JPH02123705A - Heat resistant iron based magnetic film and magnetic head using same - Google Patents

Heat resistant iron based magnetic film and magnetic head using same

Info

Publication number
JPH02123705A
JPH02123705A JP27625088A JP27625088A JPH02123705A JP H02123705 A JPH02123705 A JP H02123705A JP 27625088 A JP27625088 A JP 27625088A JP 27625088 A JP27625088 A JP 27625088A JP H02123705 A JPH02123705 A JP H02123705A
Authority
JP
Japan
Prior art keywords
magnetic
iron
film
magnetic film
based magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27625088A
Other languages
Japanese (ja)
Inventor
Toshio Kobayashi
俊雄 小林
Ryoichi Nakatani
亮一 中谷
Takayuki Kumasaka
登行 熊坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27625088A priority Critical patent/JPH02123705A/en
Publication of JPH02123705A publication Critical patent/JPH02123705A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/131Amorphous metallic alloys, e.g. glassy metals containing iron or nickel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve the heat resistance of a magnetic film having a highly saturated magnetic flux density by adding a specified amount of one kind of an element which is selected out of the specified elements in groups IVa, Va and VIa and a specified amount of one kind of an element elected out of B, C and N into a ferromagnetic film whose main component is iron. CONSTITUTION:The following elements are added into a ferromagnetic films whose main component is Fe: 0.1-10atomic% of at least one kind of an element selected among elements of groups IVa, Va and VIa, Ti, Zr, Hf, V, Nb, Ta, Mo and W; and 0.1-1atomic% of at least one kind of an element selected among B, C and N. The heat resistance of an iron based magnetic film wherein Ti, Zr, Hf, V, Nb, Ta, Mo and W, which are elements of groups IVa, Va and VIa, are added is improved without decreasing relative permeability. When the adequate amount of B, C or N is added in the iron based magnetic film, the diameter of the crystal grain in the iron based film is miniaturized, and the relative permeability is increased with the increase in the concentration of the added material. Thus, the magnetic film characterized by a highly saturated magnetic flux density and high heat resistance can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気ディスク装置、VTRなどに用いる磁気ヘ
ッドの磁極材料に係り、特に高飽和磁束密度、高透磁率
、耐熱熱性、高耐食性を有する強磁性膜及びこれを用い
た磁気ヘッドに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic pole material for a magnetic head used in a magnetic disk drive, a VTR, etc., and in particular has high saturation magnetic flux density, high magnetic permeability, heat resistance, and high corrosion resistance. The present invention relates to a ferromagnetic film and a magnetic head using the same.

〔従来の技術〕[Conventional technology]

近年、磁気記録技術の進歩は著しく、家庭用VTRの分
野では小形、軽量化が進み、将来のデジタルVTRに向
けて記録密度の高密度化が進められている。また、磁気
ディスク装置の分野では大容量化のために、記録密度の
高密度化が進められている。このような高密度化のため
には高保磁力の記録媒体に信号を十分に記録できる飽和
磁束密度の高い磁性膜からなる磁極をもつ磁気ヘッドが
必要になる。
In recent years, magnetic recording technology has made remarkable progress, and household VTRs are becoming smaller and lighter, and recording densities are being increased for future digital VTRs. Furthermore, in the field of magnetic disk drives, the recording density is being increased in order to increase the capacity. Such high density requires a magnetic head with a magnetic pole made of a magnetic film with a high saturation magnetic flux density that can sufficiently record signals on a high coercivity recording medium.

磁気ヘッドの磁極を構成する磁性膜には高飽和磁束密度
である他に、記録再生効率の向上の点から高透磁率を有
することが必要とされる。また。
In addition to having a high saturation magnetic flux density, the magnetic film constituting the magnetic pole of a magnetic head is required to have a high magnetic permeability in order to improve recording and reproducing efficiency. Also.

磁気ヘッドを形成する工程における加熱工程に耐えて高
透磁率を保持することの可能な耐熱性を要求される。
It is required to have heat resistance that can withstand the heating process in the process of forming a magnetic head and maintain high magnetic permeability.

飽和磁束密度の高い磁性元素には遷移金属元素のFe、
Co、Ni等がある。これらの元素は単体では透磁率が
低いため、磁気ヘッド用材料としては使用することがで
きない。したがって、従来、飽和磁束密度の高いFeに
他の元素を添加し、さらに多層化を図る等の工夫がされ
て、透磁率の向上が図られてきた。例えば、特開昭62
−281106号ではFeにZr、C等を添加して比透
磁率の向上を図った。
Magnetic elements with high saturation magnetic flux density include Fe, a transition metal element,
There are Co, Ni, etc. Since these elements alone have low magnetic permeability, they cannot be used as materials for magnetic heads. Therefore, in the past, efforts have been made to improve the magnetic permeability by adding other elements to Fe, which has a high saturation magnetic flux density, and creating multiple layers. For example, JP-A-62
In No. 281106, Zr, C, etc. were added to Fe to improve the relative magnetic permeability.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は比透磁率の向上の点から優れた技術であ
ったが、磁気ヘッドを形成する際に経る高温工程につい
ては考慮されていなかった。特に、ガラスボンディング
を必要とするメタルインギャップ型の磁気ヘッドを形成
する際には500〜700℃の高温工程が存在するため
、この高温でも比透磁率の劣化が生じることのない、高
耐熱性磁性膜の開発が要求された。
Although the above-mentioned conventional technology was excellent in terms of improving relative magnetic permeability, it did not take into account the high-temperature process that goes through when forming a magnetic head. In particular, when forming metal-in-gap magnetic heads that require glass bonding, there is a high-temperature process of 500 to 700°C, so high heat resistance does not cause deterioration of relative magnetic permeability even at this high temperature. The development of a magnetic film was required.

したがって、本発明の目的はFeを主成分とする飽和磁
束密度の高い磁性膜の耐熱性を向上することにある。ま
た、他の目的は耐食性の向上も図ることである。
Therefore, an object of the present invention is to improve the heat resistance of a magnetic film containing Fe as a main component and having a high saturation magnetic flux density. Another purpose is to improve corrosion resistance.

〔111題を解決するための手段〕 本発明は上記目的を達成するため、Feを主成分とする
強磁性膜にIVa、Va、VIa元素のTi。
[Means for Solving Problem 111] In order to achieve the above object, the present invention includes a ferromagnetic film containing Fe as a main component and Ti of IVa, Va, and VIa elements.

Zr、Hf、V、Nb、Ta、Mo、Wより選ばれる少
なくとも1種の元素を0.1〜10at% B。
B contains at least one element selected from Zr, Hf, V, Nb, Ta, Mo, and W in an amount of 0.1 to 10 at% B.

C,Nより選ばれる少なくとも1種の元素を0.11a
t%添加したものである。また、上記他の目的を達成す
るために、上記磁性膜に、さらにRhもしくはRuを0
.1〜5at%添加したものである。
0.11a of at least one element selected from C and N
t% was added. In addition, in order to achieve the other object mentioned above, Rh or Ru is further added to the above magnetic film.
.. It is added in an amount of 1 to 5 at%.

本発明の磁性膜の透磁率の向上、特に磁極形状に加工し
た時の透磁率の劣化を防止するためには上記磁性膜を非
磁性絶縁層を介して積層することが望ましい。また、さ
らに透磁率の向上を図るためには磁性膜とは異なる金属
膜を介して!!tMすることも有効である。
In order to improve the magnetic permeability of the magnetic film of the present invention, and particularly to prevent deterioration of the magnetic permeability when processed into a magnetic pole shape, it is desirable to stack the magnetic films with a nonmagnetic insulating layer interposed therebetween. Also, to further improve magnetic permeability, use a metal film different from the magnetic film! ! It is also effective to do tM.

〔作用〕[Effect]

本発明者らは飽和磁束密度の高いFeを主成分とする磁
性膜の探索研究を行なってきた。この中で、rVa、V
a、VIa族元素のTi、Zr、Hf。
The present inventors have been conducting research on a magnetic film whose main component is Fe, which has a high saturation magnetic flux density. Among these, rVa, V
a, Group VIa elements Ti, Zr, and Hf.

V、Nb、Ta、Mo、Wを添加した鉄系磁性膜は比透
磁率を減少することなく、耐熱性が向上することが明ら
かになった。I’/ a + V a r VI a族
元素の添加が鉄系磁性膜の耐熱性を向上する理由は明確
になっていないが、本発明者らはこれらの元素が比較的
融点の高い元素であることから、鉄系磁性膜を構成する
結晶粒の高温における再結晶化が抑制され、高温まで微
細結晶が保たれた結果ではないかと考えている。Fs系
磁性膜は結晶磁気異方性定数が約50 K J / r
n’とパーマロイ合金に比較して約2桁大きな値を有す
るため、再結晶化により結晶粒が拡大すると、結晶磁気
異方性の影響によって比透磁率の劣化が生ずることにな
る。
It has been revealed that an iron-based magnetic film to which V, Nb, Ta, Mo, and W are added has improved heat resistance without decreasing relative magnetic permeability. I'/ a + V a r VI The reason why the addition of group a elements improves the heat resistance of iron-based magnetic films is not clear, but the inventors believe that these elements have relatively high melting points. Based on this fact, we believe that this is the result of suppressing recrystallization of the crystal grains constituting the iron-based magnetic film at high temperatures and maintaining fine crystals up to high temperatures. The Fs-based magnetic film has a magnetocrystalline anisotropy constant of approximately 50 KJ/r.
Since the value of n' is about two orders of magnitude larger than that of permalloy alloy, when the crystal grains are enlarged by recrystallization, the relative magnetic permeability deteriorates due to the influence of magnetocrystalline anisotropy.

実際に、電子顕微鏡により磁性膜を構成する結晶粒の形
状を観察すると、比透磁率の劣化した膜では結晶粒の再
結晶化が生じていることが明らかになった。
In fact, when the shape of the crystal grains constituting the magnetic film was observed using an electron microscope, it became clear that recrystallization of the crystal grains occurred in the film with degraded relative magnetic permeability.

一方、上述した鉄系磁性膜にB、C,Nを添加すると、
鉄系磁性膜の結晶粒径が微細化することが明らかになっ
た。このとき、鉄系磁性膜の比透磁率はB、C,Nの添
加濃度の増加に従って増加する傾向を示した。但し、B
、C,Hの添加は磁性膜中の圧縮応力は増加する作用を
有することも明らかになった。圧縮応力の大きな膜は加
熱によって容易に再結晶化を生じることが知られており
、実際にB、C,Nを大量に添加した膜では300℃を
超えると結晶粒の拡大が生じて、比透磁率の減少が生ず
ることが確認された。したがって、B。
On the other hand, when B, C, and N are added to the above-mentioned iron-based magnetic film,
It has become clear that the crystal grain size of iron-based magnetic films becomes finer. At this time, the relative magnetic permeability of the iron-based magnetic film showed a tendency to increase as the concentration of B, C, and N added increased. However, B
, C, and H have the effect of increasing the compressive stress in the magnetic film. It is known that films with large compressive stress easily recrystallize when heated, and in fact, in films containing large amounts of B, C, and N, crystal grains expand when the temperature exceeds 300°C, resulting in It was confirmed that a decrease in magnetic permeability occurred. Therefore, B.

C,Nの添加は比透磁率の増加を生じるが、耐熱性を劣
化させることが明らかになった。
It has become clear that the addition of C and N increases the relative magnetic permeability, but deteriorates the heat resistance.

さらに、上述した鉄系磁性膜にRh、Ruを添加した結
果、鉄系磁性膜の比透磁率、耐熱性を変化させることな
く、塩水噴霧試験、高温多湿試験による耐食性評価の結
果を向上することが確認された。
Furthermore, as a result of adding Rh and Ru to the above-mentioned iron-based magnetic film, the results of corrosion resistance evaluation by salt spray test and high-temperature and high-humidity test can be improved without changing the relative magnetic permeability and heat resistance of the iron-based magnetic film. was confirmed.

耐熱性を向上するP/a、Va、Via族元素の添加量
は0.1at%以上で耐熱性向上の効果を示し、添加量
が多くなる程、耐熱性は向上する傾向を示す、但し、鉄
系磁性膜の添加磁束密度はこれらの非磁性元素が増加す
るにしたがって減少するため、高性能磁気ヘッドを得る
ためにはrVa、Va。
The added amount of P/a, Va, Via group elements that improve heat resistance exhibits the effect of improving heat resistance at 0.1 at% or more, and as the amount added increases, the heat resistance tends to improve. However, Since the added magnetic flux density of the iron-based magnetic film decreases as the amount of these non-magnetic elements increases, rVa, Va is required to obtain a high-performance magnetic head.

VIa元素の添加量は10at%以下が好ましい。した
がって、Ti、Zr、Hf、V、Nb、Ta。
The amount of VIa element added is preferably 10 at% or less. Therefore, Ti, Zr, Hf, V, Nb, Ta.

Mo、Wより選ばれる少なくとも1種の元素の添加量は
0.1〜10at%が好ましい値である。
The amount of addition of at least one element selected from Mo and W is preferably 0.1 to 10 at%.

B、C,Nの添加量が比透磁率の向上に与える影響は極
めて大きく、0.1at%以上の添加で有効である。し
かし、Fe中へこれらの元素の固溶限界は極めて小さい
ため、1at%以上の添加は圧縮応力の増大を生じ、耐
熱性を劣化する。したがって、B、C,Nより選ばれる
少なくとも1種の元素の添加量は0.1〜1at%が望
ましい。
The amount of B, C, and N added has a very large effect on the improvement of relative magnetic permeability, and addition of 0.1 at % or more is effective. However, since the solid solubility limit of these elements in Fe is extremely small, addition of 1 at % or more causes an increase in compressive stress and deteriorates heat resistance. Therefore, the amount of at least one element selected from B, C, and N is preferably 0.1 to 1 at%.

Rh、Ruの添加量は、0.1at%以上で耐食性向上
に効果がある。Rh、Ruは非磁性元素であるにもかか
わらず、Fe中に固溶するとFsとの交換相互作用が生
じ、鉄系磁性膜の飽和磁束密度の減少は大きくない、但
し、耐食性実験の結果IVa、Va、VIa族元素とほ
ぼ同じ添加量を添加した場合に特に優れた耐食性を示す
ことが明らかになった。したがって、Rh、Ruの添加
量は0.1〜10at% が望ましい。
The amount of Rh and Ru added is 0.1 at% or more, which is effective in improving corrosion resistance. Although Rh and Ru are non-magnetic elements, when they are dissolved in Fe, exchange interactions with Fs occur, and the decrease in the saturation magnetic flux density of the iron-based magnetic film is not large. However, as a result of corrosion resistance experiments, IVa It has become clear that particularly excellent corrosion resistance is exhibited when the addition amount is approximately the same as that of Group VIa elements. Therefore, the amount of Rh and Ru added is preferably 0.1 to 10 at%.

上述した鉄系磁性膜を用いて磁気ヘッドの磁極を形成す
ると、磁極部には環流磁区が生じ、磁極部の比透磁率は
減少する傾向をもつ、また、特に1μm以上の厚い磁性
膜では渦電流損失が生じるため、高周波領域の透磁率が
減少する。したがって、記録再生効率の高い磁気ヘッド
を作るためには上記鉄系磁性膜中に非磁性絶縁層を挿入
し、磁区構造の制御および渦電流損失の防止を図ること
が好ましい、磁区構造の制御は非磁性層を100〜10
00人挿入すれば良いし、渦電流損失の防止は絶縁層を
100〜1000人挿入すれば良いことはすでに知られ
ているが、本発明では非磁性かつ絶縁性の中間層を挿入
することによって、1種類の中間層で磁区構造制御と渦
電流損失防止の両方を解決していることが特徴である。
When the magnetic pole of a magnetic head is formed using the above-mentioned iron-based magnetic film, a circulating magnetic domain is generated in the magnetic pole part, and the relative magnetic permeability of the magnetic pole part tends to decrease. Due to the current loss, the magnetic permeability in the high frequency region decreases. Therefore, in order to create a magnetic head with high recording and reproducing efficiency, it is preferable to insert a non-magnetic insulating layer into the iron-based magnetic film to control the magnetic domain structure and prevent eddy current loss. The non-magnetic layer is 100-10
It is already known that eddy current loss can be prevented by inserting 100 to 1000 insulating layers, but in the present invention, by inserting a non-magnetic and insulating intermediate layer, , is characterized by solving both magnetic domain structure control and eddy current loss prevention with one type of intermediate layer.

これにより、製膜を簡単化することができる。Thereby, film formation can be simplified.

一方、上述した鉄系磁性膜の比透磁率は周波数5 M 
Hzにおいて5oO〜1500であるが、この磁性膜中
に上記第1の中間層とは異なり、磁性膜とも異なる第2
の金属中間層を挿入することにより、比透磁率を150
0〜3000に向上することができる。このとき、金属
中間層の挿入は鉄系磁性膜の結晶粒怪を微細化する効果
を有し、鉄系磁性膜中に500〜2000人の周期で挿
入すれば良い、また、この中間層の膜厚は10〜100
人が適当である。この中間層が非磁性金属もしくは飽和
磁束密度の低い金属の場合、鉄系磁性膜の飽和磁束密度
を膜全体として低下することになるので、この中間層の
膜厚は薄い方が望ましい。
On the other hand, the relative magnetic permeability of the above-mentioned iron-based magnetic film is at a frequency of 5 M
Hz is 5oO to 1500, but this magnetic film has a second intermediate layer that is different from the first intermediate layer and also different from the magnetic film.
By inserting a metal intermediate layer, the relative permeability can be increased to 150
It can be improved from 0 to 3000. At this time, the insertion of the metal intermediate layer has the effect of refining the crystal grain size of the iron-based magnetic film, and it is sufficient to insert the metal intermediate layer into the iron-based magnetic film at a period of 500 to 2000. Film thickness is 10-100
The person is appropriate. If this intermediate layer is made of a nonmagnetic metal or a metal with a low saturation magnetic flux density, the saturation magnetic flux density of the iron-based magnetic film will decrease as a whole, so it is desirable that the thickness of this intermediate layer be thin.

【実施例〕【Example〕

以下、本発明を実施例により詳しく説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

(実施例1) 磁気記録袋[(磁気ディスク装置、VTR等)の磁気ヘ
ッドを構成する磁極用の磁性膜として、Fa−Ta−R
u−C系材料を使用し、第1の非磁性絶縁中間層として
BN、第2の金属中間層としてN1−Fa金合金用い、
鉄系磁性膜を形成した。鉄系磁性膜の形成はイオンビー
ムスパッタリング法によって行なった1本実施例で使用
したイオンビームスパッタリング装置はデュアルイオン
ビーム装置であり、イオンガンが2台あり1片方でター
ゲットのスパッタリングを行ない、スパッタ粒子を基板
に被着させる。また、片方のイオンガンは基板を直接イ
オン照射することができ1通常、低加速エネルギー(5
00V以下)のイオンを基板に当てて、被着膜の膜構造
を制御することができる。また、イオンビームスパッタ
装置は膜形成室中にプラズマが存在しないため、ターゲ
ット交換機構(例えば、複数のターゲットを回転させる
ことにより交換する機構)を設備することができ、積層
膜を容易に形成することができる。高飽和磁束密度、高
透磁率、高耐熱性、高耐食性をもつ鉄系磁性膜の形成に
好ましいイオンビームスパッタリングの条件は以下のと
おりであった。第1イオンガン加速電圧   1000
〜1400V第2イオンガン加速電圧  200〜40
0VAr圧力         2〜3 X 10−”
P a基板表面温度       50〜100’C基
板回転数        20〜60RPM以上の条件
で種々の組成に配合したFe−Ta−Ru−Cターゲッ
ト、BNターゲット、Ni −20vt%Feターゲッ
トを交互にスパッタし、鉄系磁性膜を形成した。この時
、磁気ディスク装置の磁気ヘッド磁極用にはZrOx基
板上に0.5〜2μmの厚さの鉄系磁性膜を形成し、V
TR用のメタルインギャップ磁気ヘッド磁極用にはフェ
ライト単結晶基板上に2〜5μmの厚さの鉄系磁性膜を
形成した。この結果得られた各種磁性膜の組成はプラズ
マ発光分光法(溶液法)およびEPMA(エレクトロン
プルーブマイクロアナリシス)法によって分析した。ま
た、これらの磁性膜の飽和磁束密度は振動試料磁束計、
比透磁率をベクトルインピーダンスメーターを用いて測
定した。耐熱性は磁性膜の熱処理温度を変えて熱処理し
、比透磁率の変化を測定した。このとき、比透磁率が減
少を開始する温度を耐熱温度とした。また、磁性膜の耐
食性は1%NaC11水溶液を噴霧しつつ30℃に保持
し、磁性膜の飽和磁束密度が試験開始時の90%に減少
した時点における保持日数で評価した。
(Example 1) A magnetic recording bag [Fa-Ta-R as a magnetic film for a magnetic pole constituting a magnetic head of (a magnetic disk device, a VTR, etc.)
Using a u-C based material, using BN as the first non-magnetic insulating intermediate layer, and using an N1-Fa gold alloy as the second metal intermediate layer,
An iron-based magnetic film was formed. The iron-based magnetic film was formed by the ion beam sputtering method. The ion beam sputtering device used in this example was a dual ion beam device, with two ion guns, one of which sputtered the target and sputtered particles. Deposit on the substrate. In addition, one of the ion guns can directly irradiate the substrate with ions.1 Normally, low acceleration energy (5
The film structure of the deposited film can be controlled by applying ions of 00 V or less to the substrate. In addition, since there is no plasma in the film forming chamber of the ion beam sputtering device, a target exchange mechanism (for example, a mechanism for exchanging multiple targets by rotating them) can be installed, making it easy to form laminated films. be able to. The ion beam sputtering conditions preferred for forming an iron-based magnetic film having high saturation magnetic flux density, high magnetic permeability, high heat resistance, and high corrosion resistance were as follows. First ion gun acceleration voltage 1000
~1400V 2nd ion gun acceleration voltage 200~40
0VAr pressure 2~3 x 10-”
Fe-Ta-Ru-C targets, BN targets, and Ni-20vt%Fe targets mixed in various compositions were alternately sputtered under conditions of a substrate surface temperature of 50 to 100'C and a substrate rotation speed of 20 to 60 RPM or higher. An iron-based magnetic film was formed. At this time, an iron-based magnetic film with a thickness of 0.5 to 2 μm is formed on the ZrOx substrate for the magnetic head pole of the magnetic disk device, and the V
For the magnetic pole of a metal-in-gap magnetic head for TR, an iron-based magnetic film with a thickness of 2 to 5 μm was formed on a ferrite single crystal substrate. The compositions of the various magnetic films obtained as a result were analyzed by plasma emission spectroscopy (solution method) and EPMA (electron probe microanalysis). In addition, the saturation magnetic flux density of these magnetic films can be measured using a vibrating sample magnetometer,
Relative magnetic permeability was measured using a vector impedance meter. Heat resistance was determined by heat-treating the magnetic film by varying the heat treatment temperature and measuring the change in relative magnetic permeability. At this time, the temperature at which the relative magnetic permeability starts to decrease was defined as the heat-resistant temperature. Further, the corrosion resistance of the magnetic film was evaluated by maintaining the temperature at 30° C. while spraying a 1% NaC11 aqueous solution, and determining the number of days the magnetic film was held at the time when the saturation magnetic flux density of the magnetic film decreased to 90% of that at the start of the test.

第1図には作製した鉄系磁性膜の構造を示す。FIG. 1 shows the structure of the produced iron-based magnetic film.

非磁性絶縁層のBN層の膜厚および金属層のNi−20
wt%Fa層の膜厚は鉄系磁性膜の総膜厚によって最適
な値が異なるが、それぞれ100〜1000人、10〜
100人とした。なお、磁気ディスク装置用の磁気ヘッ
ド磁極は第1図に示した鉄系磁性膜上にさらにSiO2
もしくはAQzO++からなるギツプ層を設けた後、こ
の上に第1図と同様の鉄系磁性膜を形成して作製した。
Thickness of the BN layer of the nonmagnetic insulating layer and Ni-20 of the metal layer
The optimum thickness of the wt%Fa layer varies depending on the total thickness of the iron-based magnetic film, but it is 100 to 1000 and 10 to 100, respectively.
The number was set at 100 people. Note that the magnetic head pole for a magnetic disk device is made of SiO2 on the iron-based magnetic film shown in FIG.
Alternatively, after providing a gap layer made of AQzO++, an iron-based magnetic film similar to that shown in FIG. 1 was formed thereon.

また、VTR用のメタルインギャップヘッド磁極は第1
図に示した鉄系磁性膜上にSiO2キツプ層を形成した
もの1対をSiO2を対向させて固定し。
Also, the metal-in-gap head magnetic pole for VTR is the first
A pair of SiO2 cap layers formed on iron-based magnetic films shown in the figure were fixed with the SiO2 facing each other.

空隙にガラスを充填して作製した。It was made by filling the void with glass.

第2図には第1図で示した構造の鉄系磁性膜の飽和磁束
密度および耐熱温度が磁性膜中のT a 4度によって
変化する様子を示す。図かられかるように、耐熱温度は
Ta濃度が増加するに伴なって上昇し、20at%では
ほぼ700℃に達した。但し、飽和磁束密度はTa濃度
とともに減少し、20at%では約1.6Tまで減少し
た。この結果から、耐熱温度が500℃以上、飽和磁束
密度が1.7T以上となるTa濃度は0.1〜10at
%であり、この濃度の範囲内では記録再生特性の優れた
磁気ヘッドを作製することが可能になる。
FIG. 2 shows how the saturation magnetic flux density and allowable temperature limit of the iron-based magnetic film having the structure shown in FIG. 1 change depending on T a of 4 degrees in the magnetic film. As can be seen from the figure, the heat resistance temperature increased as the Ta concentration increased, reaching approximately 700° C. at 20 at%. However, the saturation magnetic flux density decreased with Ta concentration, and decreased to about 1.6 T at 20 at%. From this result, the Ta concentration at which the heat resistance temperature is 500℃ or higher and the saturation magnetic flux density is 1.7T or higher is 0.1 to 10at.
%, and within this concentration range it is possible to manufacture a magnetic head with excellent recording and reproducing characteristics.

なお、以上の検討はF e −T a −Ru −C@
中のRu濃度を約1at%、C濃度を約0.5at%に
固定して行なったものである。Ruの添加は特に鉄系磁
性膜の耐食性の向上に有効であった。Ta濃度を2at
%、C濃度を0.5at%に固定してRu濃度が耐食性
に与える影響を調べた結果を第3図に示す、また、第3
図には鉄系磁性膜の飽和磁束密度の変化を示す。鉄系磁
性膜の耐食性はRu11度の増加に伴なって向上し、0
.1at%以上の添加で塩水噴霧試験10日以上に耐え
ることが明らかになった。但し、Taの添加の場合と同
様にRu濃度が増加する程鉄系磁性膜の飽和磁束密度は
減少するため、Ruの添加量は10at%以下が適当で
ある。なお、Ruは非磁性材料にもかかわらず、Taに
比べると飽和磁束密度を減少する効果は少なかった。さ
らに、鉄系磁性膜の耐食性に与えるRuの添加の効果は
Taの存在する場合において顕著に表われた。Taを添
加していない鉄系磁性膜にRuを添加しても、塩水噴霧
試験結果は好ましいものにならなかった。したがって、
耐食性の向上はTaとRuが共存する場合に生ずること
が確認された。同様の結果は他のIVa、Va。
Note that the above consideration is based on F e -T a -Ru -C@
The Ru concentration was fixed at about 1 at% and the C concentration at about 0.5 at%. The addition of Ru was particularly effective in improving the corrosion resistance of iron-based magnetic films. Ta concentration is 2at
%, the C concentration was fixed at 0.5 at% and the effect of Ru concentration on corrosion resistance was investigated. The results are shown in Figure 3.
The figure shows changes in the saturation magnetic flux density of iron-based magnetic films. The corrosion resistance of iron-based magnetic films improves as Ru11 degrees increases, and
.. It has been revealed that addition of 1 at % or more can withstand a salt spray test of 10 days or more. However, as in the case of adding Ta, as the Ru concentration increases, the saturation magnetic flux density of the iron-based magnetic film decreases, so the amount of Ru added is preferably 10 at % or less. Note that although Ru is a nonmagnetic material, it had less effect in reducing the saturation magnetic flux density than Ta. Furthermore, the effect of adding Ru on the corrosion resistance of the iron-based magnetic film was remarkable in the presence of Ta. Even when Ru was added to an iron-based magnetic film to which Ta was not added, the salt spray test results were not favorable. therefore,
It was confirmed that improvement in corrosion resistance occurs when Ta and Ru coexist. Similar results were obtained for other IVa, Va.

Via族元素を添加した場合にも[1されており、IV
a、Va、Vla元素とRh、Ruの共存が耐食性向上
に結びつくことが明らかである。
Even when Via group elements are added, [1] and IV
It is clear that the coexistence of a, Va, and Vla elements with Rh and Ru leads to improved corrosion resistance.

F e −T a −Ru −C磁性膜のTa濃度を1
at%、Ru濃度を1at%に固定して、C′a度を変
化させ、鉄系磁性膜の比透磁率および耐熱温度に与える
影響を検討した。第4図にはC濃度が鉄系磁性膜の比透
磁率と耐熱温度に与える影響を示す。
The Ta concentration of the Fe-Ta-Ru-C magnetic film is 1
At% and Ru concentration were fixed at 1 at%, C'a degree was varied, and the influence on the relative magnetic permeability and heat resistance temperature of the iron-based magnetic film was investigated. FIG. 4 shows the influence of C concentration on the relative magnetic permeability and heat resistance temperature of the iron-based magnetic film.

第4図から明らかなように、C濃度が増加するにしたが
って鉄系磁性膜の比透磁率は増加する傾向を示すが、耐
熱温度は逆に減少することが明らかになった。得られた
鉄系磁性膜をX線回折法によって観察すると、C濃度の
増加は鉄系磁性膜の結晶粒径を微細化し、この結果比透
磁率が増加するものと推察された。また、C濃度の増加
は同時に膜中の圧縮応力を増加することも明らかになっ
た。
As is clear from FIG. 4, as the C concentration increases, the relative magnetic permeability of the iron-based magnetic film tends to increase, but the heat resistance temperature decreases. When the obtained iron-based magnetic film was observed by X-ray diffraction, it was inferred that an increase in the C concentration made the crystal grain size of the iron-based magnetic film finer, and as a result, the relative magnetic permeability increased. It has also been revealed that an increase in C concentration simultaneously increases compressive stress in the film.

圧縮応力の増加は磁性膜を構成する結晶粒の再結晶化を
促進することから耐熱温度の低下に結びつくことも確認
された。この結果、鉄系磁性膜中のC濃度は1500以
上の比透磁率を示し、500℃以上の耐熱温度を示す0
.1〜fat%が望ましいことが明らかになった。
It was also confirmed that an increase in compressive stress promotes recrystallization of the crystal grains constituting the magnetic film, leading to a decrease in the heat resistance temperature. As a result, the C concentration in the iron-based magnetic film showed a relative permeability of 1500 or more, and a heat resistance temperature of 500°C or more.
.. It has become clear that 1 to fat% is desirable.

上述した比透磁率は基板上に広い面積で形成された鉄系
磁性膜の比透磁率を測定したものである。
The above-mentioned relative magnetic permeability is a value obtained by measuring the relative magnetic permeability of an iron-based magnetic film formed over a wide area on a substrate.

さらに、この鉄系磁性膜をイオンミリングによって幅1
0μmのストライプ状に加工した後、比透磁率を測定し
た。この結果、本実施例の鉄系磁性膜の比透磁率はスト
ライプ状に加工する前と加工後の値に大幅な差が認めら
れなかった。一方、本実施例の鉄系磁性膜(第1図参照
)がらBN非磁性絶縁層を除いた磁性膜を形成して、ス
トライプ状に加工前後の比透磁率を測定したところ、ス
トライプ状に加工前はBN非磁性絶縁層が存在する場合
とほぼ同じ比透磁率を示したが、10μm幅のストライ
プ状に加工した後は加工前の30〜60%の値に比透磁
率が減少してしまった。この結果は鉄系磁性膜の磁区構
造と渦電流が非磁性絶縁層の挿入によって制御されたこ
とに基づくものと推察され、非磁性絶縁層の挿入が比透
磁率を保つ上で重要なことを示したものである。
Furthermore, this iron-based magnetic film was made into a width of 1 by ion milling.
After processing into stripes of 0 μm, relative magnetic permeability was measured. As a result, no significant difference was observed between the relative magnetic permeability of the iron-based magnetic film of this example before and after processing into stripes. On the other hand, a magnetic film was formed by removing the BN nonmagnetic insulating layer from the iron-based magnetic film of this example (see Figure 1), and the relative magnetic permeability before and after processing into stripes was measured. Before, the relative magnetic permeability was almost the same as when a BN non-magnetic insulating layer was present, but after processing into stripes with a width of 10 μm, the relative magnetic permeability decreased to 30 to 60% of the value before processing. Ta. This result is presumed to be based on the fact that the magnetic domain structure and eddy current of the iron-based magnetic film were controlled by the insertion of the non-magnetic insulating layer, and the insertion of the non-magnetic insulating layer is important for maintaining relative magnetic permeability. This is what is shown.

(実施例2) 実施例1において、F a −T a −Ru −C磁
性層、BN非磁性絶縁層、Ni−20vt%Ni金属層
を第5図に示す材料に変えて鉄系磁性膜を形成し、その
飽和磁束密度、比透磁率、耐熱温度、耐食日数を測定し
た。この結果を第5図にまとめて示す。なお、磁性層の
組成はIVa、Va、Via族元素濃度を2at%、R
h、Ru濃度を1at%、C濃度を0.5at%とした
(Example 2) In Example 1, the F a -Ta -Ru -C magnetic layer, the BN nonmagnetic insulating layer, and the Ni-20vt%Ni metal layer were changed to the materials shown in FIG. 5 to form an iron-based magnetic film. The saturation magnetic flux density, relative magnetic permeability, heat resistance temperature, and corrosion resistance days were measured. The results are summarized in FIG. The composition of the magnetic layer is such that the concentration of IVa, Va, and Via group elements is 2 at%, and R
h, the Ru concentration was 1 at%, and the C concentration was 0.5 at%.

第5図に示されているように、FaにTi。As shown in FIG. 5, Ti is added to Fa.

Zn、Hf、V、Nb、Ta、Mo、Wより選ばれた元
素、Rh、Ruから選ばれた元素、B、N。
An element selected from Zn, Hf, V, Nb, Ta, Mo, W, an element selected from Rh, Ru, B, N.

Cより選ばれた元素を添加した磁性層を非磁性絶縁中間
層、金属中間層を介して積層した鉄系磁性膜は飽和磁束
密度1.8T以上、比透磁率1500以上、耐熱温度5
00℃以上、耐食日数10日以上の優れた性質を示すこ
とが確認された。
An iron-based magnetic film in which a magnetic layer doped with an element selected from C is laminated via a non-magnetic insulating intermediate layer and a metal intermediate layer has a saturation magnetic flux density of 1.8 T or more, a relative magnetic permeability of 1500 or more, and a heat-resistant temperature of 5.
It was confirmed that it exhibits excellent properties, with corrosion resistance of 10 days or more at temperatures above 00°C.

上述の鉄系磁性膜を磁気ディスク用磁気ヘッド磁極およ
びVTR用メタルインギャップヘッド磁極として用い、
記録再生特性を評価した結果、従来の磁気記録密度の8
0KBPI  (キロビット/インチ)を上まわる12
0KBPI以上の記録密度を得ることができた。
Using the above-mentioned iron-based magnetic film as a magnetic head magnetic pole for a magnetic disk and a metal-in-gap head magnetic pole for a VTR,
As a result of evaluating the recording and reproducing characteristics, the conventional magnetic recording density was 8.
12 above 0KBPI (kilobits per inch)
It was possible to obtain a recording density of 0 KBPI or more.

以上の実施例ではイオンビームスパッタリング法によっ
て膜形成を行なった結果を示したが、本発明者らはRF
スパッタリング法でも同様の検討を行なっており、基板
温度を150’C前後まで上昇させることにより、はぼ
同様の結果が得られることを確認した。したがって、本
発明は膜形成法による制限を受けるものではない。
Although the above examples showed the results of film formation by ion beam sputtering method, the present inventors
A similar study was conducted using the sputtering method, and it was confirmed that substantially similar results could be obtained by raising the substrate temperature to around 150'C. Therefore, the present invention is not limited by the film formation method.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく、本発明による鉄系磁性膜は高飽和
磁束密度(1,8T以上)、高比透磁率(1500以上
)、高耐熱性(500’C以上)、高耐食性(塩水噴霧
試験10日以上)の優れた特性を有する。したがって、
この磁性膜を磁気記録装置用磁気ヘッド磁極として用い
た場合は記録再生特性が高く、信頼性の高い磁気記録装
置を得ることができる。
As explained above, the iron-based magnetic film according to the present invention has high saturation magnetic flux density (1.8 T or more), high relative permeability (1500 or more), high heat resistance (500'C or more), and high corrosion resistance (salt spray test 10 It has excellent properties of more than one day). therefore,
When this magnetic film is used as a magnetic head pole for a magnetic recording device, a magnetic recording device with high recording and reproducing characteristics and high reliability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を用いた鉄系磁性膜の断面構造
を示す模式図、第2図は鉄系磁性膜の飽和磁束密度と耐
熱温度に及ぼすTa濃度の影響を示すグラフ、第3図は
鉄系磁性膜の飽和磁束密度と耐食性に及ぼすRu濃度の
影響を示すグラフ、第4図は鉄系磁性膜の比透磁率と耐
熱温度に及ぼすaS度の影響を示すグラフ、第5図は本
発明の鉄系磁性膜の磁束密度、比透磁率、耐熱温度、耐
食日数を示す表である。 1・・・基板、2− F a −T a −Ru −C
磁性層、3・・・BN非磁性絶縁層、4・・・Fa−2
0wt%Ni金属層。 第 口 Fe −20wtE N i金44 第 Ta2支 (oi%) 亭 藷1膚 ((22%り
FIG. 1 is a schematic diagram showing the cross-sectional structure of an iron-based magnetic film using an example of the present invention, FIG. 2 is a graph showing the influence of Ta concentration on the saturation magnetic flux density and heat resistance temperature of the iron-based magnetic film, and FIG. Figure 3 is a graph showing the influence of Ru concentration on the saturation magnetic flux density and corrosion resistance of iron-based magnetic films. Figure 4 is a graph showing the influence of aS degree on the relative magnetic permeability and heat resistance temperature of iron-based magnetic films. The figure is a table showing the magnetic flux density, relative magnetic permeability, heat resistance temperature, and corrosion resistance days of the iron-based magnetic film of the present invention. 1... Substrate, 2-F a -T a -Ru -C
Magnetic layer, 3... BN nonmagnetic insulating layer, 4... Fa-2
0 wt% Ni metal layer. 1st mouth Fe -20wtE Ni gold 44 2nd Ta branch (oi%) 1st branch ((22%

Claims (5)

【特許請求の範囲】[Claims] 1.鉄を主成分とする強磁性膜にIVa,Va,VIa元素
のTi,Zr,Hf,V,Nb,Ta,Mo,Wより選
ばれる少なくとも1種の元素を0.1〜10at%、B
,C,Nより選ばれる少なくとも1種の元素を0.1〜
1at%添加したことを特徴とする耐熱鉄系磁性膜。
1. 0.1 to 10 at% of at least one element selected from the IVa, Va, and VIa elements Ti, Zr, Hf, V, Nb, Ta, Mo, and W to the ferromagnetic film mainly composed of iron, and B.
, C, N at least one element selected from 0.1~
A heat-resistant iron-based magnetic film characterized by adding 1 at%.
2.上記鉄を主成分とする強磁性膜がRhもしくはRu
を0.1〜10at%含有することを特徴とする特許請
求の範囲第1項記載の耐熱鉄系磁性膜。
2. The ferromagnetic film mainly composed of iron is Rh or Ru.
The heat-resistant iron-based magnetic film according to claim 1, characterized in that it contains 0.1 to 10 at% of.
3.特許請求の範囲第1項または第2項記載の耐熱鉄系
磁性膜が非磁性絶縁層よりなる第1の中間層を介して積
層されていることを特徴とする耐熱鉄系磁性膜。
3. A heat-resistant iron-based magnetic film, characterized in that the heat-resistant iron-based magnetic film according to claim 1 or 2 is laminated with a first intermediate layer made of a non-magnetic insulating layer interposed therebetween.
4.特許請求の範囲第1項,第2項,第3項のうちいず
れかに記載の耐熱鉄系磁性膜が他の金層膜よりなる第2
の中間層を介して積層されていることを特徴とする耐熱
鉄系磁性膜。
4. The heat-resistant iron-based magnetic film according to any one of claims 1, 2, and 3 may be used as a second gold layer film.
A heat-resistant iron-based magnetic film characterized in that it is laminated with an intermediate layer of.
5.特許請求の範囲第1項乃至第4項記載のうちいずれ
かの耐熱鉄系磁性膜を磁気記録ヘッドの磁極材料とした
ことを特徴とする磁気ヘッド。
5. A magnetic head characterized in that the heat-resistant iron-based magnetic film according to any one of claims 1 to 4 is used as a magnetic pole material of the magnetic recording head.
JP27625088A 1988-11-02 1988-11-02 Heat resistant iron based magnetic film and magnetic head using same Pending JPH02123705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27625088A JPH02123705A (en) 1988-11-02 1988-11-02 Heat resistant iron based magnetic film and magnetic head using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27625088A JPH02123705A (en) 1988-11-02 1988-11-02 Heat resistant iron based magnetic film and magnetic head using same

Publications (1)

Publication Number Publication Date
JPH02123705A true JPH02123705A (en) 1990-05-11

Family

ID=17566801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27625088A Pending JPH02123705A (en) 1988-11-02 1988-11-02 Heat resistant iron based magnetic film and magnetic head using same

Country Status (1)

Country Link
JP (1) JPH02123705A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158441A (en) * 1989-11-17 1991-07-08 Alps Electric Co Ltd Soft-magnetic alloy film
JPH04333546A (en) * 1990-08-31 1992-11-20 Alps Electric Co Ltd High saturation magnetic flux density ferrous soft magnetic alloy
US5262915A (en) * 1990-08-23 1993-11-16 Tdk Corporation Magnetic head comprising a soft magnetic thin film of FeNiZrN having enhanced (100) orientation
JPH05314431A (en) * 1992-05-08 1993-11-26 Sharp Corp Thin-film magnetic head

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158441A (en) * 1989-11-17 1991-07-08 Alps Electric Co Ltd Soft-magnetic alloy film
US5262915A (en) * 1990-08-23 1993-11-16 Tdk Corporation Magnetic head comprising a soft magnetic thin film of FeNiZrN having enhanced (100) orientation
JPH04333546A (en) * 1990-08-31 1992-11-20 Alps Electric Co Ltd High saturation magnetic flux density ferrous soft magnetic alloy
JPH05314431A (en) * 1992-05-08 1993-11-26 Sharp Corp Thin-film magnetic head

Similar Documents

Publication Publication Date Title
US4935314A (en) Ferromagnetic film and magnetic head using the same
US5290629A (en) Magnetic film having a magnetic phase with crystallites of 200 A or less and an oxide phase present at the grain boundaries
JPS6380509A (en) Magnetic superlattice film and magnetic head using same
JPH02123705A (en) Heat resistant iron based magnetic film and magnetic head using same
JPS6365604A (en) Iron magnetic film
JP3121933B2 (en) Soft magnetic thin film
JPS59157828A (en) Magnetic recording medium
JPH02199027A (en) Magnetic alloy
JPH0316203A (en) Heat-resistant high saturation magnetic flux density film
JPH0423413A (en) Magnetic thin film and manufacture thereof and magnetic head
JPH04252006A (en) Corrosion-resistant magnetically soft film and magnetic head using the same
JP2858036B2 (en) Soft magnetic thin film and magnetic head
JPH0485716A (en) Thin magnetic film for magnetic head
JPH02175618A (en) Magnetic alloy
JPS63146417A (en) Soft magnetic thin film
JPH0746655B2 (en) Soft magnetic thin film
JPH04187745A (en) Magnetic alloy
JPS6315654B2 (en)
JPH03292705A (en) Ferromagnetic film and magnet head using thereof
JPH07116564B2 (en) Magnetic alloy
JPH053655B2 (en)
JPH0828297B2 (en) Soft magnetic thin film
JPS62104107A (en) Soft magnetic thin film
JPH0410402A (en) Soft magnetic thin film, its manufacture, and magnetic head
JPH0364929B2 (en)