JPH0546911A - Magnetic head and manufacture thereof - Google Patents

Magnetic head and manufacture thereof

Info

Publication number
JPH0546911A
JPH0546911A JP3202859A JP20285991A JPH0546911A JP H0546911 A JPH0546911 A JP H0546911A JP 3202859 A JP3202859 A JP 3202859A JP 20285991 A JP20285991 A JP 20285991A JP H0546911 A JPH0546911 A JP H0546911A
Authority
JP
Japan
Prior art keywords
film
magnetic
soft magnetic
atomic
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3202859A
Other languages
Japanese (ja)
Other versions
JP2782994B2 (en
Inventor
Kumio Nako
久美男 名古
Hiroshi Sakakima
博 榊間
Hiroyuki Hasegawa
博幸 長谷川
Takeshi Takahashi
高橋  健
Terumasa Sawai
瑛昌 沢井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3202859A priority Critical patent/JP2782994B2/en
Priority to DE1992614179 priority patent/DE69214179T2/en
Priority to EP92103794A priority patent/EP0502535B1/en
Publication of JPH0546911A publication Critical patent/JPH0546911A/en
Application granted granted Critical
Publication of JP2782994B2 publication Critical patent/JP2782994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a product with excellent recording characteristic by using a core material made by laminating an Fe-Ta-N based soft magnetic film and an insulating film slternately to form a magnetic circuit. CONSTITUTION:A core material made by laminating a soft magnetic film 1 with a thickness of 1-10mum and an insulating film 2 made o f SiO, Al2O3 or the like alternately is arranged to form a magnetic circuit of a magnetic head. The soft magnetic film 1 herein used is an Fe-Ta-N based soft magnetic film with a composition having Fe main component and containing 5-17 atom % of N and 7-15 atom% of Ta only or an Fe-Ta-B-N based soft magnetic film with a composition having Fe as main component and containing 6-15 atom% of N, 7-15 atom% of Ta and 0.5-13 atom % of B. This film is made by a sputtering method with a target facing a substrate 3 parallel and a heat treatment in the manufacturing of a magnetic head is performed in a non-magnetic field. Thus, excellent recording characteristic is exhibited to a medium with a high coercive force to obtain a high reproduction efficiency in a high frequency area with smaller sliding noises in a high frequency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気録画再生装置(V
TR)、磁気録音再生装置、コンピュータ用磁気記録装
置等の磁気記録再生装置に用いられる磁気ヘッドとその
製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a magnetic recording / reproducing apparatus (V
TR), a magnetic recording / reproducing device, a magnetic recording / reproducing device such as a computer magnetic recording device, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年の磁気記録分野における高密度記録
化の要求に対して、高保磁力媒体に対応した高性能磁気
ヘッドの開発が進められている。このような磁気ヘッド
としては、(図6)に示すような、軟磁性膜1と絶縁膜
2とをトラック幅方向に交互に積層したコア材料が非磁
性基板3で挟持され、前記コア材料で磁気回路が形成さ
れるタイプの積層型ヘッドや、(図7)に示すような、
磁路の大部分がフェライト5で構成され、磁気的に飽和
しやすい磁気ギャップ6近傍にのみ軟磁性膜7を設けた
磁気ヘッド(MIGヘッドと呼ばれている)が開発され
ている。前記積層型ヘッドはMIGヘッドと比較して、
疑似出力の影響がなく、高周波での摺動ノイズが小さ
く、高周波帯域で高い再生効率が得られるという利点が
ある。
2. Description of the Related Art In response to the recent demand for high density recording in the field of magnetic recording, development of a high performance magnetic head compatible with a high coercive force medium has been advanced. In such a magnetic head, as shown in (FIG. 6), a core material in which a soft magnetic film 1 and an insulating film 2 are alternately laminated in the track width direction is sandwiched between nonmagnetic substrates 3 and the core material is used. A laminated head of the type in which a magnetic circuit is formed, or as shown in (FIG. 7),
A magnetic head (called a MIG head) has been developed in which the magnetic path is mostly composed of ferrite 5, and the soft magnetic film 7 is provided only in the vicinity of the magnetic gap 6 where magnetic saturation easily occurs. The laminated head has a
There is an advantage that there is no influence of the pseudo output, sliding noise at high frequency is small, and high reproduction efficiency can be obtained in a high frequency band.

【0003】また、磁気ヘッドの特性は、それに使用す
るコア材料の材料特性に密接に関連しており、高密度記
録を達成するためには、磁気ヘッドのコア材料の特性と
して、高い飽和磁束密度(主に記録特性に影響)と高透
磁率(主に再生特性に影響)が要求されている。
Further, the characteristics of the magnetic head are closely related to the material characteristics of the core material used for the magnetic head. In order to achieve high density recording, the characteristics of the core material of the magnetic head are high saturation magnetic flux density. (Mainly affects recording characteristics) and high magnetic permeability (mainly affects reproduction characteristics) are required.

【0004】このような要求に対して、前記積層型ヘッ
ドのコア材料として実用化されているセンダストやCo
基非晶質合金では、飽和磁束密度が約1T前後と低く、
更に、高密度記録を実現するためには、これら従来の材
料では飽和磁束密度に限界がある。
In response to such demands, sendust and Co which are practically used as the core material of the laminated head
The base amorphous alloy has a low saturation magnetic flux density of about 1 T,
Furthermore, in order to realize high density recording, these conventional materials have a limit in saturation magnetic flux density.

【0005】そこで、高い飽和磁束密度と高透磁率を有
する軟磁性膜の研究開発が盛んに行なわれている。その
一つとして、Fe-N膜が研究されている。しかし、こ
のFe-N膜は350℃以上の熱処理で軟磁気特性が急
激に劣化し、軟磁気特性の熱的安定性に問題があるた
め、実用化に至っていない。
Therefore, research and development of a soft magnetic film having a high saturation magnetic flux density and a high magnetic permeability has been actively conducted. As one of them, Fe-N film has been studied. However, this Fe-N film has not been put to practical use because its soft magnetic properties are rapidly deteriorated by heat treatment at 350 ° C. or higher and there is a problem in thermal stability of the soft magnetic properties.

【0006】一方、Co基非晶質合金の軟磁性の熱的安
定性と飽和磁束密度を改善した材料として、Co-Nb-
Zr/Co-Nb-Zr-N組成変調窒化膜が開発され、
積層型ヘッドが作製されている(日本応用磁気学会誌
Vol.14 No.2)。
On the other hand, Co-Nb-is used as a material having improved thermal stability of soft magnetism and saturation magnetic flux density of Co-based amorphous alloy.
Zr / Co-Nb-Zr-N composition modulation nitride film was developed,
Stacked heads have been manufactured (Journal of Japan Society for Applied Magnetics)
Vol.14 No.2).

【0007】[0007]

【発明が解決しようとする課題】ところが、このCo-
Nb-Zr/Co-Nb-Zr-N組成変調窒化膜において
も、飽和磁束密度は高々1.3Tであり、更に保磁力の
高い媒体に対し、十分な記録特性を得るためには、より
高い飽和磁束密度を有するコア材料が要求されている。
また、このCo-Nb-Zr/Co-Nb-Zr-N組成
変調窒化膜は、センダストやCo基非晶質合金の様に、
無磁界中の熱処理で高透磁率が得られず、前述の積層型
ヘッドのコア材料として用いた場合、コア材料として
は、等方的な高透磁率特性が要求されるため、回転磁界
中での熱処理が必要となり、熱処理装置が煩雑になると
いう課題を生じる。
[Problems to be Solved by the Invention] However, this Co-
Even in the Nb-Zr / Co-Nb-Zr-N composition modulation nitride film, the saturation magnetic flux density is at most 1.3 T, which is higher in order to obtain sufficient recording characteristics for a medium having a high coercive force. A core material having a saturation magnetic flux density is required.
In addition, this Co-Nb-Zr / Co-Nb-Zr-N composition modulation nitride film, like Sendust or Co-based amorphous alloy,
High magnetic permeability cannot be obtained by heat treatment in a magnetic field, and when it is used as the core material of the above-mentioned laminated head, isotropic high magnetic permeability characteristics are required for the core material. The above heat treatment is required, which causes a problem that the heat treatment apparatus becomes complicated.

【0008】本発明は、ターゲットと基板が平行に対向
した方式のスパッタ法により作製した、特定の組成範
囲、特定の膜構造、及び特定の膜厚を有するFe-Ta-
N系、またはFe-Ta-B-N系軟磁性膜は、簡便な無
磁界中の熱処理においても、高飽和磁束密度と低磁歪の
等方的な高透磁率特性を有するとの発見に基づいてなさ
れたもので、上述の問題点を解決した積層型磁気ヘッド
を提供せんとするものである。
According to the present invention, Fe-Ta- having a specific composition range, a specific film structure, and a specific film thickness produced by a sputtering method in which a target and a substrate face each other in parallel.
Based on the discovery that N-based or Fe-Ta-BN-based soft magnetic films have isotropic high permeability characteristics of high saturation magnetic flux density and low magnetostriction even by simple heat treatment in a non-magnetic field. The present invention aims to provide a laminated magnetic head that solves the above-mentioned problems.

【0009】[0009]

【課題を解決するための手段】膜厚を1〜10μmに構
成した軟磁性膜と膜厚を0.05〜0.5μmに構成した
SiO2、Al23等の絶縁膜とを交互に積層したコア
材料で磁気ヘッドの磁気回路を形成する。軟磁性膜はF
eを主成分とし、Nを5〜17原子%、Taを7〜15
原子%含む組成を有するFe-Ta-N系軟磁性膜、また
はFeを主成分とし、Nを6〜15原子%、Taを7〜
15原子%、Bを0.5〜13原子%含む組成を有する
Fe-Ta-B-N系軟磁性膜とし、ターゲットと基板が
平行に対向した方式のスパッタ法により作製する。磁気
ヘッド加工工程に於ける熱処理は無磁界中で行なって作
製する。
Means for Solving the Problems A soft magnetic film having a film thickness of 1 to 10 μm and an insulating film such as SiO 2 , Al 2 O 3 having a film thickness of 0.05 to 0.5 μm are alternately formed. A magnetic circuit of the magnetic head is formed by the laminated core materials. Soft magnetic film is F
e as a main component, N 5 to 17 atomic% and Ta 7 to 15
Fe-Ta-N-based soft magnetic film having a composition containing atomic% or Fe as a main component, N of 6 to 15 atomic% and Ta of 7 to
An Fe-Ta-BN-based soft magnetic film having a composition containing 15 atomic% and 0.5 to 13 atomic% B is formed by a sputtering method in which a target and a substrate face each other in parallel. The heat treatment in the magnetic head processing step is performed in the absence of a magnetic field.

【0010】また、前記Fe-Ta-N系、またはFe-
Ta-B-N系軟磁性膜はTa、N(窒素)、B(ホウ
素)、Taの窒化物、Taのホウ化物の少なくとも1種
以上の元素、あるいは化合物を固溶し、格子が膨張した
α−Feの微結晶とTaの窒化物微粒子またはTaのホ
ウ化物微粒子が混在した微細組織から成る材料とし、前
記α−Feの微結晶の平均粒径が100Å以下、Taの
窒化物微粒子またはTaのホウ化物微粒子の平均粒径が
50Å以下である膜構造のものとする。
The Fe-Ta-N system or Fe-
The Ta-BN type soft magnetic film is a solid solution of at least one element or compound of Ta, N (nitrogen), B (boron), Ta nitride, and Ta boride, and the lattice is expanded. A material having a fine structure in which α-Fe fine crystals are mixed with Ta nitride fine particles or Ta boride fine particles, wherein the α-Fe fine crystals have an average particle size of 100 Å or less, Ta nitride fine particles or Ta fine particles It is assumed that the boride fine particles have a film structure having an average particle diameter of 50 Å or less.

【0011】[0011]

【作用】本発明の構成による磁気ヘッドは、無磁界中の
熱処理において高い飽和磁束密度と低磁歪の等方的な高
透磁率特性を示す軟磁性膜を使用しているので、高保磁
力媒体に対し、優れた記録特性を示し、高周波での摺動
ノイズが小さく、高周波帯域で高い再生効率を実現する
ことが出来る。
The magnetic head according to the present invention uses a soft magnetic film exhibiting isotropic high magnetic permeability characteristics of high saturation magnetic flux density and low magnetostriction in heat treatment in a non-magnetic field, and therefore is used as a high coercive force medium. On the other hand, it exhibits excellent recording characteristics, has small sliding noise at high frequencies, and can achieve high reproduction efficiency in the high frequency band.

【0012】特に、前記Fe-Ta-N系、またはFe-
Ta-B-N系軟磁性膜が、上記膜構造のときに優れた磁
気ヘッド特性が得られる。
In particular, the Fe-Ta-N system or Fe-
When the Ta-BN based soft magnetic film has the above film structure, excellent magnetic head characteristics can be obtained.

【0013】また、簡便な無磁界中の熱処理で磁気ヘッ
ドの製造が可能であるため、磁界中熱処理炉のような煩
雑な装置が不要となり、磁気ヘッドの大量生産が可能に
なる。 また、前記Fe-Ta-B-N系軟磁性膜は、F
e-Ta-N系軟磁性膜に比べて、更に高い熱処理温度
で、高飽和磁束密度と低磁歪の良好な軟磁性を実現する
ことが出来、磁気ヘッドを形成する際に高温でガラス接
合が可能となり、ガラスの選択範囲が広がり、接合強度
が充分で、かつ耐摩耗特性に優れた高温熱処理を必要と
するガラスを用いることが出来、磁気ヘッドの信頼性を
高めることが出来る。
Further, since the magnetic head can be manufactured by a simple heat treatment in a non-magnetic field, a complicated device such as a heat treatment furnace in a magnetic field is not required, and mass production of magnetic heads becomes possible. In addition, the Fe-Ta-BN system soft magnetic film is F
Compared with e-Ta-N based soft magnetic film, it is possible to realize good soft magnetism with high saturation magnetic flux density and low magnetostriction at a higher heat treatment temperature, and glass bonding can be performed at high temperature when forming a magnetic head. This makes it possible to use glass that has a wider selection range of glass, has sufficient bonding strength, and requires high-temperature heat treatment that is excellent in wear resistance, and enhances the reliability of the magnetic head.

【0014】[0014]

【実施例】【Example】

(実施例1)ターゲットと基板が平行に対向した方式の
スパッタ法であるRF2極スパッタ法により、Fe-T
aの合金ターゲットを用い、Arガス中にN2ガスを導
入し、熱膨張係数115×10-7/゜Cの水冷した非磁
性セラミックス基板上に、Fe-Ta-N系軟磁性膜を膜
厚0.2〜15μmの範囲で形成し、真空中、無磁界中
で550゜Cの温度で1時間の熱処理を行った。これら
の膜の保磁力Hcと各周波数における複素透磁率の実数
部μ'を測定した。その結果、これらの膜の保磁力Hcと
透磁率μ'は、すべて膜面内で等方的であった。作製し
たFe-Ta-N膜の組成は、RBS(ラザフォード後方
散乱)分析の結果、Fe76.5原子%、Ta10.5原
子%、N13原子%であった(以下Fe76.5原子
%、Ta10.5原子%、N13原子%は、Fe76.5
10.513のように記す)。また、これらの膜の飽和磁
束密度は約1.6Tであり、飽和磁歪は絶対値で1×1
-6以下であった。
(Example 1) Fe-T was formed by an RF bipolar sputtering method, which is a sputtering method in which a target and a substrate face each other in parallel.
A Fe-Ta-N-based soft magnetic film is formed on a water-cooled non-magnetic ceramic substrate having a thermal expansion coefficient of 115 x 10 -7 / ° C by using an alloy target of a and introducing N 2 gas into Ar gas. The film was formed in a thickness of 0.2 to 15 μm, and heat-treated at 550 ° C. for 1 hour in vacuum without a magnetic field. The coercive force Hc of these films and the real part μ ′ of the complex magnetic permeability at each frequency were measured. As a result, the coercive force Hc and magnetic permeability μ'of these films were all isotropic in the film plane. As a result of RBS (Rutherford backscattering) analysis, the composition of the prepared Fe-Ta-N film was Fe 76.5 at%, Ta 10.5 at%, and N 13 at% (hereinafter, Fe 76.5 at%, Ta 10. 5 atomic% and N13 atomic% are Fe 76.5 T
a 10.5 N 13 ). The saturation magnetic flux density of these films is about 1.6 T, and the saturation magnetostriction is 1 × 1 in absolute value.
It was 0 -6.

【0015】(図3)に膜厚に対する保磁力Hcの関係
を示す。(図3)より、膜厚1.5μm以上の膜は、8
A/m以下の低い保磁力を示し、優れた軟磁気特性を有
することが分かる。そして、膜厚1.5μm付近を境と
して低膜厚側でHcは急激に増加している。(図4)に
膜厚に対する透磁率μ'の関係を示す。1MHzにおける
μ'は、膜厚1.5〜3μm付近で極大値を示し、膜厚
1.5μm付近を境として低膜厚側で急激に減少し、高
膜厚側で緩やかに減少する傾向を示す。そして、周波数
の増加と共に、膜厚1.5μm以上の高膜厚側でのμ'の
低下が大きくなる傾向を示す。膜厚が1μm未満になる
と、1MHz以上の高周波帯域におけるμ'が1000以
下の低い値を示し、また、膜厚が10μm以上になる
と、5MHz以上の高周波帯域におけるμ'が1000以
下の低い値を示し、ビデオテープレコーダー等に用いる
磁気ヘッドコア材料としては不適である。従って、ビデ
オテープレコーダー等に用いる積層型ヘッドのコア材料
としての各層の軟磁性膜の膜厚が、1〜10μmである
ときに優れたヘッド出力が得られる。
FIG. 3 shows the relationship between the film thickness and the coercive force Hc. From (Fig. 3), the film with a thickness of 1.5 μm or more is 8
It can be seen that it exhibits a low coercive force of A / m or less and has excellent soft magnetic characteristics. Then, Hc sharply increases on the low film thickness side when the film thickness is around 1.5 μm. (FIG. 4) shows the relationship between the magnetic permeability μ ′ and the film thickness. Μ ′ at 1 MHz shows a maximum value in the vicinity of the film thickness of 1.5 to 3 μm, sharply decreases in the low film thickness side and gradually decreases in the high film thickness side around the film thickness of 1.5 μm. Show. Then, as the frequency increases, there is a tendency that the decrease of μ ′ on the high film thickness side of 1.5 μm or more becomes large. When the film thickness is less than 1 μm, μ ′ in the high frequency band of 1 MHz or more shows a low value of 1000 or less, and when the film thickness is 10 μm or more, the μ ′ in the high frequency band of 5 MHz or more shows a low value of 1000 or less. It is not suitable as a magnetic head core material used in video tape recorders and the like. Therefore, an excellent head output is obtained when the film thickness of the soft magnetic film of each layer as the core material of the laminated head used in a video tape recorder or the like is 1 to 10 μm.

【0016】なお、本実施例では、Fe76.5原子
%、Ta10.5原子%、N13原子%の組成を有する
Fe-Ta-N系軟磁性膜について説明したが、Feを主
成分とし、Nを5〜17原子%含むと共にTaを7〜1
5原子%含む組成を有するFe-Ta-N系軟磁性膜に於
いても、同様の効果を有した。Nが5原子%以下、Ta
が7原子%以下、Feが88原子%以上の組成範囲で
は、いずれの膜厚においても良好な軟磁気特性は得られ
なかった。また、Nが17原子%以上、Taが15原子
%以上、Feが68原子%以下の組成範囲では、膜中F
e含有量の低下により、飽和磁束密度が1T以下に減少
した。
In this embodiment, the Fe-Ta-N based soft magnetic film having the composition of Fe 76.5 atomic%, Ta 10.5 atomic% and N 13 atomic% has been described. 5 to 17 atomic% and Ta of 7-1
The Fe-Ta-N based soft magnetic film having a composition containing 5 atomic% also had the same effect. N is 5 atomic% or less, Ta
In the composition range of 7 at% or less and 88 at% or more of Fe, good soft magnetic characteristics were not obtained at any film thickness. Further, in the composition range in which N is 17 atomic% or more, Ta is 15 atomic% or more, and Fe is 68 atomic% or less, F in the film is
Due to the decrease in the e content, the saturation magnetic flux density was reduced to 1 T or less.

【0017】(実施例2) (実施例1)と同様のRF2極スパッタ法により、Fe
-Ta、及びFe-Ta-Bの合金ターゲットを用い、A
rガス中にN2ガスを導入し、膜中B含有量の異なる
(膜中Ta及びN含有量は、ほぼ一定)膜組成を有する
軟磁性膜(膜厚2μm)を熱膨張係数115×10-7
゜Cの水冷した非磁性セラミックス基板上に形成し、膜
中B含有量の効果を検討した。作製した膜は、すべて、
真空中、無磁界中で300〜700゜Cの温度範囲で1
時間の熱処理を行った。作製した膜の組成は、組成分析
の結果、Fe77Ta1112、Fe78.5Ta111.59
Fe76Ta1059、及びFe68Ta111110であっ
た。
(Example 2) By the same RF bipolar sputtering method as in Example 1, Fe
-Ta and Fe-Ta-B alloy targets were used.
A thermal expansion coefficient of 115 × 10 was applied to a soft magnetic film (film thickness 2 μm) having a film composition in which N 2 gas was introduced into r gas and B content in the film was different (Ta and N contents in the film were almost constant). -7 /
It was formed on a water-cooled non-magnetic ceramic substrate at ° C and the effect of B content in the film was examined. All the produced films are
1 in a temperature range of 300 to 700 ° C in a vacuum and no magnetic field
Heat treatment was performed for an hour. As a result of composition analysis, the composition of the formed film was Fe 77 Ta 11 N 12 , Fe 78.5 Ta 11 B 1.5 N 9 ,
It was Fe 76 Ta 10 B 5 N 9 and Fe 68 Ta 11 B 11 N 10 .

【0018】これらの軟磁性膜の保磁力Hcの熱処理温
度依存性を(図5)に示す。(図5)より、膜中B含有
量0原子%のFe-Ta-N系軟磁性膜では、約550゜
C以上の熱処理温度で軟磁気特性は劣化するが、Bを含
有するFe-Ta-B-N系軟磁性膜は、更に高温の熱処
理温度に於いても、低い保磁力Hc(優れた軟磁気特
性)を示していることが分かる。そして、膜中B含有量
の増加と共に、高温の熱処理温度まで、低い保磁力Hc
を示し、B含有量5原子%の膜では、700゜Cの熱処
理温度に於いても良好な軟磁性を示している。これらの
Fe-Ta-B-N系軟磁性膜は、良好な軟磁性を示す高
温熱処理で高い飽和磁束密度(1.2〜1.6T)と低磁
歪(絶対値で1×10-6以下)を有していた。
The heat treatment temperature dependence of the coercive force Hc of these soft magnetic films is shown in FIG. As shown in FIG. 5, in the Fe-Ta-N soft magnetic film containing 0 atomic% of B in the film, the soft magnetic characteristics are deteriorated at the heat treatment temperature of about 550 ° C or higher, but the Fe-Ta containing B is contained. It can be seen that the -BN type soft magnetic film exhibits a low coercive force Hc (excellent soft magnetic property) even at a higher heat treatment temperature. As the B content in the film increases, the coercive force Hc decreases up to the high temperature heat treatment temperature.
The film having a B content of 5 atomic% exhibits excellent soft magnetism even at a heat treatment temperature of 700 ° C. These Fe-Ta-BN based soft magnetic films show a high soft magnetic flux with high saturation magnetic flux density (1.2 to 1.6T) and low magnetostriction (absolute value of 1 x 10 -6 or less). ) Had.

【0019】従って、Fe-Ta-B-N系軟磁性膜は、
Fe-Ta-N系軟磁性膜よりも高温の熱処理温度で磁気
ヘッドコア材料として、使用することが出来る。
Therefore, the Fe-Ta-BN system soft magnetic film is
It can be used as a magnetic head core material at a heat treatment temperature higher than that of the Fe-Ta-N soft magnetic film.

【0020】なお、Feを主成分とし、Nを6〜15原
子%、Taを7〜15原子%含むと共にBを0.5〜1
3原子%含む組成を有するFe-Ta-B-N系軟磁性膜
に於いては、同様の効果を有した。Nが6原子%以下、
Taが7原子%以下、Bが0.5原子%以下、Feが8
6.5原子%以上の組成範囲では、良好な軟磁気特性は
得られなかった。また、Nが15原子%以上、Taが1
5原子%以上、Bが13原子%以上、Feが57原子%
以下の組成範囲では、膜中Fe含有量の低下により、飽
和磁束密度が1T以下に減少した。
It is to be noted that Fe is a main component, N is contained in an amount of 6 to 15 atom%, Ta is contained in an amount of 7 to 15 atom%, and B is in an amount of 0.5 to 1
The Fe-Ta-BN system soft magnetic film having a composition containing 3 atomic% had the same effect. N is 6 atomic% or less,
Ta is 7 atomic% or less, B is 0.5 atomic% or less, Fe is 8
In the composition range of 6.5 atomic% or more, good soft magnetic characteristics could not be obtained. Further, N is 15 atomic% or more and Ta is 1
5 atomic% or more, B 13 atomic% or more, Fe 57 atomic%
In the following composition ranges, the saturation magnetic flux density was reduced to 1 T or less due to the decrease in the Fe content in the film.

【0021】また、前記Fe-Ta-N系、及びFe-T
a-B-N系軟磁性膜に添加物元素としてCr元素を0.
1〜2原子%添加したコア材料は、更に優れた耐食性を
併せ持つことが出来た。
Further, the Fe-Ta-N system and the Fe-T system
The Cr element was added as an additive element to the a-B-N based soft magnetic film.
The core material added with 1 to 2 atomic% was able to have more excellent corrosion resistance as well.

【0022】(実施例3) (実施例1)と同様のRF2極スパッタ法により、熱膨
張係数115×10-7/゜Cの水冷した非磁性セラミッ
クス基板上に、Fe-Ta-N系軟磁性膜を膜厚0.2〜
15μmの範囲で形成し、真空中、無磁界中で550゜
Cの温度で1時間の熱処理を行った。熱膨張係数115
×10-7/゜Cの水冷した非磁性セラミックス基板上
に、(実施例1)で説明したFe76.5原子%、Ta
10.5原子%、N13原子%の組成を有するFe-Ta
-N系軟磁性膜(膜厚3μm)と、SiO2絶縁膜(膜厚
0.2μm)とを交互に積層したコア材料を作製し、無
磁界中の磁気ヘッド加工熱処理工程により、(図6)に
示した積層型ヘッドを作製した。作製した磁気ヘッドの
トラック幅は11μm、ギャップ長0.23μm、ギャ
ップ深さ22μm、コイル巻数は20ターンとした。ヘ
ッド出力の測定は、エンドレス・ヘッドテスター、及び
ドラムテスターを用い、保磁力119400A/mのM
Pテープを使用して、相対速度7m/sおよび21m/
sでの自己録再特性を測定した。(図1)に相対速度7
m/sとした場合、(図2)に相対速度21m/sとし
た場合の各周波数での最適記録電流で記録したときのト
ラック幅、及び巻数で規格化したヘッド出力の周波数特
性を示す。比較として、軟磁性膜としてCo-Nb-Ta
-Zr非晶質膜を用いて、同一形状で作製した積層型ヘ
ッドの規格化したヘッド出力の周波数特性も(図1)及
び(図2)に示した。(図1)及び(図2)より、Fe
-Ta-N系軟磁性膜と、SiO2絶縁膜とを交互に積層
したコア材料を用いた積層型ヘッドは、Co-Nb-Ta
-Zr非晶質膜と、SiO2絶縁膜とを交互に積層したコ
ア材料を用いた積層型ヘッドに比べて、長波長では高い
出力特性を示し、短波長では同等の良好な特性を示して
いる。本実施例では、現在市販されている保磁力119
400A/mのMPテープを使用した場合の自己録再特
性を示したが、本発明の磁気ヘッドは、更に高い保磁力
を有する媒体に対して、更に優れた自己録再特性を示
し、高密度記録を達成することが出来る。
(Example 3) By the same RF dipole sputtering method as in (Example 1), a Fe-Ta-N-based soft material was formed on a water-cooled non-magnetic ceramic substrate having a thermal expansion coefficient of 115 x 10 -7 / ° C. Magnetic film thickness 0.2
It was formed in a range of 15 μm, and heat treatment was performed at a temperature of 550 ° C. for 1 hour in vacuum without a magnetic field. Coefficient of thermal expansion 115
On the non-magnetic ceramic substrate water-cooled at × 10 -7 / ° C, Fe 76.5 atomic% and Ta described in (Example 1) were used.
Fe-Ta having a composition of 10.5 atomic% and N13 atomic%
A core material in which a -N-based soft magnetic film (thickness: 3 μm) and a SiO 2 insulating film (thickness: 0.2 μm) are alternately laminated is prepared and subjected to a magnetic head processing heat treatment step in a non-magnetic field (see FIG. 6). The laminated head shown in FIG. The manufactured magnetic head had a track width of 11 μm, a gap length of 0.23 μm, a gap depth of 22 μm, and a coil winding number of 20 turns. The head output was measured using an endless head tester and a drum tester, and a coercive force of 119400 A / m was measured.
Using P-tape, relative velocity 7m / s and 21m / s
The self-recording / reproducing characteristic at s was measured. Relative speed 7 (Fig. 1)
In the case of m / s, (FIG. 2) shows the frequency characteristics of the head output standardized by the track width and the number of turns when recording with the optimum recording current at each frequency when the relative speed is 21 m / s. For comparison, Co-Nb-Ta is used as the soft magnetic film.
The frequency characteristics of the standardized head output of the laminated head manufactured in the same shape using the -Zr amorphous film are also shown in (Fig. 1) and (Fig. 2). From (FIG. 1) and (FIG. 2), Fe
-Ta-N-based soft magnetic film and SiO 2 insulating film are alternately laminated, and the laminated head using the core material is Co-Nb-Ta.
-Compared to a laminated head using a core material in which Zr amorphous films and SiO 2 insulating films are alternately laminated, high output characteristics are exhibited at long wavelengths and equivalent good characteristics at short wavelengths. There is. In this embodiment, the coercive force 119 currently on the market is used.
Although the self-recording / reproducing characteristic was shown when the MP tape of 400 A / m was used, the magnetic head of the present invention showed a more excellent self-recording / reproducing characteristic for a medium having a higher coercive force and a high density. A record can be achieved.

【0023】なお、本実施例に於いては、膜厚3μmの
Fe-Ta-N系軟磁性膜と、膜厚0.2μmのSiO2
縁膜とを交互に積層したコア材料で、磁気回路を形成し
た積層型磁気ヘッドについて説明したが、前記コア材料
の各層のFe-Ta-N系軟磁性膜の膜厚が1〜10μ
m、各層の絶縁膜の膜厚が0.05〜0.5μmであると
きに同様の効果を有した。
In the present embodiment, the magnetic circuit is composed of a core material in which a Fe-Ta-N based soft magnetic film having a thickness of 3 μm and a SiO 2 insulating film having a thickness of 0.2 μm are alternately laminated. The laminated magnetic head in which the Fe-Ta-N-based soft magnetic film of each layer of the core material is formed has a thickness of 1 to 10 μm.
The same effect was obtained when the thickness of the insulating film of each layer was 0.05 to 0.5 μm.

【0024】なお、本実施例では、Fe76.5原子
%、Ta10.5原子%、N13原子%の組成を有する
Fe-Ta-N系軟磁性膜について説明したが、Feを主
成分とし、Nを5〜17原子%含むと共にTaを7〜1
5原子%含む組成を有するFe-Ta-N系軟磁性膜に於
いても、同様の効果を有した。
In the present embodiment, the Fe-Ta-N soft magnetic film having the composition of Fe 76.5 at%, Ta 10.5 at%, and N 13 at% was described. 5 to 17 atomic% and Ta of 7-1
The Fe-Ta-N based soft magnetic film having a composition containing 5 atomic% also had the same effect.

【0025】また、Feを主成分とし、Nを6〜15原
子%、Taを7〜15原子%含むと共にBを0.5〜1
3原子%含む組成を有するFe-Ta-B-N系軟磁性膜
に於いては、同様の効果を有すると共に、Fe-Ta-N
系軟磁性膜に比べて、更に高い熱処理温度で、高飽和磁
束密度と低磁歪の良好な軟磁性を実現することが出来、
磁気ヘッドを形成する際に高温でガラス接合が可能とな
り、ガラスの選択範囲が広がり、接合強度が充分で、か
つ耐摩耗特性に優れた高温熱処理を必要とするガラスを
用いることが出来、磁気ヘッドの信頼性を高めることが
出来た。
Further, Fe is the main component, N is contained in an amount of 6 to 15 atom%, Ta is contained in an amount of 7 to 15 atom%, and B is contained in an amount of 0.5 to 1
The Fe-Ta-B-N based soft magnetic film having a composition containing 3 atomic% has the same effect as Fe-Ta-N.
It is possible to realize good soft magnetism with high saturation magnetic flux density and low magnetostriction at a higher heat treatment temperature than the soft magnetic film of the system,
When forming a magnetic head, glass bonding becomes possible at high temperature, the selection range of glass is expanded, and glass that has sufficient bonding strength and requires high-temperature heat treatment with excellent wear resistance can be used. Was able to increase the reliability of.

【0026】また、前記Fe-Ta-N系、及びFe-T
a-B-N系軟磁性膜の膜構造をX線回折、及び透過型電
子顕微鏡(TEM)により調べた。その結果、Ta、N
(窒素)、B(ホウ素)、Taの窒化物、Taのホウ化
物の少なくとも1種以上の元素、あるいは化合物を固溶
し、格子が膨張したα−Feの微結晶とTaの窒化物微
粒子またはTaのホウ化物微粒子が混在した微細組織か
ら成る材料であり、前記α−Feの微結晶の平均粒径が
100Å以下、Taの窒化物微粒子または、Taのホウ
化物微粒子の平均粒径が50Å以下であるときに、特に
優れた磁気ヘッド出力が得られた。
Further, the Fe-Ta-N system and Fe-T
The film structure of the a-B-N based soft magnetic film was examined by X-ray diffraction and a transmission electron microscope (TEM). As a result, Ta, N
(Nitrogen), B (boron), Ta nitride, Ta boride at least one element or a compound or a solid solution thereof, and the lattice expansion of α-Fe microcrystals and Ta nitride fine particles or A material having a fine structure in which Ta boride fine particles are mixed, wherein the α-Fe microcrystals have an average particle size of 100 Å or less, and Ta nitride fine particles or Ta boride fine particles have an average particle size of 50 Å or less. Particularly excellent magnetic head output was obtained.

【0027】なお、本実施例に於けるコア材料は、RF
2極スパッタ法により作製したが、本発明のコア材料の
作製方法は、RF2極スパッタ法に限るものではなく、
直流または高周波による二極、三極、マグネトロン方
式、及びバイアススパッタ法等のターゲットと基板が平
行に対向した方式のスパッタ法においては、同様の効果
を有した。しかしながら、ターゲットと基板が平行に配
置されない方式の対向ターゲット式スパッタ法、あるい
はイオンビームスパッタ法等では、ターゲットから斜め
入射で飛来する原子が基板に付着するため、作製した膜
の透磁率特性に異方性が生じた。その結果、これらの方
法で成膜したコア材料を用いて作製した前記積層型磁気
ヘッドは、良好な出力特性が得られなかった。
The core material in this embodiment is RF.
Although it was produced by the bipolar sputtering method, the method for producing the core material of the present invention is not limited to the RF bipolar sputtering method.
Similar effects were obtained in a sputtering method such as a two-pole, three-pole, magnetron method using a direct current or a high frequency, and a method in which a target and a substrate face each other in parallel such as a bias sputtering method. However, in the facing target sputtering method, in which the target and the substrate are not arranged in parallel, or the ion beam sputtering method, atoms flying obliquely from the target are attached to the substrate, so the magnetic permeability characteristics of the formed film differ. There was a direction. As a result, the laminated magnetic head manufactured using the core material formed by these methods could not obtain good output characteristics.

【0028】[0028]

【発明の効果】本発明によれば、特定の組成範囲、特定
の膜構造、及び特定の膜厚を有するFe-Ta-N系、ま
たはFe-Ta-B-N系軟磁性膜と絶縁膜とを交互に積
層したコア材料を、ターゲットと基板が平行に対向した
方式のスパッタ法により作製して、磁気回路を形成した
磁気ヘッドであって、かつ、その製造加工工程における
熱処理を無磁界中で行ったものであるから、高保磁力媒
体に対して優れた記録特性を示し、高周波での摺動ノイ
ズが小さく、高周波帯域で高い再生効率を実現すること
が出来る。また、簡便な無磁界中の熱処理で磁気ヘッド
の製造が可能であるため、磁界中熱処理炉のような煩雑
な装置が不要となり、磁気ヘッドの大量生産が可能にな
る。また、Fe-Ta-B-N系軟磁性膜と絶縁膜とが交
互に積層したコア材料で磁気回路を形成した磁気ヘッド
は、Fe-Ta-N系軟磁性膜をコア材料に用いた場合に
比べて、更に高い熱処理温度で、ガラス接合が可能とな
り、ガラス強度が充分で、かつ耐摩耗特性に優れた高温
熱処理を必要とするガラスを用いることが出来、磁気ヘ
ッドの信頼性を高めることが出来る。
According to the present invention, the Fe-Ta-N-based or Fe-Ta-BN-based soft magnetic film and insulating film having a specific composition range, a specific film structure, and a specific film thickness. A magnetic head in which a magnetic circuit is formed by manufacturing a core material in which the and are alternately laminated by a sputtering method in which a target and a substrate face each other in parallel, and the heat treatment in the manufacturing process is performed in a non-magnetic field. Therefore, the recording characteristics are excellent for a high coercive force medium, sliding noise at high frequencies is small, and high reproduction efficiency can be realized in the high frequency band. Further, since the magnetic head can be manufactured by a simple heat treatment in a magnetic field-free, a complicated device such as a heat treatment furnace in a magnetic field is not required, and mass production of magnetic heads becomes possible. Further, in a magnetic head in which a magnetic circuit is formed of a core material in which an Fe-Ta-B-N-based soft magnetic film and an insulating film are alternately laminated, the magnetic head is formed by using the Fe-Ta-N-based soft magnetic film as the core material. Compared with the above, it is possible to join glass at a higher heat treatment temperature, and it is possible to use glass that has sufficient glass strength and requires high-temperature heat treatment with excellent wear resistance characteristics, and to improve the reliability of the magnetic head. Can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で作製した磁気ヘッドの相対速
度7m/sに於ける、周波数に対するヘッド出力の関係
を示す図である。
FIG. 1 is a diagram showing a relationship of head output with respect to frequency at a relative speed of 7 m / s of a magnetic head manufactured in an example of the present invention.

【図2】本発明の実施例で作製した磁気ヘッドの相対速
度21m/sに於ける、周波数に対するヘッド出力の関
係を示す図である。
FIG. 2 is a diagram showing the relationship between the head output and the frequency at a relative speed of 21 m / s of the magnetic head manufactured in the example of the present invention.

【図3】本発明の実施例で作製した軟磁性膜の膜厚と保
磁力Hcとの関係を示す図である。
FIG. 3 is a diagram showing the relationship between the film thickness and the coercive force Hc of the soft magnetic film produced in the example of the present invention.

【図4】軟磁性膜の膜厚と複素透磁率の実数部μ'との
関係を示す図である。
FIG. 4 is a diagram showing a relationship between a film thickness of a soft magnetic film and a real part μ ′ of complex magnetic permeability.

【図5】軟磁性膜の保磁力Hcと熱処理温度との関係を
示す図である。
FIG. 5 is a diagram showing a relationship between a coercive force Hc of a soft magnetic film and a heat treatment temperature.

【図6】従来提供されている積層型ヘッドの概略図であ
る。
FIG. 6 is a schematic view of a conventional laminated head.

【図7】従来提供されているMIGヘッドの概略図であ
る。
FIG. 7 is a schematic view of a conventionally provided MIG head.

【符号の説明】[Explanation of symbols]

1、7 軟磁性膜 2 絶縁膜 3 非磁性基板 4 非磁性体(ガラス) 5 フェライト 6 磁気ギャップ 8 非磁性体(ガラス) 1, 7 Soft magnetic film 2 Insulating film 3 Non-magnetic substrate 4 Non-magnetic material (glass) 5 Ferrite 6 Magnetic gap 8 Non-magnetic material (glass)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 健 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 沢井 瑛昌 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ken Takahashi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Fe-Ta-N系軟磁性膜と絶縁膜とを交
互に積層したコア材料で磁気回路が形成された磁気ヘッ
ドであり、前記軟磁性膜がFeを主成分とし、Nを5〜
17原子%含むと共にTaを7〜15原子%含む組成を
有することを特徴とする磁気ヘッド。
1. A magnetic head in which a magnetic circuit is formed of a core material in which Fe—Ta—N-based soft magnetic films and insulating films are alternately laminated, wherein the soft magnetic film contains Fe as a main component and N 5-
A magnetic head having a composition containing 17 atomic% and 7 to 15 atomic% Ta.
【請求項2】 Fe-Ta-B-N系軟磁性膜と絶縁膜と
を交互に積層したコア材料で磁気回路が形成された磁気
ヘッドであり、前記軟磁性膜がFeを主成分とし、Nを
6〜15原子%、Taを7〜15原子%含むと共にBを
0.5〜13原子%含む組成を有することを特徴とする
磁気ヘッド。
2. A magnetic head in which a magnetic circuit is formed of a core material in which an Fe—Ta—B—N-based soft magnetic film and an insulating film are alternately laminated, the soft magnetic film containing Fe as a main component, A magnetic head having a composition containing 6 to 15 atomic% of N, 7 to 15 atomic% of Ta, and 0.5 to 13 atomic% of B.
【請求項3】 請求項1に記載の軟磁性膜がTa、N
(窒素)、Taの窒化物の少なくとも1種以上の元素、
あるいは化合物を固溶し、格子が膨張したα−Feの微
結晶とTaの窒化物微粒子が混在した微細組織から成る
材料であり、前記α−Feの微結晶の平均粒径が100
Å以下、Taの窒化物微粒子の平均粒径が50Å以下で
あることを特徴とする磁気ヘッド。
3. The soft magnetic film according to claim 1 is Ta, N
(Nitrogen), at least one element of Ta nitride,
Alternatively, it is a material having a fine structure in which a compound is dissolved as a solid solution and the lattice expansion of α-Fe fine crystals and Ta nitride fine particles are mixed, and the average grain size of the α-Fe fine crystals is 100.
A magnetic head characterized in that the average particle diameter of the Ta nitride fine particles is Å or less and 50 Å or less.
【請求項4】 請求項2に記載の軟磁性膜がTa、N
(窒素)、B(ホウ素)、Taの窒化物、Taのホウ化
物の少なくとも1種以上の元素、あるいは化合物を固溶
し、格子が膨張したα−Feの微結晶とTaの窒化物微
粒子または、Taのホウ化物微粒子が混在した微細組織
から成る材料であり、前記α−Feの微結晶の平均粒径
が100Å以下、Taの窒化物微粒子またはTaのホウ
化物微粒子の平均粒径が50Å以下であることを特徴と
する磁気ヘッド。
4. The soft magnetic film according to claim 2, wherein Ta, N
(Nitrogen), B (boron), Ta nitride, Ta boride at least one element or a compound or a solid solution thereof, and the lattice expansion of α-Fe microcrystals and Ta nitride fine particles or , A material having a fine structure in which fine particles of boride of Ta are mixed, wherein the average grain size of the α-Fe microcrystals is 100 Å or less, and the average grain size of nitride fine particles of Ta or Ta boride fine particles is 50 Å or less. A magnetic head characterized in that
【請求項5】 請求項1〜4のいずれかに記載のコア材
料の各層の軟磁性膜の膜厚が1〜10μm、各層の絶縁
膜の膜厚が0.05〜0.5μmであり、かつターゲット
と基板が平行に対向した方式のスパッタ法により、前記
軟磁性膜を基板表面上に作製し、磁気ヘッド加工工程に
於ける熱処理を無磁界中で行なうことを特徴とする磁気
ヘッドの製造方法。
5. The soft magnetic film of each layer of the core material according to claim 1 has a film thickness of 1 to 10 μm, and the insulating film of each layer has a film thickness of 0.05 to 0.5 μm. The magnetic head is characterized in that the soft magnetic film is formed on the surface of the substrate by a sputtering method in which the target and the substrate face each other in parallel, and the heat treatment in the magnetic head processing step is performed in a non-magnetic field. Method.
JP3202859A 1991-03-06 1991-08-13 Manufacturing method of magnetic head Expired - Fee Related JP2782994B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3202859A JP2782994B2 (en) 1991-08-13 1991-08-13 Manufacturing method of magnetic head
DE1992614179 DE69214179T2 (en) 1991-03-06 1992-03-05 Magnetic button
EP92103794A EP0502535B1 (en) 1991-03-06 1992-03-05 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3202859A JP2782994B2 (en) 1991-08-13 1991-08-13 Manufacturing method of magnetic head

Publications (2)

Publication Number Publication Date
JPH0546911A true JPH0546911A (en) 1993-02-26
JP2782994B2 JP2782994B2 (en) 1998-08-06

Family

ID=16464380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3202859A Expired - Fee Related JP2782994B2 (en) 1991-03-06 1991-08-13 Manufacturing method of magnetic head

Country Status (1)

Country Link
JP (1) JP2782994B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254708A (en) * 1987-04-10 1988-10-21 Matsushita Electric Ind Co Ltd Magnetic alloy film containing nitrogen
JPH02275605A (en) * 1989-01-26 1990-11-09 Fuji Photo Film Co Ltd Soft magnetic thin film
JPH02290004A (en) * 1989-02-03 1990-11-29 Matsushita Electric Ind Co Ltd Soft magnetic alloy film and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254708A (en) * 1987-04-10 1988-10-21 Matsushita Electric Ind Co Ltd Magnetic alloy film containing nitrogen
JPH02275605A (en) * 1989-01-26 1990-11-09 Fuji Photo Film Co Ltd Soft magnetic thin film
JPH02290004A (en) * 1989-02-03 1990-11-29 Matsushita Electric Ind Co Ltd Soft magnetic alloy film and its manufacture

Also Published As

Publication number Publication date
JP2782994B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
EP0584768B1 (en) Method for making soft magnetic film
US5452167A (en) Soft magnetic multilayer films for magnetic head
US6395413B1 (en) Perpendicular magnetic recording medium
EP0206658A2 (en) Magnetic head
US5227940A (en) Composite magnetic head
EP0105705B1 (en) Perpendicular magnetic recording medium
KR890003038B1 (en) Magnetic recording carrier
US4641213A (en) Magnetic head
JP2782994B2 (en) Manufacturing method of magnetic head
EP0502535B1 (en) Magnetic head
JP2775770B2 (en) Method for manufacturing soft magnetic thin film
JP2570337B2 (en) Soft magnetic laminated film
JPH03106003A (en) Soft magnetic amorphous alloy thin film
JPH0483313A (en) Soft magnetic thin film and magnetic head
JPH01175707A (en) Laminated soft thin magnetic film
JP2727274B2 (en) Soft magnetic thin film
JPH0315245B2 (en)
JP2798315B2 (en) Composite magnetic head
JP2979557B2 (en) Soft magnetic film
JPH06251311A (en) Manufacture of soft magnetic film and magnetic head
JPH0513223A (en) Magnetic head
JPH0376102A (en) Multilayer magnetic thin film and magnetic head using the same
JPH05234751A (en) Soft magnetic alloy film and magnetic head having high saturation magnetic flux density for thin film magnetic head
JPH06124846A (en) Manufacture of soft magnetic film, manufacture of soft magnetic multi layer film and magnetic head
JPH05226151A (en) Soft magnetic alloy film to be used for magnetic head and having high saturation flux density and high heat resistance and magnetic head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees