JPH03239312A - Magnetic alloy - Google Patents

Magnetic alloy

Info

Publication number
JPH03239312A
JPH03239312A JP2035762A JP3576290A JPH03239312A JP H03239312 A JPH03239312 A JP H03239312A JP 2035762 A JP2035762 A JP 2035762A JP 3576290 A JP3576290 A JP 3576290A JP H03239312 A JPH03239312 A JP H03239312A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic alloy
atoms
targets
expressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2035762A
Other languages
Japanese (ja)
Inventor
Yasushi Watanabe
恭志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2035762A priority Critical patent/JPH03239312A/en
Priority to US07/598,515 priority patent/US5154983A/en
Publication of JPH03239312A publication Critical patent/JPH03239312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a magnetic alloy whose saturation flux density is high, whose coercive force is small and whose thermal stability is excellent by a method wherein it is expressed by a composition formula of FexNyMz and atomic % expressed by (x), (y) and (z) have a specific relationship. CONSTITUTION:When a plasma 14 is generated between targets 5, 5 by using a DC power supply, argon ions in the plasma 14 collide with the targets 5 because the targets 5 are at a negative potential; iron atoms of the targets 5 and atoms of Al, Ga or the like are sprung out. The atoms of iron which have been sprung out from the targets 5 and the atoms of Al, Ga or the like are bonded to atoms or molecules of nitrogen in the plasma; they are grown on a substrate 11. A magnetic alloy which is expressed by a composition formula of FexNyMz and in which atomic % expressed by (x), (y) and (z) have a relationship as shown in Formula I can be obtained (where M is at least one or more kinds of elements in group IIIb elements in the periodic table). Thereby, the magnetic alloy whose saturation flux density is high, whose coercive force is small and whose thermal stability is good can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高密度磁気記録用の磁気ヘッドに適する磁性
合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic alloy suitable for a magnetic head for high-density magnetic recording.

(従来の技術) 近年、磁気記録の高密度化や広帯域化の必要性が高まり
、磁気記録媒体に高い抗磁力を有する磁性材料を使用し
て記録トラック幅を狭くすることにより、高密度磁気記
録再生を実現している。
(Prior art) In recent years, the need for higher density and wider band magnetic recording has increased, and high-density magnetic recording has been achieved by narrowing the recording track width by using magnetic materials with high coercive force in magnetic recording media. Achieving regeneration.

そして、この高い抗磁力をもつ磁気記録媒体に記録再生
するするための磁気ヘッド飼料として、飽和磁束密度B
sの高い磁性合金が必要とされており、センダスト合金
やco−Zr系非晶質合金等をコアの一部または全部に
使用した磁気ヘッドが提案されている。
The saturation magnetic flux density B
Magnetic alloys with high s are required, and magnetic heads using Sendust alloys, co-Zr amorphous alloys, etc. for part or all of the core have been proposed.

然しなから、磁気記録媒体の高抗磁力化が一段と進み、
磁気記録媒体の抗磁力が20000 e以上になるとセ
ンダスト合金やCo−Z r系非晶質合金を使用した磁
気ヘッドでは良好な磁気記録再生が困難になった。又、
磁気記録媒体の長手方向ではなく、厚さ方向に磁化して
記録する垂直磁化記録方式も提案されているがこの垂直
磁化記録方式を良好に行うには、磁気ヘッドの主磁極の
先端部の厚さを0.5μm以下にする必要があり、比較
的抗磁力の低い磁気記録媒体に記録するにも、高い飽和
磁束密度を持つ磁気ヘッド用磁性合金が必要になる。
However, as the coercive force of magnetic recording media continues to increase,
When the coercive force of the magnetic recording medium exceeds 20,000 e, it becomes difficult to perform good magnetic recording and reproduction with magnetic heads using Sendust alloys or Co-Zr amorphous alloys. or,
A perpendicular magnetization recording method has also been proposed in which the magnetic recording medium is magnetized in the thickness direction rather than in the longitudinal direction.In order to perform this perpendicular magnetization recording method well, it is necessary to adjust the thickness of the tip of the main pole of the magnetic head. It is necessary to keep the magnetic head thickness to 0.5 μm or less, and even for recording on a magnetic recording medium with relatively low coercive force, a magnetic alloy for a magnetic head with a high saturation magnetic flux density is required.

そして、センダスト合金やCo−Zr系非晶質合金より
も飽和磁束密度の高い磁性合金として、窒化鉄やFe−
8i系合金等の鉄を主成分とした磁性合金が知られてい
る。
Iron nitride and Fe-
Magnetic alloys containing iron as a main component, such as 8i-based alloys, are known.

(発明が解決しようとする課題) ところが、従来より知られている、これらの高Bs磁性
合金は保磁力Hcが大きく、そのままでは磁気ヘッドの
材料としては不十分であるのでセンダスト合金やパーマ
ロイ等の保磁力の小さい磁性材料か、或いは5i02等
の非磁性飼料を中間層とした多層構造の磁気ヘッドが提
案されている。
(Problem to be solved by the invention) However, these conventionally known high Bs magnetic alloys have a large coercive force Hc and are not sufficient as materials for magnetic heads as they are, so sendust alloys, permalloy, etc. A multilayer magnetic head has been proposed in which the intermediate layer is made of a magnetic material with a low coercive force or a non-magnetic material such as 5i02.

然しなから、多層構造にするには工数やコストがかかり
、信頼性を保つのも難しいという問題点かあった。特に
、数μm以上の膜厚にする7>には場合によっては10
0層以」−の多層構造にする必要かあり、使用範囲も限
られていた。
However, creating a multilayer structure requires a lot of man-hours and costs, and it is difficult to maintain reliability. In particular, for 7> where the film thickness is several μm or more, in some cases 10
It is necessary to have a multilayer structure with 0 or more layers, and the scope of use is also limited.

この問題点を解決するために、本発明穴等はFeN−0
合金によって、単層で高BS・低Hcの磁性合金か得ら
れることを提案したが、熱安定性の面から、ガラスモー
ルド上程には適さないという問題があった。
In order to solve this problem, the holes etc. of the present invention are made of FeN-0
Although it was proposed that a single layer magnetic alloy with high BS and low Hc could be obtained by using an alloy, there was a problem in that it was not suitable for use in upper glass molds from the viewpoint of thermal stability.

そこで本発明は多層構造にしなくても高飽和磁束密度を
持ち、保磁力が小さく、熱安定性に優れた磁性合金を提
供することを目的とする。
Therefore, an object of the present invention is to provide a magnetic alloy that has a high saturation magnetic flux density without having a multilayer structure, has a small coercive force, and has excellent thermal stability.

(課題を解決するための手段) 本発明は上記の課題を解決するためになされたものであ
り、FeXNyMzなる組成式で表され、X 、 y、
 7.で示される原子%が1≦y≦10 0.5≦2≦10 X +y +z =100 は、F e XNy Mz Lvなる組成式で表され、
X s Y % Z s Vて示される原子%が1≦y
*i。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and is represented by the composition formula FeXNyMz, with X, y,
7. The atomic % represented by 1≦y≦10 0.5≦2≦10 X +y +z =100 is expressed by the composition formula Fe XNy Mz Lv,
X s Y % Z s V atomic % is 1≦y
*i.

0.5≦z≦10 0.8≦V≦10 X +3/ +z +v =LO0 はTi、V、Cr、Co、Ni、Cu、Y、Zr。0.5≦z≦10 0.8≦V≦10 X+3/+z+v=LO0 are Ti, V, Cr, Co, Ni, Cu, Y, and Zr.

Nb、  Mo、  Ru、  Rh、  Pd、  
A g、  Sn、  Sb   Hf、  Ta、 
 W、  Re、  Os、  I  r、  Pt。
Nb, Mo, Ru, Rh, Pd,
A g, Sn, Sb Hf, Ta,
W, Re, Os, Ir, Pt.

Au、Pbなる群の中から選ばれた少なくとも1種以上
の元素)をそれぞれ提供するものである。
At least one element selected from the group consisting of Au and Pb).

(実施例) 本発明になる磁性合金の製造装置の一実施例を第1図に
示す。
(Example) An example of the magnetic alloy manufacturing apparatus according to the present invention is shown in FIG.

一対のターゲット5.5は鉄(Fe)とAlGa等の合
金ターゲットか、或いは適当な四部を設けた純鉄のター
ゲットの凹部にチップ状のA1等をはめ込んだ複合ター
ゲットである。このターゲット5.5はターゲットホル
ダ9によって支えられており、このターゲット5とター
ゲットホルダ9には、直流電源13よりマイナス電位が
印加され、更にこのターゲットホルダ9の周囲にはシー
ルド4が取り付けである。又、このターゲットボルダ9
の内部には、両ターゲット5.5間にプラズマ14を集
束するための磁石6.6が挿入され、かつターゲット5
の表面の加熱を防ぐために冷却水8が流入している。
The pair of targets 5.5 is an alloy target of iron (Fe) and AlGa, or a composite target in which a chip-shaped A1 or the like is fitted into a concave part of a pure iron target provided with four appropriate parts. This target 5.5 is supported by a target holder 9, a negative potential is applied to the target 5 and the target holder 9 from a DC power supply 13, and a shield 4 is attached around the target holder 9. . Also, this target boulder 9
A magnet 6.6 for focusing the plasma 14 is inserted between both targets 5.5, and
Cooling water 8 flows in to prevent the surface from heating.

そ]2て、接地された真空槽15の左右に、2個のター
ゲットホルダ9が絶縁体7によって絶縁されて設けられ
ている。
Two target holders 9 are provided on the left and right sides of the grounded vacuum chamber 15 and are insulated by an insulator 7.

又、この真空槽15の上部より、窒素(N2)アルゴン
(Ar)がそれぞれ流量計1.2により、所定の流量に
調節されて導入されている。
Further, nitrogen (N2) and argon (Ar) are introduced from the upper part of the vacuum chamber 15, each being adjusted to a predetermined flow rate by a flow meter 1.2.

なお、アルゴンはターゲット5をスパッタすると同時に
成膜する磁性合金膜中の窒素の量を調節するためのもの
である。
Note that argon is used to adjust the amount of nitrogen in the magnetic alloy film formed at the same time as the target 5 is sputtered.

そして、真空槽15の下部には基板ホルダ12上に基板
11が置かれ、不純物を防ぐためのシャッタ10が基板
11を覆っている。
A substrate 11 is placed on a substrate holder 12 at the bottom of the vacuum chamber 15, and a shutter 10 for preventing impurities covers the substrate 11.

このようなスパッタ装置において、直流電源13により
、左右のターゲットホルダ9に支えられたターゲット5
.5の間にプラズマ14を発生させると、ターゲット5
はマイナス電位であるので、プラズマ14中のアルゴン
イオン(Ar”)がターゲッット5に衝突し、ターゲッ
ト5の鉄原子及びAl−Ga等の原子が飛び出ず。
In such a sputtering apparatus, the target 5 supported by the left and right target holders 9 is powered by the DC power supply 13.
.. When the plasma 14 is generated between 5 and 5, the target 5
Since is at a negative potential, argon ions (Ar'') in the plasma 14 collide with the target 5, and atoms such as iron atoms and Al-Ga atoms of the target 5 do not fly out.

そして、ターゲット5から飛び出した鉄とAI・Ga等
の原子と、プラズマ中の窒素の原子または分子とが結合
して、基板11の上に成長l−でいく。
Then, atoms of iron, AI, Ga, etc. ejected from the target 5 are combined with nitrogen atoms or molecules in the plasma, and grow on the substrate 11 as l-.

なお、スパッタ開始後の数分間はシャッタ10を閉じて
基板11を覆うことにより、ターゲット5の表面の不純
物が基板]1−の上に付かないようにし、その後でシャ
ッタ10を開けるようにする。
Note that the shutter 10 is closed to cover the substrate 11 for several minutes after the start of sputtering to prevent impurities on the surface of the target 5 from adhering to the substrate 1-, and then the shutter 10 is opened.

そして、流量羽1.2により窒素及びアルゴンの導入量
を調節することにより、所望の窒素を含んだFeXNy
Mz合金または、FexNYM2Lv合金を得ることが
できる。
Then, by adjusting the amount of nitrogen and argon introduced with the flow blades 1.2, FeXNy containing the desired nitrogen is obtained.
Mz alloy or FexNYM2Lv alloy can be obtained.

この様にして得たFexNyMz合金の窒素及びAl−
Ga等の含有量と飽和磁束密度(Bs)保磁力(He)
との関係を表1に示す。
Nitrogen and Al- of the FexNyMz alloy thus obtained
Content of Ga etc. and saturation magnetic flux density (Bs) coercive force (He)
Table 1 shows the relationship between

表1は窒素・AI及びGa等の含有量と飽和磁束密度(
Bs)、保磁力(Hc)との関係を示すものであり、含
有量はESCA(X線光電子分光分析法) 、EPMA
 (X線マイクロアナライザ法)等による定量分析で原
子%て表しているが、±20%程度の誤差が見込まれる
。保磁力は真空中での熱処理をおこなった時の値であり
、熱処理温度はここでは300°Cである。この内、試
料番号1はFeに窒素のみを含有させた時の結果であり
、試料番号2はFeにA1のみを含有させた時の結果で
ある。試料番号3〜8は本発明の磁性合金である。
Table 1 shows the contents of nitrogen, AI, Ga, etc. and the saturation magnetic flux density (
Bs), shows the relationship with coercive force (Hc), and the content is ESCA (X-ray photoelectron spectroscopy), EPMA
(X-ray microanalyzer method), etc., and it is expressed as atomic %, but an error of about ±20% is expected. The coercive force is the value when heat treatment is performed in vacuum, and the heat treatment temperature is 300°C here. Among these, sample number 1 is the result when Fe contains only nitrogen, and sample number 2 is the result when Fe contains only A1. Sample numbers 3 to 8 are magnetic alloys of the present invention.

窒素の含有量が1原子%未満であると、顕著な窒素の効
果が見られずHcはほとんど低下しない。
When the nitrogen content is less than 1 atomic %, no significant effect of nitrogen is observed and Hc hardly decreases.

また、図4に示したように窒素の含有量が10原子%以
下であると、Bsは15kG以上となる。従って、窒素
の含有量がl〜10原子%である時、高Bsで低Heの
磁性合金が得られる。
Further, as shown in FIG. 4, when the nitrogen content is 10 atomic % or less, Bs becomes 15 kG or more. Therefore, when the nitrogen content is 1 to 10 atomic %, a high Bs and low He magnetic alloy can be obtained.

図2には本発明になる磁性合金と従来例である窒化鉄(
FeN)合金の、熱処理温度による保磁力(He)の変
化を示す。窒化鉄は熱処理温度300″′ Cの時は比
較的Hcが低いが300 ” c以上にすると急激にH
cが増大する。これに対し本発明になる磁性合金は、H
cが小さく熱安定性にも優れていることが解る。ここで
、A1・Ga等の合計の含有量が0.5原子%未満であ
ると、低Hc化と熱安定性の向上に対する顕著な効果は
見られず、IO原子%を越えるとBsが15kG以上の
磁性合金が得られなくなる。従って、Al−Ga等の合
計の含有量が0.5〜10原子%の時、高Bs・低He
で熱安定性にも優れた磁性合金を得ることができる。
Figure 2 shows the magnetic alloy of the present invention and the conventional example of iron nitride (
2 shows the change in coercive force (He) of the FeN) alloy depending on the heat treatment temperature. Iron nitride has a relatively low Hc when the heat treatment temperature is 300''C, but when the heat treatment temperature exceeds 300''C, the Hc rapidly decreases.
c increases. On the other hand, the magnetic alloy of the present invention has H
It can be seen that c is small and thermal stability is excellent. Here, if the total content of A1, Ga, etc. is less than 0.5 atomic%, no remarkable effect on lowering Hc and improving thermal stability is observed, and if it exceeds IO atomic%, Bs increases by 15 kG. The above magnetic alloy cannot be obtained. Therefore, when the total content of Al-Ga, etc. is 0.5 to 10 at%, high Bs and low He
It is possible to obtain a magnetic alloy with excellent thermal stability.

また、図3には膜厚を2μmとした時の本発明になる磁
性合金の透磁率μと周波数の関係を示す。
Further, FIG. 3 shows the relationship between the magnetic permeability μ and frequency of the magnetic alloy according to the present invention when the film thickness is 2 μm.

本発明になる磁性合金は透磁率が3000と高く、磁気
ヘッドとして十分な再生効率が得られることが解る。
It can be seen that the magnetic alloy according to the present invention has a high magnetic permeability of 3000 and can obtain sufficient reproduction efficiency as a magnetic head.

表  2 1 2 表2はTi、Cr等の元素が耐蝕性の向」二に寄り、す
ることを示したものである。
Table 2 Table 2 shows that elements such as Ti and Cr contribute to corrosion resistance.

実験は試料を60’c −90%の恒温恒湿中に放置し
1000時間経過後に腐蝕痕が見られないものを○、腐
蝕痕が生じたものを×として耐蝕性を示した。
In the experiment, the samples were left in a constant temperature and humidity environment of 60'C -90%, and after 1000 hours, the samples with no corrosion marks were rated as ○, and the samples with corrosion marks were graded as x, indicating corrosion resistance.

試料番号21は比較例であるFeN合金、試料番号22
はFe−N−Al合金、試料番号23−47はFeN−
A I合金にTi、Cr等の元素を添加した合金であり
、試料番号22〜47が本発明になる磁性合金である。
Sample number 21 is a comparative example of FeN alloy, sample number 22
is Fe-N-Al alloy, sample number 23-47 is FeN-
These are alloys in which elements such as Ti and Cr are added to the AI alloy, and sample numbers 22 to 47 are magnetic alloys according to the present invention.

ここで、Ti、Cr等の合計の含有量が0.3原子%未
満であると、耐蝕性に対する顕著な効果が見られず、1
0原子%を越えると1.5kG以上のBsが得られなく
なる。従って、Ti、V。
Here, if the total content of Ti, Cr, etc. is less than 0.3 at%, no significant effect on corrosion resistance is observed, and 1
If it exceeds 0 atomic %, Bs of 1.5 kG or more cannot be obtained. Therefore, Ti, V.

Cr、Co、Ni、Cu、Y、Zr、Nb、Mo。Cr, Co, Ni, Cu, Y, Zr, Nb, Mo.

Ru、Rh、Pd、Ag、Sn、Sb、Hf。Ru, Rh, Pd, Ag, Sn, Sb, Hf.

Ta、、W、Re、Os、I r、Pt、Au、Pbの
合計の含有量が0.3〜10原子%である時、磁気特性
と耐蝕性に優れた磁性合金が得られる。
When the total content of Ta, W, Re, Os, Ir, Pt, Au, and Pb is 0.3 to 10 atomic %, a magnetic alloy with excellent magnetic properties and corrosion resistance can be obtained.

(発明の効果) 本発明は、以上のような組成の磁性合金とすることによ
り、高飽和磁束密度を有し、保磁力が小さく、透磁率が
大きく、更に熱安定性と耐蝕性に優れた磁気ヘッド等の
磁気デバイス用磁性合金が得られる。従って、本発明の
磁性合金を用いれば、高保磁力媒体への良好な記録再生
が行える他、高性能の薄膜磁気ヘッド等を作成すること
ができ、高密度磁気記録再生が実現できる。
(Effects of the Invention) The present invention provides a magnetic alloy having the composition described above, which has high saturation magnetic flux density, low coercive force, high magnetic permeability, and excellent thermal stability and corrosion resistance. A magnetic alloy for magnetic devices such as magnetic heads is obtained. Therefore, by using the magnetic alloy of the present invention, it is possible to perform good recording and reproducing on a high coercive force medium, and also to create a high-performance thin film magnetic head and the like, and realize high-density magnetic recording and reproducing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明になる磁性合金を製造する装置の一実
施例であるスパッタ装置の概略図、第2図は熱処理温度
によるHcの変化を表す図、第3図は透磁率μと周波数
の関係を示す図、第4図は窒素含有量と飽和磁束密度の
関係(Bs)を示す図である。
Fig. 1 is a schematic diagram of a sputtering apparatus which is an embodiment of the apparatus for manufacturing the magnetic alloy according to the present invention, Fig. 2 is a diagram showing changes in Hc depending on heat treatment temperature, and Fig. 3 is a diagram showing magnetic permeability μ and frequency. FIG. 4 is a diagram showing the relationship (Bs) between nitrogen content and saturation magnetic flux density.

Claims (1)

【特許請求の範囲】 (1)Fe_xN_YM_zなる組成式で表され、x、
y、zで示される原子%が 1≦y≦10 0.5≦z≦10 x+y+z=100 なる関係を有する磁性合金。(但しMは周期律表IIIb
族の中の少なくとも1種類以上の元素) (2)MがAlである特許請求の範囲第1項記載の磁性
合金。 (3)MがGaである特許請求の範囲第1項記載の磁性
合金。 (4)Fe_xN_yM_zL_vなる組成式で表され
、x、y、z、vで示される原子%が 1≦y≦10 0.5≦z≦10 0.3≦v≦10 x+y+z+v=100 なる関係を有する磁性合金。(但しMは周期律表IIIb
族の中の少なくとも1種類以上の元素であり、LはTi
,V,Cr,Co,Ni,Cu,Y,Zr,Nb,Mo
,Ru,Ru,Rh,Pd,Ag,Sn,Sb,Hf,
Ta,W,Re,Os,Ir,Pt,Au,Pbなる群
の中から選ばれた少なくとも1種以上の元素) (5)MがAlである特許請求の範囲第4項記載の磁性
合金。 (6)MがGaである特許請求の範囲第4項記載の磁性
合金。
[Claims] (1) Represented by the compositional formula Fe_xN_YM_z, x,
A magnetic alloy in which the atomic % represented by y and z has the following relationship: 1≦y≦10 0.5≦z≦10 x+y+z=100. (However, M is periodic table IIIb
(2) The magnetic alloy according to claim 1, wherein M is Al. (3) The magnetic alloy according to claim 1, wherein M is Ga. (4) It is represented by the compositional formula Fe_xN_yM_zL_v, and the atomic percentages represented by x, y, z, and v have the following relationships: 1≦y≦10 0.5≦z≦10 0.3≦v≦10 x+y+z+v=100 magnetic alloy. (However, M is periodic table IIIb
At least one element in the group, L is Ti
, V, Cr, Co, Ni, Cu, Y, Zr, Nb, Mo
, Ru, Ru, Rh, Pd, Ag, Sn, Sb, Hf,
(5) The magnetic alloy according to claim 4, wherein M is Al. (6) The magnetic alloy according to claim 4, wherein M is Ga.
JP2035762A 1989-10-18 1990-02-16 Magnetic alloy Pending JPH03239312A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2035762A JPH03239312A (en) 1990-02-16 1990-02-16 Magnetic alloy
US07/598,515 US5154983A (en) 1989-10-18 1990-10-16 Magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2035762A JPH03239312A (en) 1990-02-16 1990-02-16 Magnetic alloy

Publications (1)

Publication Number Publication Date
JPH03239312A true JPH03239312A (en) 1991-10-24

Family

ID=12450866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2035762A Pending JPH03239312A (en) 1989-10-18 1990-02-16 Magnetic alloy

Country Status (1)

Country Link
JP (1) JPH03239312A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286146A (en) * 1985-10-14 1987-04-20 Nippon Yakin Kogyo Co Ltd High permeability amorphous alloy having high corrosion resistance, strength and wear resistance and method for modifying magnetic characteristic of said alloy
JPS6365604A (en) * 1986-09-05 1988-03-24 Hitachi Ltd Iron magnetic film
JPS63299219A (en) * 1987-05-29 1988-12-06 Sony Corp Magnetically soft thin film
JPS6432607A (en) * 1987-04-23 1989-02-02 Matsushita Electric Ind Co Ltd Magnetic alloy film
JPS6442108A (en) * 1987-08-10 1989-02-14 Hitachi Ltd Heat-resisting magnetic film
JPH0199203A (en) * 1987-10-13 1989-04-18 Sony Corp Soft magnetic laminated layer film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286146A (en) * 1985-10-14 1987-04-20 Nippon Yakin Kogyo Co Ltd High permeability amorphous alloy having high corrosion resistance, strength and wear resistance and method for modifying magnetic characteristic of said alloy
JPS6365604A (en) * 1986-09-05 1988-03-24 Hitachi Ltd Iron magnetic film
JPS6432607A (en) * 1987-04-23 1989-02-02 Matsushita Electric Ind Co Ltd Magnetic alloy film
JPS63299219A (en) * 1987-05-29 1988-12-06 Sony Corp Magnetically soft thin film
JPS6442108A (en) * 1987-08-10 1989-02-14 Hitachi Ltd Heat-resisting magnetic film
JPH0199203A (en) * 1987-10-13 1989-04-18 Sony Corp Soft magnetic laminated layer film

Similar Documents

Publication Publication Date Title
US5154983A (en) Magnetic alloy
JP2668590B2 (en) Magnetic alloy for magnetic head
JPH03239312A (en) Magnetic alloy
JPH03270203A (en) Magnetic alloy
JPH07116564B2 (en) Magnetic alloy
JPH03270202A (en) Magnetic alloy
JPH03288410A (en) Magnetic alloy
JP2569828B2 (en) Magnetic alloys for magnetic devices
JPH04187745A (en) Magnetic alloy
JPH03270204A (en) Magnetic alloy
JPH03116910A (en) Magnetic alloy film
JPH03240209A (en) Magnetic alloy
JPH02298238A (en) Magnetic alloy
JPH02199027A (en) Magnetic alloy
JP2689512B2 (en) Magnetic alloy for magnetic head
JP3087265B2 (en) Magnetic alloy
JPH02175618A (en) Magnetic alloy
JPS59157828A (en) Magnetic recording medium
JPH03134138A (en) Magnetic alloy
JPH01146312A (en) Soft magnetic thin film
JPS6289312A (en) Magnetically soft thin film
JPH06240417A (en) Magnetic alloy
JPH03166704A (en) Magnetic alloy
JPH03129805A (en) Magnetic alloy film
JPH02175619A (en) Magnetic alloy