JPH02199027A - Magnetic alloy - Google Patents

Magnetic alloy

Info

Publication number
JPH02199027A
JPH02199027A JP1020165A JP2016589A JPH02199027A JP H02199027 A JPH02199027 A JP H02199027A JP 1020165 A JP1020165 A JP 1020165A JP 2016589 A JP2016589 A JP 2016589A JP H02199027 A JPH02199027 A JP H02199027A
Authority
JP
Japan
Prior art keywords
magnetic
alloy
target
magnetic alloy
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1020165A
Other languages
Japanese (ja)
Inventor
Yasushi Watanabe
恭志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP1020165A priority Critical patent/JPH02199027A/en
Publication of JPH02199027A publication Critical patent/JPH02199027A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide the title alloy having high saturated magnetic flux density even without the need for assuming multilayered structure, small in coercive force, thus suitable for high-density magnetic recording heads, consisting of iron-group element-based multiple oxide. CONSTITUTION:The objective magnetic alloy to be used for magnetic heads, consisting of an alloy of the formula FewMxOy (M is at least one element selected from Zr, Hf, Ta and Nb: 65<=w<=97.5; 0.5<=x<=15; 2<=y<=20; w+x+y=100) or FewMxOyRuz (-M is the same as the above; 65<=w<=97.2; 0.5<=x<=14.7; 2<=y<=20; 0.3<=z; 0.8<=x+y<=15; w+x+y+z=100).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、特に高密度磁気記録用の磁気ヘッドに適する
磁性合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic alloy particularly suitable for a magnetic head for high-density magnetic recording.

(従来の技術) 近年、磁気記録の高密度化や広帯域化の必要性が高まり
、磁気記録媒体に高い抗磁力を有する磁性材料を使用し
て記録トラック幅を狭くすることにより、高密度記録再
生を実現している。
(Prior art) In recent years, the need for higher density and wider band magnetic recording has increased, and high-density recording and reproduction is possible by narrowing the recording track width by using magnetic materials with high coercive force in magnetic recording media. has been realized.

そして、この高い抗磁力を持つ磁気記録媒体に記録再生
するための磁気ヘッド材料として、飽和磁束密度の高い
磁性合金が必要とされており、センダスト合金や非晶質
合金等をコアの一部または全部に使用した磁気ヘッドが
提案されている。
Magnetic alloys with high saturation magnetic flux density are required as magnetic head materials for recording and reproducing on magnetic recording media with high coercive force, and sendust alloys and amorphous alloys are used as part of the core or A magnetic head has been proposed for use in all areas.

しかしながら、磁気記録媒体の高抗磁力化が一段と進み
、抗磁力が20000 e以上になるとセンダスト合金
や非晶質合金を使用した磁気ヘッドでは良好な磁気記録
再生が困誼になった。
However, as the coercive force of magnetic recording media continues to increase and the coercive force exceeds 20,000 e, it becomes difficult to achieve good magnetic recording and reproduction with magnetic heads using sendust alloys or amorphous alloys.

また、磁気記録媒体の長平方向ではなく、厚さ方向に磁
化して記録する垂直磁化記録方式も提案されているが、
この垂直磁化記録方式を良好に行うには、磁気ヘッドの
主[極の先端部の厚さを0.5μm以下にする必要があ
り、比較的抗磁力の低い磁気記録媒体に記録するのにも
、高い飽和磁束密度を持つ磁気ヘッドが必要とされてい
る。
Additionally, a perpendicular magnetization recording method has been proposed in which the magnetic recording medium is magnetized in the thickness direction instead of in the longitudinal direction.
In order to successfully perform this perpendicular magnetization recording method, the thickness of the tip of the main pole of the magnetic head must be 0.5 μm or less, which is suitable for recording on magnetic recording media with relatively low coercive force. , a magnetic head with high saturation magnetic flux density is required.

そして、センダスト合金や非晶質合金等よりも飽和磁束
密度の高い磁気ヘッド用合金として窒化鉄、Fe−3i
系合金等の鉄を主成分とした磁性合金が知られている。
Iron nitride, Fe-3i, and other alloys for magnetic heads have higher saturation magnetic flux density than sendust alloys, amorphous alloys, etc.
Magnetic alloys containing iron as a main component such as alloys are known.

(発明が解決しようとする課題) ところが、従来より知られている高飽和磁束密度の磁性
合金は、保磁力が大きくそのままでは磁気ヘッドの材料
としては不十分であるので、センダスト合金やパーマロ
イ等の保磁力の小さい磁性材料を層間膜として使用した
多層膜構造の磁気ヘッドが提案されている。
(Problem to be Solved by the Invention) However, conventionally known magnetic alloys with high saturation magnetic flux density have a large coercive force and are not sufficient as materials for magnetic heads as they are. A magnetic head with a multilayer structure using a magnetic material with a low coercive force as an interlayer film has been proposed.

しかし、多層WA4W3fiにするには工数やコストが
かかり、f8顆性を保つのも難しいという問題があった
。特に、数μ1以上の膜厚にする為には場合によっては
100層以上の多層膜構造にする必要があり、使用範囲
も限られていた。
However, there were problems in that creating a multilayer WA4W3FI required many man-hours and costs, and it was difficult to maintain f8 condylarity. In particular, in order to obtain a film thickness of several micrometers or more, a multilayer film structure of 100 or more layers may be required, which limits the range of use.

そこで、本発明は多M構造にしなくても高飽和磁束密度
を持ち、且つ保磁力の小さい磁性合金を提供することを
、目的とする。
Therefore, an object of the present invention is to provide a magnetic alloy that has a high saturation magnetic flux density without having a multi-M structure and has a small coercive force.

(課題を解決するための手段) 本発明は上記課題に鑑みてなされたものでありF”e、
MxO,なる組成式で表わされ、w、x。
(Means for Solving the Problems) The present invention has been made in view of the above problems, and includes:
It is represented by the compositional formula MxO, where w, x.

yで示される原子%は 65≦w≦97.5 0.5≦x≦15 2≦y≦20 w +x 十y = 100 なる関係を有し、但しMは元素周期律表IV a族また
はVa族の元素であるZr 、 Hf 、 Ta 、 
Nbのいずれか1種または2種類以上含む磁性合金、ま
たは、FevIMxO,Ru2なる組成式で表わされ、
w、x、y、zで示される原子%は65≦w≦97.2 0.5≦x≦14.7 2≦y≦20 0.3≦Z 0.8≦x十z≦15 w十x+y+z=100 なる関係を有し、但しMは元素周期律表IVa族または
Va族の元素であるZr、Hf、’I’a、Nbのいず
れか1種または2種類以上を含む磁性合金をそれぞれ提
供するものである。
The atomic % indicated by y has the following relationship: 65≦w≦97.5 0.5≦x≦15 2≦y≦20 w + Group elements Zr, Hf, Ta,
A magnetic alloy containing one or more types of Nb, or represented by the composition formula FevIMxO, Ru2,
The atomic percentages indicated by w, x, y, and z are 65≦w≦97.2 0.5≦x≦14.7 2≦y≦20 0.3≦Z 0.8≦x10z≦15 w10 x+y+z=100, where M is a magnetic alloy containing one or more of Zr, Hf, 'I'a, and Nb, which are elements of Group IVa or Group Va of the Periodic Table of Elements, respectively. This is what we provide.

(実 施 例) 本発明の磁性合金を説明するに先立ってその製造装置の
一例を第1図に示す。
(Example) Before explaining the magnetic alloy of the present invention, an example of a manufacturing apparatus is shown in FIG. 1.

一対のターゲット5.5は鉄(Fe)と元素周期律表I
V a族の元素であるジルコニウム(Zr ) 。
A pair of targets 5.5 are iron (Fe) and element I of the periodic table.
Zirconium (Zr) is a group Va element.

ハフニウム(Hf)、タンタル(Ta )またはニオブ
(Nb )のいずれかの合金ターゲットか、或いは適当
な凹部を設けた純鉄のターゲットの凹部にチップ状のZ
r 、 Hf 、 Ta 、またはNbをはめ込んだ複
合ターゲットである。このターゲット5.5はターゲッ
トホルダー9によって支えられており、このターゲット
5とターゲットホルダー9には、直流電源13よりマイ
ナス電位が印加され、さらにこのターゲットホルダー9
の周囲にはシールド4が取り付けである。
A chip-shaped Z
It is a composite target inlaid with r, Hf, Ta, or Nb. The target 5.5 is supported by a target holder 9, and a negative potential is applied to the target 5 and the target holder 9 from a DC power supply 13.
A shield 4 is attached around the .

また、このターゲットホルダー9の内部には、両ターゲ
ット5.5間にプラズマ14を集束するための磁石6.
6が挿入され、かつターゲット5の表面の加熱を防ぐた
めに冷却水8が流入している。
Moreover, inside this target holder 9, a magnet 6.5 for focusing the plasma 14 between both targets 5.5.
6 is inserted, and cooling water 8 flows in to prevent the surface of the target 5 from heating.

そして、接地された真空槽3の左右に、2個のターゲッ
トホルダー9が絶縁体7によって絶縁されて設けられて
いる。
Two target holders 9 are provided on the left and right sides of the grounded vacuum chamber 3 and are insulated by an insulator 7.

また、この真空WJ3の上部より、酸素(02)、アル
ゴン(Ar)がそれぞれ流量計1〜2により、所定の流
量に調節されて導入されている。
Further, oxygen (02) and argon (Ar) are introduced from the upper part of the vacuum WJ3, each of which is adjusted to a predetermined flow rate by flowmeters 1 and 2.

なお、アルゴンは、ターゲット5をスパッタすると同時
に成膜する磁性合金膜中の酸素の量を調節するためのも
のである。
Note that argon is used to adjust the amount of oxygen in the magnetic alloy film formed at the same time as the target 5 is sputtered.

そして、真空槽3の下部には、基板ホルダー12上に基
板11が置かれ、不純物を防ぐためのシャッター10が
基板11を覆っている。
A substrate 11 is placed on a substrate holder 12 at the bottom of the vacuum chamber 3, and a shutter 10 for preventing impurities covers the substrate 11.

このようなスパッタ装置において、直流電源13により
、左右のターゲットボルダ−9に支えられたターゲット
5.5の間にプラズマ14を発生させると、ターゲット
5はマイナス電位であるので、プラズマ14中のアルゴ
ンイオン(Ar ”)がターゲット5に衝突し、ターゲ
ット5の鉄原子が飛び出ず、そして、ターゲット5から
飛び出した鉄原子と、プラズマ中の酸素の原子または分
子とが結合して、基板11の上に成長していく。
In such a sputtering apparatus, when a plasma 14 is generated between the targets 5.5 supported by the left and right target boulders 9 by the DC power supply 13, the argon in the plasma 14 is generated because the target 5 has a negative potential. The ions (Ar'') collide with the target 5, the iron atoms of the target 5 do not fly out, and the iron atoms that fly out of the target 5 combine with oxygen atoms or molecules in the plasma to form a layer on the substrate 11. It grows into

なお、スパッタ開始後の数分間は、シャッター10を閉
じて基板11を覆うことにより、ターゲット5の表面の
不純物が基板11の上に付かないようにし、その後でシ
ャッター10を開けるようにする。
Note that for several minutes after the start of sputtering, the shutter 10 is closed to cover the substrate 11 to prevent impurities on the surface of the target 5 from adhering to the substrate 11, and then the shutter 10 is opened.

そして、流量計1〜2にて酸素、アルゴンの導入量を調
節することにより、所望の酸素を゛含んだFe  M 
 Oなる組成式の合金を得ることかで x y きる、(但し、MはZr 、 Hf 、 Ta 、また
はNbの一種類以上の元素を示す) このようにして得たFe、MxO,なる組成式の合金の
酸素およびZr 、 Hf 、 Ta 、またはNbの
含有量と飽和磁束密度(Bs)、保磁力(Hc )との
関係を表に示す。
Then, by adjusting the amount of oxygen and argon introduced using flowmeters 1 and 2, FeM containing desired oxygen is
x y can be obtained by obtaining an alloy with the composition formula O (where M represents one or more elements of Zr, Hf, Ta, or Nb). The table shows the relationship between the content of oxygen and Zr, Hf, Ta, or Nb and the saturation magnetic flux density (Bs) and coercive force (Hc) of the alloy.

(以下、余白、) 表は酸素およびZr、Hf、Ta、またはNbの含有量
と飽和磁束密度(Bs)、保磁力(Hc)とのr3A係
を示す表であり、含有量はESCA (X線光電子分光
分析法)、EPMACX線マイクロアナライザ法)等に
よる定量分析で原子%(at%)で表している。この内
、試料番号1は鉄のみの場合の結果であり、試料番号2
は鉄に酸素のみを含有させた時の結果である。この表か
ら、鉄とZr、Hf、Ta、またはNbの合金に酸素を
適量添加することによりHcが低下し、優れた軟磁気特
性を示すようになっているのが判る。また、Zr 、 
Hf 、 Ta 、またはNbの含有量が増加すると磁
性合金の飽和磁束密度(Bs)が低下する。Zr 、 
Hf 、 Ta 、またはNbの含有量が15原子%以
下であればBsが10に6以上の高飽和磁束密度を持つ
磁性合金が得られる。
(Hereinafter referred to as margins) The table shows the r3A relationship between the content of oxygen, Zr, Hf, Ta, or Nb, saturation magnetic flux density (Bs), and coercive force (Hc). It is expressed in atomic % (at%) by quantitative analysis by ray photoelectron spectroscopy), EPMAC X-ray microanalyzer method), etc. Among these, sample number 1 is the result for iron only, sample number 2
is the result when iron contains only oxygen. From this table, it can be seen that by adding an appropriate amount of oxygen to an alloy of iron and Zr, Hf, Ta, or Nb, Hc is lowered and the alloy exhibits excellent soft magnetic properties. Also, Zr,
As the content of Hf, Ta, or Nb increases, the saturation magnetic flux density (Bs) of the magnetic alloy decreases. Zr,
If the content of Hf, Ta, or Nb is 15 atomic % or less, a magnetic alloy having a high saturation magnetic flux density with Bs of 6 in 10 or more can be obtained.

ここで、酸素の含有量が1原子%未溝であると、顕著な
酸素の効果がみられずHCはほとんど低下しない。また
、酸素の含有量が20原子%を越えると軟磁気特性が大
幅に劣化し、Bsの低下とHcの増大が起こる。したが
って、実験値より酸素の含有量が2〜20原子%、さら
に好ましくは3〜12原子%であるとBSが高くかつI
Cの小さい磁性合金が得られる。
Here, if the oxygen content is 1 atomic %, no significant effect of oxygen is observed and HC hardly decreases. Furthermore, when the oxygen content exceeds 20 at %, the soft magnetic properties are significantly deteriorated, resulting in a decrease in Bs and an increase in Hc. Therefore, according to the experimental values, when the oxygen content is 2 to 20 at%, more preferably 3 to 12 at%, the BS is high and the I
A magnetic alloy with low carbon content is obtained.

従って、FewMxO,なる式で示される組成の合金に
おいて、w、x、yが次のような原子%の時に優れた軟
磁気特性を示す磁性合金が得られる。
Therefore, in an alloy having a composition expressed by the formula FewMxO, a magnetic alloy exhibiting excellent soft magnetic properties can be obtained when w, x, and y are in the following atomic percentages.

即ち、 65≦w≦97.5 0.5≦x≦15 2≦y≦20 w4−x+y=100 なる関係を満せばよい。That is, 65≦w≦97.5 0.5≦x≦15 2≦y≦20 w4-x+y=100 All you have to do is satisfy the following relationship.

また、ターゲット5をFeとRu(ルテニウム)とZr
とNb、Ta、、iたはHfの合金ターゲーyトか、或
いは適当な凹部を設けた純鉄のターゲ・ントの凹部にチ
ップ状のRuとZr、Nb、Ta。
In addition, the target 5 is Fe, Ru (ruthenium), and Zr.
Chips of Ru, Zr, Nb, and Ta are placed in the recesses of a pure iron target prepared with an appropriate recess.

またはHfのいずれかをはめ込んだ複合ターゲ・/トを
用いて上記と同様にスパッタを行うことに・より、F 
e  M  ORu z合金を得ることができW   
x   y る。
Or by performing sputtering in the same manner as above using a composite target in which either Hf is embedded.
e M ORu z alloy can be obtained W
x y Ru.

上記Fe、MxO,合金および Pc  M  ORu  合金を2%塩水に浸した後、
wxy   z これを取り出し、更に60℃〜90%の高温高湿中で耐
蝕試験を行った結果を第2図に示す。第2図は、本発明
の磁性合金とRuの含有量による耐蝕性の違いを表す図
である。なお、図中、縦軸は成膜直後のBs  (I3
s(0) )に対する耐蝕試験開始後のBs  (Bs
(t))の割合を示す。
After soaking the above Fe, MxO, alloy and Pc M ORu alloy in 2% salt water,
wxy z This was taken out and further subjected to a corrosion resistance test at a high temperature and high humidity of 60° C. to 90%. The results are shown in FIG. FIG. 2 is a diagram showing the difference in corrosion resistance between the magnetic alloy of the present invention and the Ru content. In addition, in the figure, the vertical axis is Bs (I3
Bs (Bs
(t)).

この第2図から、これらの合金にルテニウムを適量添加
することによって、耐蝕性が向上することが判る、さら
に、酸素が含まれている場合、ルテニウムの含有量が少
ないと耐蝕性は逆に悪くなるということを第2図は示し
ている。また、ルテニウムはHcを低下させる効果も認
められる。従って、Fe  M  ORu2なる式で示
される組W   x   V 成の合金において、w、x、y、zが次のような原子%
の時に優れた軟磁気特性を示し、且つ耐蝕性の優れた磁
性合金が得られることが確認できた。
From this figure 2, it can be seen that corrosion resistance is improved by adding an appropriate amount of ruthenium to these alloys.Furthermore, when oxygen is included, corrosion resistance becomes worse if the ruthenium content is small. Figure 2 shows that. Furthermore, ruthenium is also recognized to have the effect of lowering Hc. Therefore, in an alloy with the set W x V represented by the formula Fe M ORu2, w, x, y, and z have the following atomic %
It was confirmed that a magnetic alloy with excellent soft magnetic properties and excellent corrosion resistance could be obtained.

65≦w≦97.2 0.5≦x≦14.7 2≦y≦20 0.3≦Z 0.8≦x+Z≦15 w+x+y+z=100 (発明の効果) 以上のような組成式の磁性合金にすることにより高飽和
磁束密度を有し、且つ低保磁力であり、更に、耐蝕性の
優れた磁気ヘッド用磁性合金が得られる。従って、本発
明の磁性合金を用いれば、高保磁力磁気媒体への良好な
記録再生が行え、高密度磁気記録再生が実現できる。
65≦w≦97.2 0.5≦x≦14.7 2≦y≦20 0.3≦Z 0.8≦x+Z≦15 w+x+y+z=100 (Effect of the invention) Magnetic alloy with the above composition formula By doing so, a magnetic alloy for a magnetic head having a high saturation magnetic flux density, a low coercive force, and excellent corrosion resistance can be obtained. Therefore, by using the magnetic alloy of the present invention, it is possible to perform good recording and reproduction on a high coercive force magnetic medium, and realize high-density magnetic recording and reproduction.

また、本発明の磁性合金と、他の軟磁性材(センダスト
等)とを交互に積層して、多層13fiとすることによ
り、さらに保磁力の低下が期待できるが、本発明の磁性
合金だけの単層構造でも優れた磁気特性を有する磁性合
金が得られる。
Moreover, by alternately laminating the magnetic alloy of the present invention and other soft magnetic materials (Sendust, etc.) to form a multilayer 13fi, further reduction in coercive force can be expected; Even with a single layer structure, a magnetic alloy with excellent magnetic properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁性合金の製造法の一例であるスパッ
タ装置の概略図、第2図は本発明の磁性合金のRuの含
有量による耐蝕性の違いを表す図である。
FIG. 1 is a schematic diagram of a sputtering apparatus which is an example of the method for manufacturing the magnetic alloy of the present invention, and FIG. 2 is a diagram showing the difference in corrosion resistance depending on the Ru content of the magnetic alloy of the present invention.

Claims (1)

【特許請求の範囲】 (1)Fe_wM_xO_yなる組成式で表わされ、w
,x,yで示される原子%は 65≦w≦97.5 0.5≦x≦15 2≦y≦20 w+x+y=100 なる関係を有し、但しMは元素周期律表IVa族またはV
a族の元素であるZr,Hf,Ta,Nbのいずれか1
種または2種類以上含む磁性合金。 (2)Fe_wM_xRu_zる組成式で表わされ、w
,x,y,zで示される原子%は 65≦w≦97.2 0.5≦x≦14.7 2≦y≦20 0.3≦Z 0.8≦x+z≦15 w+x+y+z=100 な関係を有し、但しMは元素周期律表IVa族またはVa
族の元素であるZr,Hf,Ta,Nbのいずれか1種
または2種類以上を含む磁性合金。
[Claims] (1) Represented by the compositional formula Fe_wM_xO_y, w
, x, y have the following relationships: 65≦w≦97.5 0.5≦x≦15 2≦y≦20 w+x+y=100, where M is an element from group IVa of the periodic table or V
Any one of group a elements Zr, Hf, Ta, and Nb
A magnetic alloy containing a species or two or more species. (2) It is expressed by the composition formula Fe_wM_xRu_z, w
, x, y, and z have the following relationships: 65≦w≦97.2 0.5≦x≦14.7 2≦y≦20 0.3≦Z 0.8≦x+z≦15 w+x+y+z=100 , where M is a group IVa of the periodic table of elements or Va
A magnetic alloy containing one or more of the group elements Zr, Hf, Ta, and Nb.
JP1020165A 1989-01-30 1989-01-30 Magnetic alloy Pending JPH02199027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1020165A JPH02199027A (en) 1989-01-30 1989-01-30 Magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1020165A JPH02199027A (en) 1989-01-30 1989-01-30 Magnetic alloy

Publications (1)

Publication Number Publication Date
JPH02199027A true JPH02199027A (en) 1990-08-07

Family

ID=12019546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1020165A Pending JPH02199027A (en) 1989-01-30 1989-01-30 Magnetic alloy

Country Status (1)

Country Link
JP (1) JPH02199027A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302469A (en) * 1990-05-22 1994-04-12 Tdk Corporation Soft magnetic thin film
US5573863A (en) * 1993-03-05 1996-11-12 Alps Electric Co., Ltd. Soft magnetic alloy and plane magnetic element
US6171716B1 (en) 1998-05-26 2001-01-09 Alps Electric Co., Ltd. Soft magnetic film, and thin film magnetic head, planer magnetic element, and filter using the soft magnetic film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302469A (en) * 1990-05-22 1994-04-12 Tdk Corporation Soft magnetic thin film
US5573863A (en) * 1993-03-05 1996-11-12 Alps Electric Co., Ltd. Soft magnetic alloy and plane magnetic element
US6171716B1 (en) 1998-05-26 2001-01-09 Alps Electric Co., Ltd. Soft magnetic film, and thin film magnetic head, planer magnetic element, and filter using the soft magnetic film

Similar Documents

Publication Publication Date Title
JPS6134723A (en) Magnetic recording medium and its manufacture
US5478416A (en) Magnetic alloy
JPH02199027A (en) Magnetic alloy
US5789088A (en) Magnetic recording medium having a metal underlayer and a CoCr alloy magnetic thin film
JPH03116910A (en) Magnetic alloy film
US5879798A (en) Heat resistant, high saturation magnetic flux density film
JPH03250706A (en) Magnetic alloy
JP2668590B2 (en) Magnetic alloy for magnetic head
JPH03270203A (en) Magnetic alloy
JPH03270202A (en) Magnetic alloy
JPH02175618A (en) Magnetic alloy
JP3087265B2 (en) Magnetic alloy
JP2689512B2 (en) Magnetic alloy for magnetic head
JPS6365604A (en) Iron magnetic film
JP3121933B2 (en) Soft magnetic thin film
JPH02175619A (en) Magnetic alloy
Katori et al. Soft magnetic properties for Fe-Al-Nb-NO films
JP2569828B2 (en) Magnetic alloys for magnetic devices
JPH03288410A (en) Magnetic alloy
JPH04187745A (en) Magnetic alloy
JPH02123705A (en) Heat resistant iron based magnetic film and magnetic head using same
JPH03129805A (en) Magnetic alloy film
JPH03134138A (en) Magnetic alloy
JPH03270204A (en) Magnetic alloy
JPH06240417A (en) Magnetic alloy