JPH03292705A - Ferromagnetic film and magnet head using thereof - Google Patents

Ferromagnetic film and magnet head using thereof

Info

Publication number
JPH03292705A
JPH03292705A JP2405640A JP40564090A JPH03292705A JP H03292705 A JPH03292705 A JP H03292705A JP 2405640 A JP2405640 A JP 2405640A JP 40564090 A JP40564090 A JP 40564090A JP H03292705 A JPH03292705 A JP H03292705A
Authority
JP
Japan
Prior art keywords
magnetic
film
ferromagnetic
ferromagnetic metal
film according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2405640A
Other languages
Japanese (ja)
Inventor
Toshio Kobayashi
俊雄 小林
Yoshitsugu Koiso
小礒 良嗣
Hitoshi Nakamura
斉 中村
Ryoichi Nakatani
亮一 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2405640A priority Critical patent/JPH03292705A/en
Publication of JPH03292705A publication Critical patent/JPH03292705A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a material for magnetic heads which can maintain saturated magnetic flux density and soft magnetic characteristics to a high temperature and has high reaction-resisting property and high corrosion-resisting property by a method wherein an oxide is mixed into ferromagnetic metal. CONSTITUTION:A piece of ferromagnetic metal, mainly composed of Fe and Co, and the targets of a oxide are alternately sputtered on a crystallized glass substrate 1 using an ion beam sputtering device, a laminated film consisting of a ferromagnetic metal layer 2 and an oxide layer 3 is manufactured, and a heat treatment is conducted for an hour in an Ar gas atmosphere. A heat-proof high saturation magnetic flux density film excellently maintains its soft magnetic characteristics at least up to 600 deg.C, and its saturation magnetic flux density is not decreased. Also, not only the soft magnetic film has exceedingly excellent corrosion-resisting property but also the reaction layer such as an oxide and the like is hardly formed on the interface between the magnetic film and ferrite. Accordingly, when the heat-proof high saturation magnetic flux density film is used for the magnetic head of a magnetic recording device, especially, when it is used on a metal-in-gap type magnetic head, a glass bonding operation can be conducted at a high temperature, and a glass layer having sufficient strength can be formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

[0001] [0001]

【産業上の利用分野】[Industrial application field]

本発明は磁気ディスク装置、VTRなどに用いられる磁
気ヘッド材料に係り、特に高飽和磁束密度、高透磁率、
高耐熱性、高耐食性、耐反応性を有する多層磁性膜及び
これを用いた磁気ヘッドに関する。 [0002]
The present invention relates to a magnetic head material used in magnetic disk drives, VTRs, etc., and in particular has high saturation magnetic flux density, high magnetic permeability,
The present invention relates to a multilayer magnetic film having high heat resistance, high corrosion resistance, and high reaction resistance, and a magnetic head using the same. [0002]

【従来の技術】[Conventional technology]

近年、磁気記録技術の発展は著しく、記録密度の向上が
進められている。記録密度を高くするためには高保磁力
の記録媒体を使用する必要があり、また高保磁力の記録
媒体を磁化するためには、高飽和磁束密度を有する磁極
材料が必要となる。このため、従来のフェライトなどに
代ってNi−Fe合金(パーマロイ)やCo系非晶質合
金薄膜が磁極材料として使われ始めている。さらに、磁
極材料は高飽和磁束密度であるほかに、記録再生効率の
向上の点から高透磁率を有することが必要とされる。ま
た、磁気ヘッドを形成する工程におけるガラス充填の加
熱工程に耐えて高透磁率を維持することの可能な耐熱性
も要求される。 [0003] このような磁極材料としては特開昭62−210607
号に示されているように、Fe、Co、Ni、Mnより
選ばれる金属にNb、Zr、Ti、Ta、HfCr、W
、Moと窒素を同時に添加した材料が報告されている。 また、この材料の作成方法は所定の組成を有する金属タ
ーゲットをアルゴンと窒素の混合ガスをスパッタリング
ガスとして用い、スパッタリングする方法である。この
報告によればスパッタリングガス中の窒素濃度を変調し
て窒化層と非窒化層を交互に積層することにより、飽和
磁束密度1.5T、保磁力1 0e以下の特性を持つ膜
が得られている。この膜の保磁力は600℃まで低く保
たれており、耐熱性は600℃であった。 [0004] また、電子情報通信学会MR89−12(1989,7
)にはFeにTi、Zr、HfとCを同時に添加するこ
とにより、Fe系の非晶質膜を形成し、ついでこれを熱
処理することにより、耐熱性の高い微結晶軟磁性材料が
得られることが示された。 [0005]
In recent years, magnetic recording technology has made remarkable progress, and recording density is being improved. In order to increase the recording density, it is necessary to use a recording medium with a high coercive force, and in order to magnetize a recording medium with a high coercive force, a magnetic pole material having a high saturation magnetic flux density is required. For this reason, Ni--Fe alloy (permalloy) and Co-based amorphous alloy thin films are beginning to be used as magnetic pole materials in place of conventional ferrite and the like. Furthermore, in addition to having a high saturation magnetic flux density, the magnetic pole material is required to have a high magnetic permeability in order to improve recording and reproducing efficiency. It is also required to have heat resistance that can withstand the glass filling heating process in the process of forming a magnetic head and maintain high magnetic permeability. [0003] As such a magnetic pole material, Japanese Patent Application Laid-Open No. 62-210607
As shown in the issue, metals selected from Fe, Co, Ni, and Mn include Nb, Zr, Ti, Ta, HfCr, and W.
, a material to which Mo and nitrogen are added simultaneously has been reported. The method for producing this material is to sputter a metal target having a predetermined composition using a mixed gas of argon and nitrogen as a sputtering gas. According to this report, by modulating the nitrogen concentration in the sputtering gas and alternately stacking nitrided and non-nitrided layers, a film with saturation magnetic flux density of 1.5T and coercive force of 10e or less can be obtained. There is. The coercive force of this film was kept as low as 600°C, and the heat resistance was 600°C. [0004] Also, Institute of Electronics, Information and Communication Engineers MR89-12 (1989, 7
) by simultaneously adding Ti, Zr, Hf, and C to Fe to form an Fe-based amorphous film, and then heat-treating this, a microcrystalline soft magnetic material with high heat resistance can be obtained. It was shown that [0005]

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明者らはFe−Nb、Fe−Ta、Fe−Hf系材
料を、アルゴンと窒素の混合ガス中でスパッタリングし
、上述した報告の追試実、験をおこなった。この結果、
保磁力は報告の通り400〜600℃の熱を加えても1
0e以下の低い値を示すことが確認された。また、Fe
−Hf−C系材料をアルゴンガス中でスパッタリングし
た後、500〜600℃で熱処理をおこなって、保磁力
1 0e以下の多層磁性膜が得られることも確認するこ
とができた。 [0006] しかし、本発明者らがこれら従来の材料をMn−Znフ
ェライト単結晶基板上に形成し、ガラス充填のための6
00℃の加熱工程を経てメタルインギャップ型ヘッドを
試作したところ、M n −Z nフェライト単結晶基
板と磁性膜が反応して界面に酸化物層が形成されている
ことが明らかになった。この時、磁気ヘッドの記録再生
特性を調べた結果、予想された通り、結晶基板と磁性膜
界面の非磁性層に基づく大きな疑似ギャップ信号が観測
された。このような疑似ギャップ信号が観測される場合
は正常な記録再生を行うことができない。またこのとき
、磁性膜と充填ガラスとの間の反応も観察され、磁性膜
が薄くなっていることがわかった。すなわち、従来の磁
性膜は磁性膜単体としては優れた軟磁気特性を示すが、
ガラスボンディング工程を伴う磁気ヘッドの作製を行う
際は、基板あるいは充填ガラスとの反応防止が問題とな
ることが確認された。 [0007] 一方、ダミー試料としてガラス基板上に形成した試料を
塩水噴霧試、験および恒温恒湿試5験にかけて耐食性の
評価を行ったところ、従来用いられていたセンダスト膜
やCo−Nb−Zr系の膜に比べて極めて腐食しやすく
、磁気ヘッドとして使用することが疑問視された。 [0008] したがって、本発明の目的は、上述の従来技術の欠点を
解消した新規な磁気へラド材料を提供することにある。 [0009]
The present inventors sputtered Fe--Nb, Fe--Ta, and Fe--Hf based materials in a mixed gas of argon and nitrogen, and conducted additional trials and experiments based on the above-mentioned report. As a result,
As reported, the coercive force remains 1 even when heated at 400 to 600 degrees Celsius.
It was confirmed that it showed a low value of 0e or less. Also, Fe
It was also confirmed that a multilayer magnetic film with a coercive force of 10e or less could be obtained by sputtering a -Hf-C based material in argon gas and then heat-treating it at 500 to 600°C. [0006] However, the present inventors formed these conventional materials on a Mn-Zn ferrite single crystal substrate and used 6
When a metal-in-gap head was prototyped through a heating process at 00°C, it was found that the Mn-Zn ferrite single crystal substrate and the magnetic film reacted to form an oxide layer at the interface. At this time, as a result of examining the recording and reproducing characteristics of the magnetic head, as expected, a large pseudogap signal was observed due to the nonmagnetic layer at the interface between the crystal substrate and the magnetic film. If such a pseudo gap signal is observed, normal recording and reproduction cannot be performed. At this time, a reaction between the magnetic film and the filled glass was also observed, and it was found that the magnetic film had become thinner. In other words, although conventional magnetic films exhibit excellent soft magnetic properties as a single magnetic film,
It has been confirmed that when manufacturing a magnetic head that involves a glass bonding process, preventing reactions with the substrate or the filled glass becomes a problem. [0007] On the other hand, when we evaluated the corrosion resistance of a sample formed on a glass substrate as a dummy sample by subjecting it to a salt spray test, a test, and a constant temperature and humidity test, we found that the conventionally used sendust film and Co-Nb-Zr It is extremely susceptible to corrosion compared to other types of films, and its use as a magnetic head was questioned. [0008] Accordingly, it is an object of the present invention to provide a new magnetic herad material that overcomes the drawbacks of the prior art mentioned above. [0009]

【課題を解決するための手段】[Means to solve the problem]

本発明者らは上述の問題点を解決するために、鋭意研究
を続けてきたが、強磁性金属中に酸化物を混入すること
により、高温まで飽和磁束密度と軟磁気特性が保たれる
ばかりか、フェライトなどの酸化物やガラスとの耐反応
性が高く、耐食性も高い磁気ヘッド材料を開発すること
ができた。ここで、酸化物としてはHf−0,Nb−0
,Ta −0,Ti −0,Zr −0,V−0,W−
0,Mo −0等の結合を有するIVa,VIa族元素
と酸素からなる物質である。また、この他に磁気特性を
改善するための添加物を加えても良い。特に、軟磁気特
性の改善にはB、C,N、Pの添加が有効でる。また耐
食性の向上のためにはNi、RhRu、Pd、Zr、N
b、Ta、Ag、Os、Ir、Pt、Au、Cr、M。 W、Tiの添加が有効である。 [0010] 本発明の多層磁性膜は金属相中に酸化物相が混入してい
る。酸化物の混入方法に制限は無く、磁性膜形成時に酸
化物が存在しなくても、熱処理等によってこれらが生成
すれば良い。また、あらかじめ磁性膜形成時に酸化物の
状態で混入させることもできる。例えば、金属層と酸化
物層の積層、あるいは、金属層とその金属と酸化物を構
成する元素の積層、金属と酸化物の構成元素の同時堆積
等いずれの方法も可能である。 [0011] 本発明の多層磁性膜を磁気記録装置の磁気ヘッドの磁気
コアに用いることにより記録再生特性の優れた磁気記録
装置を得ることができる。特に、本発明の多層磁性膜を
ガラスボンディング工程を有する方法で作成する磁気ヘ
ッド、例えばメタルインギャップ型ヘッドに適用するこ
とによりさらに大きな効果を得ることができる。 [0012]
The inventors of the present invention have continued to conduct intensive research in order to solve the above-mentioned problems, but by mixing oxides into ferromagnetic metals, the saturation magnetic flux density and soft magnetic properties are maintained even at high temperatures. Furthermore, we were able to develop a magnetic head material that has high reaction resistance with oxides such as ferrite and glass, and also has high corrosion resistance. Here, the oxides are Hf-0, Nb-0
, Ta -0, Ti -0, Zr -0, V-0, W-
It is a substance consisting of IVa and VIa group elements having bonds such as 0 and Mo-0, and oxygen. In addition, additives may be added to improve the magnetic properties. In particular, addition of B, C, N, and P is effective for improving soft magnetic properties. In addition, to improve corrosion resistance, Ni, RhRu, Pd, Zr, N
b, Ta, Ag, Os, Ir, Pt, Au, Cr, M. Addition of W and Ti is effective. [0010] In the multilayer magnetic film of the present invention, an oxide phase is mixed in the metal phase. There are no restrictions on the method of mixing oxides, and even if oxides are not present during the formation of the magnetic film, they may be generated by heat treatment or the like. Alternatively, it can be mixed in the form of an oxide in advance during the formation of the magnetic film. For example, any method is possible, such as lamination of a metal layer and an oxide layer, lamination of a metal layer and elements constituting the metal and oxide, or simultaneous deposition of metal and elements constituting the oxide. [0011] By using the multilayer magnetic film of the present invention in the magnetic core of a magnetic head of a magnetic recording device, a magnetic recording device with excellent recording and reproducing characteristics can be obtained. In particular, even greater effects can be obtained by applying the multilayer magnetic film of the present invention to a magnetic head made by a method including a glass bonding process, such as a metal-in-gap type head. [0012]

【作用】[Effect]

上述のように、強磁性金属膜中に酸化物を混入すること
により、高温まで飽和磁束密度と軟磁気特性が保たれる
が、そのメカニズムは必ずしも十分間らかになっている
わけではない。ただし、本発明者らが検討した結果、こ
れらの酸化物を混入した多層磁性膜は600℃まで加熱
しても、はとんど結晶粒径の粗大化が生じておらず、酸
化物が多層磁性膜の構成元素の拡散を抑制し、加熱によ
り結晶粒が成長することを防いでいることが確認された
。このとき、600℃まで加熱した膜を高分解能E P
MA (Electron Probe Micro 
Analysis)法によって分析した結果多層磁性膜
を構成する結晶粒の周囲に酸化物の相が観察され、この
相が存在することによって多層磁性膜を構成する結晶粒
の粒成長(粗大化)が抑制されていることが観察された
。結晶磁気異方性定数が零に近い材料を除いて、強磁性
材料の軟磁気特性は強磁性材料を構成する結晶粒の大き
さに関係し、結晶粒が増大する程軟磁気特性は劣化する
ことが知られている。従って、本発明の多層磁性膜も同
様に高温まで結晶粒が小さく保たれたために軟磁気特性
の劣化が生じなかったものと考えられる。しかし、同じ
膜をX線回折法によって調べても、酸化物は検出できず
、これらの物質は微量であるか、非晶質であるかのいず
れかであった。 [0013] また、本発明の多層磁性膜の飽和磁束密度は添加する酸
化物の量の増加に伴って減少する傾向を示したが、これ
は非磁性体の添加による磁性材料の単純希釈の効果によ
るものと推察される。 [0014]
As mentioned above, by mixing oxides into a ferromagnetic metal film, the saturation magnetic flux density and soft magnetic properties can be maintained up to high temperatures, but the mechanism is not necessarily clear enough. However, as a result of studies conducted by the present inventors, even when heated up to 600°C, the multilayer magnetic film containing these oxides does not show any coarsening of the crystal grain size, and the oxides remain in the multilayer magnetic film. It was confirmed that the diffusion of the constituent elements of the magnetic film was suppressed and the growth of crystal grains due to heating was prevented. At this time, the film heated to 600°C was subjected to high-resolution EP
MA (Electron Probe Micro
As a result of analysis using the analysis method, an oxide phase was observed around the crystal grains that make up the multilayer magnetic film, and the presence of this phase suppressed the grain growth (coarsening) of the crystal grains that made up the multilayer magnetic film. It was observed that Except for materials with a magnetocrystalline anisotropy constant close to zero, the soft magnetic properties of ferromagnetic materials are related to the size of the crystal grains that make up the ferromagnetic material, and the soft magnetic properties deteriorate as the crystal grains increase. It is known. Therefore, it is considered that in the multilayer magnetic film of the present invention, the crystal grains were similarly kept small even at high temperatures, so that the soft magnetic properties did not deteriorate. However, when the same film was examined by X-ray diffraction, no oxides could be detected, and these substances were either trace amounts or amorphous. [0013] Furthermore, the saturation magnetic flux density of the multilayer magnetic film of the present invention showed a tendency to decrease as the amount of added oxide increased, but this was due to the effect of simple dilution of the magnetic material by the addition of non-magnetic material. It is assumed that this is due to the following. [0014]

【実施例】【Example】

以下に本発明の実施例を挙げ、図表を参照しながらさら
に具体的に説明する。 [実施例1] Fe、Coを主成分とする多層磁性膜の形成はイオンビ
ーム・スパッタリング装置を用いて結晶化ガラス基板上
に行った。本実施例で使用したイオンビーム・スパッタ
リング装置にはイオンガンが2台設備されており、片方
でターゲットのスパッタリングを行い、スパッタ粒子を
基板に被着させることができる。また、他方で基板のク
リーニング等を行うことができる。この装置のターゲッ
トホルダーは回転式であり、最大4種類のターゲットを
装填でき、このうち任意のターゲットを選択してスパッ
タリングすることができる。従って、これらのターゲッ
ト材料から構成される任意の積層膜を形成することがで
きる。このような装置は公知である(ジャーナル オブ
 アプライド フィジックス(journal of 
APPLIED PHYSIC3)  Vol、611
5 June 1987 No、 12)。この装置で
Fe、Coを主成分とする強磁性金属と酸化物のターゲ
ットを交互にスパッタリングし、積層膜を作製しな。ス
パッタリングは以下の条件で行った。 [0015] スパッタリングガス・ ・Ar 装置内Arガス圧力・  2.5×1O−2Pa蒸着用
イオンガン加速電圧・・800層蒸着用イオンガンイオ
ン電流・  120mAターゲット基板間距離・  1
30mm基板温度・  50〜100℃ 上記条件で作製した積層膜の断面図を図1に示す。本実
施例では基板1として結晶化ガラス基板を用い、層厚9
nmの強磁性金属層2と層厚1nmの酸化物層3とから
なる積層膜を作製した。積層膜全体の膜厚は1μmとし
たので、強磁性金属層2は100層、酸化物層3は99
層になった。 [0016] 得られた積層膜は100℃から700℃の範囲でArガ
ス中で1時間の熱処理をし、各々の膜の軟磁気特性評価
、X線回折による結晶学的評価、分析による酸化物層の
確認を行った。 [0017] 表1にこの結果を示す。 [0018]
Examples of the present invention will be given below and will be explained in more detail with reference to figures and tables. [Example 1] A multilayer magnetic film containing Fe and Co as main components was formed on a crystallized glass substrate using an ion beam sputtering device. The ion beam sputtering apparatus used in this example is equipped with two ion guns, one of which can sputter a target and deposit sputtered particles onto a substrate. On the other hand, the substrate can be cleaned, etc. The target holder of this device is rotary and can be loaded with up to four types of targets, and any target can be selected for sputtering. Therefore, any laminated film composed of these target materials can be formed. Such devices are known (Journal of Applied Physics).
APPLIED PHYSIC3) Vol, 611
5 June 1987 No. 12). Using this equipment, ferromagnetic metals mainly composed of Fe and Co and oxide targets are sputtered alternately to produce a laminated film. Sputtering was performed under the following conditions. [0015] Sputtering gas・・Ar Ar gas pressure in the device・2.5×1O−2Pa ion gun acceleration voltage for evaporation・・Ion gun ion current for 800 layer evaporation・120 mA target substrate distance・1
30 mm substrate temperature: 50 to 100° C. A cross-sectional view of the laminated film produced under the above conditions is shown in FIG. In this example, a crystallized glass substrate is used as the substrate 1, and the layer thickness is 9.
A laminated film consisting of a ferromagnetic metal layer 2 with a thickness of 1 nm and an oxide layer 3 with a thickness of 1 nm was produced. The thickness of the entire laminated film was 1 μm, so the ferromagnetic metal layer 2 had 100 layers and the oxide layer 3 had 99 layers.
It became a layer. [0016] The obtained laminated film was heat-treated in Ar gas at a temperature of 100°C to 700°C for 1 hour, and the soft magnetic properties of each film were evaluated, the crystallographic evaluation was performed by X-ray diffraction, and the oxide was determined by analysis. I checked the layers. [0017] Table 1 shows the results. [0018]

【表1】 (表1) [0019] 表中、強磁性金属膜および酸化物は膜形成時のターゲッ
トの組成を示す。理想的な膜形成過程では、ターゲット
の組成が形成される膜の組成にほぼ等しいと考えて良い
。ただし条件によっては軽元素が基板表面ではじき飛ば
され、膜中の組成がターゲットの組成より少なくなるこ
ともある。保磁力、腐食試、験は500℃で1時間の熱
処理を行ったのちに測定した値である。なお、保磁力は
B−Hカーブトレーサーを用いて測定した。耐熱性は熱
処理した試料の保磁力が1.50e以上になる温度で示
した。また、腐食試、験は0.5%NaC1水溶液を間
けつ的に噴霧しながら35℃に保持する塩水噴霧試、験
によって行った結果であり、腐食が5%進行した時間で
ある。ここで膜の磁化が5%減ったことを、腐食が5%
進行したことと規定する。 [00201 この結果、Fe、Coを主成分とする強磁性金属膜をI
Va,VIa族元素の酸化物を介して積層させることに
よって600℃の高温でも保磁力1.50e以下の優れ
た軟磁気特性を持つ多層磁性膜を得ることができた。こ
のときの腐食試験結果はいずれの試料も50日以上の耐
食性を示すことが確認された。なお、同様にFe、Co
を主成分とする強磁性金属膜に軟磁気特性を向上させる
B、 CN等の元素を添加させた多層膜を作製した場合
も検討したが、保磁力の5から15%の減少が観測され
たほかはほぼ同様な耐食性を示した。本発明者らは特開
昭63−65604号において、B、N、C,P(7)
5〜20at%の添加で保磁力の減少の効果が得られる
ことを示しており、同様の効果が得られているものと推
察される。また、これらの強磁性金属にさらにNi、R
h、Ru、Pd、ZrNb、Ta、Ag、Os、Ir、
Pt、Au、Cr、Mo、W、Ti、Bi。 V、Co、Cuから選ばれる1種以上の元素を添加する
ことで耐食性のさらなる向上が期待できる。これらの添
加元素の効果については、本発明者らが特開昭63−2
36304号で開示している。
[Table 1] [0019] In the table, the ferromagnetic metal film and oxide indicate the composition of the target during film formation. In an ideal film formation process, it can be considered that the composition of the target is approximately equal to the composition of the film to be formed. However, depending on the conditions, light elements may be repelled from the substrate surface, resulting in the composition of the film being lower than that of the target. Coercive force, corrosion test, and test are values measured after heat treatment at 500° C. for 1 hour. Note that the coercive force was measured using a B-H curve tracer. Heat resistance was indicated at the temperature at which the coercive force of the heat-treated sample was 1.50e or more. Further, the corrosion test is the result of a salt water spray test in which the temperature was maintained at 35° C. while intermittently spraying a 0.5% NaCl aqueous solution, and the time taken for corrosion to progress by 5% is the result. Here, a 5% decrease in film magnetization means a 5% decrease in corrosion.
It is defined as progressing. [00201 As a result, a ferromagnetic metal film containing Fe and Co as main components was
By laminating layers through oxides of Va and VIa group elements, it was possible to obtain a multilayer magnetic film having excellent soft magnetic properties with a coercive force of 1.50 e or less even at a high temperature of 600°C. The corrosion test results at this time confirmed that all samples exhibited corrosion resistance for 50 days or more. In addition, similarly Fe, Co
We also investigated the fabrication of a multilayer film in which elements such as B and CN were added to improve soft magnetic properties to a ferromagnetic metal film whose main component is B, but a decrease in coercive force of 5 to 15% was observed. Otherwise, the corrosion resistance was almost the same. The present inventors have proposed B, N, C, P (7) in Japanese Patent Application Laid-open No. 63-65604.
It is shown that the effect of reducing coercive force can be obtained by adding 5 to 20 at %, and it is presumed that a similar effect is obtained. In addition, these ferromagnetic metals are further coated with Ni and R.
h, Ru, Pd, ZrNb, Ta, Ag, Os, Ir,
Pt, Au, Cr, Mo, W, Ti, Bi. Further improvement in corrosion resistance can be expected by adding one or more elements selected from V, Co, and Cu. Regarding the effects of these additive elements, the present inventors reported in JP-A-63-2
It is disclosed in No. 36304.

【002月 比較実験として、酸化物の代わりにIVa,VIa族元
素の硼化物、炭化物、窒化物を用いて多層膜を形成した
。しかしこれらの膜は、耐食性が極めて低いことが判明
した。すなわち、硼化物、炭化物、窒化物が挿入された
場合はこれらの物質がさらにエネルギーの低い酸化物に
変化しやすいため、空気中で塩水に長時間曝されると、
酸化し、腐食するものと推察される。また、Fe、Co
だけで1μmの膜を形成し、熱処理を行った場合は40
0℃で結晶粒の粗大化が生じてしまい、保磁力は5 0
e以上に増加した。従って、Ti、Zr、Hf、V、N
bTa、Cr等の酸化物材料を強磁性金属膜中に挿入す
ることにより、耐熱性および耐食性が向上することが明
らかである。 [0022] 600℃で熱処理を行った積層膜の断面構造を電子顕微
鏡によって観察した結果、600℃の熱処理後も積層構
造は保たれており、高融点材料の酸化物が強磁性金属膜
の結晶粒の成長を抑制していることがわかる。なお、本
発明者らは同時にこれらの強磁性金属膜を酸化物の替わ
りに、Ni、Cr等の異なる金属膜を介して積層し、6
00℃で熱処理を行った後、断面構造を電子顕微鏡によ
って観察した結果、強磁性金属膜と中間層の金属膜は完
全に拡散しあって、積層構造を認めることはできなかっ
たばかりか結晶粒は粗大化し膜の表面から基板界面まで
1個の単結晶になっているものもあった。 [0023] 本願発明の中間膜の厚さに特に制限は無いが、前述した
ように膜中に非磁性体である中間膜の割合が増えると、
単純希釈の効果により飽和磁束密度が低下する点で好ま
しくない。この観点からは中間膜はできるだけ薄い方が
良い。しかし、特開昭59−9905号で開示されてい
るように、結晶質の強磁性金属膜と異種の中間層を積層
すると、強磁性金属膜の結晶構造を微細化でき好適な磁
気特性が得られる。このような中間層の効果を期待する
ためには、中間層の厚さを1nm以上とすることが必要
である。1nm以上の厚さの中間層と強磁性金属層をス
パッタリングで積層すると、強磁性金属層の結晶構造は
微細化され、さらに、これを加熱しても中間層の酸化物
が強磁性金属層の結晶粒界に侵入して結晶の粗大化を妨
げると考えられる。 [0024] 本発明の磁性膜をX線回折法によって検討した結果、6
00℃で熱処理した膜の結晶構造はFeを主成分とした
場合、体心立方構造であり、COを主成分とした場合、
六方細密充填構造であった。いずれもFeやCoは他の
結晶構造を持なない単相であった。従って、FeやCo
は他の結晶構造を持つ非強磁性物質(例えばγ−Fe、
FeC2Fe203)を作らず、600℃以上の熱処理
を経ても1.7T以上の高い飽和磁束密度を得ることが
できた。 [0025] [実施例2] 強磁性金属に酸素を添加したターゲットと、IVa,V
Ia族元素の金属のターゲットを用い、実施例1と同様
に積層膜を形成した。強磁性金属に酸素を添加したター
ゲットはFeにFe2O3を混合し、またCOにCoO
を混合して作成した。 得られた結果を表2に示す。 [0026] 【表2】 (表2) [0027] 表中、多層磁性膜および金属は膜形成時のターゲットの
組成を示す。また、保磁力、結晶粒径は600℃で1時
間の熱処理を行ったのちに測定した値である。 なお、耐食性は実施例1の場合と同様に塩水噴霧状、験
によって求めた。 [0028] この結果、酸素を添加したFe、Coを主成分とする強
磁性金属膜をIVa,VIa族元素の金属を介して積層
させることによって600℃の高温でも保磁力1.10
e以下の優れた軟磁気特性を持つ多層磁性膜を得ること
ができた。 [0029] このときの結晶粒径は200A以下に保たれていること
が確認された。熱処理前の結晶粒径は150A以下であ
ったので熱処理によって結晶粒径はほとんど変わらない
ことが明らかになった。但し、熱処理による保磁力の変
化を調べたところ、300℃から450℃の範囲では保
磁力が一旦増加した後、さらに温度を上昇すると再び減
少する様子が見られ、強磁性金属膜を酸化物を介して積
層した場合とは異なる結果であった。 [00301 熱処理による飽和磁束密度の変化は実施例1と同様であ
り、大幅な変化は認められなかった。特に、600℃以
上の飽和磁束密度の減少はなかった。 [0031] 700℃で熱処理を行った積層膜の断面構造を電子顕微
鏡によって観察した結果、700℃の熱処理後も積層構
造は保たれており、積層構造が強磁性金属膜の結晶粒の
成長を抑制していることがわかる。さらに、本発明者ら
はこれらの強磁性金属積層膜を高分解能EPMA法によ
って分析した結果、中間層として挿入した金属層の場所
には多層磁性膜に添加した酸素も集まってきており、酸
化物が形成されていると考えられる。また、挿入した金
属は一部が拡散して、多層磁性膜を構成する結晶粒を包
むように存在していることが確認された。ここには添加
した炭素もしくは硼素も存在しており、炭化物や硼化物
も同時に存在すると考えられる。 スパッタリングで形
成した膜と、これを600℃で熱処理した後の膜をXP
S (Xray Photoelectron 5pe
ctroscopいによって分析した。この結果、熱処
理前の膜で観察された中間層構成金属元素を示すピーク
が熱処理後には小さくなり、変わりに中間層構成元素の
酸化物の存在を示すピークが観察された。すなわち、熱
処理後の多層磁性膜中で酸素と中間層の金属とが結合状
態(すなわち酸化物)にあることが確認された。従って
、酸化物を強磁性金属膜を構成する結晶粒の周囲に存在
せしめることにより、耐熱性を向上させることができる
ことが明らかである。 なお、得られた磁性膜を実施例
1と同様に耐食性の試、験を行なった結果、どの試料も
50日以上の耐食性を示し、磁性膜中に酸化物が存在す
ると、腐食が防止されることが明らかになった。 [0032] 実施例2においても、実施例1と同様に保磁力減少、耐
食性向上等のため他の元素を添加することができる。ま
た、中間層と強磁性金属層の関係についても実施例1と
同様に考えることができる。 [0033] [実施例3] 表3に示す強磁性金属をターゲットに用い、スパッタリ
ングガスをアルゴンと酸素の混合ガスとして多層磁性膜
を作成した。 [0034]
As a comparative experiment in February, a multilayer film was formed using borides, carbides, and nitrides of IVa and VIa group elements instead of oxides. However, these films were found to have extremely low corrosion resistance. In other words, when borides, carbides, and nitrides are inserted, these substances tend to change into oxides with lower energy, so when exposed to salt water in the air for a long time,
It is assumed that it oxidizes and corrodes. Also, Fe, Co
If a film of 1 μm is formed by just using
Coarse grains occur at 0°C, and the coercive force is 50
It increased by more than e. Therefore, Ti, Zr, Hf, V, N
It is clear that heat resistance and corrosion resistance are improved by inserting an oxide material such as bTa or Cr into a ferromagnetic metal film. [0022] As a result of observing the cross-sectional structure of the laminated film heat-treated at 600°C using an electron microscope, it was found that the laminated structure was maintained even after the heat treatment at 600°C. It can be seen that grain growth is suppressed. The present inventors also laminated these ferromagnetic metal films via different metal films such as Ni and Cr instead of oxide, and
After heat treatment at 00°C, the cross-sectional structure was observed using an electron microscope. As a result, the ferromagnetic metal film and the intermediate layer metal film were completely diffused into each other, and not only was it not possible to recognize a laminated structure, but the crystal grains were In some cases, the film became coarse and became a single single crystal from the surface of the film to the interface of the substrate. [0023] There is no particular limit to the thickness of the intermediate film of the present invention, but as mentioned above, when the proportion of the non-magnetic intermediate film in the film increases,
This is not preferable because the saturation magnetic flux density decreases due to the effect of simple dilution. From this point of view, it is better for the interlayer film to be as thin as possible. However, as disclosed in JP-A No. 59-9905, by laminating a crystalline ferromagnetic metal film and a different type of intermediate layer, the crystal structure of the ferromagnetic metal film can be made finer and suitable magnetic properties can be obtained. It will be done. In order to expect such an effect from the intermediate layer, it is necessary that the thickness of the intermediate layer be 1 nm or more. When an intermediate layer with a thickness of 1 nm or more and a ferromagnetic metal layer are laminated by sputtering, the crystal structure of the ferromagnetic metal layer becomes finer, and even if it is heated, the oxide of the intermediate layer will not form in the ferromagnetic metal layer. It is thought that it invades the grain boundaries and prevents crystal coarsening. [0024] As a result of examining the magnetic film of the present invention by X-ray diffraction method, 6
The crystal structure of the film heat-treated at 00°C is a body-centered cubic structure when Fe is the main component, and when CO is the main component,
It had a hexagonal close-packed structure. In both cases, Fe and Co were in a single phase with no other crystal structure. Therefore, Fe and Co
is a non-ferromagnetic material with other crystal structure (e.g. γ-Fe,
A high saturation magnetic flux density of 1.7 T or more could be obtained even after heat treatment at 600° C. or higher without producing FeC2Fe203). [0025] [Example 2] A target in which oxygen is added to a ferromagnetic metal, and IVa, V
A laminated film was formed in the same manner as in Example 1 using a group Ia metal target. Targets made by adding oxygen to ferromagnetic metals include Fe mixed with Fe2O3, and CO mixed with CoO.
Created by mixing. The results obtained are shown in Table 2. [0026] [Table 2] (Table 2) [0027] In the table, the multilayer magnetic film and metal indicate the composition of the target during film formation. Further, the coercive force and crystal grain size are values measured after heat treatment at 600° C. for 1 hour. Note that the corrosion resistance was determined by the salt water spray test in the same manner as in Example 1. [0028] As a result, a coercive force of 1.10 can be achieved even at a high temperature of 600° C. by laminating ferromagnetic metal films containing oxygen-added Fe and Co as main components via metals of group IVa and VIa elements.
A multilayer magnetic film with excellent soft magnetic properties of less than e could be obtained. [0029] It was confirmed that the crystal grain size at this time was maintained at 200A or less. Since the crystal grain size before heat treatment was 150A or less, it became clear that the crystal grain size hardly changed due to heat treatment. However, when we investigated the change in coercive force due to heat treatment, we found that the coercive force increased once in the range of 300°C to 450°C, and then decreased again as the temperature was further increased. The results were different from those obtained by laminating the two layers with each other. [00301 The change in saturation magnetic flux density due to heat treatment was the same as in Example 1, and no significant change was observed. In particular, there was no decrease in saturation magnetic flux density above 600°C. [0031] As a result of observing the cross-sectional structure of the laminated film heat-treated at 700° C. using an electron microscope, it was found that the laminated structure was maintained even after the heat treatment at 700° C., and that the laminated structure facilitated the growth of crystal grains in the ferromagnetic metal film. I can see that it is suppressed. Furthermore, as a result of analyzing these ferromagnetic metal laminated films by high-resolution EPMA method, the present inventors found that the oxygen added to the multilayer magnetic film also gathered at the location of the metal layer inserted as an intermediate layer, and the oxide is thought to be formed. It was also confirmed that a portion of the inserted metal had diffused and was present so as to surround the crystal grains that constitute the multilayer magnetic film. Added carbon or boron is also present here, and it is thought that carbides and borides are also present at the same time. The film formed by sputtering and the film after heat treatment at 600°C were subjected to XP
S (Xray Photoelectron 5pe
Analyzed by ctroscopy. As a result, the peak indicating the metal element constituting the intermediate layer, which was observed in the film before heat treatment, became smaller after the heat treatment, and instead, a peak indicating the presence of the oxide of the element constituting the intermediate layer was observed. That is, it was confirmed that oxygen and the metal of the intermediate layer were in a bonded state (ie, oxide) in the multilayer magnetic film after heat treatment. Therefore, it is clear that the heat resistance can be improved by allowing the oxide to exist around the crystal grains constituting the ferromagnetic metal film. The obtained magnetic film was tested for corrosion resistance in the same manner as in Example 1, and as a result, all samples showed corrosion resistance for 50 days or more, and the presence of oxides in the magnetic film prevented corrosion. It became clear. [0032] In Example 2, as in Example 1, other elements may be added to reduce coercive force, improve corrosion resistance, and the like. Furthermore, the relationship between the intermediate layer and the ferromagnetic metal layer can be considered in the same manner as in Example 1. [0033] [Example 3] A multilayer magnetic film was created using the ferromagnetic metals shown in Table 3 as a target and using a sputtering gas as a mixed gas of argon and oxygen. [0034]

【表3】 (表39 [0035] 表中、多層磁性膜は膜形成時のターゲットの組成を示す
。また、酸素濃度はスパッタリングガス中の酸素濃度を
示す。保磁力、耐食性は600℃で1時間の熱処理を行
ったのちに測定した値である。なお、耐食性は実施例1
の場合と同様に測定した。この結果、IVa,VTa族
元素を添加したFe、Coを主成分とする強磁性金属膜
を酸素雰囲気中でスパッタリングすることにより、60
0℃の高温でも保磁力1 0e以下の優れた軟磁気特性
を持つ多層磁性膜を得ることができた。このときの結晶
粒径は200A以下に保たれていることが確認された。 熱処理前の結晶粒径は150八以下であったので熱処理
によって結晶粒径はほとんど変わらないことが明らかに
なった。 [0036] さらに、600℃で熱処理を行なった膜の耐食性はいず
れも50日以上の値を示し、酸素を含まない磁性膜の耐
食性が10から30日であることに比べて、明らかに耐
父性の向上を図ることが出来た。 [0037] 熱処理後の磁性膜中に含まれた酸素量をEPMA法で計
測したところ、5.2から8.4at%の酸素が膜中に
存在することが確認された。さらに詳細に酸素含有量の
影響を調べるため、スパッタリングガス中の酸素濃度を
変えてFe86Nb1oB4膜をスパッタリングした結
果、酸素含有量と保磁力、耐食性の関係は第2図のよう
になった。すなわち、保磁力を低く保つためには、膜中
の酸素濃度が15at%以下、さらに好ましくは10a
t%以下が条件であり、耐食性は酸素の添加に伴い向上
することがわかった。また、保磁力が2 0e以下、か
つ耐食性が50日以上という望ましい結果を得るには、
膜中の酸素濃度が0.1at%以上、15at%以下が
条件であることがわかった。 [0038] 600℃で熱処理を行った磁性膜の断面構造を電子顕微
鏡によって観察した結果、600℃の熱処理後も結晶粒
は200A以下に保たれており、酸化物の形成が強磁性
金属膜の結晶粒の成長を抑制していることがわかる。さ
らに、本発明者らはこれらの強磁性金属膜を高分解能E
PMA法によって分析した結果、磁性膜の結晶粒界にI
Va,VIa族元素の酸化物が存在することが確認され
た。従って、実施例2と同様に酸化物のような高融点材
料が強磁性金属膜を構成する結晶粒の周囲に存在するこ
とにより、耐熱性および耐食性を向上させることができ
ることが明らかである。 [0039] なお、実施例3においても実施例1.2と同様に添加元
素を選択することができる。 [0040] [実施例4] 実施例1から3で得られた多層磁性膜を用いて図3に示
すように、メタルインギャップ型ヘッドの磁極を作製し
、高密度磁気記録装置のヘッドとして評価した。 図3Aに全体斜視図を、図3Bにギャップ近傍の拡大図
を示す。M n −Z nフェライト基板4に、膜厚5
μmの多層磁性膜5が被着された磁気コアが突き合わさ
れてギャップ8を形成する。ギャップ長は0.3μmで
ある。磁気コアにはコイル7が設けられている。ヘッド
形成時のガラスボンディング温度は520℃である。使
用した媒体は保磁力が1500 0eであった。この結
果、本発明のFe系多層磁性膜をヘッドの磁極に用いた
ヘッドの記録特性は従来のセンダストヘッドに比べて4
.6dB向上し、再生出力は約3  dB高かった。ま
た、100kBPI以上の記録密度を得ることができた
。これは本発明の多層磁性膜の飽和磁束密度が他の材料
に比べて高いことによるものである。 [0041] さらに、ヘッドの擬似ギャップ効果による擬似信号出力
を測定した結果、従来のFe、CoにNb、Zr、Ti
、Ta、Hf、Cr、W、Moと窒素もしくは炭素を同
時に添加した磁性膜をヘッドの磁極に用いた場合、3か
ら5dBの擬似信号出力が検出されていたものが、本発
明の磁性膜を用いたところ、擬似信号出力は2dB以下
に減少することが確認された。得られたヘッドのガラス
接着部をはがして、磁性膜側からフェライトに向かって
、オージェ電子分光法による深さ分析を行なったところ
、従来のヘッドでは磁性膜とフェライトの界面に50か
ら180Aの酸化物層が存在することが確認された。一
方、本発明のヘッドでは磁性膜とフェライトの界面の酸
化物層は高々20Aであり、磁性膜中に酸化物相が存在
する場合は、界面の酸化物層の厚さが薄くなり、疑似信
号出力が減少することが明らかになった。 [0042] また、従来の磁性膜を磁極に用いた場合はガラスボンデ
ィング時に磁性膜と充填ガラスの反応が生じ、磁性膜の
一部が軟磁気特性の劣る膜に変化して、ヘッドの記録再
生特性を劣化させた。また、ひどい場合には保磁力の高
い膜が形成され媒体に記録した信号をかつてに消去する
こともあった。しかし、本発明では、光学顕微鏡による
磁性膜と充填ガラス界面の観察によっても、反応層の形
成は認められず、高い記録再生特性を示した。 [0043] 以上の実施例ではイオンビームスパッタリング法によっ
て磁性膜の形成を行ったが、本発明者らはRFスパッタ
リング法でも同様の検討を行っており、基板温度を15
0℃前後まで上昇させるだけでほぼ同様の磁気特性およ
び耐熱性をもつ磁性膜かえられることを確認した。従っ
て、本発明は膜形成法によらず有効である。 [0044]
[Table 3] (Table 39 [0035] In the table, the multilayer magnetic film shows the composition of the target during film formation. Also, the oxygen concentration shows the oxygen concentration in the sputtering gas. The coercive force and corrosion resistance are 1 at 600°C. This is the value measured after heat treatment for several hours.The corrosion resistance is shown in Example 1.
It was measured in the same way as in the case of . As a result, by sputtering a ferromagnetic metal film mainly composed of Fe and Co to which IVa and VTa group elements were added,
It was possible to obtain a multilayer magnetic film with excellent soft magnetic properties with a coercive force of 10e or less even at a high temperature of 0°C. It was confirmed that the crystal grain size at this time was maintained at 200A or less. Since the crystal grain size before heat treatment was 1508 or less, it became clear that the crystal grain size was hardly changed by heat treatment. [0036] Furthermore, the corrosion resistance of the films heat-treated at 600° C. was 50 days or more, and compared to the corrosion resistance of a magnetic film that does not contain oxygen, which is 10 to 30 days, it is clear that the corrosion resistance of the films heat-treated at 600° C. We were able to improve this. [0037] When the amount of oxygen contained in the magnetic film after heat treatment was measured by the EPMA method, it was confirmed that 5.2 to 8.4 at % of oxygen was present in the film. In order to examine the influence of oxygen content in more detail, we sputtered a Fe86Nb1oB4 film while changing the oxygen concentration in the sputtering gas. As a result, the relationship between oxygen content, coercive force, and corrosion resistance was as shown in FIG. 2. That is, in order to keep the coercive force low, the oxygen concentration in the film should be 15 at% or less, more preferably 10 at%.
It was found that the condition is t% or less, and that corrosion resistance improves with the addition of oxygen. In addition, in order to obtain the desired results of coercive force of 20e or less and corrosion resistance of 50 days or more,
It has been found that the condition is that the oxygen concentration in the film is 0.1 at% or more and 15 at% or less. [0038] As a result of observing the cross-sectional structure of the magnetic film heat-treated at 600°C using an electron microscope, it was found that the crystal grain size was maintained at less than 200A even after the heat treatment at 600°C, indicating that the formation of oxides was caused by the formation of ferromagnetic metal films. It can be seen that the growth of crystal grains is suppressed. Furthermore, the present inventors have developed these ferromagnetic metal films using high-resolution E
As a result of analysis using the PMA method, I
It was confirmed that oxides of Va and VIa group elements were present. Therefore, as in Example 2, it is clear that heat resistance and corrosion resistance can be improved by having a high melting point material such as an oxide around the crystal grains constituting the ferromagnetic metal film. [0039] Also in Example 3, additive elements can be selected in the same manner as in Example 1.2. [0040] [Example 4] As shown in FIG. 3, a magnetic pole of a metal-in-gap head was manufactured using the multilayer magnetic films obtained in Examples 1 to 3, and evaluated as a head of a high-density magnetic recording device. did. FIG. 3A shows an overall perspective view, and FIG. 3B shows an enlarged view of the vicinity of the gap. M n -Z n ferrite substrate 4 has a film thickness of 5
The magnetic cores to which the multilayer magnetic film 5 of .mu.m is deposited are butted against each other to form a gap 8. The gap length is 0.3 μm. A coil 7 is provided in the magnetic core. The glass bonding temperature during head formation was 520°C. The medium used had a coercive force of 15000e. As a result, the recording characteristics of the head using the Fe-based multilayer magnetic film of the present invention for the magnetic pole of the head are 4.
.. The improvement was 6 dB, and the playback output was approximately 3 dB higher. Furthermore, a recording density of 100 kBPI or more could be obtained. This is because the multilayer magnetic film of the present invention has a higher saturation magnetic flux density than other materials. [0041] Further, as a result of measuring the pseudo signal output due to the pseudo gap effect of the head, it was found that Nb, Zr, Ti
, Ta, Hf, Cr, W, Mo, and nitrogen or carbon added at the same time as the magnetic pole of the head, a spurious signal output of 3 to 5 dB was detected; When used, it was confirmed that the pseudo signal output was reduced to 2 dB or less. When the glass adhesive part of the obtained head was peeled off and depth analysis was performed using Auger electron spectroscopy from the magnetic film side toward the ferrite, it was found that in the conventional head, 50 to 180 A of oxidation was observed at the interface between the magnetic film and the ferrite. The existence of a layer was confirmed. On the other hand, in the head of the present invention, the thickness of the oxide layer at the interface between the magnetic film and the ferrite is at most 20A, and if an oxide phase exists in the magnetic film, the thickness of the oxide layer at the interface becomes thinner, resulting in false signals. It became clear that the output was reduced. [0042] Furthermore, when a conventional magnetic film is used for the magnetic pole, a reaction occurs between the magnetic film and the filler glass during glass bonding, and a part of the magnetic film changes to a film with poor soft magnetic properties, causing the recording/reproduction of the head to deteriorate. properties deteriorated. Furthermore, in severe cases, a film with a high coercive force may be formed, erasing signals previously recorded on the medium. However, in the present invention, no formation of a reaction layer was observed even when the interface between the magnetic film and the filled glass was observed using an optical microscope, and high recording and reproducing characteristics were exhibited. [0043] In the above examples, the magnetic film was formed by the ion beam sputtering method, but the present inventors have also conducted a similar study using the RF sputtering method, and the substrate temperature was
It was confirmed that a magnetic film having almost the same magnetic properties and heat resistance could be changed by simply raising the temperature to around 0°C. Therefore, the present invention is effective regardless of the film formation method. [0044]

【発明の効果】【Effect of the invention】

以上詳細に説明したごとく、本発明による耐熱高飽和磁
束密度膜はすくなくとも600℃の温度までその軟磁気
特性が良好であり、その飽和磁束密度の減少も存在しな
い。また、この軟磁性膜は耐食性が極めて優れておるば
かりか、磁性膜とフェライトとの界面に酸化物等の反応
層が形成されにくく、従って、この耐熱高飽和磁束密度
膜を磁気記録装置の磁気ヘッド、特にメタルインギャッ
プ型の磁気ヘッドに用いた場合、500℃以上の高温で
ガラスボンディングを行うことができるようになり、十
分な強度を持つガラス層を形成することができた。また
、疑似ギャップに基づく疑似信号出力も2dB以下と低
い値であった。
As explained in detail above, the heat-resistant high saturation magnetic flux density film according to the present invention has good soft magnetic properties up to a temperature of at least 600° C., and there is no decrease in the saturation magnetic flux density. In addition, this soft magnetic film not only has extremely excellent corrosion resistance, but also prevents the formation of reaction layers such as oxides at the interface between the magnetic film and ferrite. When used in heads, particularly metal-in-gap magnetic heads, glass bonding can now be performed at high temperatures of 500° C. or higher, and a glass layer with sufficient strength can be formed. Further, the pseudo signal output based on the pseudo gap was also a low value of 2 dB or less.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図1は本発明の強磁性金属膜の断面図[Figure 1] Figure 1 is a cross-sectional view of the ferromagnetic metal film of the present invention.

【図2】
図2は本発明の多層磁性膜の保持力と耐女性に及ぼす膜
中の酸素濃度の影響を示すグラフの図
[Figure 2]
Figure 2 is a graph showing the influence of oxygen concentration in the film on the coercive force and resistance to fragility of the multilayer magnetic film of the present invention.

【図3】図3、Aは本発明の磁気ヘッドの斜視図、Bは
本発明の磁気ヘッドのギャップ部近傍を示す平面図
FIG. 3A is a perspective view of the magnetic head of the present invention, and B is a plan view showing the vicinity of the gap portion of the magnetic head of the present invention.

【符号の説明】[Explanation of symbols]

1・・・基板1.2・・・強磁性金属層、3・・・酸化
物層
1...Substrate 1.2...Ferromagnetic metal layer, 3...Oxide layer

【書類名】図面[Document name] Drawing

【図1】 (図 )[Figure 1] (figure )

【図2】 (図2 )[Figure 2] (Figure 2 )

【図3】 (図3 ) (B)[Figure 3] (Figure 3 ) (B)

Claims (23)

【特許請求の範囲】[Claims] 【請求項1】強磁性金属中に酸化物相が存在してなるこ
とを特徴とする強磁性膜゜
[Claim 1] A ferromagnetic film characterized by the presence of an oxide phase in a ferromagnetic metal.
【請求項2】前記酸化物相がIVa,Va,VIa族元
素から選ばれる少なくとも1種以上の元素を含むことを
特徴とする請求項1記載の強磁性膜。
2. The ferromagnetic film according to claim 1, wherein the oxide phase contains at least one element selected from group IVa, Va, and VIa elements.
【請求項3】前記酸化物相を除いた強磁性金属が単相の
結晶である請求項1または2記載の強磁性膜。
3. The ferromagnetic film according to claim 1, wherein the ferromagnetic metal excluding the oxide phase is a single-phase crystal.
【請求項4】前記強磁性金属がFeもしくはCoを主成
分とした結晶からなることを特徴とする請求項1乃至3
のうちいずれかに記載の記載の強磁性膜。
4. Claims 1 to 3, wherein the ferromagnetic metal is made of a crystal containing Fe or Co as a main component.
A ferromagnetic film according to any one of the above.
【請求項5】前記結晶の結晶粒径の平均値が200オン
グストローム以下である請求項4記載の強磁性膜。
5. The ferromagnetic film according to claim 4, wherein the average grain size of the crystals is 200 angstroms or less.
【請求項6】前記酸化物相が前記結晶の結晶粒界部分に
存在することを特徴とする請求項5記載の強磁性膜。
6. The ferromagnetic film according to claim 5, wherein the oxide phase is present at a grain boundary portion of the crystal.
【請求項7】酸素の前記強磁性金属に対する添加量が0
.1から15at%であることを特徴とする請求項1乃
至6のうちいずれかに記載の強磁性膜。
7. The amount of oxygen added to the ferromagnetic metal is 0.
.. 7. The ferromagnetic film according to claim 1, wherein the ferromagnetic film has a content of 1 to 15 at%.
【請求項8】磁気特性または耐食性向上のために、さら
に1種以上の添加元素を添加した請求項1乃至7のうち
いずれかに記載の強磁性膜。
8. The ferromagnetic film according to claim 1, further comprising one or more additional elements added to improve magnetic properties or corrosion resistance.
【請求項9】前記添加元素がB,N,C,Pからなる群
より選ばれる少なくとも1種の元素であることを特徴と
する請求項8記載の強磁性膜。
9. The ferromagnetic film according to claim 8, wherein the additive element is at least one element selected from the group consisting of B, N, C, and P.
【請求項10】強磁性金属層と、IVa,Va,VIa
族元素から選ばれる少なくとも1種以上の酸化物を含む
中間層の積層から成る多層磁性膜。
10. Ferromagnetic metal layer, IVa, Va, VIa
A multilayer magnetic film comprising a stack of intermediate layers containing at least one oxide selected from group elements.
【請求項11】前記強磁性金属層がFeまたはCoを主
成分とする請求項10記載の多層磁性膜。
11. The multilayer magnetic film according to claim 10, wherein the ferromagnetic metal layer contains Fe or Co as a main component.
【請求項12】前記強磁性金属層がさらにB,N,C,
Pからなる群より選ばれる少なくとも1種の元素を含む
請求項11記載の多層磁性膜。
12. The ferromagnetic metal layer further comprises B, N, C,
The multilayer magnetic film according to claim 11, containing at least one element selected from the group consisting of P.
【請求項13】前記中間層の膜厚が1nm以上である請
求項10乃至12のうちいずれかに記載の多層磁性膜。
13. The multilayer magnetic film according to claim 10, wherein the intermediate layer has a thickness of 1 nm or more.
【請求項14】酸素を添加した強磁性金属層と、IVa
,Va,VIa族元素から選ばれる少なくとも1種以上
の元素を含む中間層の積層から成る多層磁性膜。
14. A ferromagnetic metal layer doped with oxygen, and an IVa
, Va, and VIa group elements.
【請求項15】前記強磁性金属層がFeまたはCoを主
成分とする請求項14記載の多層磁性膜。
15. The multilayer magnetic film according to claim 14, wherein the ferromagnetic metal layer contains Fe or Co as a main component.
【請求項16】前記強磁性金属層がさらにB,N,C,
Pからなる群より選ばれる少なくとも1種の元素を含む
請求項15記載の多層磁性膜。
16. The ferromagnetic metal layer further comprises B, N, C,
The multilayer magnetic film according to claim 15, containing at least one element selected from the group consisting of P.
【請求項17】前記中間層の膜厚が1nm以上である請
求項14乃至16のうちいずれかに記載の多層磁性膜。
17. The multilayer magnetic film according to claim 14, wherein the intermediate layer has a thickness of 1 nm or more.
【請求項18】Fe,Coから選ばれる少なくとも1つ
の元素と、IVa,Va,VIa族元素から選ばれる少
なくとも1種以上の元素と、0.1〜15at%の酸素
を酸化物状態で含む強磁性膜。
18. A strong chemical containing at least one element selected from Fe and Co, at least one element selected from group IVa, Va, and VIa elements, and 0.1 to 15 at% oxygen in an oxide state. magnetic film.
【請求項19】Fe,Coから選ばれる少なくとも1種
の元素を含むターゲットと、IVa,Va,VIa族元
素から選ばれる少なくとも1種以上の元素の酸化物を含
むターゲットを、交互にスパッタリングして多層磁性膜
を形成する強磁性膜の製造方法。
19. A target containing at least one element selected from Fe and Co and a target containing an oxide of at least one element selected from group IVa, Va, and VIa elements are sputtered alternately. A method for manufacturing a ferromagnetic film forming a multilayer magnetic film.
【請求項20】Fe,Coから選ばれる少なくとも1種
の元素と酸素を含むターゲットと、IVa,Va,VI
a族元素から選ばれる少なくとも1種以上の元素を含む
ターゲットを、交互にスパッタリングして多層磁性膜を
形成する強磁性膜の製造方法。
20. A target containing at least one element selected from Fe, Co and oxygen; IVa, Va, VI
A method for manufacturing a ferromagnetic film, which comprises forming a multilayer magnetic film by alternately sputtering targets containing at least one element selected from Group A elements.
【請求項21】Fe,Coから選ばれる少なくとも1種
の元素と、IVa,Va,VIa族元素から選ばれる少
なくとも1種以上の元素を含むターゲットを、酸素を含
むスパッタリングガス中でスパッタリングする強磁性膜
の製造方法。
21. A ferromagnetic method in which a target containing at least one element selected from Fe and Co and at least one element selected from group IVa, Va, and VIa elements is sputtered in a sputtering gas containing oxygen. Membrane manufacturing method.
【請求項22】強磁性金属中に酸化物相が存在してなる
磁性膜を有する磁気回路と、該磁気回路に磁気的に結合
するコイルと、上記磁気回路の一部に設けられた磁気ギ
ャップを有する磁気ヘッド。
22. A magnetic circuit having a magnetic film formed by the presence of an oxide phase in a ferromagnetic metal, a coil magnetically coupled to the magnetic circuit, and a magnetic gap provided in a part of the magnetic circuit. A magnetic head with
【請求項23】前記磁気回路は、基板に前記磁性膜が被
着されてなる1対の磁気コアを、ガラスによって接合し
てなる請求項22記載の磁気ヘッド。
23. The magnetic head according to claim 22, wherein the magnetic circuit is formed by bonding a pair of magnetic cores each having the magnetic film adhered to a substrate using glass.
JP2405640A 1990-01-08 1990-12-25 Ferromagnetic film and magnet head using thereof Pending JPH03292705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2405640A JPH03292705A (en) 1990-01-08 1990-12-25 Ferromagnetic film and magnet head using thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-670 1990-01-08
JP67090 1990-01-08
JP2405640A JPH03292705A (en) 1990-01-08 1990-12-25 Ferromagnetic film and magnet head using thereof

Publications (1)

Publication Number Publication Date
JPH03292705A true JPH03292705A (en) 1991-12-24

Family

ID=26333689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2405640A Pending JPH03292705A (en) 1990-01-08 1990-12-25 Ferromagnetic film and magnet head using thereof

Country Status (1)

Country Link
JP (1) JPH03292705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011499A1 (en) * 1995-09-21 1997-03-27 Tdk Corporation Magnetic transducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011499A1 (en) * 1995-09-21 1997-03-27 Tdk Corporation Magnetic transducer
US5923504A (en) * 1995-09-21 1999-07-13 Tdk Corporation Magnetoresistance device

Similar Documents

Publication Publication Date Title
US5942342A (en) Perpendicular recording medium and magnetic recording apparatus
US5290629A (en) Magnetic film having a magnetic phase with crystallites of 200 A or less and an oxide phase present at the grain boundaries
US5484491A (en) Ferromagnetic film
US6841259B1 (en) Magnetic thin film, production method therefor, evaluation method therefor and magnetic head using it, magnetic recording device and magnetic device
US4935311A (en) Magnetic multilayered film and magnetic head using the same
US4797330A (en) Perpendicular magnetic storage medium
JPH06338410A (en) Soft magnetic multilayer film and magnetic head
JP3970610B2 (en) Magnetic thin film and recording head
US5777828A (en) Magnetic alloy and magnetic head having at least a part made of the magnetic alloy
KR970011188B1 (en) Magnetic thin film & its using magnetic head
JP3108637B2 (en) Method for manufacturing soft magnetic thin film
JPH03292705A (en) Ferromagnetic film and magnet head using thereof
JP3108636B2 (en) Magnetic head and method of manufacturing the same
JP3663289B2 (en) Magnetic recording medium and magnetic storage device
JP2001093139A (en) Magnetic recording medium and magnetic recording and reproducing device
JP2839554B2 (en) Magnetic film and magnetic head using the same
JP2001351226A (en) Magnetic recording medium, method for producing the same and magnetic recorder
JPH04252006A (en) Corrosion-resistant magnetically soft film and magnetic head using the same
JP3296829B2 (en) Soft magnetic multilayer film and magnetic head
JPH0315245B2 (en)
JP3243256B2 (en) Soft magnetic thin film and magnetic head
JPH03181008A (en) Magnetic head
JPH07249519A (en) Soft magnetic alloy film, magnetic head, and method for adjusting coefficient of thermal expansion of soft magnetic alloy film
JPH0488605A (en) Highly corrosion-resistant soft magnetic material
EP0351815A2 (en) Perpendicular magnetic recording medium, method for its manufacturing and method for recording and reproducing