JPH02298238A - Magnetic alloy - Google Patents

Magnetic alloy

Info

Publication number
JPH02298238A
JPH02298238A JP2019480A JP1948090A JPH02298238A JP H02298238 A JPH02298238 A JP H02298238A JP 2019480 A JP2019480 A JP 2019480A JP 1948090 A JP1948090 A JP 1948090A JP H02298238 A JPH02298238 A JP H02298238A
Authority
JP
Japan
Prior art keywords
magnetic
alloy
magnetic alloy
formula
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019480A
Other languages
Japanese (ja)
Other versions
JPH07113140B2 (en
Inventor
Yasushi Watanabe
恭志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2019480A priority Critical patent/JPH07113140B2/en
Publication of JPH02298238A publication Critical patent/JPH02298238A/en
Publication of JPH07113140B2 publication Critical patent/JPH07113140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To manufacture the magnetic alloy for a magnetic head having high saturation magnetic flux density, low coercive force and excellent thermal stability by alloying Fe as essential components, specified amounts of N, O, Ta and Nb or furthermore specified elements by a sputtering apparatus or the like. CONSTITUTION:As the material for a magnetic head for recording into a magnetic recording medium and reproducing, a magnetic alloy having the compsn. expressed, as a general formula, by FeVNWOXMY or FeVNwOXMYLZ is manufactured by a sputtering method or the like. In the formula, M denotes one kind of Ta and Nb or a mixture therebetween, L denotes at least one king among Ti, Cr, Co, Cu, Ga, Mo, Ru, Rh, Pd, Ag, Sn, W, Re, Os, Ir, Pt, Au, Al, Si, C, V, Ni, Zr, Hf, B, Ge, Y, Sb and Pb; in the compsn., by atom %, 1<=W<=20, 1<=X<=20, 0.5<=Y<=6 and 0.3<=Z<=3 are regulated and V+W+X+Y=100 is furthermore satisfied in the former formula as well as V+W+X+Y+Z=100 in the latter formula. The magnetic alloy suitable for a magnetic head for high density magnetic recording can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、特に高密度磁気記録用の磁気ヘッドに適する
磁性合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic alloy particularly suitable for a magnetic head for high-density magnetic recording.

(従来の技術) 近年、磁気記録の高密度化や広帯域化の必要性が高まり
、磁気記録媒体に高い抗磁力を何する磁性材料を使用し
て記録トラック幅を狭くすることにより、高密度磁気記
録再生を実現している。
(Prior art) In recent years, the need for higher density and wider band magnetic recording has increased, and high-density magnetic Realizes recording and playback.

そして、この高い抗磁力をもつ磁気記録媒体に記録再生
するするための磁気ヘッド材料として、飽和磁束密度B
sの高い磁性合金が必要とされており、センダスト合金
やCo−Zr系非晶質合金等をコアの一部または全部に
使用した磁気ヘッドが提案されている。
The saturation magnetic flux density B
Magnetic alloys with high s are required, and magnetic heads using Sendust alloys, Co-Zr amorphous alloys, etc. for part or all of the core have been proposed.

然しながら、これらの合金のBsはl OI(G程度か
或いはそれ以下であり、磁気記録媒体の高抗磁力化が一
段と進み抗磁力が20000 e以上になるとセンダス
ト合金やCo−Zr系非晶質合金を使用した磁気ヘッド
では良好な磁気記録再生が困難になった。
However, the Bs of these alloys is about 1 OI (G or less), and as the coercive force of magnetic recording media progresses further and the coercive force exceeds 20,000 e, Sendust alloy and Co-Zr amorphous alloy It has become difficult to achieve good magnetic recording and reproduction with magnetic heads using magnetic heads.

又、磁気記録媒体の長手方向ではなく、厚さ方向に磁化
して記録する垂直磁化記録方式も提案さねているが、こ
の垂直磁化記録方式を良好に行う(−は、磁気ヘッドの
主磁極先端部の厚さを0.5μm以下にする必要があり
、比較的抗磁力の低い磁気記録媒体に記録するにも、高
い飽和磁束密度を持つ磁気ヘッド用磁性合金が必要にな
る。
Also, we have not proposed a perpendicular magnetization recording method in which the magnetic recording medium is magnetized in the thickness direction rather than in the longitudinal direction, but this perpendicular magnetization recording method can be successfully implemented (- indicates the main magnetic pole of the magnetic head). The thickness of the tip must be 0.5 μm or less, and a magnetic alloy for a magnetic head with a high saturation magnetic flux density is required even for recording on a magnetic recording medium with relatively low coercive force.

そして、センダスト合金やCo−Zr系非晶質合金より
も飽和磁束密度の高い磁性合金として、窒化鉄やFe−
Si系合金等の鉄を主成分とした磁性合金が知られてい
る。
Iron nitride and Fe-
Magnetic alloys containing iron as a main component, such as Si-based alloys, are known.

(発明が解決しようとする課題) ところが、従来より知られているこれらの高Bs磁性合
金は、保磁力Heが大きくそのままでは磁気ヘッドの材
料としては不十分であるので、センダスト合金やパーマ
ロイ等の保磁力の小さい磁性材料か、或いはSiO2等
の非磁性材料を中間層とした多層構造の磁気ヘッドが提
案されている。 然しながら、このように異なる系の物
質を多層化するには工数やコストがかかり、信頼性を保
つのも暮しいという問題があった。
(Problem to be Solved by the Invention) However, these conventionally known high Bs magnetic alloys have a large coercive force He and are not sufficient as materials for magnetic heads as they are. A multilayer magnetic head has been proposed in which the intermediate layer is made of a magnetic material with a low coercive force or a non-magnetic material such as SiO2. However, creating multiple layers of different types of materials in this way requires a lot of man-hours and costs, and it is difficult to maintain reliability.

特に、数μ畷以上の膜厚にするためには、場合によって
は100層以上の多層構造にする必要があり、使用範囲
も限られていた。
In particular, in order to obtain a film thickness of several μm or more, it is necessary to have a multilayer structure of 100 or more layers in some cases, which limits the range of use.

この問題を解決するために、本発明式等はFe−N−0
合金によって単層で高Bsで、かつ低Heの磁性合金が
得られることを提案したが、熱安定性の面からガラスモ
ールド工程には適さないという問題があった。
In order to solve this problem, the present invention formula etc.
Although it was proposed that a single layer magnetic alloy with high Bs and low He could be obtained by using an alloy, there was a problem that it was not suitable for the glass molding process from the viewpoint of thermal stability.

そこで、本発明は多層構造にしなくても高飽和磁束密度
を持ち、且つ、保磁力の小さい熱安定性に優れた磁性合
金を提供することを目的とする。
Therefore, an object of the present invention is to provide a magnetic alloy that has a high saturation magnetic flux density without having a multilayer structure, has a small coercive force, and has excellent thermal stability.

(課題を解決するための手段) 本発明は上記の課題を解決するためになされたものであ
り、 F ey NW OX MYなる組成式で表わさ
れ、v、w、x、yで示される原子%は1≦w≦20 15x≦20 0.5≦y≦6 v + w + x + y = 100なる関係を有
する磁性合金、(但しMはTa。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and is represented by the composition formula F ey NW OX MY, and atoms represented by v, w, x, and y. % is a magnetic alloy having the following relationships: 1≦w≦20 15x≦20 0.5≦y≦6 v + w + x + y = 100 (where M is Ta).

Nb、またはTaとNbの混合物)または、Fev N
wOxM、L2なる組成式で表わされ、v、w、x、y
、zで示される原子%は1≦w≦20 1≦x≦20 0.5≦y≦6 0.3≦2≦3 v+w+x+y+z−100 なる関係を有する磁性合金、(但しMはTaまたはNb
またはTaとNbの混合物であり、LはTi、Cr、C
o、Cu、G−a、Mo、Ru。
Nb or a mixture of Ta and Nb) or Fev N
It is represented by the composition formula wOxM, L2, and v, w, x, y
, z is a magnetic alloy having the following relationship: 1≦w≦20 1≦x≦20 0.5≦y≦6 0.3≦2≦3 v+w+x+y+z−100 (where M is Ta or Nb
or a mixture of Ta and Nb, where L is Ti, Cr, C
o, Cu, Ga, Mo, Ru.

Rh、Pd、Ag、Sn、W、R’e、Os、  I 
 r。
Rh, Pd, Ag, Sn, W, R'e, Os, I
r.

Pt、Au、AI、  Si、  C,V、Ni、  
Zr。
Pt, Au, AI, Si, C, V, Ni,
Zr.

Hf、B、Ge、Y、Sb、Pbなる群の中カラ選ばれ
た少なくとも1種類以上の元素)を提供するも、のであ
る。
It also provides at least one element selected from the group consisting of Hf, B, Ge, Y, Sb, and Pb.

(実施例) 本発明の磁性合金の製造装置の一例を第1図に示す。(Example) An example of the manufacturing apparatus for the magnetic alloy of the present invention is shown in FIG.

一対のターゲット5.5は鉄(Fe)とタンタル(Ta
) 、ニオブ(Nb)、例えばルテニウム(Ru)等の
添加元素の合金ターゲットか、或いは適当な四部を設け
た純鉄のターゲットの四部にチップ状のTa5Nbまた
はRu等をはめ込んだ複合ターゲットである。このター
ゲット5.5はターゲットホルダー9によって支えられ
ており、このターゲット5とターゲットホルダー9には
、直流電源13よりマナス電位が印加され、更にこのタ
ーゲットホルダー9の周囲にはシールド4が取り付けで
ある。
A pair of targets 5.5 are iron (Fe) and tantalum (Ta).
), niobium (Nb), eg, ruthenium (Ru), and other additive elements, or a composite target in which chip-shaped Ta5Nb or Ru is inserted into the four parts of a pure iron target provided with appropriate four parts. This target 5.5 is supported by a target holder 9, a manas potential is applied to this target 5 and target holder 9 from a DC power supply 13, and a shield 4 is attached around this target holder 9. .

また、このターゲットホルダー9の内部には、両ターゲ
ット5.5間にプラズマ14を集束するための磁石6.
6が挿入され、且つターゲット5の表面の加熱を防ぐた
めに冷却水8が流入している。
Moreover, inside this target holder 9, a magnet 6.5 for focusing the plasma 14 between both targets 5.5.
6 is inserted, and cooling water 8 flows in to prevent the surface of the target 5 from heating.

そして、接地された真空槽15の左右に、2個のターゲ
ットホルダー9が絶縁体7によって絶縁されて設けられ
ている。
Two target holders 9 are provided on the left and right sides of the grounded vacuum chamber 15 and are insulated by an insulator 7.

また、この真空槽15の上部より、酸素(02)、窒素
(N2 ) 、アルゴン(A「)がそれぞれ流量計1〜
3により、所定の流量に調節されて導入されている。
In addition, from the upper part of this vacuum chamber 15, oxygen (02), nitrogen (N2), and argon (A') are supplied to the flowmeters 1 to 1, respectively.
3, the flow rate is adjusted to a predetermined value and introduced.

なお、アルゴンは、ターゲット5をスパッタすると同時
に成膜する磁性合金膜中の酸素と窒素の量を調節するた
めのものである。
Note that argon is used to adjust the amount of oxygen and nitrogen in the magnetic alloy film formed at the same time as the target 5 is sputtered.

そして、真空槽15の下部には、基板ホルダー12上に
基板1が置かれ、不純物を防ぐためのシャッター10が
基板11を覆っている。
The substrate 1 is placed on a substrate holder 12 at the bottom of the vacuum chamber 15, and a shutter 10 for preventing impurities covers the substrate 11.

このようなスパッタ装置において、直流電源13により
、左右のターゲットホルダー9に支えられたターゲット
5.5の間にプラズマ14を発生させると、ターゲット
5はマイナス電位であるので、プラズマ14中のアルゴ
ンイオン(AR”″)がターゲット5に衝突し、ターゲ
ット5の鉄原子およびTa、NbまたはRu等の原子が
飛び出ず。
In such a sputtering apparatus, when a plasma 14 is generated between the targets 5.5 supported by the left and right target holders 9 by the DC power supply 13, the argon ions in the plasma 14 are generated because the target 5 has a negative potential. (AR"") collides with the target 5, and the iron atoms and atoms of Ta, Nb, Ru, etc. of the target 5 do not fly out.

そして、ターゲット5から飛び出した鉄原子と、プラズ
マ中の酸素の原子または分子とが結合して、基板11の
上に成長していく。
Then, the iron atoms ejected from the target 5 combine with oxygen atoms or molecules in the plasma, and grow on the substrate 11.

なお、スパッタ開始後の数分間は、シャッター10を閉
じて基板11を覆うことにより、ターゲット5の表面の
不純物が基板11の上に付かないようにし、その後でシ
ャッター10を開けるようにする。
Note that for several minutes after the start of sputtering, the shutter 10 is closed to cover the substrate 11 to prevent impurities on the surface of the target 5 from adhering to the substrate 11, and then the shutter 10 is opened.

そして、流量計1〜3にて酸素、窒素、アルゴンの導入
量を調節することにより、所望の酸素を含んだF ev
 NW OX Myなる組成式の合金を得ることができ
る。(但し、MはTa、Nb、 またはTaとNbの混
合物)を示す) このようにして得たFevNwOxMv及びFevNw
OxMVLzなる組成式の合金の窒素、酸素およびTa
、Nb、Ruなどの添加元素の含有量と回転磁場中で3
00°Cの熱処理を行った後の飽和磁束密度(Bs)、
保磁力(Hc)との関表1は酸素およびTa SN b
 SRuの含有量と飽和磁束密度(Bs)、保磁力(H
e)との関係を示す表であり、含有量はESCA(X線
光電子分光分析法) 、EPMA (X線マイクロアナ
ライザ法)等による定量分析で原子%で表わしているが
、±20%程度の誤差が見込まれる。保磁力は真空中で
の熱処理を行った時の値であり、熱処理温度は30G 
@Cである。この内、試料番号1は鉄のみの場合の結果
であり、試料番号2は鉄に酸素のみを含有させた時の結
果、試料番号3は鉄に窒素のみを含有させた時の結果で
ある。試料番号5〜13は本発明の磁性合金である。
Then, by adjusting the amount of oxygen, nitrogen, and argon introduced using flowmeters 1 to 3, F ev containing desired oxygen is
An alloy having the composition formula NW OX My can be obtained. (However, M represents Ta, Nb, or a mixture of Ta and Nb) FevNwOxMv and FevNw obtained in this way
Nitrogen, oxygen and Ta in an alloy with the composition formula OxMVLz
, the content of additive elements such as Nb, Ru, etc. and 3 in a rotating magnetic field.
Saturation magnetic flux density (Bs) after heat treatment at 00°C,
Relationship with coercive force (Hc) Table 1 shows oxygen and Ta SN b
SRu content, saturation magnetic flux density (Bs), coercive force (H
This is a table showing the relationship between Errors are expected. The coercive force is the value when heat treatment is performed in vacuum, and the heat treatment temperature is 30G.
@C. Among these, sample number 1 is the result when only iron is used, sample number 2 is the result when iron contains only oxygen, and sample number 3 is the result when iron is made to contain only nitrogen. Sample numbers 5 to 13 are magnetic alloys of the present invention.

ここで、酸素の含有量が1原子%未満であると、顕著な
酸素の効果がみられず、Heはほとんど低下しない。ま
た、酸素の含有量が20原子%を越えると、軟磁気特性
が大幅に劣化し、Bsの低下とHcの増大が起こる。従
って、酸素の含有量が1〜20原子%、更に好ましくは
1〜lO原子%であるとBsが高く且つHcの小さい磁
性合金が得られる。窒素の含有量は1原子%未満である
と顕著な磁気特性の向上は見られず、20原子%を越え
るとBsの低下とHcの増大、特にBsが本発明の[1
的である高Bsを達成できなくなる。従って、窒素の含
有量が1〜20原子%、更に好ましくは1〜10原子%
である時、Bsが高く■つHeの小さい磁性合金が?”
Jられる。
Here, if the oxygen content is less than 1 atomic %, no significant effect of oxygen is observed, and He hardly decreases. Furthermore, when the oxygen content exceeds 20 at %, the soft magnetic properties are significantly deteriorated, resulting in a decrease in Bs and an increase in Hc. Therefore, when the oxygen content is 1 to 20 atomic %, more preferably 1 to 10 atomic %, a magnetic alloy with high Bs and low Hc can be obtained. If the nitrogen content is less than 1 atomic %, no significant improvement in magnetic properties is observed, and if it exceeds 20 atomic %, Bs decreases and Hc increases.
It becomes impossible to achieve the target high Bs. Therefore, the nitrogen content is 1 to 20 at%, more preferably 1 to 10 at%.
When , is there a magnetic alloy with high Bs and low He? ”
J is done.

したがって、F ey NWOX MYなる式で示され
る川底の合金において、v、w、x、yが次のような原
子%の時に優れた軟磁気特性を示す磁性合金が得られる
Therefore, in Kawasoko's alloy represented by the formula F ey NWOX MY, a magnetic alloy exhibiting excellent soft magnetic properties can be obtained when v, w, x, and y are in the following atomic percentages.

即ち、 1≦w≦20 1≦x≦20 0.5 ≦y≦6 v + w + x + ”f −100なる関係を満
たせばよい。
That is, it is sufficient to satisfy the following relationships: 1≦w≦20 1≦x≦20 0.5≦y≦6 v + w + x + “f −100.

また、第2図には本発明の磁性合金と従来例である窒化
鉄合金の熱処理温度による保磁力(He)の変化を示す
Further, FIG. 2 shows the change in coercive force (He) of the magnetic alloy of the present invention and a conventional iron nitride alloy depending on the heat treatment temperature.

この第2図から、本発明の磁性合金は、Hcが小さく熱
安定性にも優れていることが分かる。
From FIG. 2, it can be seen that the magnetic alloy of the present invention has a small Hc and excellent thermal stability.

ここで、TaおよびNbの含有量が0.5原子%未満で
あると、低Hc化と熱安定性の向上に対する顕著な効果
は見られず、6原子%を越えると高Bsで且つ低Heで
あり熱安定性に優れた磁性合金を得ることができない。
Here, when the content of Ta and Nb is less than 0.5 at%, no remarkable effect on lowering Hc and improving thermal stability is observed, and when it exceeds 6 at%, high Bs and low He Therefore, it is not possible to obtain a magnetic alloy with excellent thermal stability.

また、Tt、Cr、Co、Cu、Ga、Mo。Also, Tt, Cr, Co, Cu, Ga, Mo.

Ru、Rh、Pd、Ag、Sn、W、Re、Os。Ru, Rh, Pd, Ag, Sn, W, Re, Os.

Ir、Pt、Au,Al,Si,C,V、Ni。Ir, Pt, Au, Al, Si, C, V, Ni.

Zr、Hf、B、Ge、Y、Sb、Pbの合計の含有量
が03原子%未満であると、これらの元素の顕著な効果
が見られず、3原子%を越えると高Bsと低Heを達成
できなくなる。
If the total content of Zr, Hf, B, Ge, Y, Sb, and Pb is less than 0.3 at%, no significant effects of these elements will be observed, and if it exceeds 3 at%, high Bs and low He becomes impossible to achieve.

すなわち、その点をFe−Ta−N−0合金とFe−T
a−N−0合金にTi、Cr、Co。
That is, this point can be compared with Fe-Ta-N-0 alloy and Fe-T.
a-N-0 alloy with Ti, Cr, and Co.

Cu、Ga、Mo、Ru、Rh、Pd、Ag。Cu, Ga, Mo, Ru, Rh, Pd, Ag.

Sn、W、Re、Os、Ir、Pt、Au、AI。Sn, W, Re, Os, Ir, Pt, Au, AI.

St、C,V、Ni、Zr、Hf、B、Ge、Y。St, C, V, Ni, Zr, Hf, B, Ge, Y.

sb、pbを添加した時の耐蝕性の実験により確認した
This was confirmed by an experiment of corrosion resistance when sb and pb were added.

表2はその実験結果である。なお。この実験は磁性合金
を60’C−90%の高温高湿中に放置し、1000時
間経過後に腐蝕痕が見られないものを○、腐蝕痕が生じ
たものを×として耐蝕性を表わした。
Table 2 shows the experimental results. In addition. In this experiment, magnetic alloys were left in a high temperature and high humidity environment at 60'C and 90%, and corrosion resistance was expressed as ○ if no corrosion marks were observed after 1000 hours, and × if corrosion marks were formed.

この表中、試料番号21は比較例であるFe−N合金、
試料番号22はFe−Ta−N−0合金、試料番号23
〜51はFe−Ta−N−0合金に、T1、−Cr等の
元素を添加した合金であり、試料番号22〜51が本発
明磁性合金である。
In this table, sample number 21 is a comparative example of Fe-N alloy,
Sample number 22 is Fe-Ta-N-0 alloy, sample number 23
-51 are alloys in which elements such as T1 and -Cr are added to the Fe-Ta-N-0 alloy, and sample numbers 22 to 51 are the magnetic alloys of the present invention.

(以下、余白) 表 2 従って、T i、Cr、Co、Cu、Ga、MO。(Hereafter, margin) Table 2 Therefore, Ti, Cr, Co, Cu, Ga, MO.

Ru、  Rh、  Pd、  Ag、  Sn、  
W、  Re、  Os。
Ru, Rh, Pd, Ag, Sn,
W, Re, Os.

Ir、  Pt、  Au、  AI、  St、  
C,V、  Ni。
Ir, Pt, Au, AI, St,
C, V, Ni.

Zr、Hf、B、Ge、Y、Sb、Pbの含有量は0.
3原子%〜3原子%の範囲であると良いことが分かる。
The contents of Zr, Hf, B, Ge, Y, Sb, and Pb are 0.
It can be seen that a range of 3 atomic % to 3 atomic % is good.

従って、F eV Nw Ox Mv Lzなる式て示
される組成の合金において、V 、 W SX s V
 SZが次のような原子%の時に優れた軟磁気特性を示
し、1つ耐蝕性の優れた磁性合金が得られる。
Therefore, in an alloy with a composition represented by the formula F eV Nw Ox Mv Lz, V , W SX s V
When SZ is in the following atomic %, a magnetic alloy exhibiting excellent soft magnetic properties and excellent corrosion resistance can be obtained.

1≦w≦20 1≦x≦20 0.5≦y≦6 0.3≦2≦3 v +w+ x + y + z瑠100また、本発明
の磁性合金と、他の軟磁性材(センダスト等)とを交互
に積層して、多層構造とすることにより、更に保磁力の
低下が期待できるが、本発明になる磁性合金だけの単層
構造でも優れた磁気特性を有する磁性合金が得られる。
1≦w≦20 1≦x≦20 0.5≦y≦6 0.3≦2≦3 v +w+ ) can be expected to further reduce the coercive force by alternately laminating them to form a multilayer structure, but even with a single layer structure of only the magnetic alloy of the present invention, a magnetic alloy with excellent magnetic properties can be obtained.

(発明の効果) 本発明は、以上のような組成式の磁性合金にすることに
より、更に、耐蝕性と熱安定性の優れた磁気ヘッド用磁
性合金が得られる。従って、本発明の磁性合金を用いれ
ば、高保磁力磁気媒体への良好な記録再生が行え、高密
度磁気記録再生が実現できる。
(Effects of the Invention) According to the present invention, by using a magnetic alloy having the compositional formula as described above, a magnetic alloy for a magnetic head having further excellent corrosion resistance and thermal stability can be obtained. Therefore, by using the magnetic alloy of the present invention, it is possible to perform good recording and reproduction on a high coercive force magnetic medium, and realize high-density magnetic recording and reproduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁性合金を製造する装置の一例である
スパッタ装置の概略図、第2図は本発明の磁性合金と従
来例である窒化鉄合金の熱処理温度によるHcの変化を
示す図である。 特許出願人  日本ビクター株式会社 代表者  板木 邦人 1UiJ 實 〜〔 さハ ど\ <J(1 第Q 手続補正書 平成2年5月/I l−1 1、事件の表示 平成2年特許願第1.9480号 2、発明の名称 磁性合金 3、補正をする者 事件との関係  特許出願人 住所 神奈川県横浜市神奈用区守屋町3丁口12番地4
、補正命令の日付 自発補正 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書第12頁第12行〜第13行記載の「高B
sと」を削除する。 以上
Fig. 1 is a schematic diagram of a sputtering apparatus which is an example of an apparatus for manufacturing the magnetic alloy of the present invention, and Fig. 2 is a diagram showing the change in Hc depending on the heat treatment temperature of the magnetic alloy of the present invention and a conventional iron nitride alloy. It is. Patent Applicant Representative of Victor Japan Co., Ltd. Itaki Japanese 1UiJ Real ~ [ Sahad \ <J (1. 1.9480 No. 2, Name of the invention Magnetic alloy 3, Relationship to the amended case Patent applicant address 3-12-4 Moriya-cho, Kanayō-ku, Yokohama-shi, Kanagawa Prefecture
, Date of amendment order Voluntary amendment 5, Detailed explanation of the invention column 6 of the specification subject to amendment, Contents of amendment (1) "High B" stated in lines 12 to 13 of page 12 of the specification
Delete "s and". that's all

Claims (1)

【特許請求の範囲】 (1)Fe_VN_WO_XM_Yなる組成式で表わさ
れ、v,w,x,yで示される原子%は 1≦w≦20 1≦x≦20 0.5≦y≦6 v+w+x+y=100 なる関係を有する磁性合金。(但しMはTa,Nb,ま
たはTaとNbの混合物) (2)Fe_VN_WO_XM_YL_Zなる組成式で
表わされ、v,w,x,y,zで示される原子%は1≦
w≦20 1≦x≦20 0.5≦y≦6 0.3≦z≦3 v+w+x+y+z=100 なる関係を有する磁性合金。(但しMはTaまたはNb
またはTaとNbの混合物であり、LはTi,Cr,C
o,Cu,Ga,Mo,Ru,Rh,Pd,Ag,Sn
,W,Re,Os,Ir,Pt,Au,Al,Si,C
,V,Ni,Zr,Hf,B,Ge,Y,Sb,Pbな
る群の中から選ばれた少なくとも1種類以上の元素)
[Claims] (1) It is represented by the compositional formula Fe_VN_WO_XM_Y, and the atomic % represented by v, w, x, and y is 1≦w≦20 1≦x≦20 0.5≦y≦6 v+w+x+y= A magnetic alloy having a relationship of 100. (However, M is Ta, Nb, or a mixture of Ta and Nb) (2) It is represented by the composition formula Fe_VN_WO_XM_YL_Z, and the atomic % represented by v, w, x, y, and z is 1≦
A magnetic alloy having the following relationships: w≦20 1≦x≦20 0.5≦y≦6 0.3≦z≦3 v+w+x+y+z=100. (However, M is Ta or Nb
Or it is a mixture of Ta and Nb, and L is Ti, Cr, C
o, Cu, Ga, Mo, Ru, Rh, Pd, Ag, Sn
, W, Re, Os, Ir, Pt, Au, Al, Si, C
, V, Ni, Zr, Hf, B, Ge, Y, Sb, Pb)
JP2019480A 1989-02-16 1990-01-30 Magnetic alloy Expired - Lifetime JPH07113140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019480A JPH07113140B2 (en) 1989-02-16 1990-01-30 Magnetic alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-35071 1989-02-16
JP3507189 1989-02-16
JP2019480A JPH07113140B2 (en) 1989-02-16 1990-01-30 Magnetic alloy

Publications (2)

Publication Number Publication Date
JPH02298238A true JPH02298238A (en) 1990-12-10
JPH07113140B2 JPH07113140B2 (en) 1995-12-06

Family

ID=26356308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019480A Expired - Lifetime JPH07113140B2 (en) 1989-02-16 1990-01-30 Magnetic alloy

Country Status (1)

Country Link
JP (1) JPH07113140B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232206A (en) * 1989-04-12 1991-10-16 Sony Corp Soft magnetic thin film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158306A (en) * 1986-01-07 1987-07-14 Hitachi Ltd High density iron system magnetic material film and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158306A (en) * 1986-01-07 1987-07-14 Hitachi Ltd High density iron system magnetic material film and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232206A (en) * 1989-04-12 1991-10-16 Sony Corp Soft magnetic thin film

Also Published As

Publication number Publication date
JPH07113140B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
US5154983A (en) Magnetic alloy
JPH02298238A (en) Magnetic alloy
JP2668590B2 (en) Magnetic alloy for magnetic head
JPH03250706A (en) Magnetic alloy
JPH04187745A (en) Magnetic alloy
JPH03270203A (en) Magnetic alloy
JPH03288410A (en) Magnetic alloy
JPH03270202A (en) Magnetic alloy
JPH03270204A (en) Magnetic alloy
JP2689512B2 (en) Magnetic alloy for magnetic head
JP2569828B2 (en) Magnetic alloys for magnetic devices
JPH03239312A (en) Magnetic alloy
JPH02199027A (en) Magnetic alloy
JP3087265B2 (en) Magnetic alloy
JPH03116910A (en) Magnetic alloy film
JPH02175618A (en) Magnetic alloy
JPH06240417A (en) Magnetic alloy
JPH02118055A (en) Magnetic alloy for magnetic head
JPH03240209A (en) Magnetic alloy
JPH0461308A (en) Manufacture of magnetic alloy film
JPH03134138A (en) Magnetic alloy
JPS6289312A (en) Magnetically soft thin film
JPS633406A (en) Magnetically soft thin film
JPS63146417A (en) Soft magnetic thin film
JP2522284B2 (en) Soft magnetic thin film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071206

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 15