JPS63299219A - Magnetically soft thin film - Google Patents
Magnetically soft thin filmInfo
- Publication number
- JPS63299219A JPS63299219A JP13399687A JP13399687A JPS63299219A JP S63299219 A JPS63299219 A JP S63299219A JP 13399687 A JP13399687 A JP 13399687A JP 13399687 A JP13399687 A JP 13399687A JP S63299219 A JPS63299219 A JP S63299219A
- Authority
- JP
- Japan
- Prior art keywords
- film
- thin film
- laminated
- soft magnetic
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 40
- 230000005291 magnetic effect Effects 0.000 claims abstract description 111
- 239000010408 film Substances 0.000 claims abstract description 48
- 150000004767 nitrides Chemical class 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 13
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 9
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 9
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 9
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 9
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 9
- 229910052788 barium Inorganic materials 0.000 claims abstract description 8
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 8
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 8
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 8
- 229910052796 boron Inorganic materials 0.000 claims abstract description 7
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 7
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 7
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 6
- 229910052735 hafnium Inorganic materials 0.000 claims description 6
- 229910001337 iron nitride Inorganic materials 0.000 abstract description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 14
- 238000004544 sputter deposition Methods 0.000 abstract description 13
- 230000004907 flux Effects 0.000 abstract description 10
- 238000010438 heat treatment Methods 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 7
- 239000000758 substrate Substances 0.000 abstract description 3
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 2
- 229910021481 rutherfordium Inorganic materials 0.000 abstract 1
- 229920006395 saturated elastomer Polymers 0.000 abstract 1
- 238000000137 annealing Methods 0.000 description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 239000010410 layer Substances 0.000 description 12
- 230000035699 permeability Effects 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 239000000654 additive Substances 0.000 description 9
- 230000000996 additive effect Effects 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 6
- 229910052716 thallium Inorganic materials 0.000 description 5
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 5
- 239000011162 core material Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- -1 B. Mg Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000001659 ion-beam spectroscopy Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- PWKWDCOTNGQLID-UHFFFAOYSA-N [N].[Ar] Chemical compound [N].[Ar] PWKWDCOTNGQLID-UHFFFAOYSA-N 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3254—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、軟磁性薄膜に関し、特に高密度記録に好適な
性能を発揮する磁気ヘッドのコア等として使用される軟
磁性ill!に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a soft magnetic thin film, and in particular to a soft magnetic ill! Regarding.
本発明は、磁気ヘッドのコア等として使用される軟磁性
rII膜において、窒化鉄に0.5〜7.5%の第三の
元素を添加した軟磁性′FR膜を単独あるいは非磁性窒
化物膜と積層して用いることにより、高飽和磁束密度、
低保磁力、高透磁率の緒特性を有し、かつこれら緒特性
が熱処理により大きく劣化しない軟磁性薄膜を提供する
ものである。In the soft magnetic rII film used as the core of a magnetic head, the present invention uses a soft magnetic 'FR film in which 0.5 to 7.5% of a third element is added to iron nitride, either alone or with a non-magnetic nitride. By stacking with the film, high saturation magnetic flux density,
The present invention provides a soft magnetic thin film that has core characteristics of low coercive force and high magnetic permeability, and these core characteristics do not deteriorate significantly due to heat treatment.
たとえばオーディオテープレコーダやVTR(ビデオテ
ープレコーダ)等の磁気記録再生装置においては、記録
信号の高密度化や高品質化が進行しており、鉄等の強磁
性金属粉末を磁性粉とするいわゆるメタルテープや、強
磁性金属材料を真空薄膜形成技術によりベースフィルム
上に直接波゛ 着した、いわゆる蒸着テープ等が実用化
されている。For example, in magnetic recording and reproducing devices such as audio tape recorders and VTRs (video tape recorders), the recording signal density and quality are increasing, and so-called magnetic Tapes and so-called vapor-deposited tapes, in which ferromagnetic metal materials are directly wave-deposited onto a base film using vacuum thin film formation technology, have been put into practical use.
ところで、このような高保磁力を有する磁気縁媒体の特
性を十分に活かして良好な記録再生を行うためには、磁
気ヘッドのコア材料の特性として、高い飽和磁束密度を
有するとともに、同一の磁気ヘッドで再生を行おうとす
る場合においては、高透磁率を併せて有することが要求
される。By the way, in order to make good use of the characteristics of magnetic edge media with such high coercive force for good recording and reproducing, the core material of the magnetic head must have a high saturation magnetic flux density as well as the same magnetic head. In the case of attempting to reproduce the magnetic material, it is also required to have high magnetic permeability.
このような要求に応える軟磁性材料として、窒化鉄が知
られている。これは、窒素雰囲気中で鉄をターゲットと
してイオンビーム蒸着あるいはスパッタリングを行うこ
とにより薄膜状に形成され、飽和磁束密度が極めて高い
材料である。Iron nitride is known as a soft magnetic material that meets these demands. This material is formed into a thin film by performing ion beam evaporation or sputtering using iron as a target in a nitrogen atmosphere, and has an extremely high saturation magnetic flux density.
また、上述のような窒化鉄の単層膜の代わりに、渦電流
損失を低減させる目的で、鉄を主体とする主磁性層と酸
化シリコン等の絶縁体を交互に積層した軟磁性積層膜も
開発されており、単層膜では得られなかった高い飽和磁
束密度と高い透磁率とを両立させることに成功している
。In addition, instead of the single-layer iron nitride film mentioned above, a soft magnetic laminated film in which a main magnetic layer mainly composed of iron and an insulating material such as silicon oxide are alternately laminated is also used for the purpose of reducing eddy current loss. It has been successfully developed to achieve both high saturation magnetic flux density and high magnetic permeability, which were not possible with single-layer films.
ところで、磁気ヘッドの製造工程においては高融点ガラ
スを用いた融着工程が不可欠であり、この工程には高温
の熱処理を必要とする。しかし、従来開発されている2
0 kGを越えるほどの極めて高い飽和磁束密度を有す
る軟磁性薄膜は、成膜が終了した段階では十分に保磁力
が低くならず、さらに400℃程度の熱処理によっても
保磁力が上昇し、良好な軟磁気特性を示すとはいえなか
った。Incidentally, in the manufacturing process of a magnetic head, a fusing process using high-melting point glass is essential, and this process requires high-temperature heat treatment. However, the conventionally developed 2
A soft magnetic thin film with an extremely high saturation magnetic flux density exceeding 0 kG does not have a sufficiently low coercive force after film formation, and the coercive force increases even after heat treatment at about 400°C, resulting in a good film. It could not be said that it exhibited soft magnetic properties.
積層型の軟磁性薄膜においても、その主磁性層となる軟
磁性薄膜の軟磁気特性を向上させることが特性改善の基
本となる。Even in laminated soft magnetic thin films, improving the soft magnetic properties of the soft magnetic thin film that serves as the main magnetic layer is fundamental to improving the properties.
そこで本発明は、熱処理を経ても軟磁気特性が劣化しな
い軟磁性fi)IIの提供を目的とする。Therefore, an object of the present invention is to provide a soft magnetic fi)II whose soft magnetic properties do not deteriorate even after heat treatment.
本発明の軟磁性薄膜は、上述の従来の目的を達成すべく
提案されたものであり、Fe IINVAll(ただし
、X+ L+ Zは各々組成比を原子%として表し、A
はSt、 AI、 Ta、 B、 Mg、 Ca、 S
r。The soft magnetic thin film of the present invention has been proposed to achieve the above-mentioned conventional object, and is composed of FeIINVAll (where X+L+Z each represents the composition ratio as atomic %, and A
are St, AI, Ta, B, Mg, Ca, S
r.
Ba、Cr、Mn、Zr、Nb、Ti、Mo、V。Ba, Cr, Mn, Zr, Nb, Ti, Mo, V.
W、Hf、Ga、Ge、希土類元素の少なくとも1種を
表す、)なる組成式で示され、その組成範囲が0.5≦
y≦2.5.0.5≦2≦7.5. x+y+z−10
0であることを特徴とするものである。represents at least one of W, Hf, Ga, Ge, and rare earth elements, and the composition range is 0.5≦
y≦2.5.0.5≦2≦7.5. x+y+z-10
It is characterized by being 0.
さらに、本発明の軟磁性薄膜は、Fe8NyAg(ただ
し、L Y+ 2は各々組成比を原子%として表し、A
はSi、 AI、 Ta、 B、 Mg、 Ca。Furthermore, the soft magnetic thin film of the present invention is made of Fe8NyAg (wherein, L Y+ 2 represents each composition ratio as atomic %, and A
are Si, AI, Ta, B, Mg, Ca.
Sr、Ba、Cr、Mn、Zr、Nb、Ti、Mo。Sr, Ba, Cr, Mn, Zr, Nb, Ti, Mo.
V、W、Hr、Ga、Ge、希土類元素の少なくとも1
種を表す、)なる組成式で示され、その組成範囲が0.
5≦y≦2.5.0.5≦2≦7.5.x+y+z=1
00である主磁性層と、非磁性窒化物膜とを積層したこ
とを特徴とするものである。At least one of V, W, Hr, Ga, Ge, and rare earth elements
), which represents a species, and whose composition range is 0.
5≦y≦2.5.0.5≦2≦7.5. x+y+z=1
00, and a non-magnetic nitride film are laminated.
本発明にかかる軟磁性′gl膜あるいは積層型の軟磁性
薄膜の主磁性層は、窒化鉄に上述のような種々の元素を
0.5〜7.5原子%の割合で添加したものであるが、
添加元素を2種以上組み合わせることも可能である0本
発明にかかる軟磁性薄膜は、窒素を含む雰囲気中でのス
パッタリングにより作成され、このとき、上述の元素の
添加方法としては、まず目的の元素と鉄との合金を調製
し、該合金をターゲットとして使用する方法が考えられ
る。The main magnetic layer of the soft magnetic GL film or laminated soft magnetic thin film according to the present invention is made of iron nitride to which the various elements described above are added at a ratio of 0.5 to 7.5 atomic percent. but,
It is also possible to combine two or more types of additive elements.The soft magnetic thin film according to the present invention is created by sputtering in an atmosphere containing nitrogen. A possible method is to prepare an alloy of iron and iron and use this alloy as a target.
しかし、アルカリ土類金属等の鉄と固溶しない金属・に
ついてはチップを作成し、該チップを鉄ターゲツト上に
置いてスパッタリングを行う。However, for metals such as alkaline earth metals that do not form a solid solution with iron, a chip is prepared and sputtering is performed by placing the chip on an iron target.
また、上述の軟磁性薄膜を主磁性層とし、これを他の非
磁性窒化物膜と積層する場合、使用できる非磁性窒化物
には、S 1iNa、BN、AI N。When the above-mentioned soft magnetic thin film is used as the main magnetic layer and is laminated with other non-magnetic nitride films, examples of non-magnetic nitrides that can be used include S1iNa, BN, and AIN.
TaN、ZrN、NbN、T iN、GaN、MgN。TaN, ZrN, NbN, TiN, GaN, MgN.
MoN、VN等がある。これらの窒化物は2種以上ン琵
合しても良い。There are MoN, VN, etc. Two or more types of these nitrides may be combined together.
上述のような材料を使用した積層型の軟磁性薄膜におい
て、非磁性窒化物膜は主磁性層と同様にスパッタリング
により成膜される。このとき、主磁性層および非磁性窒
化物膜の膜厚は所望の特性により適宜設定すれば良いが
、まず主磁性層の1層あたりの膜厚は磁気特性の観点か
ら100〜1.000μmが望ましい。また、非磁性窒
化物膜の111あたりの膜厚は3〜500人の範囲とす
ることが望ましい、膜厚が3人未満では均一な成膜が困
難な上、積層膜とする意味が無く、また上記の範囲以上
では飽和磁束密度が低下する。また、上記主磁性層と非
磁性窒化物膜の積層枚数も、適宜選択して良い。In a laminated soft magnetic thin film using the above-mentioned materials, the nonmagnetic nitride film is formed by sputtering in the same way as the main magnetic layer. At this time, the film thicknesses of the main magnetic layer and the non-magnetic nitride film may be set appropriately depending on the desired characteristics, but first, the film thickness of each main magnetic layer should be 100 to 1.000 μm from the viewpoint of magnetic properties. desirable. In addition, it is desirable that the thickness of the non-magnetic nitride film per 111 is in the range of 3 to 500 people.If the thickness is less than 3 people, it is difficult to form a uniform film, and there is no point in forming a layered film. Further, above the above range, the saturation magnetic flux density decreases. Furthermore, the number of laminated layers of the main magnetic layer and the nonmagnetic nitride film may be selected as appropriate.
本発明にかかる軟磁性薄膜においては、窒化鉄に種々の
元素が添加されることにより、高飽和磁束密度および高
透磁率が達成されている。添加されたこれら種々の元素
は窒化鉄の膜中で安定な窒化物を形成するため、高温下
でも窒化鉄膜中から窒素を脱離させない、したがって磁
気ヘッドの製造工程においてガラス融着のための熱処理
を経ても保磁力が大幅には上昇せず、良好な軟磁気特性
を維持することが可能となる。In the soft magnetic thin film according to the present invention, high saturation magnetic flux density and high magnetic permeability are achieved by adding various elements to iron nitride. These various added elements form stable nitrides in the iron nitride film, so nitrogen is not released from the iron nitride film even at high temperatures. Even after heat treatment, the coercive force does not increase significantly, making it possible to maintain good soft magnetic properties.
また、上述の軟磁性薄膜を非磁性窒化物膜と積層した積
層型の軟磁性薄膜においては、熱処理を経た後にかえっ
て保磁力が低減され、より一層の軟磁気特性の改善効果
が期待できる。In addition, in a laminated soft magnetic thin film in which the above-mentioned soft magnetic thin film is laminated with a nonmagnetic nitride film, the coercive force is actually reduced after heat treatment, and further improvement in soft magnetic properties can be expected.
以下、本発明の好適な実施例を実験結果にもとづいて説
明する。Hereinafter, preferred embodiments of the present invention will be described based on experimental results.
第1の実施例
本実施例は、添加元素としてアルミニウム、タリウムお
よびケイ素を使用した単層膜としての軟磁性薄膜の例で
ある。First Embodiment This embodiment is an example of a soft magnetic thin film as a single layer film using aluminum, thallium, and silicon as additive elements.
F e qqA l !+ F e !?
T a 3+ およびF e *tS l
s(数値はいずれも原子%)の組成を有する鉄合金ター
ゲットを調製し、2.5モル%の窒素を含有するアルゴ
ン雰囲気中、ガス圧3 mTorr、出力300Wの条
件にて高周波マグネトロン・スパッタリングを行い、ア
ルミニウム含有窒化鉄薄膜(夏)、タリウム含有窒化鉄
薄膜(I[)、およびケイ素含有窒化鉄薄膜(I[I)
をそれぞれ作成′した。これらの各窒化鉄薄膜について
550°Cで1時間アニールを行った後、保磁力を測定
し、アニール前の保磁力と比較した。この結果を第1表
にまとめた。F eqqA l! +Fe! ?
T a 3+ and F e *tS l
An iron alloy target having a composition of s (all values are atomic %) was prepared, and high frequency magnetron sputtering was performed under the conditions of a gas pressure of 3 mTorr and an output of 300 W in an argon atmosphere containing 2.5 mol% nitrogen. conducted, aluminum-containing iron nitride thin film (summer), thallium-containing iron nitride thin film (I[), and silicon-containing iron nitride thin film (I[I)]
were created respectively. After annealing each of these iron nitride thin films at 550° C. for 1 hour, the coercive force was measured and compared with the coercive force before annealing. The results are summarized in Table 1.
この第1表によると、すべての窒化鉄薄膜について、ア
ニール後においてはアニール前に比べてやや保磁力が上
昇してはいるものの、従来の軟磁第1表
性情膜よりは遥かに優れた熱安定性を有することがわか
った。また、飽和磁束密度は、いずれの軟磁性薄膜の場
合も20 kG前後と掻めて高い値を示した。According to Table 1, although the coercive force of all iron nitride thin films is slightly higher after annealing than before annealing, the thermal stability is far superior to that of the conventional soft magnetic first surface film. It turns out that it has sex. In addition, the saturation magnetic flux density of all soft magnetic thin films was around 20 kG, which was extremely high.
なお、本実施例で採用した高周波マグネトロン・スパッ
タリングの条件は上述の条件に限定されるものではなく
、たとえば窒素含量を0.5〜5モル%の範囲で、また
ガス圧を1.0〜5 aTorrの範囲で変化させても
差支えない、これらの条件は得られる窒化鉄の組成に影
響を及ぼすので、所望の軟磁気特性に応じて適宜選択す
れば良い。Note that the conditions for high-frequency magnetron sputtering employed in this example are not limited to those described above; for example, the nitrogen content is in the range of 0.5 to 5 mol%, and the gas pressure is in the range of 1.0 to 5 mol%. These conditions may be changed within the range of aTorr, but since these conditions affect the composition of the obtained iron nitride, they may be appropriately selected depending on the desired soft magnetic properties.
また、スパッタリング方法も上記高周波マグネトロン・
スパッタリングに限定されるものではない、たとえば、
直流スパッタリング、対向ターゲット・スパッタリング
、イオンビーム・スパッタリング等も使用可能であり、
やはり窒素−アルゴン雰囲気中、窒素含量0.5〜5モ
ル%の条件で行われる。このときのガス圧を例示すると
、直流スパッタリングの場合1.0〜5 mTorrs
対向ターゲット・スパッタリングの場合0.2〜5 m
Torr、イオンビーム・スパッタリングの場合0.1
〜1.0mTorr程度である。In addition, the sputtering method is also based on the high frequency magnetron mentioned above.
Not limited to sputtering, e.g.
DC sputtering, facing target sputtering, ion beam sputtering, etc. can also be used.
Again, the process is carried out in a nitrogen-argon atmosphere with a nitrogen content of 0.5 to 5 mol%. An example of the gas pressure at this time is 1.0 to 5 mTorrs in the case of DC sputtering.
0.2 to 5 m for facing target sputtering
Torr, 0.1 for ion beam sputtering
~1.0 mTorr.
比較例
上述の実験に対する比較例として、元素の添加量が本発
明において限定される範囲の外にある例を示す、まず、
元素の添加量が上記範囲より少ない例として、添加元素
を使用せず、純鉄をターゲットとして同様の条件にて窒
化鉄薄Wa(IV)を作成し、同様に保磁力を測定した
。また、元素の添加量が多い例として、F ems、s
s t+4.5 (原子%)の組成を有する鉄合金をタ
ーゲットとして同様の条件にてケイ素含有窒化鉄薄膜(
V)を作成し、同様に保磁力を測定した。この結果を第
2表に示この表をみると、作成された窒化鉄mHの保磁
力は、いずれの場合も前述の第1表に示した各軟磁性薄
膜よりも高く、軟磁気特性は劣っていることがわがつつ
た。Comparative Example As a comparative example to the above experiment, an example in which the amount of added element is outside the range limited in the present invention is shown.
As an example in which the added amount of the element is less than the above range, a thin iron nitride Wa (IV) was prepared under the same conditions using pure iron as a target without using the added element, and the coercive force was similarly measured. In addition, as an example of a large amount of added elements, F ems, s
A silicon-containing iron nitride thin film (
V) was prepared and the coercive force was measured in the same manner. The results are shown in Table 2. Looking at this table, the coercive force of the produced iron nitride mH is higher in all cases than the soft magnetic thin films shown in Table 1 above, and the soft magnetic properties are inferior. It dawned on me that something was going on.
第2の実施例
本実施例は、主磁性膜の添加元素としてケイ素またはタ
リウムを使用し、非磁性窒化物膜として窒化ケイ素を使
用し、この両者をいわゆる同時二元スパッタリングによ
り積層した軟磁性薄膜(以下、軟磁性積層膜と称する。Second Example In this example, silicon or thallium is used as the additive element of the main magnetic film, silicon nitride is used as the non-magnetic nitride film, and both are laminated by so-called simultaneous binary sputtering to create a soft magnetic thin film. (Hereinafter, it will be referred to as a soft magnetic laminated film.
)の例である。) is an example.
まず、添加元素としてケイ素を使用する場合について説
明する。First, a case where silicon is used as an additive element will be explained.
はじめに、チャンバー内にターゲットとなるFe*tS
ls (原子%)および5iiNaを並置した。First, the target Fe*tS is placed inside the chamber.
ls (atomic %) and 5iiNa were juxtaposed.
次に、これらのターゲットのいずれか一方と対向するよ
うに、結晶化ガラス等の基板を可動型の載置台に載置し
た。続いてチャンバー内を脱気した後、2.5モル%の
窒素を含有するアルゴンを封入し、ガス圧を2.5 w
Torrとした。Next, a substrate made of crystallized glass or the like was placed on a movable mounting table so as to face one of these targets. Subsequently, after deaerating the inside of the chamber, argon containing 2.5 mol% nitrogen was filled, and the gas pressure was increased to 2.5 W.
Torr.
上記基板を回転させながら、出力300−にてスパッタ
リングを行い、第1図に示すような膜厚的1 、000
人の主磁性層であるF e*h、ss itN+、s膜
(1)と膜厚約9人の非磁性窒化物膜である5isN−
11! (2)とを交互に積層し、軟磁性績N膜(■)
を作成した。While rotating the substrate, sputtering was performed at an output of 300 -, resulting in a film thickness of 1,000 mm as shown in Figure 1.
Fe*h, ss itN+, s film (1), which is the main magnetic layer of humans, and 5isN-, which is a non-magnetic nitride film with a film thickness of about 9
11! (2) and are alternately laminated to form a soft magnetic N film (■).
It was created.
添加元素としてタリウムを使用する場合も、ターゲット
としてFewtTas (原子%)を使用すること以
外は上記のケイ素を使用する場合と同様に行い、主磁性
層としてF e qh、 sT a tN 1. s膜
を含む軟磁性槽1m(■)を得た。When using thallium as the additive element, the same procedure as above when using silicon is performed except that FewtTas (atomic %) is used as the target, and F e qh, sT a tN 1. A 1 m (■) soft magnetic tank containing the S film was obtained.
このようにして作成された軟磁性積層膜(■)。Soft magnetic laminated film (■) created in this way.
(■)について、550°Cで1時間アニール処理を行
った後、保磁力および5 MHzにおける透磁率を測定
し、アニール前の保磁力および透磁率と比較した。この
結果を第3表に示す。For (■), after annealing at 550°C for 1 hour, the coercive force and magnetic permeability at 5 MHz were measured and compared with the coercive force and magnetic permeability before annealing. The results are shown in Table 3.
この第3表によると、いずれの軟磁性槽Fillllに
おいてもアニール後においてはアニール前よりも保磁力
が低減されていた。また透磁率は、ケイ素第3表
を添加元素とした場合は若干の低下を、またタリウムを
添加元素とした場合は若干の上昇を示しているが、いず
れにおいても実用上は極めて良好な軟磁気特性が達成さ
れている。According to Table 3, the coercive force was lower after annealing than before annealing in all soft magnetic tanks Fillll. In addition, the magnetic permeability shows a slight decrease when Table 3 silicon is used as an additive element, and a slight increase when thallium is used as an additive element, but in either case, it is a very good soft magnetic material for practical use. characteristics have been achieved.
これらの良好な軟磁気特性を示すデータの一例として、
第2図(A)および第2図(B)に軟磁性積層膜(’1
ll)のヒステリシス曲線を示した。第2図(A)はア
ニール前、第2図(B)はアニール後のヒステリシス曲
線をそれぞれ表す、これらの図から、アニール後におい
てはアニール前に比べて飽和磁束密度は20 kGとほ
とんど変化していないが保磁力が0.1(Oe)低くな
り、ヒステリシス曲線の横方向の幅が狭まっていること
がわかる。As an example of data showing these good soft magnetic properties,
Figure 2 (A) and Figure 2 (B) show the soft magnetic laminated film ('1
The hysteresis curve of ll) is shown. Figure 2 (A) shows the hysteresis curve before annealing, and Figure 2 (B) shows the hysteresis curve after annealing. From these figures, the saturation magnetic flux density after annealing is almost 20 kG compared to before annealing. It can be seen that the coercive force is lowered by 0.1 (Oe) and the width of the hysteresis curve in the lateral direction is narrower.
また、第3図(A)および第3図(B)には、同じく軟
磁性積層III (V[)の透磁率の周波数依存性を示
す。第3図(A)はアニール前、第3図(B)はアニー
ル後の特性をそれぞれ示している。Further, FIGS. 3(A) and 3(B) similarly show the frequency dependence of the magnetic permeability of the soft magnetic laminated layer III (V[). FIG. 3(A) shows the characteristics before annealing, and FIG. 3(B) shows the characteristics after annealing.
これらの図において、縦軸は透磁率、横軸は周波数をそ
れぞれ表す。これをみると、アニール後ではアニール前
に比べて測定した周波数帯域全般にわたってほぼ一様に
透磁率が若干低下したが、それでもなお実用上十分に高
い透磁率を有していることがわかった。In these figures, the vertical axis represents magnetic permeability, and the horizontal axis represents frequency. Looking at this, it was found that after annealing, the magnetic permeability decreased slightly over the entire measured frequency band compared to before annealing, but the magnetic permeability was still sufficiently high for practical use.
以上の説明からも明らかなように、本発明の第1の発明
は、窒化鉄中に安定な窒化物を形成し得る元素を所定の
範囲内で添加することにより、磁気ヘッドの製造工程に
含まれる高温のアニール処理を経た後でも安定な軟磁気
特性を維持することを可能としたものである。したがっ
て、この軟磁性薄膜を使用することにより、従来問題と
なっていたアニール後の保磁力の上昇を低く抑えること
が可能である。As is clear from the above description, the first aspect of the present invention is to add an element capable of forming a stable nitride to iron nitride within a predetermined range, so that it can be included in the manufacturing process of a magnetic head. This makes it possible to maintain stable soft magnetic properties even after undergoing high-temperature annealing treatment. Therefore, by using this soft magnetic thin film, it is possible to suppress the increase in coercive force after annealing, which has been a problem in the past.
また、本発明の第2の発明においては、上記軟磁性薄膜
を非磁性窒化物膜と組み合わせて積層型の軟磁性薄膜と
しているので、アニール後にかえって保磁力が低減され
、より一層の改善効果を得ことができる。In addition, in the second aspect of the present invention, since the above-mentioned soft magnetic thin film is combined with a non-magnetic nitride film to form a laminated soft magnetic thin film, the coercive force is reduced after annealing, resulting in a further improvement effect. You can get it.
このように保磁力が十分に低い軟磁性薄膜を磁気ヘッド
に応用すれば、磁気ヘッドの帯磁が防止され、歪みが少
なくS/N比の高い良好な記録・再生が可能となる。If such a soft magnetic thin film with a sufficiently low coercive force is applied to a magnetic head, the magnetic head will be prevented from becoming magnetized, and good recording and reproduction with less distortion and a high S/N ratio will be possible.
第1図は本発明を適用した積層型の軟磁性薄膜の構成例
を模式的に示す断面図である。第2図(A)および第2
図(B)はケイ素を添加元素とした場合の軟磁性積層膜
のヒステリシス曲線を示す特性図であり、第2図(A)
はアニール前、第2図CB)はアニール後の特性をそれ
ぞれ表すものである。第3図(A)および第3図(B)
はケイ素を添加元素とした場合の軟磁性積層膜の透磁率
の周波数依存性を示す特性図であり、第3図(A)はア
ニール前、第3図(B)の特性をそれぞれ表すものであ
る。
1−・−F ewa、ss txN+、s膜2・・・5
isNn膜
特許出願人 ソニー株式会社
代理人 弁理士 小 池 見回 田村榮
−
同 佐藤 勝
第1図
第2図(A> 第2図(B)届じ反
数(MHz)
第3図(A’)
7、補正の内容
手続主甫正書(自発)
昭和62年7月10日
特許庁長官 小 川 邦 夫 殿
1、事件の表示
昭和62年特許願第133996号
2、発明の名称
軟磁性薄膜
3、補正をする者
4、代理人
6、補正の対象
別紙
(1)明細書の特許請求の範囲を別紙のとおり補正する
。
(2) 明細書第5頁第13行、および第6頁第2行
の「0.5≦y≦2.5」を「2.5≦y≦5.O」と
補正する。
特許請求の範囲
r(1) F e、INyA−(ただし、X+ L Z
は各々組成比を原子%として表し、AはSi、AI、T
a。
B、Mg、Ca、Sr、Ba、Cr、Mn、Zr。
Nb、T i、Mo、V、W、Hr、Ga、Ge。
希土類元素の少なくとも1種を表す。)なる組成式で示
され、その組成範囲が
2.5≦ ≦5.0
0.5≦2°≦7.5
”+3’+Z=100
であることを特徴とする軟磁性薄膜。
(2)Fe、NyA、(ただし、L V+ Zは各々組
成比を原子%として表し、AはSi、AI、Ta、B。
M g 、Ca + S r + B a 、Cr
+ M n + Z r + N b 。
Ti、Mo、V、W、Hf、Ga、Ge、希土類元素の
少なくとも1種を表す。)なる組成式で示され、その組
成範囲が
2.5≦≦5.0
0.5≦2≦7.5
x+y+z=100
である主磁性層と、非磁性窒化物膜とを積層したことを
特徴とする軟磁性薄膜。j
手続(甫正書(自発)
昭和62年7月14日
13事件の表示
昭和62年特許願第133996号
2、発明の名称
軟磁性薄膜
3、補正をする者
4、代理人
6、補正の対象
7、補正の内容
(1) 明細書の特許請求の範囲を別紙のとおり補正
する。
(2) 明細書第5頁第13行、および第6頁第2行
に「0.5≦y≦2.5」とある記載を「0.5≦y≦
5.0」と補正する。
別紙
特許請求の範囲
r(1)FexN、A、(ただし、X+ Y+ 2は各
々組成比を原子%として表し、AはSi、Al、Ta。
B、Mg、Ca、Sr、Ba、Cr、Mn、Zr。
Nb、Ti、Mo、V、W、Hf、Ga、Ge。
希土類元素の少なくとも1種を表す、)なる組成式で示
され、その組成範囲が
0.5≦≦5.0
0.5≦2≧7.5
X+y+z=100
であることを特徴とする軟磁性薄膜。
(2) F e llN y A −(ただし、L V
+ zは各々組成比を原子%として表し、AはSi、A
I、Ta、B。
Mg、Ca、−3r、Ba、Cr、Mn、Zr、Nb。
Ti、 Mo、 V、 W、 Hf、 Ga、 Ge、
希土類元素の少なくとも1種を表す。)なる組成式で示
され、その組成範囲が
0.5≦ ≦5.0
0.5≦2≦7.5
x+y+z=]、OOFIG. 1 is a cross-sectional view schematically showing a configuration example of a laminated soft magnetic thin film to which the present invention is applied. Figure 2 (A) and 2
Figure 2 (B) is a characteristic diagram showing the hysteresis curve of the soft magnetic laminated film when silicon is used as an additive element, and Figure 2 (A)
shows the characteristics before annealing, and FIG. 2 CB) shows the characteristics after annealing. Figure 3 (A) and Figure 3 (B)
is a characteristic diagram showing the frequency dependence of magnetic permeability of a soft magnetic laminated film when silicon is used as an additive element, and FIG. 3(A) shows the characteristics before annealing and FIG. 3(B) shows the characteristics, respectively. be. 1-・-F ewa, ss txN+, s membrane 2...5
isNn membrane patent applicant Sony Corporation representative Patent attorney Koike Mimi Ei Tamura Masaru Sato Figure 1 Figure 2 (A> Figure 2 (B) Delivered counter number (MHz) Figure 3 (A') ) 7. Contents of the amendment Procedural Authorization (spontaneous) July 10, 1988 Director General of the Patent Office Kunio Ogawa 1. Indication of the case 1988 Patent Application No. 133996 2. Name of the invention Soft magnetic thin film 3. Person making the amendment 4, agent 6, subject of amendment Attachment (1) Amend the claims of the specification as shown in the attachment. (2) Page 5, line 13, and page 6 of the specification "0.5≦y≦2.5" in the second line is corrected to "2.5≦y≦5.O". Claim r(1) F e, INyA- (However, X+ L Z
represents the composition ratio as atomic %, and A is Si, AI, T
a. B, Mg, Ca, Sr, Ba, Cr, Mn, Zr. Nb, Ti, Mo, V, W, Hr, Ga, Ge. Represents at least one rare earth element. ), and the composition range is 2.5≦≦5.0 0.5≦2°≦7.5″+3′+Z=100. (2) Fe, NyA, (however, L V + Z represents the composition ratio as atomic %, A is Si, AI, Ta, B. M g , Ca + S r + B a , Cr
+Mn+Zr+Nb. Represents at least one of Ti, Mo, V, W, Hf, Ga, Ge, and rare earth elements. ), and the composition range is 2.5≦≦5.0 0.5≦2≦7.5 x+y+z=100 A main magnetic layer and a nonmagnetic nitride film are laminated. Characteristic soft magnetic thin film. j Procedures (Hoshosho (spontaneous) July 14, 1988 Case 13 Indication of Patent Application No. 133996 of 1988 2, Name of invention Soft magnetic thin film 3, Person making amendment 4, Agent 6, Name of amendment Target 7, Contents of amendment (1) The scope of claims in the specification is amended as shown in the attached sheet. (2) “0.5≦y≦ 2.5" is changed to "0.5≦y≦
5.0”. Attachment Claims r(1) FexN, A, (wherein X+ Y+ 2 each represents the composition ratio as atomic %, A is Si, Al, Ta. B, Mg, Ca, Sr, Ba, Cr, Mn , Zr. Nb, Ti, Mo, V, W, Hf, Ga, Ge. represents at least one rare earth element. A soft magnetic thin film characterized in that 5≦2≧7.5 X+y+z=100. (2) F ellN y A - (However, L V
+ z represents the composition ratio as atomic %, and A is Si, A
I, Ta, B. Mg, Ca, -3r, Ba, Cr, Mn, Zr, Nb. Ti, Mo, V, W, Hf, Ga, Ge,
Represents at least one rare earth element. ), and its composition range is 0.5≦≦5.0 0.5≦2≦7.5 x+y+z=], OO
Claims (1)
々組成比を原子%として表し、AはSi、Al、Ta、
B、Mg、Ca、Sr、Ba、Cr、Mn、Zr、Nb
、Ti、Mo、V、W、Hf、Ga、Ge、希土類元素
の少なくとも1種を表す。)なる組成式で示され、その
組成範囲が 0.5≦y≦2.5、 0.5≦z≦7.5 x+y+z=100 であることを特徴とする軟磁性薄膜。 (2)Fe_xN_yA_z(ただし、x、y、zは各
々組成比を原子%として表し、AはSi、Al、Ta、
B、Mg、Ca、Sr、Ba、Cr、Mn、Zr、Nb
、Ti、Mo、V、W、Hf、Ga、Ge、希土類元素
の少なくとも1種を表す。)なる組成式で示され、その
組成範囲が 0.5≦y≦2.5、 0.5≦z≦7.5 x+y+z=100 である主磁性層と、非磁性窒化物膜とを積層したことを
特徴とする軟磁性薄膜。[Claims] (1) Fe_xN_yA_z (where x, y, and z each represent the composition ratio as atomic %, and A is Si, Al, Ta,
B, Mg, Ca, Sr, Ba, Cr, Mn, Zr, Nb
, Ti, Mo, V, W, Hf, Ga, Ge, and a rare earth element. ), and has a composition range of 0.5≦y≦2.5, 0.5≦z≦7.5 x+y+z=100. (2) Fe_xN_yA_z (where x, y, and z each represent the composition ratio as atomic %, and A is Si, Al, Ta,
B, Mg, Ca, Sr, Ba, Cr, Mn, Zr, Nb
, Ti, Mo, V, W, Hf, Ga, Ge, and a rare earth element. ), the main magnetic layer having a composition range of 0.5≦y≦2.5, 0.5≦z≦7.5 x+y+z=100 and a nonmagnetic nitride film are laminated. A soft magnetic thin film characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13399687A JP2550996B2 (en) | 1987-05-29 | 1987-05-29 | Soft magnetic thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13399687A JP2550996B2 (en) | 1987-05-29 | 1987-05-29 | Soft magnetic thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63299219A true JPS63299219A (en) | 1988-12-06 |
JP2550996B2 JP2550996B2 (en) | 1996-11-06 |
Family
ID=15117947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13399687A Expired - Fee Related JP2550996B2 (en) | 1987-05-29 | 1987-05-29 | Soft magnetic thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2550996B2 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6442108A (en) * | 1987-08-10 | 1989-02-14 | Hitachi Ltd | Heat-resisting magnetic film |
JPH01309307A (en) * | 1988-05-09 | 1989-12-13 | Ulvac Corp | Soft magnetic thin-film |
JPH01309306A (en) * | 1988-05-09 | 1989-12-13 | Ulvac Corp | Soft magnetic thin-film |
EP0373615A2 (en) * | 1988-12-15 | 1990-06-20 | Matsushita Electric Industrial Co., Ltd. | Soft magnetic alloy films and the method of manufacturing the same |
EP0380136A2 (en) * | 1989-01-26 | 1990-08-01 | Fuji Photo Film Co., Ltd. | Soft magnetic thin film, method for preparing same and magnetic head |
JPH02251104A (en) * | 1989-03-24 | 1990-10-08 | Mitsubishi Mining & Cement Co Ltd | Iron based soft magnetic film and manufacture thereof |
JPH02275605A (en) * | 1989-01-26 | 1990-11-09 | Fuji Photo Film Co Ltd | Soft magnetic thin film |
JPH031513A (en) * | 1989-02-08 | 1991-01-08 | Fuji Photo Film Co Ltd | Manufacture of soft magnetic thin film |
EP0435325A2 (en) * | 1989-12-29 | 1991-07-03 | Sony Corporation | Fe-N-based soft magnetic thin films and magnetic heads using such films |
JPH03156710A (en) * | 1989-08-09 | 1991-07-04 | Fuji Photo Film Co Ltd | Composite magnetic head |
JPH03239312A (en) * | 1990-02-16 | 1991-10-24 | Victor Co Of Japan Ltd | Magnetic alloy |
JPH03263306A (en) * | 1990-02-02 | 1991-11-22 | Nec Corp | Magnetic film and magnetic head |
JPH04324104A (en) * | 1991-04-24 | 1992-11-13 | Nec Corp | Magnetic core for magnetic head |
JPH06295418A (en) * | 1993-04-09 | 1994-10-21 | Nec Corp | Combined magnetic head and magnetic recording and reproducing device |
US5421915A (en) * | 1989-01-26 | 1995-06-06 | Fuji Photo Film Co., Ltd. | Method for preparing same and magnetic head |
US5617275A (en) * | 1994-05-02 | 1997-04-01 | Sanyo Electric Co., Ltd. | Thin film head having a core comprising Fe-N-O in a specific atomic composition ratio |
US5772797A (en) * | 1989-01-26 | 1998-06-30 | Fuji Photo Film Co., Ltd. | Soft magnetic thin film, method for preparing same and magnetic head |
US6183568B1 (en) | 1989-01-26 | 2001-02-06 | Fuji Photo Film Co., Ltd. | Method for preparing a magnetic thin film |
KR20020078705A (en) * | 2001-04-09 | 2002-10-19 | 한국과학기술연구원 | FeTiN based soft magnetic thin films compositions |
WO2003067615A1 (en) | 2002-02-08 | 2003-08-14 | Honeywell International Inc. | Current transformer having an amorphous fe-based core |
US6902826B1 (en) | 2000-08-18 | 2005-06-07 | International Business Machines Corporation | High moment films with sub-monolayer nanolaminations retaining magnetic anisotropy after hard axis annealing |
CN103938157A (en) * | 2014-05-12 | 2014-07-23 | 重庆科技学院 | ZrNbAlN superlattice coating and preparation method |
CN108022714A (en) * | 2016-10-31 | 2018-05-11 | 北京北方华创微电子装备有限公司 | A kind of soft magnetic film and preparation method thereof |
JP2020515098A (en) * | 2016-12-22 | 2020-05-21 | ロジャーズ コーポレーション | Multi-layered magnetic dielectric material |
-
1987
- 1987-05-29 JP JP13399687A patent/JP2550996B2/en not_active Expired - Fee Related
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6442108A (en) * | 1987-08-10 | 1989-02-14 | Hitachi Ltd | Heat-resisting magnetic film |
JPH01309307A (en) * | 1988-05-09 | 1989-12-13 | Ulvac Corp | Soft magnetic thin-film |
JPH01309306A (en) * | 1988-05-09 | 1989-12-13 | Ulvac Corp | Soft magnetic thin-film |
EP0373615A2 (en) * | 1988-12-15 | 1990-06-20 | Matsushita Electric Industrial Co., Ltd. | Soft magnetic alloy films and the method of manufacturing the same |
EP0380136A2 (en) * | 1989-01-26 | 1990-08-01 | Fuji Photo Film Co., Ltd. | Soft magnetic thin film, method for preparing same and magnetic head |
JPH02275605A (en) * | 1989-01-26 | 1990-11-09 | Fuji Photo Film Co Ltd | Soft magnetic thin film |
US6238492B1 (en) | 1989-01-26 | 2001-05-29 | Fuji Photo Film Co., Ltd. | Soft magnetic thin film, method for preparing same and magnetic head |
US6183568B1 (en) | 1989-01-26 | 2001-02-06 | Fuji Photo Film Co., Ltd. | Method for preparing a magnetic thin film |
US5772797A (en) * | 1989-01-26 | 1998-06-30 | Fuji Photo Film Co., Ltd. | Soft magnetic thin film, method for preparing same and magnetic head |
US5421915A (en) * | 1989-01-26 | 1995-06-06 | Fuji Photo Film Co., Ltd. | Method for preparing same and magnetic head |
JPH0744108B2 (en) * | 1989-01-26 | 1995-05-15 | 富士写真フイルム株式会社 | Soft magnetic thin film |
JPH031513A (en) * | 1989-02-08 | 1991-01-08 | Fuji Photo Film Co Ltd | Manufacture of soft magnetic thin film |
JPH0744123B2 (en) * | 1989-02-08 | 1995-05-15 | 富士写真フイルム株式会社 | Method for manufacturing soft magnetic thin film |
JPH02251104A (en) * | 1989-03-24 | 1990-10-08 | Mitsubishi Mining & Cement Co Ltd | Iron based soft magnetic film and manufacture thereof |
JPH03156710A (en) * | 1989-08-09 | 1991-07-04 | Fuji Photo Film Co Ltd | Composite magnetic head |
JP2808547B2 (en) * | 1989-08-09 | 1998-10-08 | 富士写真フイルム株式会社 | Composite magnetic head |
EP0435325A2 (en) * | 1989-12-29 | 1991-07-03 | Sony Corporation | Fe-N-based soft magnetic thin films and magnetic heads using such films |
US5182690A (en) * | 1989-12-29 | 1993-01-26 | Sony Corporation | Fe-n-based soft magnetic thin films and magnetic heads using such films |
EP0435325A3 (en) * | 1989-12-29 | 1991-07-31 | Sony Corporation | Fe-n-based soft magnetic thin films and magnetic heads using such films |
JPH03263306A (en) * | 1990-02-02 | 1991-11-22 | Nec Corp | Magnetic film and magnetic head |
JPH03239312A (en) * | 1990-02-16 | 1991-10-24 | Victor Co Of Japan Ltd | Magnetic alloy |
JPH04324104A (en) * | 1991-04-24 | 1992-11-13 | Nec Corp | Magnetic core for magnetic head |
JPH06295418A (en) * | 1993-04-09 | 1994-10-21 | Nec Corp | Combined magnetic head and magnetic recording and reproducing device |
US5617275A (en) * | 1994-05-02 | 1997-04-01 | Sanyo Electric Co., Ltd. | Thin film head having a core comprising Fe-N-O in a specific atomic composition ratio |
US6902826B1 (en) | 2000-08-18 | 2005-06-07 | International Business Machines Corporation | High moment films with sub-monolayer nanolaminations retaining magnetic anisotropy after hard axis annealing |
KR20020078705A (en) * | 2001-04-09 | 2002-10-19 | 한국과학기술연구원 | FeTiN based soft magnetic thin films compositions |
WO2003067615A1 (en) | 2002-02-08 | 2003-08-14 | Honeywell International Inc. | Current transformer having an amorphous fe-based core |
US6930581B2 (en) | 2002-02-08 | 2005-08-16 | Metglas, Inc. | Current transformer having an amorphous fe-based core |
CN103938157A (en) * | 2014-05-12 | 2014-07-23 | 重庆科技学院 | ZrNbAlN superlattice coating and preparation method |
CN103938157B (en) * | 2014-05-12 | 2016-05-25 | 重庆科技学院 | A kind of ZrNbAlN superlattice coating and preparation method |
CN108022714A (en) * | 2016-10-31 | 2018-05-11 | 北京北方华创微电子装备有限公司 | A kind of soft magnetic film and preparation method thereof |
JP2020515098A (en) * | 2016-12-22 | 2020-05-21 | ロジャーズ コーポレーション | Multi-layered magnetic dielectric material |
Also Published As
Publication number | Publication date |
---|---|
JP2550996B2 (en) | 1996-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63299219A (en) | Magnetically soft thin film | |
EP0380136B1 (en) | Soft magnetic thin film, method for preparing same and magnetic head | |
US6238492B1 (en) | Soft magnetic thin film, method for preparing same and magnetic head | |
US5439754A (en) | Ferromagnetic film, method of manufacturing the same, and magnetic head | |
JP2586367B2 (en) | Soft magnetic material, method of manufacturing the same, and magnetic head | |
WO1993011531A1 (en) | Thin film magnetic head | |
JP2508489B2 (en) | Soft magnetic thin film | |
US4615748A (en) | Amorphous soft magnetic thin film | |
JPS58100412A (en) | Manufacture of soft magnetic material | |
JP2570337B2 (en) | Soft magnetic laminated film | |
JP2546275B2 (en) | Soft magnetic thin film | |
US6183568B1 (en) | Method for preparing a magnetic thin film | |
JP2775770B2 (en) | Method for manufacturing soft magnetic thin film | |
JP2550995B2 (en) | Soft magnetic laminated thin film | |
JPH04285153A (en) | Multi-layer magnetic film and its formation | |
US6303240B1 (en) | Soft magnetic thin film | |
JP2551008B2 (en) | Soft magnetic thin film | |
JPS6313256B2 (en) | ||
JP2784105B2 (en) | Soft magnetic thin film | |
JP2657710B2 (en) | Method for manufacturing soft magnetic thin film | |
JP2911284B2 (en) | Soft magnetic alloy film | |
JPH0489606A (en) | Production of soft magnetic thin film | |
JP2808547B2 (en) | Composite magnetic head | |
JPH04214831A (en) | Soft magnetic film | |
JPH10233007A (en) | Magnetic thin film for magnetic head and production therefor as well as magnetic head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |