生専用の磁気ヘッドで
は、従来の誘導型磁気ヘッドに比べ5倍以上の再生出力
が得られることも大きな要因の一つである。この磁気記
録媒体と磁気ヘッドの組合せに、さらに最尤復号による
信号処理回路と、巨大磁気抵抗効果を利用した磁気ヘッ
ドの再生信号の非対称性を修正する回路を組み合わせ、
磁気ヘッドのスライダの浮上高さを0.05μm以下と
することにより、従来に比べて3倍以上の大容量磁気記
憶装置が実現できる。
This is 1.2T at least in a part of the magnetic pole.
A magnetic head dedicated to recording using a magnetic material having the above saturation magnetic flux density has a larger recording magnetic field than a conventional magnetic head having a saturation magnetic flux density of about 1T, and sufficient recording is possible even with a medium having a high coercive force. This is because the overwrite characteristic is remarkably improved, and the recording magnetic field becomes steep, so that the medium noise can be suppressed low. Further, it is one of the major factors that the read-only magnetic head utilizing the giant magnetoresistive effect can obtain a read output more than 5 times that of the conventional induction type magnetic head. In addition to the combination of the magnetic recording medium and the magnetic head, a signal processing circuit by maximum likelihood decoding and a circuit for correcting the asymmetry of the reproduction signal of the magnetic head using the giant magnetoresistive effect are combined.
By setting the flying height of the slider of the magnetic head to be 0.05 μm or less, it is possible to realize a large-capacity magnetic storage device which is three times or more compared with the conventional one.

【0027】[0027]

【実施例】以下、本発明の実施例について説明する。 〔実施例1〕本発明による磁気記録媒体の一実施例の断
面を図1に示す。各層は、以下に説明するようにスパッ
タリング法によって成膜した。
EXAMPLES Examples of the present invention will be described below. [Embodiment 1] FIG. 1 shows a cross section of an embodiment of a magnetic recording medium according to the present invention. Each layer was formed by a sputtering method as described below.

【0028】外径95mmφの強化ガラス基板(コーニ
ング0313)からなる基板11に、基板温度を300
℃、ガス圧力を2.5mTorr、投入電力密度を5W
/cm2 とする成膜条件で、DCマグネトロンスパッタ
リング法によって、導電膜12,12’としてCrを2
5nm成膜した。このとき、スパッタガスとしてはAr
を用いた。
A substrate 11 made of a tempered glass substrate (Corning 0313) having an outer diameter of 95 mmφ is heated at a substrate temperature of 300.
℃, gas pressure 2.5mTorr, input power density 5W
/ Cm 2 under the film forming conditions of DC magnetron sputtering, the conductive films 12, 12 ′ of Cr 2
A 5 nm film was formed. At this time, the sputtering gas is Ar
Was used.

【0029】次いで、基板温度を300℃、ガス圧力を
2.5mTorr、投入電力密度を5W/cm2 とする
成膜条件で、DCバイアス電圧を印加したDCマグネト
ロンスパッタリング法により、下地層13,13’とし
てCrを50nm、磁性層14,14’としてCo−1
9at%Cr−8at%Ptを25nmの膜厚に順次成
膜した。DCバイアス電圧の印加は、導電膜12,1
2’の表面に導電性の治具を接触させて下地層13,1
3’及び磁性層14,14’の積層面にDCバイアス電
圧が印加されるようにして行い、印加電圧は−100V
〜−400Vの範囲で変化させた。スパッタガスとして
はKr,Xe,Rnを夫々用いた。
Then, underlayers 13 and 13 were formed by a DC magnetron sputtering method in which a DC bias voltage was applied under film forming conditions of a substrate temperature of 300 ° C., a gas pressure of 2.5 mTorr, and an input power density of 5 W / cm 2. 'Is Cr of 50 nm and the magnetic layers 14 and 14' is Co-1.
9 at% Cr-8 at% Pt was sequentially formed into a film having a thickness of 25 nm. The DC bias voltage is applied to the conductive films 12, 1
A conductive jig is brought into contact with the surface of 2'to form the base layers 13, 1
The DC bias voltage is applied to the laminated surface of 3'and the magnetic layers 14 and 14 ', and the applied voltage is -100V.
It was changed in the range of -400V. Kr, Xe, and Rn were used as the sputtering gas, respectively.

【0030】最後に、保護層15,15’としてスパッ
タガスにArを用い、バイアス電圧を印加しない状態で
Cを10nm成膜した後、3nmのパーフルオロアルキ
ルポリエーテル系の潤滑層16,16’を形成した。本
実施例の磁気記録媒体は、図1に円で囲んで示すよう
に、基板11及び導電膜12,12’の面積より下地層
13,13’、磁性層14,14’及び保護層15,1
5’の面積が小さくなっている。これは導電膜12,1
2’の外周部にDCバイアス電圧印加用の治具を接触さ
せたため、外周部に導電膜以降の膜が積層できなかった
からである。導電膜と基板電極との導通を確保する手法
としては、この他にも内周部で接触させたり、あるいは
導電膜が基板側面へ廻り込んだところと接触させてもよ
い。このように導電膜と基板電極治具とを接触させる箇
所を磁気記録媒体の内周部又は外周部の部分とすると、
円板の中周部を記録領域として有効に活用できるので好
ましい。また、接触面積についても、ディスク一周全面
で接触させなくとも点接触でよいことが容易に理解でき
るであろう。
Finally, as the protective layers 15 and 15 ', Ar is used as a sputtering gas, C is deposited to a thickness of 10 nm without applying a bias voltage, and then 3 nm of perfluoroalkylpolyether-based lubricating layers 16 and 16' are used. Was formed. In the magnetic recording medium of this embodiment, as shown by the circle in FIG. 1, the underlayers 13 and 13 ′, the magnetic layers 14 and 14 ′, and the protective layer 15 are compared with the area of the substrate 11 and the conductive films 12 and 12 ′. 1
The area of 5'is smaller. This is the conductive film 12,1
This is because a jig for applying a DC bias voltage was brought into contact with the outer peripheral portion of 2 ', so that the film after the conductive film could not be laminated on the outer peripheral portion. As a method for ensuring the conduction between the conductive film and the substrate electrode, in addition to this, the inner peripheral portion may be contacted, or the conductive film may be brought into contact with the side surface of the substrate. When the location where the conductive film and the substrate electrode jig are in contact with each other is the inner peripheral portion or the outer peripheral portion of the magnetic recording medium,
This is preferable because the middle part of the disk can be effectively used as a recording area. Also, regarding the contact area, it will be easily understood that point contact is not required to be in contact with the entire circumference of the disk.

【0031】〔比較例1〕次に、比較のために、スパッ
タガスにArを用いた以外は実施例1と同一の作製条件
とし、バイアス電圧を−100〜−400Vの範囲で変
化させて作製した磁気記録媒体、及びスパッタガスとし
てAr,Kr,Xe,Rnを各々用い、バイアスを0V
とした以外は実施例1と同一の作製条件で作製した磁気
記録媒体を用意した。
COMPARATIVE EXAMPLE 1 Next, for comparison, the same manufacturing conditions as in Example 1 were used except that Ar was used as the sputtering gas, and the bias voltage was changed in the range of −100 to −400V. The magnetic recording medium and the sputtering gas of Ar, Kr, Xe, and Rn are used, and the bias is 0V.
A magnetic recording medium manufactured under the same manufacturing conditions as in Example 1 except for the above was prepared.

【0032】前記実施例1、及び比較例1として作製し
た磁気記録媒体の保磁力を図2に示す。いずれのスパッ
タガスを用いて作製した媒体でも、DCバイアス電圧を
印加することによって保磁力は高くなり、−200Vの
バイアス印加時に保磁力が最大値を示している。さらに
バイアス電圧を負の値とし、その絶対値を大きくすると
保磁力は低くなっていき、−400Vのバイアス印加時
にはバイアスを印加しない媒体と同程度にまで保磁力が
低下してしまう。
FIG. 2 shows the coercive force of the magnetic recording media manufactured as Example 1 and Comparative Example 1. The coercive force is increased by applying a DC bias voltage in any of the media produced using any sputtering gas, and the coercive force shows the maximum value when a bias of -200V is applied. Further, if the bias voltage is set to a negative value and its absolute value is increased, the coercive force becomes lower, and when a bias of -400V is applied, the coercive force is reduced to the same extent as in a medium to which no bias is applied.

【0033】スパッタガスの違いにより保磁力を比較し
てみると、Rnで作製した媒体の保磁力が一番高く、X
e,Kr,Arの順に保磁力が低くなっていくことがわ
かる。比較例のArを用いた媒体では、最大の保磁力を
示す媒体でも2000Oeに達していない。このことか
ら、Rn,Xe,Kr等の原子量の大きなスパッタガス
を用いるほど高保磁力の媒体が得られ、スパタッリング
ガスとしてRn,Xe,Krを選択してバイアススパッ
タリング法によると、2000Oe以上の保磁力を達成
することが可能となることがわかる。
Comparing the coercive forces due to the difference in the sputtering gas, the coercive force of the medium made of Rn has the highest coercive force.
It can be seen that the coercive force decreases in the order of e, Kr, and Ar. In the medium using Ar of the comparative example, the maximum coercive force does not reach 2000 Oe. From this, a medium having a higher coercive force can be obtained by using a sputtering gas having a large atomic weight such as Rn, Xe, and Kr. According to the bias sputtering method with Rn, Xe, and Kr selected as the sputtering gas, 2000 Oe or more is obtained. It can be seen that a coercive force can be achieved.

【0034】以上のことから、バイアスを印加する範囲
としては−400V以上、−30V未満程度とし、スパ
ッタガスとしてはRn,Xe,Krを用いた方がよいと
いうことが結論づけられる。なお、前記実施例1の磁気
記録媒体と同様な成膜条件のもとで磁性膜の組成をCo
−16at%Cr−4at%Ta,Co−15at%C
r−12at%Pt,Co−30at%Ni−5at%
Pt,Co−20at%Ni−10at%Cr,Co−
16at%Si−6at%Ta,Co−20at%Si
−10at%Pt,Co−15at%Cr−4at%T
a−4at%B,Co−16at%Cr−8at%Pt
−4at%Bと変えても、保磁力の絶対値に多少の差異
は見られるものの図2と同様な結果が得られた。すなわ
ち、磁性層としては、CoCrPt,CoCrTa,C
oNiPt,CoNiTa,CoSiPt,CoSiT
a,CoCrPtB,CoCrTaB等のCoを主たる
成分とする磁性層をいずれも用いることができる。
From the above, it is concluded that it is better to apply the bias in the range of -400 V or more and less than -30 V and to use Rn, Xe, Kr as the sputtering gas. The composition of the magnetic film was changed to Co under the same film forming conditions as those of the magnetic recording medium of Example 1.
-16 at% Cr-4 at% Ta, Co-15 at% C
r-12 at% Pt, Co-30 at% Ni-5 at%
Pt, Co-20 at% Ni-10 at% Cr, Co-
16 at% Si-6 at% Ta, Co-20 at% Si
-10 at% Pt, Co-15 at% Cr-4 at% T
a-4 at% B, Co-16 at% Cr-8 at% Pt
Even when the absolute value of the coercive force was slightly different even when changed to -4 at% B, the same result as in FIG. 2 was obtained. That is, as the magnetic layer, CoCrPt, CoCrTa, C
oNiPt, CoNiTa, CoSiPt, CoSiT
Any magnetic layer containing Co as a main component, such as a, CoCrPtB, and CoCrTaB, can be used.

【0035】また、導電膜12,12’の組成をC,T
i,V,Cu,Zn,Nb,Mo,Ru,Rh,Pd,
Ag,Ta,W,Pt,Au,Ni−P,Cr−P、又
はこれらを2種類あるいは3種類以上混ぜ合わせたもの
としても同様な結果が得られた。導電膜12,12’を
成膜した後、一旦成膜装置の真空を破って大気にさらす
ことによって導電膜表面に薄い酸化物層を設けたとこ
ろ、保磁力が100〜400Oe程度向上した。なお、
導電膜の表面に薄い窒素含有層あるいは炭素含有層を形
成しても同様に保磁力が向上する現象が見られた。窒素
含有層の形成は、導電膜を窒素雰囲気にさらす方法、又
はターゲットに微量の窒素を混入する方法により行っ
た。また、炭素含有層の形成は、ターゲットに微量の炭
素を混入する方法、表面に薄いカーボンを成膜する方
法、又はイオン打ち込みによって行った。
The composition of the conductive films 12 and 12 'is C and T.
i, V, Cu, Zn, Nb, Mo, Ru, Rh, Pd,
Similar results were obtained with Ag, Ta, W, Pt, Au, Ni-P, Cr-P, or a mixture of two or more of these. After forming the conductive films 12 and 12 ′, the vacuum of the film forming apparatus was once broken and exposed to the atmosphere to form a thin oxide layer on the conductive film surface, and the coercive force was improved by about 100 to 400 Oe. In addition,
Even when a thin nitrogen-containing layer or carbon-containing layer was formed on the surface of the conductive film, the phenomenon that the coercive force was similarly improved was observed. The formation of the nitrogen-containing layer was performed by a method of exposing the conductive film to a nitrogen atmosphere or a method of mixing a trace amount of nitrogen into the target. The carbon-containing layer was formed by a method of mixing a trace amount of carbon into the target, a method of forming a thin carbon film on the surface, or an ion implantation.

【0036】DCバイアスは磁性層成膜時のみに印加し
ても保磁力を向上する効果が得られたが、下地膜成膜時
のみにDCバイアスを印加した場合には磁性層の保磁力
は改善されず、バイアススパッタリングの効果はほとん
ど見られなかった。前記実施例1では基板として強化ガ
ラス基板を用いたが、強化ガラス基板以外にもカナサイ
ト(結晶化ガラス)基板、SiC等のセラミックス基
板、Ni−PメッキAl合金基板、プラスチック基板、
カーボン基板、ボロン基板、TiO基板、Ti合金基板
等を用いることができる。
The DC bias has the effect of improving the coercive force even when applied only during the formation of the magnetic layer. However, when the DC bias is applied only during the formation of the underlayer, the coercive force of the magnetic layer is reduced. It was not improved, and the effect of bias sputtering was hardly seen. Although the tempered glass substrate is used as the substrate in the first embodiment, in addition to the tempered glass substrate, a canasite (crystallized glass) substrate, a ceramic substrate such as SiC, a Ni-P plated Al alloy substrate, a plastic substrate,
A carbon substrate, a boron substrate, a TiO substrate, a Ti alloy substrate or the like can be used.

【0037】なお、基板に導電膜を形成する前に、基板
表面の不純物等の影響を低減するためAr,Kr,X
e,Rn等によるプラズマ洗浄を施してもよい。媒体の
残留磁化膜厚積を10G・μm以上150G・μm以
下、保磁力を2000Oe以上4000Oe以下とする
ことは基板温度、ガス圧力、スパッタ時の投入電力を組
成、膜構成に応じて適正化することによって達成され
る。本発明の実施例として示した磁気記録媒体は全て残
留磁化膜厚積が10G・μm以上150G・μm以下、
保磁力が2000Oe以上4000Oe以下という条件
を満たしていた。
Before forming the conductive film on the substrate, Ar, Kr, X are added to reduce the influence of impurities on the substrate surface.
Plasma cleaning with e, Rn or the like may be performed. Setting the remanent magnetization film thickness product of the medium to 10 G · μm or more and 150 G · μm or less and the coercive force to 2000 Oe or more and 4000 Oe or less optimizes the substrate temperature, gas pressure, and input power during sputtering depending on the composition and film configuration. To be achieved. The magnetic recording media shown as examples of the present invention all have a residual magnetization film thickness product of 10 G · μm or more and 150 G · μm or less,
The condition that the coercive force was 2000 Oe or more and 4000 Oe or less was satisfied.

【0038】前記実施例1では、スパッタガスとして1
00%純ガスのRn,Xe,Krを用いたが、Arにこ
れらの重希ガスを混合した混合ガスについても検討を行
った。磁気記録媒体の膜構成及び成膜条件は実施例1と
同一とし、DCバイアス電圧は−200Vとして、スパ
ッタガスの組成を変えて種々の磁気記録媒体を作製し、
保磁力を測定した。その結果を図3に示す。
In the first embodiment, the sputtering gas is 1
Although Rn, Xe, and Kr of 00% pure gas were used, a mixed gas in which these heavy rare gases were mixed with Ar was also examined. The film structure and film forming conditions of the magnetic recording medium were the same as in Example 1, the DC bias voltage was -200 V, and the composition of the sputtering gas was changed to prepare various magnetic recording media.
The coercive force was measured. The result is shown in FIG.

【0039】図3から、Arガス中に2at%以上のR
n,Xe又はKrが混合していれば、純Arをスパッタ
ガスとして用いた場合よりも特性が向上し、2000O
e以上の保磁力を達成できることがわかる。さらに、R
n,Xe,Krの3種類のガスを混合しても構わず、こ
の3種類の混合ガスとArを混合する場合にも、Rn,
Xe,Krの混合ガスを2at%以上Arに混ぜ合わせ
ることが望ましい。
From FIG. 3, R of 2 at% or more in Ar gas is obtained.
When n, Xe or Kr is mixed, the characteristics are improved as compared with the case where pure Ar is used as the sputtering gas,
It can be seen that a coercive force of e or more can be achieved. Furthermore, R
It is possible to mix three kinds of gases of n, Xe, and Kr. Even when mixing these three kinds of mixed gas and Ar, Rn,
It is desirable to mix a mixed gas of Xe and Kr with Ar at 2 at% or more.

【0040】次に、Arガスを用いて作製した磁気記録
媒体とRnガスを用いて作製した磁気記録媒体について
X線回折による結晶の評価を行った。このとき、基板1
1としてはNi−PメッキAl合金基板を用い、上記実
施例1と同じ成膜条件及び膜構成とし、バイアス電圧は
−200Vを印加した媒体を用いた。結果を図4に示
す。図4(a)に示すように、Arガスを用いて作製し
た媒体では膜面に平行なCo(110)面の回折角と膜
面から60度傾斜したCo(110)面の回折角はほぼ
同じであり、いずれも面間隔0.1261nmを示して
いる。一方、図4(b)に示すように、Rnガスを用い
て作製した媒体では膜面に平行なCo(110)面の回
折角の方が小さい。これは、Rnガスを用い、基板にバ
イアスを印加して作製した媒体では、膜面に平行なCo
(110)面の面間隔が膜面から60度(20度以上)
傾斜したCo(110)面の面間隔よりも大きいことを
意味している。ちなみに、図4(b)から導出される膜
面に平行なCo(110)面の面間隔は0.1260n
mであり、膜面から60度(20度以上)傾斜したCo
(110)面の面間隔は0.1250nmである。
Next, the crystals were evaluated by X-ray diffraction for the magnetic recording medium produced using Ar gas and the magnetic recording medium produced using Rn gas. At this time, the substrate 1
As No. 1, a Ni-P plated Al alloy substrate was used, the same film forming conditions and film constitution as in Example 1 were used, and a medium to which a bias voltage of -200 V was applied was used. The results are shown in Fig. 4. As shown in FIG. 4A, in the medium produced using Ar gas, the diffraction angle of the Co (110) plane parallel to the film surface and the diffraction angle of the Co (110) surface inclined by 60 degrees from the film surface are almost the same. It is the same, and all indicate a surface spacing of 0.1261 nm. On the other hand, as shown in FIG. 4B, in the medium manufactured using Rn gas, the diffraction angle of the Co (110) plane parallel to the film surface is smaller. This is because, in the medium produced by applying a bias to the substrate using Rn gas, Co parallel to the film surface is used.
The (110) plane spacing is 60 degrees (20 degrees or more) from the film surface.
This means that it is larger than the spacing between the inclined Co (110) planes. By the way, the Co (110) plane parallel to the film plane derived from FIG. 4B has a surface spacing of 0.1260 n.
m and Co inclined by 60 degrees (20 degrees or more) from the film surface
The plane spacing of the (110) plane is 0.1250 nm.

【0041】上記実施例とは別に、図1に示す導電膜1
2,12’から保護層15,15’までの各層を全てX
eガスを用いて成膜し、下地層13,13’、及び磁性
層14,14’の成膜時にはバイアス電圧を−200V
印加して作製した媒体について、SIMS(2次イオン
質量分析)法によって元素分析を行った。結果を図5に
示す。図5から、バイアスを印加して成膜した下地層及
び磁性層ではXeが多く検出されていることがわかる。
これは、バイアスを印加したことによって、膜中に多く
のXeガスが取り込まれたことを意味しており、バイア
ススパッタリングを行ったことの特徴の一つと言える。
本発明によるバイアススパッタリングによって作製した
膜中には100ppm以上の濃度でRn,Xe又はKr
が含有されている。
Apart from the above embodiment, the conductive film 1 shown in FIG.
X for all layers from 2, 12 'to protective layers 15, 15'
A film is formed by using e gas, and a bias voltage of −200 V is applied when forming the underlayers 13 and 13 ′ and the magnetic layers 14 and 14 ′.
Elemental analysis was performed by SIMS (Secondary Ion Mass Spectroscopy) on the medium produced by applying the voltage. Results are shown in FIG. From FIG. 5, it can be seen that a large amount of Xe is detected in the underlayer and magnetic layer formed by applying a bias.
This means that a large amount of Xe gas was taken into the film by applying the bias, and can be said to be one of the characteristics of performing the bias sputtering.
The film formed by bias sputtering according to the present invention contains Rn, Xe or Kr at a concentration of 100 ppm or more.
Is included.

【0042】次に、Kr,Xe,Rnガスによってスパ
ッタした媒体を、温度60℃、湿度90%の環境下に放
置して各媒体の飽和磁化の減衰量を測定し、耐食性を比
較した。その結果を、図6に示す。図6の横軸は時間、
縦軸は初期飽和磁化で規格化した各時点での飽和磁化の
値である。図6から、Krガスによってスパッタした媒
体の耐食性が最も優れ、Xe,Rnの順に耐食性が劣化
することがわかる。従って、高い保磁力を得るためには
Rnが最も効果があるが、高い信頼性を要求する場合に
はKrが最も有効である。
Next, the medium sputtered with Kr, Xe, and Rn gas was left in an environment of a temperature of 60 ° C. and a humidity of 90%, the attenuation amount of the saturation magnetization of each medium was measured, and the corrosion resistance was compared. The result is shown in FIG. The horizontal axis of FIG. 6 is time,
The vertical axis represents the value of saturation magnetization at each time point normalized by the initial saturation magnetization. From FIG. 6, it can be seen that the corrosion resistance of the medium sputtered with Kr gas is the best, and the corrosion resistance deteriorates in the order of Xe and Rn. Therefore, Rn is most effective for obtaining a high coercive force, but Kr is most effective when high reliability is required.

【0043】〔実施例2〕本発明による多層磁気記録媒
体の一実施例の断面を図7に示す。各層は、以下に説明
するようにスパッタリング法によって成膜した。基板4
1に直径2.5インチのカナサイト(結晶化ガラス)基
板を用い、基板温度を300℃、Xeガス圧力を1.7
mTorr、投入電力密度は5W/cm 2 とする成膜条
件でRFバイアス印加のDCマグネトロンスパッタリン
グ法により、下地層42,42’としてCr−15at
%Tiを250nm、第1磁性層43,43’としてC
o−19at%Cr−8at%Ptを12nm成膜し
た。さらに中間層44,44’としてCrを2nm成膜
した後、第2磁性層45,45’としてCo−16at
%Cr−4at%Taを12nm成膜し、磁性層が2層
の媒体構造にした。RFバイアス電圧は−100V〜−
400Vの範囲で変化させた。
Example 2 Multilayer magnetic recording medium according to the present invention
A cross section of one embodiment of the body is shown in FIG. Each layer is described below
As described above, a film was formed by the sputtering method. Board 4
2.5 inch diameter canasite (crystallized glass) base
Using a plate, the substrate temperature is 300 ° C., and the Xe gas pressure is 1.7.
mTorr, input power density is 5 W / cm 2 Film forming
DC magnetron sputter phosphorus with RF bias applied in some cases
Cr-15 at as the underlayers 42 and 42 'by the coating method.
% Ti is 250 nm, and C is used as the first magnetic layers 43 and 43 '.
o-19at% Cr-8at% Pt 12nm film-forming
It was Further, a Cr film having a thickness of 2 nm is formed as the intermediate layers 44 and 44 '.
Then, as a second magnetic layer 45, 45 ′, Co-16 at
% Cr-4at% Ta 12nm thick, 2 magnetic layers
It has a medium structure. RF bias voltage is -100V ~-
It was changed in the range of 400V.

【0044】最後に保護層46,46’としてスパッタ
ガスにXeとメタンの混合ガスを用い、バイアス電圧を
印加しない状態で水素含有カーボンを10nm成膜した
後、厚さ3nmのパーフルオロアルキルポリエーテル系
の潤滑層47,47’を形成した。
Finally, as the protective layers 46 and 46 ', a mixed gas of Xe and methane was used as a sputtering gas, a hydrogen-containing carbon film was formed to a thickness of 10 nm without applying a bias voltage, and then a perfluoroalkyl polyether having a thickness of 3 nm was formed. The system lubricating layers 47, 47 'were formed.

【0045】〔比較例2〕また、比較のために、バイア
ス電圧を0Vとした以外は前記実施例2の成膜条件と同
一の条件で、実施例2と同一の多層膜構造を有する磁気
記録媒体を作製した。実施例2、及び比較例2として作
製した磁気記録媒体の保磁力を図8に示す。図8から明
らかなように、磁性層を2層とした実施例2においても
実施例1と同様な結果が得られ、バイアスを印加して成
膜した媒体の方が高い保磁力を有することがわかる。な
お、磁性層の層数を3層、4層、5層と変化させたり、
各磁性層の組成を同じにしても図8に示すのと同様の結
果が得られた。
[Comparative Example 2] For comparison, magnetic recording having the same multilayer film structure as that of Example 2 under the same conditions as those of Example 2 except that the bias voltage was set to 0V. A medium was prepared. FIG. 8 shows the coercive force of the magnetic recording media produced as Example 2 and Comparative Example 2. As is apparent from FIG. 8, the same results as in Example 1 were obtained also in Example 2 having two magnetic layers, and the medium formed by applying a bias had a higher coercive force. Recognize. The number of magnetic layers may be changed to three layers, four layers, five layers,
Even if the composition of each magnetic layer was the same, the same result as shown in FIG. 8 was obtained.

【0046】さらに、実施例2と同様の多層膜構成で、
基板としてNi−PメッキAl合金基板、カーボン基板
等の導電性のある基板を用い、DCバイアススパッタリ
ング法で媒体を作製した場合にも図8に示すのと同様の
結果が得られた。
Further, with the same multilayer film structure as in Example 2,
The same results as shown in FIG. 8 were obtained when a medium was prepared by a DC bias sputtering method using a conductive substrate such as a Ni—P plated Al alloy substrate or a carbon substrate as the substrate.

【0047】〔実施例3〕前記実施例1及び実施例2の
磁気記録媒体の電磁変換特性を、図9に略示する記録再
生分離型磁気ヘッドを用いて測定した。記録用磁気ヘッ
ドは、一対の記録磁極51,52とそれに鎖交するコイ
ル53からなる誘導型薄膜磁気ヘッドであり、磁極が飽
和するのを回避するために磁極51,52の一部に1.
2T以上の飽和磁束密度を有するCoNiFe等の磁性
材料54,54’を用いている。1.2T以上の飽和磁
束密度を有する磁性材料は、一方の磁極にのみ設けても
よいし、磁極全体を1.2T以上の飽和磁束密度を有す
る磁性材料で作製してもよい。再生専用の磁気ヘッド
は、NiFeにNiO等を積層した巨大磁気抵抗効果素
子55と電極となる導体層56からなる磁気抵抗効果ヘ
ッドであり、一対の磁気シールド層57,58によって
挟まれている。この磁気ヘッドは磁気ヘッドスライダ基
体59上に設けられている。
[Embodiment 3] The electromagnetic conversion characteristics of the magnetic recording media of Embodiments 1 and 2 were measured using a recording / reproducing separated type magnetic head schematically shown in FIG. The recording magnetic head is an inductive thin film magnetic head composed of a pair of recording magnetic poles 51 and 52 and a coil 53 interlinking with the recording magnetic poles 51 and 52. In order to avoid saturation of the magnetic poles, 1.
Magnetic materials 54, 54 'such as CoNiFe having a saturation magnetic flux density of 2T or more are used. The magnetic material having a saturation magnetic flux density of 1.2 T or higher may be provided only on one magnetic pole, or the entire magnetic pole may be made of a magnetic material having a saturation magnetic flux density of 1.2 T or higher. The read-only magnetic head is a magnetoresistive head including a giant magnetoresistive element 55 in which NiO or the like is laminated on NiFe and a conductor layer 56 serving as an electrode, and is sandwiched by a pair of magnetic shield layers 57 and 58. This magnetic head is provided on a magnetic head slider base 59.

【0048】測定条件としては、線記録密度は190k
FCI、トラック幅は2μm、記録用ヘッドのギャップ
長は0.2μm、再生用ヘッドのシールド間隔は0.2
μm、磁気ヘッドのスライダの浮上高さは0.04μm
とした。このような記録再生条件のもとで測定した再生
信号のS/N(信号対雑音比)は、実施例1に示した磁
気記録媒体では、スパッタガスとしてRnを用い−20
0Vのバイアスを印加して作製した保磁力が最も高かっ
た媒体が最も優れ、38dBであった。その他の媒体で
も33dBは確保することができた。
As the measurement conditions, the linear recording density is 190 k.
FCI, track width 2 μm, recording head gap length 0.2 μm, reproducing head shield spacing 0.2
μm, flying height of slider of magnetic head is 0.04 μm
And The S / N (signal-to-noise ratio) of the reproduced signal measured under such recording / reproducing conditions is -20 when Rn is used as the sputtering gas in the magnetic recording medium shown in the first embodiment.
The medium having the highest coercive force produced by applying a bias of 0 V was the best, and was 38 dB. 33 dB could be secured for other media.

【0049】また、実施例2に示した磁気記録媒体で
も、保磁力が最も高かった−200Vのバイアスを印加
して作製した媒体が最も優れ、37dBであった。その
他の媒体でも32dBは確保することができた。装置を
正常に動作するのに必要なS/Nがおよそ30dBであ
ることを考えると、本発明の磁気記録媒体は充分な電磁
変換特性を有していると言える。
Further, also in the magnetic recording medium shown in Example 2, the medium produced by applying a bias of -200 V, which had the highest coercive force, was the best, and the value was 37 dB. With other media, 32 dB could be secured. Considering that the S / N required to operate the device normally is about 30 dB, it can be said that the magnetic recording medium of the present invention has sufficient electromagnetic conversion characteristics.

【0050】〔実施例4〕磁気記憶装置の一例の上面図
を図10(a)に、そのAA’線断面図を図10(b)
に示す。磁気記録媒体61は、磁気記録媒体駆動部62
に連結する保持具に保持され、磁気記録媒体61のそれ
ぞれの面に対向して図9に略示する磁気ヘッド63が配
置される。磁気ヘッド63は浮上高さ0.05μm以下
で安定低浮上をさせ、さらに0.4μm以下のヘッド位
置決め精度で所望のトラックに磁気ヘッド駆動部65に
より駆動される。
[Embodiment 4] A top view of an example of a magnetic memory device is shown in FIG. 10A, and a sectional view taken along the line AA 'of FIG. 10B.
Shown in. The magnetic recording medium 61 includes a magnetic recording medium driving unit 62.
A magnetic head 63, which is held by a holder connected to the magnetic recording medium 61 and faces each surface of the magnetic recording medium 61, is schematically shown in FIG. The magnetic head 63 is stably floated at a flying height of 0.05 μm or less, and is driven by a magnetic head drive unit 65 to a desired track with a head positioning accuracy of 0.4 μm or less.

【0051】磁気ヘッド63によって再生した信号は、
記録再生信号処理系64によって波形処理される。記録
再生信号処理系は、図11に示すような、増幅器81、
アナログ等化器82、ADコンバータ83、ディジタル
等化器84、最尤復号器85を含んで構成されている。
巨大磁気抵抗効果を利用したヘッドの再生波形は、ヘッ
ドの特性により正と負の大きさが非対称となったり、記
録再生系の周波数特性の影響を受けたりして記録波形と
は異なる波形になってしまう。等化器82,84は、再
生波形を変形してこれを修復する機能を有する。最尤復
号器85はさらにこの修復した信号を最尤復号による信
号処理LSIを通すことにより、極めて低いエラーレー
トの信号処理回路を構築するものである。これらの波形
処理が記録再生信号処理系64によって行われている。
なお、等化器や最尤復号器は既存のものを用いることが
できる。
The signal reproduced by the magnetic head 63 is
Waveform processing is performed by the recording / reproducing signal processing system 64. The recording / reproducing signal processing system includes an amplifier 81, as shown in FIG.
The analog equalizer 82, the AD converter 83, the digital equalizer 84, and the maximum likelihood decoder 85 are included.
The playback waveform of the head that uses the giant magnetoresistive effect is different from the recording waveform because the positive and negative magnitudes are asymmetrical due to the characteristics of the head, and the frequency characteristics of the recording and playback system affect it. Will end up. The equalizers 82 and 84 have a function of deforming the reproduced waveform and restoring it. The maximum likelihood decoder 85 further constructs a signal processing circuit having an extremely low error rate by passing the restored signal through a signal processing LSI by maximum likelihood decoding. These waveform processing is performed by the recording / reproducing signal processing system 64.
Existing equalizers and maximum likelihood decoders can be used.

【0052】以上の装置構成とすることによって、従来
の磁気記録再生装置に比べ3倍以上の記憶容量を持った
高密度磁気記録再生装置を実現することができた。ま
た、記録再生信号処理系64から最尤復号による信号処
理回路85と、巨大磁気抵抗効果を利用した磁気ヘッド
の再生信号の非対称性を修正する回路82,84を取り
除いた場合でも従来に比べ2倍以上の記憶容量を持った
磁気記録再生装置を実現することができた。
With the above device configuration, it was possible to realize a high-density magnetic recording / reproducing device having a storage capacity three times or more that of the conventional magnetic recording / reproducing device. Further, even when the signal processing circuit 85 by maximum likelihood decoding and the circuits 82 and 84 for correcting the asymmetry of the reproduction signal of the magnetic head utilizing the giant magnetoresistive effect are removed from the recording / reproduction signal processing system 64, it is still 2 It was possible to realize a magnetic recording / reproducing device having a storage capacity more than double the storage capacity.

【0053】なお、図9に示す記録再生分離型磁気ヘッ
ドにおいて、磁気シールド層57を一方の記録磁極52
と兼用することにより記録用磁気ヘッドの一方の磁極5
2を省略してもよい。以上の実施例では、ディスク状の
磁気記録媒体とそれを用いた磁気記憶装置について例を
述べてきたが、本発明は片面のみに磁性層を有するテー
プ状、カード状の磁気記録媒体、及びその磁気記録媒体
を用いた磁気記録再生装置にも適用できることは言うま
でもない。
In the recording / reproducing separated type magnetic head shown in FIG. 9, the magnetic shield layer 57 is formed on one recording magnetic pole 52.
One magnetic pole 5 of the recording magnetic head
2 may be omitted. In the above embodiments, examples have been described of the disk-shaped magnetic recording medium and the magnetic storage device using the same, but the present invention is a tape-shaped or card-shaped magnetic recording medium having a magnetic layer only on one side, and the same. It goes without saying that the present invention can also be applied to a magnetic recording / reproducing device using a magnetic recording medium.

【0054】[0054]

【発明の効果】本発明の磁気記録媒体は、スパッタガス
としてKr,Xe,Rn等のArよりも原子量の大きな
重希ガスを用い、バイアス電圧を印加しながら直接もし
くは下地層を介して磁性層を積層することにより、高い
保磁力を有し、高密度記録に対応できる電磁変換特性を
実現できる。
In the magnetic recording medium of the present invention, a heavy rare gas having a larger atomic weight than Ar such as Kr, Xe, and Rn is used as a sputtering gas, and a magnetic layer is applied directly or through an underlayer while applying a bias voltage. By laminating, it is possible to realize an electromagnetic conversion characteristic that has a high coercive force and is compatible with high density recording.

【0055】さらに、この磁気記録媒体と、少なくとも
磁極の一部に1.2T以上の飽和磁束密度を有する磁性
材料を用いた記録専用の磁気ヘッド、巨大磁気抵抗効果
を利用した再生専用の磁気ヘッド、最尤復号による信号
処理回路、及び巨大磁気抵抗効果を利用した磁気ヘッド
の再生信号の非対称性を修正する回路を組み合わせ、磁
気ヘッドのスライダの浮上高さを0.05μm以下とす
ることにより、高品位な再生出力、及び極めて低いエラ
ーレートが得られ、従来の磁気記憶装置に比較して大容
量高密度の磁気記憶装置が得られる。
Further, this magnetic recording medium, a magnetic head dedicated to recording using a magnetic material having a saturation magnetic flux density of 1.2 T or more in at least a part of the magnetic pole, and a magnetic head dedicated to reproduction utilizing the giant magnetoresistive effect. By combining a signal processing circuit by maximum likelihood decoding and a circuit that corrects the asymmetry of the reproduction signal of the magnetic head using the giant magnetoresistive effect, and the flying height of the slider of the magnetic head is set to 0.05 μm or less, A high-quality reproduction output and an extremely low error rate can be obtained, and a magnetic storage device having a large capacity and high density can be obtained as compared with a conventional magnetic storage device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による磁気記録媒体の一実施例の断面模
式図。
FIG. 1 is a schematic sectional view of an embodiment of a magnetic recording medium according to the present invention.

【図2】実施例1及び比較例1の磁気記録媒体の保磁力
を比較した図。
FIG. 2 is a diagram comparing the coercive forces of the magnetic recording media of Example 1 and Comparative Example 1.

【図3】スパッタガスの組成と磁気記録媒体の保磁力の
関係を示す図。
FIG. 3 is a diagram showing a relationship between a composition of a sputtering gas and a coercive force of a magnetic recording medium.

【図4】Arガスを用いて作製した磁気記録媒体とRn
ガスを用いて作製した磁気記録媒体についてのX線回折
強度測定図。
FIG. 4 is a magnetic recording medium manufactured using Ar gas and Rn.
The X-ray-diffraction-intensity measurement figure about the magnetic recording medium produced using gas.

【図5】本発明の磁気記録媒体についてのSIMS(2
次イオン質量分析)の結果を示す図。
FIG. 5 shows SIMS (2
The figure which shows the result of secondary ion mass spectrometry.

【図6】磁気記録媒体の耐食性についての説明図。FIG. 6 is an explanatory diagram of corrosion resistance of a magnetic recording medium.

【図7】本発明による磁気記録媒体の他の実施例の断面
模式図。
FIG. 7 is a schematic sectional view of another embodiment of the magnetic recording medium according to the present invention.

【図8】本発明による磁気記録媒体と従来の磁気記録媒
体の保磁力を比較した図。
FIG. 8 is a diagram comparing the coercive force of the magnetic recording medium according to the present invention with that of the conventional magnetic recording medium.

【図9】記録再生分離型磁気ヘッドの模式図。FIG. 9 is a schematic diagram of a recording / reproducing separated type magnetic head.

【図10】磁気記録再生装置の構造を示す模式図。FIG. 10 is a schematic diagram showing the structure of a magnetic recording / reproducing apparatus.

【図11】記録再生信号処理系の一例を示すブロック
図。
FIG. 11 is a block diagram showing an example of a recording / reproducing signal processing system.

【符号の説明】[Explanation of symbols]

11,41…基板、12,12’…導電膜、13,1
3’,42,42’…下地層、14,14’…Co系合
金磁性層、15,15’,46,46’…保護層、1
6,16’,47,47’…潤滑層、43,43’…第
1磁性層、44,44’…中間層、45,45’…第2
磁性層、51,52…記録磁極、53…コイル、54,
54’…飽和磁束密度の大きな磁性材料、55…巨大磁
気抵抗効果素子、56…導体層、57,58…磁気シー
ルド層、59…スライダ基体、61…磁気記録媒体、6
2…磁気記録媒体駆動部、63…磁気ヘッド、64…記
録再生信号処理系、65…磁気ヘッド駆動部
11, 41 ... Substrate, 12, 12 '... Conductive film, 13, 1
3 ', 42, 42' ... Underlayer, 14, 14 '... Co-based alloy magnetic layer, 15, 15', 46, 46 '... Protective layer, 1
6, 16 ', 47, 47' ... Lubricating layer, 43, 43 '... First magnetic layer, 44, 44' ... Intermediate layer, 45, 45 '... Second
Magnetic layer, 51, 52 ... Recording magnetic pole, 53 ... Coil, 54,
54 '... magnetic material having large saturation magnetic flux density, 55 ... giant magnetoresistive effect element, 56 ... conductor layer, 57, 58 ... magnetic shield layer, 59 ... slider base, 61 ... magnetic recording medium, 6
2 ... Magnetic recording medium drive unit, 63 ... Magnetic head, 64 ... Recording / reproducing signal processing system, 65 ... Magnetic head drive unit

フロントページの続き (72)発明者 二本 正昭 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社 日立製作所 中央研究所内 (72)発明者 稲葉 信幸 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社 日立製作所 中央研究所内 (56)参考文献 特開 平4−123310(JP,A) 特開 平2−148417(JP,A) 特開 昭57−58237(JP,A) 特開 平5−274644(JP,A) 特開 平4−368611(JP,A) 特開 平4−274001(JP,A) 特開 昭63−80538(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/66 G11B 5/85 Front page continued (72) Masaaki Ninomoto, 1-280, Higashi Koigakubo, Kokubunji, Tokyo, Central Research Laboratory, Hitachi, Ltd. (72) Nobuyuki Inaba, 1-280, Higashi Koigakubo, Kokubunji, Tokyo Hitachi, Ltd. Central Research Institute In-house (56) Reference JP 4-123310 (JP, A) JP 2-148417 (JP, A) JP 57-58237 (JP, A) JP 5-274644 (JP, A) JP-A-4-368611 (JP, A) JP-A-4-274001 (JP, A) JP-A-63-80538 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G11B 5/66 G11B 5/85

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非磁性基板と、該非磁性基板上に形成さ
れた磁性層と、該磁性層上に形成された保護層とを含
み、前記磁性層は六方晶型の結晶構造を有するCoを含有
し、 前記磁性層中には、Kr,Xe,Rnからなる群か
ら選ばれた少なくとも一種の元素が、100ppm以上
の濃度で含有されていることを特徴とする磁気記録媒
体。
1. A non-magnetic substrate, a magnetic layer formed on the non-magnetic substrate, and a protective layer formed on the magnetic layer , the magnetic layer containing Co having a hexagonal crystal structure. Inclusion
In the magnetic layer, 100 ppm or more of at least one element selected from the group consisting of Kr, Xe, and Rn is contained.
A magnetic recording medium characterized by being contained at a concentration of .
【請求項2】 残留磁化膜厚積が10G・μm以上15
0G・μm以下であり、保磁力が2000Oe以上40
00Oe以下であることを特徴とする請求項記載の磁
気記録媒体。
2. The residual magnetization film thickness product is 10 G · μm or more 15
0G · μm or less and coercive force of 2000 Oe or more 40
The magnetic recording medium according to claim 1 , wherein the magnetic recording medium has a density of 00 Oe or less.
【請求項3】 請求項1又は2記載の磁気記録媒体と、
該磁気記録媒体を記録方向に駆動する駆動部と、該磁気
記録媒体のそれぞれの面に対向して配置された磁気ヘッ
ドと、該磁気ヘッドを前記磁気記録媒体に対して相対運
動させる手段と、前記磁気ヘッドに対する入力信号及び
出力信号を波形処理する記録再生信号処理手段とを含む
ことを特徴とする磁気記録再生装置。
3. The magnetic recording medium according to claim 1 or 2 ,
A drive unit for driving the magnetic recording medium in the recording direction, a magnetic head arranged so as to face each surface of the magnetic recording medium, and means for moving the magnetic head relative to the magnetic recording medium. A magnetic recording / reproducing apparatus comprising: a recording / reproducing signal processing means for waveform-processing an input signal and an output signal to the magnetic head.
【請求項4】 前記磁気ヘッドは誘導型磁気記録ヘッド
と磁気抵抗効果ヘッドとを備える記録再生分離型ヘッド
であることを特徴とする請求項記載の磁気記録再生装
置。
4. The magnetic recording / reproducing apparatus according to claim 3, wherein the magnetic head is a recording / reproducing separated type head including an induction type magnetic recording head and a magnetoresistive effect head.
【請求項5】 前記誘導型磁気記録ヘッドは磁極の少な
くとも一部に1.2T以上の飽和磁束密度を有する磁性
材料を有し、前記磁気抵抗効果ヘッドは巨大磁気抵抗効
果素子を備えることを特徴とする請求項記載の磁気記
録再生装置。
Wherein said inductive magnetic recording head has a magnetic material having a saturation magnetic flux density of more than 1.2T at least a portion of the pole, the magnetoresistive head comprising: a giant magnetoresistive effect element The magnetic recording / reproducing apparatus according to claim 4 .
【請求項6】 非磁性基板上に下地層を形成する工程
と、該下地層の上部に六方晶のCoを含有する磁性層を
形成する工程とを含む磁気記録媒体の製造方法におい
て、 前記磁性層を形成する工程は、スパッタガスとしてK
r,Xe又はRnを含むガスを用い、前記非磁性基板に
負のバイアス電圧を印加しながら行うスパッタリングで
あることを特徴とする磁気記録媒体の製造方法。
6. A method of manufacturing a magnetic recording medium, comprising: a step of forming an underlayer on a nonmagnetic substrate; and a step of forming a magnetic layer containing hexagonal Co on the underlayer. The step of forming the layer uses K as a sputtering gas.
Using a gas containing r, Xe or Rn, the non-magnetic substrate is
By sputtering while applying a negative bias voltage
A method of manufacturing a magnetic recording medium characterized by the following.
【請求項7】 前記負のバイアス電圧は−400V以
上、−30V未満のDCバイアス又はRFバイアスであ
ることを特徴とする請求項記載の磁気記録媒体の製造
方法。
7. The method of manufacturing a magnetic recording medium according to claim 6, wherein the negative bias voltage is a DC bias or an RF bias of −400 V or more and less than −30 V.
JP04909094A 1994-02-07 1994-03-18 Magnetic recording medium, magnetic recording / reproducing device, and method of manufacturing magnetic recording medium Expired - Fee Related JP3372101B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP04909094A JP3372101B2 (en) 1994-03-18 1994-03-18 Magnetic recording medium, magnetic recording / reproducing device, and method of manufacturing magnetic recording medium
US08/380,792 US5650889A (en) 1994-02-07 1995-01-30 Magnetic recording medium containing heavy rare gas atoms, and a magnetic transducing system using the medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04909094A JP3372101B2 (en) 1994-03-18 1994-03-18 Magnetic recording medium, magnetic recording / reproducing device, and method of manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH07262546A JPH07262546A (en) 1995-10-13
JP3372101B2 true JP3372101B2 (en) 2003-01-27

Family

ID=12821409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04909094A Expired - Fee Related JP3372101B2 (en) 1994-02-07 1994-03-18 Magnetic recording medium, magnetic recording / reproducing device, and method of manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JP3372101B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW390998B (en) 1996-05-20 2000-05-21 Hitachi Ltd Magnetic recording media and magnetic recording system using the same
WO2007116813A1 (en) 2006-03-30 2007-10-18 Hoya Corporation Method for manufacturing vertical magnetic recording disc, and vertical magnetic recording disc
JP4947429B2 (en) * 2007-12-11 2012-06-06 富士電機株式会社 Information recording medium substrate and information magnetic recording medium using the same

Also Published As

Publication number Publication date
JPH07262546A (en) 1995-10-13

Similar Documents

Publication Publication Date Title
US5650889A (en) Magnetic recording medium containing heavy rare gas atoms, and a magnetic transducing system using the medium
KR100412256B1 (en) Multilayer magnetic recording medium and magneto-resistive drive system
US6403240B1 (en) Magnetic recording media and magnetic recording system using the same
JP2000067401A (en) Magnetic storage device
US20040053078A1 (en) Magnetic recording medium and magnetic recording/reproducing apparatus
JP2001023144A (en) Magnetic recording medium and method of manufacturing the same
US6372367B1 (en) Magnetic recording medium, method for producing the same and magnetic recording apparatus using the same
JP3372101B2 (en) Magnetic recording medium, magnetic recording / reproducing device, and method of manufacturing magnetic recording medium
JP3665221B2 (en) In-plane magnetic recording medium and magnetic storage device
JP3222141B2 (en) Magnetic recording medium and magnetic storage device
WO1998006093A1 (en) Magnetic recording medium and magnetic storage device using the medium
US20020001736A1 (en) Magnetic recording medium
JPH07225935A (en) Magnetic recording medium and magnetic storage
US7115329B1 (en) Magnetic recording medium and magnetic storage device
JP3275167B2 (en) Magnetic recording medium and magnetic storage device
WO2022271208A1 (en) Dual seed layer for magnetic recording media
JPH10135039A (en) Magnetic recording medium and magnetic storage device
JP3204871B2 (en) Magnetoresistive head
CN115881170A (en) Magnetic recording media with tungsten pre-seed layer
JP2001034926A (en) Magnetic recording medium and magnetic storage device
JP2918199B2 (en) Magnetic recording medium and magnetic storage device
JP2002117519A (en) Magnetic recording medium and magnetic storage device
JP2000339659A (en) Magnetic recording medium and magnetic storage device
JPH11283235A (en) Magnetic recording medium and magnetic memory device
JP2001043523A (en) Magnetic recording medium and magnetic recording device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees