JPH03270204A - Magnetic alloy - Google Patents

Magnetic alloy

Info

Publication number
JPH03270204A
JPH03270204A JP2071287A JP7128790A JPH03270204A JP H03270204 A JPH03270204 A JP H03270204A JP 2071287 A JP2071287 A JP 2071287A JP 7128790 A JP7128790 A JP 7128790A JP H03270204 A JPH03270204 A JP H03270204A
Authority
JP
Japan
Prior art keywords
magnetic
coercive force
magnetic alloy
alloy
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2071287A
Other languages
Japanese (ja)
Inventor
Yasushi Watanabe
恭志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2071287A priority Critical patent/JPH03270204A/en
Publication of JPH03270204A publication Critical patent/JPH03270204A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain magnetic alloy having high saturation magnetic flux density, small coercive force and excellent thermal stability by permitting the magnetic alloy to be defined by the composition formula of FevNwOxRey and specifying the atomic % defined by (v), (w), (x) and (y). CONSTITUTION:The magnetic alloy is defined by the composition formula of FevNwOxRey and the atomic % defined by (v), (w), (x) and (y) has the relation ship shown by the expression I. Such composition allows to obtain the magnetic alloy having high saturation magnetic flux density, small coercive force, high permeability, excellent thermal stability and corrosion resistivity for magnetic devices such as a magnetic head. And excellent recording and reproducing are performed to a high coercive force medium and a high performance thin film magnetic head is produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高密度磁気記録用の磁気ヘッドに適する磁性
合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic alloy suitable for a magnetic head for high-density magnetic recording.

(従来の技術) 近年、磁気記録の高密度化や広帯域化の必要性が高まり
、磁気記録媒体に高い抗磁力を有する磁性材料を使用し
て記録トラック幅を狭くすることにより、高密度磁気記
録再生を実現している。そして、この高い抗磁力をもつ
磁気記録媒体に記録再生するするための磁気ヘッド材料
として、飽和磁束密度Bsの高い磁、性合金が必要とさ
れており、センダスト合金やCo−Zr系非晶質合金等
をコアの一部または全部に使用した磁気ヘッドが提案さ
れている。
(Prior art) In recent years, the need for higher density and wider band magnetic recording has increased, and high-density magnetic recording has been achieved by narrowing the recording track width by using magnetic materials with high coercive force in magnetic recording media. Achieving regeneration. As magnetic head materials for recording and reproducing information on magnetic recording media with high coercive force, magnetic alloys with high saturation magnetic flux density Bs are required, and sendust alloys and Co-Zr amorphous materials are needed. Magnetic heads using alloys or the like for part or all of the core have been proposed.

然しなから、磁気記録媒体の高抗磁力化が一段と進み、
磁気記録媒体の抗磁力が20000 e以上になると、
センダスト合金やCo−Zr系非晶質合金を使用した磁
気ヘッドでは良好な磁気記録再生が困難になった。
However, as the coercive force of magnetic recording media continues to increase,
When the coercive force of the magnetic recording medium becomes 20,000 e or more,
It has become difficult to achieve good magnetic recording and reproduction with magnetic heads using sendust alloys or Co-Zr amorphous alloys.

又、磁気記録媒体の長手方向ではなく、厚さ方向に磁化
して記録する垂直磁化記録方式も提案されているが、こ
の垂直磁化記録方式を良好に行うには、磁気ヘッドの主
磁極の先端部の厚さを0.5μm以下にする必要があり
、比較的抗磁力の低い磁気記録媒体に記録するにも、高
い飽和磁束密度を持つ磁気ヘッド用磁性合金が必要にな
る。
Also, a perpendicular magnetization recording method has been proposed in which the magnetic recording medium is magnetized in the thickness direction rather than in the longitudinal direction, but in order to perform well with this perpendicular magnetization recording method, the tip of the main pole of the magnetic head must be The thickness of the magnetic head must be 0.5 μm or less, and a magnetic alloy for a magnetic head with a high saturation magnetic flux density is required even for recording on a magnetic recording medium with relatively low coercive force.

そして、センダスト合金やCo−Zr系非晶質合金より
も飽和磁束密度Bsの高い磁性合金として、窒化鉄やF
e−8i系合金等の鉄を主成分とした磁性合金が知られ
ている。
Iron nitride and F
Magnetic alloys containing iron as a main component, such as e-8i alloys, are known.

(発明が解決しようとする課題) ところが、従来より知られている、これらの高Bs磁性
合金は保磁力Heが大きく、そのままでは磁気ヘッドの
材料としては不十分であるので、センダスト合金やパー
マロイ等の保磁力の小さい磁性材料を層間膜として使用
した多層構造の磁気ヘッドが提案されている。
(Problem to be Solved by the Invention) However, these conventionally known high Bs magnetic alloys have a large coercive force He and are not sufficient as materials for magnetic heads as they are, so sendust alloys, permalloy, etc. A magnetic head with a multilayer structure using a magnetic material with a small coercive force as an interlayer film has been proposed.

然しなから、多層構造にするには工数やコストがかかり
、信頼性を保つのも難しいという問題点があった。特に
、数μm以上の膜厚にする為には、場合によっては10
0層以上の多層構造にする必要があり、使用範囲も限ら
れていた。
However, creating a multilayer structure requires a lot of man-hours and costs, and it is difficult to maintain reliability. In particular, in order to obtain a film thickness of several μm or more, it may be necessary to
It was necessary to have a multilayer structure with zero or more layers, and the range of use was also limited.

この問題点を解決するために、本発明穴等はFe−N−
0合金によって、多層構造にしない単層でも高飽和磁束
密度を有し、さらに低保磁力である磁性合金が得られる
ことを提案したが、熱安定性の面から、ガラスモールド
工程には適さないという問題点があった。
In order to solve this problem, the holes etc. of the present invention are made of Fe-N-
It was proposed that a magnetic alloy with high saturation magnetic flux density and low coercive force could be obtained even in a single layer without a multilayer structure by using the 0 alloy, but it is not suitable for the glass molding process from the viewpoint of thermal stability. There was a problem.

そこで、本発明は、多層構造にしなくても高飽和磁束密
度を持ち、保磁力が小さく、熱安定性に優れた磁性合金
を提供することを目的とする。
Therefore, an object of the present invention is to provide a magnetic alloy that has a high saturation magnetic flux density without having a multilayer structure, has a small coercive force, and has excellent thermal stability.

(課題を解決するための手段) 本発明は上記の課題を解決するためになされたものであ
り、 Fev NW OX Reyなる組成式で表され、v、
w、x、yで示される原子%は l≦W≦201≦x≦10 0.5≦y≦6 v +w+ x + y =100 なる関係を有する磁性合金を提供するものである。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and is represented by the composition formula Fev NW OX Rey, v,
The atomic % represented by w, x, and y provides a magnetic alloy having the following relationships: l≦W≦201≦x≦10 0.5≦y≦6 v + w+ x + y =100.

(実施例) 本発明になる磁性合金の製造装置の一実施例を第1図に
示す。
(Example) An example of the magnetic alloy manufacturing apparatus according to the present invention is shown in FIG.

一対のターゲット5.5は鉄(Fe)とレニウム(Re
)の合金ターゲットか、或いは適当な凹部を設けた純鉄
のターゲットの凹部にチップ状のReをはめ込んた複合
ターゲットである。このターゲット5.5はターゲット
ホルダ9によって支えられており、このターゲット5と
ターゲットホルダ9には、直流電源13よりマイナス電
位が印加され、更にこのターゲットホルダ9の周囲には
シールド4が取り付けである。
A pair of targets 5.5 are made of iron (Fe) and rhenium (Re).
) alloy target, or a composite target in which Re chips in the form of chips are fitted into the recesses of a pure iron target with appropriate recesses. This target 5.5 is supported by a target holder 9, a negative potential is applied to the target 5 and the target holder 9 from a DC power supply 13, and a shield 4 is attached around the target holder 9. .

又、このターゲットホルダリの内部には、両ターゲット
5.5間にプラズマ14を集束するための磁石6.6が
挿入され、かつターゲット5の表面の加熱を防ぐために
冷却水8が流入している。
Further, inside this target holder, a magnet 6.6 for focusing the plasma 14 is inserted between both targets 5.5, and cooling water 8 is introduced to prevent the surface of the target 5 from being heated. There is.

そして、接地された真空槽15の左右に、2個のターゲ
ットホルダ9が絶縁体7によって絶縁されて設けられて
いる。
Two target holders 9 are provided on the left and right sides of the grounded vacuum chamber 15 and are insulated by an insulator 7.

又、この真空槽15の上部より、窒素(N2)酸素(0
2)・アルゴン(Ar)がそれぞれ流量計1〜3により
、所定の流量に調節されて導入されている。
Also, from the upper part of this vacuum chamber 15, nitrogen (N2) and oxygen (0
2) Argon (Ar) is introduced at a predetermined flow rate by flowmeters 1 to 3, respectively.

なお、アルゴンはターゲット5をスパッタすると同時に
成膜する磁性合金膜中の窒素と酸素の量を調節するため
のものである。
Note that argon is used to adjust the amount of nitrogen and oxygen in the magnetic alloy film formed at the same time as sputtering the target 5.

そして、真空槽15の下部には、基板ホルダ12上に基
板11が置かれ、不純物を防ぐためのシャッタ10が基
板11を覆っている。
A substrate 11 is placed on a substrate holder 12 at the bottom of the vacuum chamber 15, and a shutter 10 for preventing impurities covers the substrate 11.

このようなスパッタ装置において、直流電源13により
、左右のターゲットホルダ9に支えられたターゲット5
.5の間にプラズマ14を発生させると、ターゲット5
はマイナス電位であるので、プラズマ14中のアルゴン
イオン(Ar”)がターゲッット5に衝突し、ターゲッ
ト5の鉄原子及びRe等の原子が飛び出す。
In such a sputtering apparatus, the target 5 supported by the left and right target holders 9 is powered by the DC power supply 13.
.. When the plasma 14 is generated between 5 and 5, the target 5
Since is at a negative potential, argon ions (Ar'') in the plasma 14 collide with the target 5, and atoms such as iron atoms and Re atoms of the target 5 fly out.

そして、ターゲット5から飛び出した鉄とReの原子と
プラズマ中の窒素および酸素の原子または分子とが結合
して基板11の上に成長していく。
Then, the iron and Re atoms ejected from the target 5 combine with nitrogen and oxygen atoms or molecules in the plasma and grow on the substrate 11.

なお、スパッタ開始後の数分間は、シャッタ10を閉じ
て基板11を覆うことにより、ターゲット5の表面の不
純物が基板11の上に付かないようにし、その後でシャ
ッタ10を開けるようにする。
Note that for several minutes after the start of sputtering, the shutter 10 is closed to cover the substrate 11 to prevent impurities on the surface of the target 5 from adhering to the substrate 11, and then the shutter 10 is opened.

そして、流量計1〜3にて窒素、酸素及びアルゴンの導
入量を調整することにより、所望の窒素及び酸素を含ん
だ’f” ev NwOX Rey合金を得ることがで
きる。
By adjusting the amounts of nitrogen, oxygen, and argon introduced using the flowmeters 1 to 3, it is possible to obtain a desired 'f'' ev NwOX Rey alloy containing nitrogen and oxygen.

このようにして得たFev Nw Ox Rey合金の
窒素・酸素及びReの含有量と、飽和磁束密度(Bs)
、保磁力(Hc)との関係を表に示す。
The nitrogen/oxygen and Re contents of the Fev Nw Ox Rey alloy thus obtained and the saturation magnetic flux density (Bs)
, and the relationship with coercive force (Hc) are shown in the table.

表 表は窒素・酸素及びReの含有量と飽和磁束密度(Bs
)、保磁力(Hc)との関係を示すものであり、含有量
はESCA(X線光電子分光分析法) 、EPMA (
X線マイクロアナライザ法)等による定量分析で原子%
で表しているが、±20%程度の誤差が見込まれる。保
磁力は真空中での熱処理を行った時の値であり、熱処理
温度はここでは300″′Cである。この内、試料番号
lはFeに窒素のみを含有させた時の結果であり、試料
番号2はFeにReのみを含有させた時の結果である。
The table shows the content of nitrogen, oxygen and Re and the saturation magnetic flux density (Bs
), shows the relationship with coercive force (Hc), and the content is ESCA (X-ray photoelectron spectroscopy), EPMA (
Atomic % by quantitative analysis using X-ray microanalyzer method, etc.
However, an error of about ±20% is expected. The coercive force is the value when heat treatment is performed in vacuum, and the heat treatment temperature is 300'''C. Among these, sample number 1 is the result when only nitrogen is contained in Fe. Sample number 2 is the result when only Re is contained in Fe.

試料番号3〜8は、本発明の磁性合金である。Sample numbers 3 to 8 are magnetic alloys of the present invention.

窒素の含有量が1原子%未満であると、顕著な窒素の効
果が見られずHcはほとんど低下しない。
When the nitrogen content is less than 1 atomic %, no significant effect of nitrogen is observed and Hc hardly decreases.

また第4図に示したように、窒素の含有量が20原子%
以下であると、Bsが10k 0以上の磁性合金が得ら
れる。従って、窒素の含有量が1〜20原子%更に好ま
しくは1−1o原子%である時、高Bsで低Heの磁性
合金が得られる。窒素含有量が1〜lO原子%の時はB
sが15kG以上の磁性合金が得られる。
In addition, as shown in Figure 4, the nitrogen content is 20 at%
If it is below, a magnetic alloy with Bs of 10 k 0 or more can be obtained. Therefore, when the nitrogen content is 1 to 20 atomic %, more preferably 1 to 10 atomic %, a high Bs and low He magnetic alloy can be obtained. B when the nitrogen content is 1 to 10 atom%
A magnetic alloy with s of 15 kG or more can be obtained.

酸素の含有量が1原子%未満であると、顕著な酸素の効
果が見られず、磁気特性の改善がほとんど見られない。
When the oxygen content is less than 1 atomic %, no significant oxygen effect is observed and almost no improvement in magnetic properties is observed.

また、酸素の含有量が10原子%を越えるとHcの増大
が著しくなる。
Furthermore, when the oxygen content exceeds 10 atomic %, Hc increases significantly.

従って、酸素の含有量が1〜10原子%である時、高B
sで低Heの磁性合金が得られる。
Therefore, when the oxygen content is 1 to 10 at%, high B
A low He magnetic alloy can be obtained at s.

第2図は、本発明になる磁性合金と従来例である窒化鉄
(FeN)合金の、熱処理温度による保磁力(He)の
変化を示す。窒化鉄は、熱処理温度800 ’ cの時
は比較的Hcは低いが、300”c以上にすると急激に
Heが増大する。これに対し本発明になる磁性合金は、
Hcが小さく熱安定性にも優れていることが解る。ここ
でReの含有量が0.5原子%未満であると、熱安定性
の向上に対する顕著な効果は見られず、6原子%を越え
ると大幅なりsの低下とHeの増大が生じる。従って、
Reの含有量が0.5〜6原子%の時、高Bs・低Hc
で熱安定性にも優れた磁性合金を得ることができる。
FIG. 2 shows the change in coercive force (He) of the magnetic alloy according to the present invention and a conventional iron nitride (FeN) alloy depending on the heat treatment temperature. Iron nitride has a relatively low Hc when the heat treatment temperature is 800'c, but when the heat treatment temperature is 300'c or higher, the He rapidly increases.On the other hand, the magnetic alloy of the present invention has a relatively low Hc.
It can be seen that Hc is small and thermal stability is excellent. Here, if the Re content is less than 0.5 atomic %, no significant effect on improving thermal stability is observed, and if it exceeds 6 atomic %, a significant decrease in s and an increase in He occur. Therefore,
When the Re content is 0.5 to 6 at%, high Bs and low Hc
It is possible to obtain a magnetic alloy with excellent thermal stability.

また第3図は、膜厚を2μmとした時の本発明になる磁
性合金の透磁率μと周波数の関係を示す。
Further, FIG. 3 shows the relationship between the magnetic permeability μ and frequency of the magnetic alloy according to the present invention when the film thickness is 2 μm.

本発明になる磁性合金は、透磁率が2500以上と高く
、磁気ヘッドとして十分な再生効率が得られる。
The magnetic alloy according to the present invention has a high magnetic permeability of 2,500 or more, and can obtain sufficient reproduction efficiency as a magnetic head.

また、主に耐蝕性及び耐摩耗性の向上を目的として、B
、C,AI、Si、Ti、V、Cr。
In addition, mainly for the purpose of improving corrosion resistance and wear resistance, B
, C, AI, Si, Ti, V, Cr.

Co、Ni、Cu、Ga、Ge、Y、Zr、Nb。Co, Ni, Cu, Ga, Ge, Y, Zr, Nb.

Mo、Ru、Rh、Pd、Ag、Sn、Sb。Mo, Ru, Rh, Pd, Ag, Sn, Sb.

Hf、Ta、W、Re、Os、Ir、Pt、Au。Hf, Ta, W, Re, Os, Ir, Pt, Au.

pbを3原子%以下含有させることができる。Pb can be contained in an amount of 3 at % or less.

(発明の効果) 本発明は、以上のような組成の磁性合金とすることによ
り、高飽和磁束密度を有し、保磁力が小さく、透磁率が
大きく、更に熱安定性と耐蝕性に優れた磁気ヘッド等の
磁気デバイス用磁性合金が得られる。従って、本発明の
磁性合金を用いれば、高保磁力媒体への良好な記録再生
が行える他、高性能の薄膜磁気ヘッド等を作成すること
ができ、高密度な磁気記録再生が実現できる。
(Effects of the Invention) The present invention provides a magnetic alloy having the composition described above, which has high saturation magnetic flux density, low coercive force, high magnetic permeability, and excellent thermal stability and corrosion resistance. A magnetic alloy for magnetic devices such as magnetic heads is obtained. Therefore, by using the magnetic alloy of the present invention, it is possible to perform good recording and reproducing on a high coercive force medium, and also to create a high-performance thin film magnetic head and the like, and realize high-density magnetic recording and reproducing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明になる磁性合金を製造する装置の一実
施例であるスパッタ装置の概略図、第2図は、熱処理温
度によるHeの変化を表わす図、第3図は、透磁率μと
周波数の関係を示す図、第4図は、FeN合金における
窒素含有量と飽和磁束密度(Bs)の関係を示す図であ
る。
FIG. 1 is a schematic diagram of a sputtering apparatus which is an embodiment of the apparatus for manufacturing the magnetic alloy according to the present invention, FIG. 2 is a diagram showing the change in He depending on the heat treatment temperature, and FIG. 3 is a diagram showing the magnetic permeability μ FIG. 4 is a diagram showing the relationship between nitrogen content and saturation magnetic flux density (Bs) in FeN alloy.

Claims (1)

【特許請求の範囲】  Fe_vN_wO_xRe_yなる組成式で表されv
,w,x,yで示される原子%は 1≦w≦20、1≦x≦10 0.5≦y≦6 v+w+x+y=100 なる関係を有する磁性合金。
[Claims] Represented by the compositional formula Fe_vN_wO_xRe_y, v
, w, x, and y are atomic % having the following relationships: 1≦w≦20, 1≦x≦10 0.5≦y≦6 v+w+x+y=100.
JP2071287A 1990-03-20 1990-03-20 Magnetic alloy Pending JPH03270204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2071287A JPH03270204A (en) 1990-03-20 1990-03-20 Magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2071287A JPH03270204A (en) 1990-03-20 1990-03-20 Magnetic alloy

Publications (1)

Publication Number Publication Date
JPH03270204A true JPH03270204A (en) 1991-12-02

Family

ID=13456333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2071287A Pending JPH03270204A (en) 1990-03-20 1990-03-20 Magnetic alloy

Country Status (1)

Country Link
JP (1) JPH03270204A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617275A (en) * 1994-05-02 1997-04-01 Sanyo Electric Co., Ltd. Thin film head having a core comprising Fe-N-O in a specific atomic composition ratio

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617275A (en) * 1994-05-02 1997-04-01 Sanyo Electric Co., Ltd. Thin film head having a core comprising Fe-N-O in a specific atomic composition ratio

Similar Documents

Publication Publication Date Title
US5154983A (en) Magnetic alloy
JPH03270204A (en) Magnetic alloy
JP2668590B2 (en) Magnetic alloy for magnetic head
JPH03250706A (en) Magnetic alloy
JPH03270203A (en) Magnetic alloy
JPH03288410A (en) Magnetic alloy
JP2689512B2 (en) Magnetic alloy for magnetic head
JPH03270202A (en) Magnetic alloy
JPH03116910A (en) Magnetic alloy film
JP2569828B2 (en) Magnetic alloys for magnetic devices
JPH02199027A (en) Magnetic alloy
JPH03240209A (en) Magnetic alloy
JPH02298238A (en) Magnetic alloy
JPH03239312A (en) Magnetic alloy
JPH04187745A (en) Magnetic alloy
JPH02175618A (en) Magnetic alloy
Katori et al. Soft magnetic properties for Fe-Al-Nb-NO films
JPH03134138A (en) Magnetic alloy
JPH03166704A (en) Magnetic alloy
JPH03129805A (en) Magnetic alloy film
JP3087265B2 (en) Magnetic alloy
JPH01146312A (en) Soft magnetic thin film
JPH03166705A (en) Magnetic alloy
JPH02118055A (en) Magnetic alloy for magnetic head
JPH0389505A (en) Manufacture of magnetic alloy