JPH04252006A - Corrosion-resistant magnetically soft film and magnetic head using the same - Google Patents

Corrosion-resistant magnetically soft film and magnetic head using the same

Info

Publication number
JPH04252006A
JPH04252006A JP829391A JP829391A JPH04252006A JP H04252006 A JPH04252006 A JP H04252006A JP 829391 A JP829391 A JP 829391A JP 829391 A JP829391 A JP 829391A JP H04252006 A JPH04252006 A JP H04252006A
Authority
JP
Japan
Prior art keywords
film
magnetic
corrosion
ferromagnetic
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP829391A
Other languages
Japanese (ja)
Inventor
Toshio Kobayashi
俊雄 小林
Yoshitsugu Koiso
小礒 良嗣
Hitoshi Nakamura
斉 中村
Moichi Otomo
茂一 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP829391A priority Critical patent/JPH04252006A/en
Publication of JPH04252006A publication Critical patent/JPH04252006A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance a magnetically soft characteristic and to prevent that a substrate or a filling glass is reacted when a magnetic head is manufactured by using a specific corrosion-resistant magnetically soft film as a core for the magnetic head at a magnetic recording apparatus. CONSTITUTION:Cr or Cr and Mo or W are made to exist in a ferromagnetic metal film which simultaneously contains elements selected from Ti, Zr, Hf, V, Nb, Ta, Mo and W and elements selected from B, C, N and O. The magnetic pole of a metal in-gap tape head is manufactured by using the ferromagnetic film. A magnetic core to which a ferromagnetic film 2 having a film thickness of 5mum has been applied is brought face to face with an Mn-Zn ferrite substrate 1; a gap 4 is formed. The length of the gap is at 0.2mum, and a coil 5 is wound on the magnetic core. A glass bonding temperature is set at 520 deg.C when a head is formed; a reaction layer is not formed when the interface between the magnetic film and a filling glass 3 is observed by using an optical microscope.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は磁気ディスク装置,VT
Rなどに用いられる磁気ヘッド材料に係り、特に高飽和
磁束密度,高透磁率,高耐熱性,高耐食性,耐反応性を
有する強磁性金属膜及びこれを用いた磁気ヘッドに関す
る。
[Industrial Application Field] The present invention relates to magnetic disk devices, VT
The present invention relates to a magnetic head material used for R, etc., and particularly to a ferromagnetic metal film having high saturation magnetic flux density, high magnetic permeability, high heat resistance, high corrosion resistance, and high reaction resistance, and a magnetic head using the same.

【0002】0002

【従来の技術】近年、磁気記録技術の発展は著しく、記
録密度の向上が進められている。記録密度を高くするた
めには高保磁力の記録媒体を使用する必要があり、また
高保磁力の記録媒体を磁化するためには、高飽和磁束密
度を有する磁極材料が必要となる。このため、従来のフ
ェライトなどに代ってNi−Fe合金(パーマロイ)や
Co系非晶質合金薄膜が磁極材料として使われている。 さらに、磁極材料は高飽和磁束密度であることのほかに
、記録再生効率の向上の点から高透磁率を有することが
必要とされる。また、磁気ヘッドを形成する工程におけ
るガラス充填の加熱工程に耐えて高透磁率を保持する必
要があるため、耐熱性も要求される。
2. Description of the Related Art In recent years, magnetic recording technology has made remarkable progress, and recording density has been improved. In order to increase the recording density, it is necessary to use a recording medium with a high coercive force, and in order to magnetize a recording medium with a high coercive force, a magnetic pole material having a high saturation magnetic flux density is required. For this reason, Ni--Fe alloy (permalloy) and Co-based amorphous alloy thin films are used as magnetic pole materials instead of conventional ferrite. Furthermore, in addition to having a high saturation magnetic flux density, the magnetic pole material is required to have a high magnetic permeability in order to improve recording and reproducing efficiency. Heat resistance is also required because it is necessary to withstand the heating process of glass filling in the process of forming a magnetic head and maintain high magnetic permeability.

【0003】このような磁極材料としては特開昭62−
210607号に示されているように、Fe,Co,N
i,Mnより選ばれる金属にNb,Zr,Ti,Ta,
Hf,Cr,W,Moと窒素を同時に添加した材料が報
告されている。また、この材料の作成方法は所定の組成
を有する金属ターゲットをアルゴンと窒素の混合ガスを
スパッタリングガスとして用い、スパッタリングする方
法である。この報告によればスパッタリングガス中の窒
素濃度を変調して窒化層と非窒化層を交互に積層するこ
とにより、飽和磁束密度1.5T 、保磁力1Oe以下
の特性を持つ膜が得られている。この膜の保磁力は60
0℃まで低く保たれており、耐熱性は600℃であった
[0003] As such a magnetic pole material, Japanese Patent Application Laid-Open No. 1986-
As shown in No. 210607, Fe, Co, N
Nb, Zr, Ti, Ta,
Materials in which Hf, Cr, W, Mo and nitrogen are added simultaneously have been reported. The method for producing this material is to sputter a metal target having a predetermined composition using a mixed gas of argon and nitrogen as a sputtering gas. According to this report, by modulating the nitrogen concentration in the sputtering gas and alternately stacking nitrided and non-nitrided layers, a film with a saturation magnetic flux density of 1.5 T and a coercive force of 1 Oe or less can be obtained. . The coercive force of this film is 60
The temperature was kept as low as 0°C, and the heat resistance was 600°C.

【0004】また、電子情報通信学会MR89−12(
1989.7)にはFeにTi,Zr,HfとCを同時
に添加することにより、Fe系の非晶質膜を形成し、つ
いでこれを熱処理することにより、耐熱性の高い微結晶
軟磁性材料が得られることが示された。
[0004] Also, the Institute of Electronics, Information and Communication Engineers MR89-12 (
1989.7), by simultaneously adding Ti, Zr, Hf, and C to Fe, an Fe-based amorphous film was formed, and this was then heat-treated to create a microcrystalline soft magnetic material with high heat resistance. was shown to be obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明者らはFe−N
b,Fe−Ta,Fe−Hf系材料を、アルゴンと窒素
の混合ガス中でスパッタリングし、上述した報告の追試
実験をおこなった。この結果、保磁力は報告の通り40
0〜600℃の熱を加えても1Oe以下の低い値を示す
ことが確認された。また、Fe−Hf−C系材料をアル
ゴンガス中でスパッタリングした後、500〜600℃
で熱処理をおこなって、保磁力1Oe以下の強磁性膜が
得られることも確認することができた。
[Problems to be Solved by the Invention] The present inventors have discovered that Fe-N
b, Fe-Ta, and Fe-Hf based materials were sputtered in a mixed gas of argon and nitrogen, and a supplementary experiment to the above-mentioned report was conducted. As a result, the coercive force was 40 as reported.
It was confirmed that even when heat was applied at 0 to 600°C, a low value of 1 Oe or less was exhibited. In addition, after sputtering Fe-Hf-C based material in argon gas,
It was also confirmed that a ferromagnetic film with a coercive force of 1 Oe or less could be obtained by heat treatment.

【0006】しかし、本発明者らがこれら従来の材料を
Mn−Znフェライト単結晶基板上に形成し、ガラス充
填のための600℃の加熱工程を経てメタルインギャッ
プ型ヘッドを試作したところ、Mn−Znフェライト単
結晶基板と磁性膜が反応して、界面に酸化物層が形成さ
れていることが明らかになった。この時、磁気ヘッドの
記録再生特性を調べた結果、予想された通り、結晶基板
と磁性膜界面の非磁性層に基づく大きな疑似ギャップ信
号が観測された。このような疑似ギャップ信号が観測さ
れる場合は正常な記録再生を行うことができない。また
このとき、磁性膜と充填ガラスとの間の反応も観察され
、磁性膜が薄くなっていることがわかった。すなわち、
従来の磁性膜は磁性膜単体としては優れた軟磁気特性を
示すが、ガラスボンディング工程を伴う磁気ヘッドの作
製を行う際は、基板あるいは充填ガラスとの反応防止が
問題となることが確認された。
However, when the present inventors fabricated these conventional materials on an Mn-Zn ferrite single crystal substrate and subjected them to a heating process at 600°C for glass filling to fabricate a metal-in-gap type head, they found that Mn It was revealed that the -Zn ferrite single crystal substrate and the magnetic film reacted to form an oxide layer at the interface. At this time, as a result of examining the recording and reproducing characteristics of the magnetic head, as expected, a large pseudogap signal was observed due to the nonmagnetic layer at the interface between the crystal substrate and the magnetic film. If such a pseudo gap signal is observed, normal recording and reproduction cannot be performed. At this time, a reaction between the magnetic film and the filled glass was also observed, and it was found that the magnetic film had become thinner. That is,
Conventional magnetic films exhibit excellent soft magnetic properties as a single magnetic film, but when manufacturing magnetic heads that involve a glass bonding process, it has been confirmed that preventing reactions with the substrate or filled glass becomes a problem. .

【0007】一方、ダミー試料としてガラス基板上に形
成した試料を塩水噴霧試験および恒温恒湿試験にかけて
耐食性の評価を行ったところ、従来用いられていたセン
ダスト膜やCo−Nb−Zr系の膜に比べて極めて腐食
しやすく、磁気ヘッドとして使用することが疑問視され
た。
On the other hand, when a sample formed on a glass substrate as a dummy sample was subjected to a salt spray test and a constant temperature and humidity test to evaluate its corrosion resistance, it was found that the previously used sendust film and Co-Nb-Zr film were In comparison, it corrodes extremely easily, and its use as a magnetic head was questioned.

【0008】したがって、本発明の目的は、上述の従来
技術の欠点を解消した新規な磁気ヘッド材料を提供する
ことにある。
Accordingly, an object of the present invention is to provide a new magnetic head material that overcomes the above-mentioned drawbacks of the prior art.

【0009】[0009]

【課題を解決するための手段】本発明者らは上述の問題
点を解決するために、鋭意研究を続けてきたが、Ti,
Zr,Hf,V,Nb,Ta,Mo,Wから選ばれる少
なくとも1種以上の元素とB,C,N,Oから選ばれる
少なくとも1種以上の元素を同時に含有する強磁性金属
膜中にCr、またはCrと同時にMoもしくはWを存在
せしめることにより、優れた軟磁気特性をもち、高温ま
で飽和磁束密度と軟磁気特性が保たれるばかりか、フェ
ライトなどの酸化物やガラスとの耐反応性が高く、耐食
性も高い磁気ヘッド材料を開発することができた。
[Means for Solving the Problems] The present inventors have continued intensive research in order to solve the above-mentioned problems.
Cr in a ferromagnetic metal film containing at least one element selected from Zr, Hf, V, Nb, Ta, Mo, and W and at least one element selected from B, C, N, and O. , or by having Mo or W present at the same time as Cr, it not only has excellent soft magnetic properties and maintains saturation magnetic flux density and soft magnetic properties up to high temperatures, but also has resistance to reactions with oxides such as ferrite and glass. We were able to develop a magnetic head material with high corrosion resistance and high corrosion resistance.

【0010】本発明の耐食軟磁性膜を磁気記録装置の磁
気ヘッドのコアに用いることにより、記録再生特性の優
れた磁気記録装置を得ることができる。特に、本発明の
強磁性膜をガラスボンディング工程を有する方法で作成
するヘッド、例えばメタルインギャップ型ヘッドに適用
することによりさらに大きな効果を得ることができる。
By using the corrosion-resistant soft magnetic film of the present invention in the core of a magnetic head of a magnetic recording device, a magnetic recording device with excellent recording and reproducing characteristics can be obtained. In particular, even greater effects can be obtained by applying the ferromagnetic film of the present invention to a head fabricated by a method including a glass bonding process, such as a metal-in-gap type head.

【0011】[0011]

【作用】上述のように、Ti,Zr,Hf,V,Nb,
Ta,Mo,Wから選ばれる少なくとも1種以上の元素
とB,C,N,Oから選ばれる少なくとも1種以上の元
素を同時に含有する強磁性金属膜中にCr、またはCr
と同時にMoもしくはWを存在せしめることにより、高
温まで軟磁気特性が保たれ、耐食性も高い軟磁性材料が
得られたが、そのメカニズムは必ずしも十分明らかにな
っているわけではない。ただし、本発明者らが検討した
結果、Cr,Mo,Wを含有する上記強磁性膜はこれら
を含有しない上記強磁性膜に比べて結晶粒が微細化して
おり、磁気異方性の分散が減少し、軟磁気特性が向上し
たことが確認された。また、これらの添加物は上記強磁
性膜の磁歪定数をほとんど変化しないことも確認され、
上記強磁性膜の磁歪定数が容易に制御できることが明ら
かになった。
[Operation] As mentioned above, Ti, Zr, Hf, V, Nb,
Cr or Cr in a ferromagnetic metal film containing at least one element selected from Ta, Mo, and W and at least one element selected from B, C, N, and O.
At the same time, by allowing Mo or W to exist, a soft magnetic material that maintains soft magnetic properties even at high temperatures and has high corrosion resistance has been obtained, but the mechanism thereof is not necessarily fully clarified. However, as a result of studies conducted by the present inventors, the crystal grains of the ferromagnetic film containing Cr, Mo, and W are finer than those of the ferromagnetic film that does not contain these, and the dispersion of magnetic anisotropy is reduced. It was confirmed that the soft magnetic properties were improved. It was also confirmed that these additives hardly changed the magnetostriction constant of the ferromagnetic film.
It has become clear that the magnetostriction constant of the above ferromagnetic film can be easily controlled.

【0012】これらの添加物を混入した強磁性膜は60
0℃まで加熱しても、ほとんど結晶粒径の粗大化が生じ
ておらず、添加物が強磁性膜の構成元素の拡散を抑制し
、加熱により結晶粒が成長することを防いでいることが
確認された。FeやCoのように結晶磁気異方性定数が
大きい強磁性材料では、軟磁気特性は強磁性材料を構成
する結晶粒の大きさに関係し、結晶粒が増大する程軟磁
気特性は劣化することが知られている。従って、本発明
の強磁性膜も、高温まで結晶粒が小さく保たれたために
軟磁気特性の劣化が生じなかったものと考えられる。 このとき、電子情報通信学会MR89−12(1989
.7)によれば、Ti,Zr,Hfのような元素はCと
の親和性が強いため、450℃以上の熱処理によって容
易にTi,Zr,Hfの炭化物を形成し、これらの炭化
物がFeを主成分とする強磁性膜の結晶粒界に析出して
、Feを主成分とする結晶粒の粒成長を抑制するものと
推察されている。
The ferromagnetic film mixed with these additives has 60
Even when heated to 0°C, there was almost no coarsening of the crystal grain size, indicating that the additive suppresses the diffusion of the constituent elements of the ferromagnetic film and prevents the crystal grains from growing due to heating. confirmed. In ferromagnetic materials with large magnetocrystalline anisotropy constants such as Fe and Co, the soft magnetic properties are related to the size of the crystal grains that make up the ferromagnetic material, and the soft magnetic properties deteriorate as the crystal grains increase. It is known. Therefore, it is considered that in the ferromagnetic film of the present invention, the crystal grains were kept small even at high temperatures, so that the soft magnetic properties did not deteriorate. At this time, the Institute of Electronics, Information and Communication Engineers MR89-12 (1989
.. According to 7), elements such as Ti, Zr, and Hf have a strong affinity with C, so they easily form carbides of Ti, Zr, and Hf by heat treatment at 450°C or higher, and these carbides combine with Fe. It is presumed that Fe precipitates at the grain boundaries of the ferromagnetic film containing Fe as the main component and suppresses the growth of crystal grains containing Fe as the main component.

【0013】本発明者らもTi,Zr,Hf,V,Nb
,Ta,Mo,W等とB,N,O間の親和性を高温にお
ける熱処理を行なうことによって検討した結果、Ti,
Zr,HfとCの場合と同様に、この場合もTi,Zr
,Hf,V,Nb,Ta,Mo,WはB,N,Oと強い
親和性をもち、XPS(エックスレイ・ホトエレクトロ
ン・スペクトロスコピー)分析によってこれらの金属の
硼化物,窒化物,酸化物が形成されることが確認された
。したがって、Ti,Zr,Hf,V,Nb,Ta,M
o,W等とB,N,Oを添加したFeやCoが高温まで
軟磁気特性を示す理由は硼化物,窒化物,酸化物が結晶
粒界に析出して、FeやCoを主成分とする強磁性膜の
粒成長を抑制したものと考えられる。しかし、同じ膜を
X線回折法によって調べても硼化物,窒化物,酸化物の
ピークはあまりはっきりせず、これらの物質は微量であ
るか、非晶質であるかのいずれかであった。ただし、熱
処理温度が600℃以上になると、これらの物質のX線
回折ピークが明確になり、硼化物,窒化物,酸化物の存
在が確認された。これらの膜においても、Cr,Mo,
Wを含有する上記強磁性膜はこれらを含有しない上記強
磁性膜に比べて結晶粒が微細化しており、軟磁気特性の
向上が確認された。この結果、Fe,Coを主成分とす
る強磁性膜にIVa,Va,VIa族元素のTi,Zr
,Hf,V,Nb,Ta,Mo,Wから選ばれる少なく
とも1種以上の元素を0.5 から15at%、B,C
,N,Oから選ばれる少なくとも1種以上の元素を0.
5 から15at%添加し、さらにCr等を0.1 か
ら10at%添加することにより、好ましい軟磁性材料
を得ることができた。
The present inventors also use Ti, Zr, Hf, V, Nb
, Ta, Mo, W, etc. and B, N, O by heat treatment at high temperature.
As in the case of Zr, Hf and C, in this case also Ti, Zr
, Hf, V, Nb, Ta, Mo, and W have a strong affinity with B, N, and O, and borides, nitrides, and oxides of these metals have been identified by XPS (X-ray photoelectron spectroscopy) analysis. was confirmed to be formed. Therefore, Ti, Zr, Hf, V, Nb, Ta, M
The reason why Fe and Co added with O, W, etc. and B, N, and O exhibit soft magnetic properties even at high temperatures is because borides, nitrides, and oxides precipitate at the grain boundaries, making Fe and Co the main components. This is thought to be due to the suppression of grain growth in the ferromagnetic film. However, when the same film was examined by X-ray diffraction, the peaks for borides, nitrides, and oxides were not very clear, indicating that these substances were either in trace amounts or were amorphous. . However, when the heat treatment temperature was 600° C. or higher, the X-ray diffraction peaks of these substances became clear, and the presence of borides, nitrides, and oxides was confirmed. These films also contain Cr, Mo,
The ferromagnetic film containing W had finer crystal grains than the ferromagnetic film not containing W, and it was confirmed that the soft magnetic properties were improved. As a result, a ferromagnetic film mainly composed of Fe and Co is coated with IVa, Va, and VIa group elements such as Ti and Zr.
, Hf, V, Nb, Ta, Mo, W at 0.5 to 15 at%, B, C
, N, and O.
A preferable soft magnetic material could be obtained by adding 5 to 15 at% and further adding 0.1 to 10 at% of Cr or the like.

【0014】また、本発明の強磁性膜の飽和磁束密度は
非磁性添加物の量の増加に伴って減少する傾向を示した
が、これは非磁性体の添加による磁性材料の単純希釈の
効果によるものと推察される。
In addition, the saturation magnetic flux density of the ferromagnetic film of the present invention showed a tendency to decrease as the amount of non-magnetic additive increases, but this is due to the effect of simple dilution of the magnetic material by the addition of non-magnetic material. It is assumed that this is due to the following.

【0015】[0015]

【実施例】以下に本発明の実施例を挙げ、図表を参照し
ながらさらに具体的に説明する。 [実施例1]Fe,Coを主成分とする強磁性膜の形成
はRFスパッタリング装置を用いて結晶化ガラス基板上
に行った。本実施例で使用したスパッタリング装置のタ
ーゲットはFe,Co板上に添加元素のチップを貼り付
けた複合型ターゲットである。スパッタリングは以下の
条件で行った。
[Examples] Examples of the present invention will be given below, and will be explained in more detail with reference to figures and tables. [Example 1] A ferromagnetic film containing Fe and Co as main components was formed on a crystallized glass substrate using an RF sputtering device. The target of the sputtering apparatus used in this example is a composite target in which chips of additive elements are attached to a Fe, Co plate. Sputtering was performed under the following conditions.

【0016】 スパッタガス・・・Ar,Ar+N2,Ar+CH3,
Ar+O2 装置内ガス圧力・・・0.5 Pa 高周波電力・・・400W タ−ゲット基板間距離・・・50mm 基板温度・・・100〜200℃(水冷)本実施例では
基板として直径10mmの結晶化ガラス基板を用い、膜
厚2μmの種々の組成の膜を第1表に示すように形成し
た。得られた磁性膜は200℃から700℃の範囲でA
rガス中で1時間の熱処理を行い、各々の膜の軟磁気特
性評価,X線回折による結晶学的評価,EPMAによる
組成分析,恒温恒湿試験による耐食性評価を行なった。
Sputtering gas...Ar, Ar+N2, Ar+CH3,
Ar+O2 Gas pressure inside the device: 0.5 Pa High frequency power: 400 W Distance between target and substrate: 50 mm Substrate temperature: 100 to 200°C (water cooling) In this example, a crystal with a diameter of 10 mm was used as the substrate. Films of various compositions having a film thickness of 2 μm were formed as shown in Table 1 using a chemically modified glass substrate. The obtained magnetic film showed A in the range of 200°C to 700°C.
Heat treatment was performed in r gas for 1 hour, and each film was evaluated for soft magnetic properties, crystallographic evaluation by X-ray diffraction, compositional analysis by EPMA, and corrosion resistance evaluation by constant temperature and humidity test.

【0017】表1にはこの結果の一部である保磁力およ
び耐食日数の結果を示す。
Table 1 shows some of the results, including coercive force and corrosion resistance days.

【0018】[0018]

【表1】[Table 1]

【0019】表中、強磁性金属膜の組成はEPMA法で
求めた値を示す。また、保磁力,耐食性試験は550℃
で1時間の熱処理を行ったのちに測定した値である。な
お、保磁力はB−Hカーブトレーサーを用いて測定した
。また、耐食日数は80℃,湿度90%の恒温恒湿試験
によって求めた結果であり、腐食が5%進行した日数で
表した。この結果、Fe,Coを主成分とする強磁性金
属膜にTi,Zr,Hf,V,Nb,Ta,Mo,W、
及びB,N,C,O、さらにCr,Mo,Wを添加した
強磁性膜は550℃の高温で熱処理しても保磁力0.9
Oe 以下の優れた軟磁気特性を持つことが明らかにな
った。また、このときの腐食試験結果はいずれの試料も
50日以上の耐食性を示すことが確認された。
In the table, the composition of the ferromagnetic metal film is determined by the EPMA method. In addition, coercive force and corrosion resistance tests were conducted at 550℃.
This value was measured after heat treatment for 1 hour. Note that the coercive force was measured using a B-H curve tracer. The number of days of corrosion resistance was determined by a constant temperature and humidity test at 80° C. and 90% humidity, and was expressed as the number of days in which corrosion progressed by 5%. As a result, Ti, Zr, Hf, V, Nb, Ta, Mo, W,
A ferromagnetic film containing B, N, C, and O, as well as Cr, Mo, and W has a coercive force of 0.9 even after heat treatment at a high temperature of 550°C.
It was revealed that it has excellent soft magnetic properties of Oe or less. Furthermore, the results of the corrosion test at this time confirmed that all samples exhibited corrosion resistance for 50 days or more.

【0020】なお、同様にFe,Coを主成分とする強
磁性金属膜にTi,Zr,Hf,V,Nb,Ta,Mo
,WおよびB,C,N,O元素を添加し、Crを添加し
ない膜も検討したが、保磁力の値が5から20%増大し
、耐食日数もCr添加の場合に比較して2/3以下の日
数で劣化することが確認された(表1にはTaとCだけ
を添加した比較例を示す)。また、従来より耐食性向上
元素として知られている貴金属材料のRh,Ru,Pt
をCrの代わりに添加した上記強磁性膜も作製し、同様
に熱処理した後、その軟磁気特性及び耐食性を検討した
。この結果、耐食日数はCr添加と同様向上したが、保
磁力はCr添加を行なわなかった上記強磁性膜よりも増
大し、特性は劣化した。これら得られた強磁性膜の磁歪
定数を測定したところ、Cr添加を行なわなかった上記
強磁性膜、及びCr添加を行なった上記強磁性膜は−5
×10−7から5×10−7の間の値を示し、好ましい
磁歪定数を示すことが確認された。
Similarly, Ti, Zr, Hf, V, Nb, Ta, and Mo are added to the ferromagnetic metal film containing Fe and Co as main components.
, W and B, C, N, O elements but without Cr were also considered, but the coercive force value increased by 5 to 20% and the corrosion resistance was 2/2 compared to the case with Cr addition. It was confirmed that it deteriorated in 3 days or less (Table 1 shows a comparative example in which only Ta and C were added). In addition, noble metal materials such as Rh, Ru, and Pt, which are conventionally known as elements that improve corrosion resistance,
The above-mentioned ferromagnetic film in which Cr was added instead of Cr was also prepared, and after being heat-treated in the same manner, its soft magnetic properties and corrosion resistance were examined. As a result, the corrosion resistance was improved in the same manner as when Cr was added, but the coercive force was increased compared to the above-mentioned ferromagnetic film without Cr addition, and the characteristics were deteriorated. When the magnetostriction constants of the obtained ferromagnetic films were measured, it was found that the ferromagnetic films without Cr addition and the ferromagnetic films with Cr addition had -5
It was confirmed that the magnetostriction constant exhibited a value between ×10 −7 and 5×10 −7 and exhibited a preferable magnetostriction constant.

【0021】一方、Crの代わりにRh,Ru,Ptを
添加した上記強磁性膜の磁歪定数は1×10−6から9
×10−6と大きな値を示すことが確認された。したが
って、本発明者らはRh,Ru,Ptを添加することに
より、上記強磁性膜の磁歪定数は増大し、しいては軟磁
気特性を劣化するものと推察した。
On the other hand, the magnetostriction constant of the ferromagnetic film doped with Rh, Ru, and Pt instead of Cr is from 1×10 −6 to 9
It was confirmed that it showed a large value of x10-6. Therefore, the inventors of the present invention conjectured that by adding Rh, Ru, and Pt, the magnetostriction constant of the ferromagnetic film increases and the soft magnetic properties deteriorate.

【0022】以上の結果、Crの添加は軟磁気特性及び
磁歪定数をほとんど変化させずに耐食性を向上させるこ
とが明らかになった。
[0022] The above results revealed that the addition of Cr improves the corrosion resistance without substantially changing the soft magnetic properties and magnetostriction constant.

【0023】膜形成直後の強磁性膜及び550℃で熱処
理した強磁性膜をXPS法で分析した結果、膜形成直後
の膜ではTi,Zr,Hf,V,Nb,Ta,Mo,W
が概ね金属状態にあることを示し、B,C,N,O元素
もフリーな状態を示した。しかし、550℃の熱処理後
はTi,Zr,Hf,V,Nb,Ta,Mo,WとB,
C,N,O元素の結合が観測され、高融点の硼化物,炭
化物,窒化物,酸化物に変わっていることが確認された
。この結果から強磁性金属膜が高温での熱処理後も優れ
た軟磁気特性を示すのはこれらの高融点材料が強磁性金
属結晶粒の周囲に存在し、結晶粒の成長を抑制したもの
と予想される。実際、表1に示したように、550℃で
熱処理した後も本願発明の強磁性膜の結晶粒径は15n
m以下であることが確認されており、この微結晶が高温
まで軟磁気特性を保つものと考えられる。なお、Crの
添加により結晶粒が微細化したことも確認された。
As a result of XPS analysis of the ferromagnetic film immediately after film formation and the ferromagnetic film heat-treated at 550°C, it was found that Ti, Zr, Hf, V, Nb, Ta, Mo, and W were present in the film immediately after film formation.
was generally in a metallic state, and B, C, N, and O elements were also free. However, after heat treatment at 550°C, Ti, Zr, Hf, V, Nb, Ta, Mo, W and B,
Bonds of C, N, and O elements were observed, and it was confirmed that they had changed to borides, carbides, nitrides, and oxides with high melting points. From these results, it is predicted that the reason why the ferromagnetic metal film exhibits excellent soft magnetic properties even after heat treatment at high temperatures is that these high melting point materials exist around the ferromagnetic metal crystal grains and suppress the growth of the crystal grains. be done. In fact, as shown in Table 1, even after heat treatment at 550°C, the crystal grain size of the ferromagnetic film of the present invention was 15nm.
m or less, and it is thought that these microcrystals maintain soft magnetic properties up to high temperatures. It was also confirmed that the addition of Cr made the crystal grains finer.

【0024】本発明の磁性膜をX線回折法によって検討
した結果、700℃で熱処理した膜まで、硼化物,炭化
物,窒化物,酸化物を除く主成分の結晶構造は、Feを
主成分とした場合体心立方構造であり、Coを主成分と
した場合六方細密充填構造であった。いずれも硼化物,
炭化物,窒化物,酸化物を除く主成分は他の構造をもた
ず、単相であった。
As a result of examining the magnetic film of the present invention using an X-ray diffraction method, the crystal structure of the main components excluding borides, carbides, nitrides, and oxides was found to be Fe-based, up to the film heat-treated at 700°C. In this case, the structure was body-centered cubic, and in the case where Co was the main component, it was a hexagonal close-packed structure. Both are boride,
The main components other than carbides, nitrides, and oxides had no other structures and were single-phase.

【0025】[実施例2]実施例1において強磁性金属
膜のFe80Ta9C11 中に添加するCrの濃度を
変化させて実施例1と同様の方法で軟磁性膜を形成し、
その磁気特性および耐食性を評価した。測定は550℃
で1時間の熱処理を行ったのちに測定した。図1には腐
食日数および磁歪定数に及ぼすCr濃度の影響を示す。 なお、耐食日数は実施例1の場合と同様に80℃,湿度
90%の恒温恒湿試験によって求めた。図から明らかな
ように、Cr濃度が増加するにしたがって耐食日数は増
加し、Cr添加が耐食性の向上に有効なことが明らかで
ある。一方、磁歪定数は負から正の値に徐々に増加し、
多量のCr添加は磁歪定数の制御を困難にする。
[Example 2] A soft magnetic film was formed in the same manner as in Example 1 by changing the concentration of Cr added to the Fe80Ta9C11 ferromagnetic metal film, and
Its magnetic properties and corrosion resistance were evaluated. Measured at 550℃
The measurements were taken after heat treatment for 1 hour. Figure 1 shows the influence of Cr concentration on corrosion days and magnetostriction constant. Note that the number of days of corrosion resistance was determined by a constant temperature and humidity test at 80° C. and 90% humidity as in Example 1. As is clear from the figure, as the Cr concentration increases, the number of days of corrosion resistance increases, and it is clear that the addition of Cr is effective in improving corrosion resistance. On the other hand, the magnetostriction constant gradually increases from negative to positive values,
Adding a large amount of Cr makes it difficult to control the magnetostriction constant.

【0026】この結果、Crを添加したFe80Ta9
C11 膜は保磁力0.9Oe 以下の優れた軟磁気特
性を示すことが確認された。このとき、結晶粒はbcc
構造を持ち、15nm以下の微結晶に保たれていること
が確認された。耐食性はCr濃度が0.1at% 以上
でその向上が観測されるが、磁歪定数が1×10−6以
下の値を示すのはCr濃度が10at%以下の場合であ
った。ただし、強磁性膜の磁歪定数は熱処理温度によっ
て変化し、好ましいCr濃度は強磁性膜の熱処理温度の
上昇に伴って増加の傾向を持つことも明らかになった。 したがって、Cr濃度の0.1 から10at%は概ね
好ましい値である。
As a result, Cr-added Fe80Ta9
It was confirmed that the C11 film exhibits excellent soft magnetic properties with a coercive force of 0.9 Oe or less. At this time, the crystal grains are bcc
It was confirmed that the crystal had a structure and was kept in the form of microcrystals of 15 nm or less. Corrosion resistance is observed to improve when the Cr concentration is 0.1 at% or more, but the magnetostriction constant shows a value of 1×10 −6 or less when the Cr concentration is 10 at% or less. However, it has also been found that the magnetostriction constant of the ferromagnetic film changes depending on the heat treatment temperature, and that the preferable Cr concentration tends to increase as the heat treatment temperature of the ferromagnetic film increases. Therefore, a Cr concentration of 0.1 to 10 at% is generally a preferable value.

【0027】[実施例3]実施例1において強磁性金属
膜Fe80Ta9C11に添加する元素をCrだけから
CrとMoの同時添加及びCrとWの同時添加に替え、
実施例1と同様の検討を行った。保磁力,耐食性は55
0℃で1時間の熱処理を行ったのちに測定した値である
。なお、耐食性は実施例1の場合と同様に測定した。得
られた強磁性金属膜の保磁力はCrだけを添加した場合
とほぼ同様であり0.9Oe 以下の値を示した。
[Example 3] In Example 1, the element added to the ferromagnetic metal film Fe80Ta9C11 was changed from only Cr to simultaneous addition of Cr and Mo and simultaneous addition of Cr and W.
The same study as in Example 1 was conducted. Coercive force and corrosion resistance are 55
This value was measured after heat treatment at 0° C. for 1 hour. Note that the corrosion resistance was measured in the same manner as in Example 1. The coercive force of the obtained ferromagnetic metal film was almost the same as when only Cr was added, and showed a value of 0.9 Oe or less.

【0028】強磁性金属膜に添加するCrの量を3at
%とし、同時に添加するMo及びWの添加量を変化させ
て強磁性膜を形成し、その磁歪定数及び耐食性を検討し
た結果を図2に示す。図に示されるように、耐食性はC
rだけを添加したときに比べて一段と向上した。概ね0
.1at% 以上のMoもしくはWの添加で一層の耐食
性の向上が認められた。このとき、強磁性膜の磁歪定数
はMoもしくはWの添加で増加し、10at%以上の添
加では1×10−6以上の磁歪定数を示す様になり、好
ましくない。これにしたがって保磁力の増大も認められ
た。
The amount of Cr added to the ferromagnetic metal film is 3at.
%, and the results of examining the magnetostriction constant and corrosion resistance of ferromagnetic films formed by varying the amounts of Mo and W added simultaneously are shown in FIG. As shown in the figure, the corrosion resistance is C
This was a further improvement compared to when only r was added. Approximately 0
.. Further improvement in corrosion resistance was observed by adding 1 at % or more of Mo or W. At this time, the magnetostriction constant of the ferromagnetic film increases with the addition of Mo or W, and if it is added in an amount of 10 at % or more, the magnetostriction constant becomes 1×10 −6 or more, which is not preferable. Accordingly, an increase in coercive force was also observed.

【0029】以上の結果、Crと同時添加するMoもし
くはWの濃度は0.1at% から10at%が望まし
いことが明らかになった。
From the above results, it has become clear that the concentration of Mo or W to be added simultaneously with Cr is preferably 0.1 at% to 10 at%.

【0030】なお、得られた強磁性金属膜の飽和磁束密
度は1.4Tから2.0Tであり、飽和磁束密度の値は
添加元素の総量の増加に伴って減少する傾向を示した。
The saturation magnetic flux density of the obtained ferromagnetic metal film was 1.4 T to 2.0 T, and the value of the saturation magnetic flux density tended to decrease as the total amount of added elements increased.

【0031】[実施例4]実施例1から3で得られた強
磁性膜を用いて図3に示すように、メタルインギャップ
型ヘッドの磁極を作製し、高密度磁気記録装置のヘッド
として評価した。図3Aに全体斜視図を、図3Bにギャ
ップ近傍の拡大図を示す。Mn−Znフェライト基板1
に、膜厚5μmの強磁性膜2が被着された磁気コアが突
き合わされてギャップ4を形成する。ギャップ長は0.
2μm である。磁気コアにはコイル5が設けられてい
る。ヘッド形成時のガラスボンディング温度は520℃
である。使用した媒体は保磁力が1500Oeであった
。この結果、本発明のFe系強磁性膜をヘッドの磁極に
用いたヘッドの記録特性は従来のセンダストヘッドに比
べて4.3dB向上し、再生出力は約3.5dB高かっ
た。また、100kBPI以上の記録密度を得ることが
できた。これは本発明の強磁性膜の飽和磁束密度が他の
材料に比べて高いことによるものである。
[Example 4] Using the ferromagnetic films obtained in Examples 1 to 3, a magnetic pole for a metal-in-gap head was fabricated as shown in FIG. 3, and evaluated as a head for a high-density magnetic recording device. did. FIG. 3A shows an overall perspective view, and FIG. 3B shows an enlarged view of the vicinity of the gap. Mn-Zn ferrite substrate 1
Then, the magnetic cores to which the ferromagnetic film 2 with a thickness of 5 μm is attached are butted against each other to form a gap 4. Gap length is 0.
It is 2 μm. A coil 5 is provided in the magnetic core. Glass bonding temperature during head formation is 520℃
It is. The medium used had a coercive force of 1500 Oe. As a result, the recording characteristics of the head using the Fe-based ferromagnetic film of the present invention for the magnetic pole of the head were improved by 4.3 dB compared to the conventional Sendust head, and the reproduction output was approximately 3.5 dB higher. Furthermore, a recording density of 100 kBPI or more could be obtained. This is because the ferromagnetic film of the present invention has a higher saturation magnetic flux density than other materials.

【0032】さらに、ヘッドの擬似ギャップ効果による
擬似信号出力を測定した結果、従来のFe,CoにNb
,Zr,Ti,Ta,Hf,Cr,W,Moと窒素もし
くは炭素を同時に添加した磁性膜をヘッドの磁極に用い
た場合、3から5dBの擬似信号出力が検出されていた
ものが、本発明の磁性膜を用いたところ、擬似信号出力
は2dB以下に減少することが確認された。得られたヘ
ッドのガラス接着部をはがして、磁性膜側からフェライ
トに向かって、オージェ電子分光法による深さ分析を行
なったところ、従来のヘッドでは磁性膜とフェライトの
界面に50から180Åの酸化物層が存在することが確
認された。一方、本発明のヘッドでは磁性膜とフェライ
トの界面の酸化物層は高々20Åであり、磁性膜中にC
rが存在することにより、界面反応が抑えられて酸化物
層が薄くなり、疑似信号出力が減少したことが明らかに
なった。
Furthermore, as a result of measuring the pseudo signal output due to the pseudo gap effect of the head, it was found that Nb
, Zr, Ti, Ta, Hf, Cr, W, Mo, and nitrogen or carbon added at the same time for the magnetic pole of the head, a spurious signal output of 3 to 5 dB was detected, but the present invention When using this magnetic film, it was confirmed that the pseudo signal output was reduced to 2 dB or less. When the glass adhesive part of the obtained head was peeled off and depth analysis was performed using Auger electron spectroscopy from the magnetic film side toward the ferrite, it was found that in the conventional head, there was 50 to 180 Å of oxidation at the interface between the magnetic film and ferrite. The existence of a layer was confirmed. On the other hand, in the head of the present invention, the oxide layer at the interface between the magnetic film and the ferrite is at most 20 Å, and the magnetic film contains C.
It was revealed that the presence of r suppressed the interfacial reaction, making the oxide layer thinner and reducing the spurious signal output.

【0033】また、従来の磁性膜を磁極に用いた場合は
ガラスボンディング時に磁性膜と充填ガラスの反応が生
じ、磁性膜の一部が軟磁気特性の劣る膜に変化して、ヘ
ッドの記録再生特性を劣化させた。また、ひどい場合に
は保磁力の高い膜が形成され、媒体に記録した信号をか
ってに消去することもあった。しかし、本発明では、光
学顕微鏡による磁性膜と充填ガラス界面の観察によって
も、反応層の形成は認められず、高い記録再生特性を示
した。
In addition, when a conventional magnetic film is used for the magnetic pole, a reaction occurs between the magnetic film and the filler glass during glass bonding, and a part of the magnetic film changes to a film with poor soft magnetic properties, causing the recording/reproduction of the head to become difficult. properties deteriorated. Furthermore, in severe cases, a film with high coercive force may be formed, which may erase signals previously recorded on the medium. However, in the present invention, no formation of a reaction layer was observed even when the interface between the magnetic film and the filled glass was observed using an optical microscope, and high recording and reproducing characteristics were exhibited.

【0034】以上の実施例ではRFスパッタリング法に
よって磁性膜の形成を行ったが、本発明者らはイオンビ
ームスパッタリング法でも同様の検討を行っており、ほ
ぼ同様の磁気特性および耐熱性をもつ磁性膜がえられる
ことを確認した。従って、本発明は膜形成法によらず有
効である。
In the above embodiments, the magnetic film was formed by RF sputtering, but the present inventors have also conducted similar studies using ion beam sputtering, and found that magnetic films with almost similar magnetic properties and heat resistance were formed using ion beam sputtering. It was confirmed that a film was formed. Therefore, the present invention is effective regardless of the film formation method.

【0035】[0035]

【発明の効果】以上詳細に説明したごとく、本発明によ
る耐食軟磁性膜はすくなくとも600℃の温度までその
軟磁気特性が良好であり、その飽和磁束密度も高く保た
れる。また、この軟磁性膜は耐食性が極めて優れておる
ばかりか、磁性膜とフェライトとの界面に酸化物等の反
応層が形成されにくく、従って、この耐食軟磁性膜を磁
気記録装置の磁気ヘッド、特にメタルインギャップ型の
磁気ヘッドに用いた場合、500℃以上の高温でガラス
ボンディングを行うことができるようになり、十分な強
度を持つガラス層を形成することができた。また、疑似
ギャップに基づく疑似信号出力も2dB以下と低い値で
あった。
As described above in detail, the corrosion-resistant soft magnetic film according to the present invention has good soft magnetic properties up to a temperature of at least 600° C., and its saturation magnetic flux density is maintained high. In addition, this soft magnetic film not only has extremely excellent corrosion resistance, but also prevents the formation of reaction layers such as oxides at the interface between the magnetic film and ferrite. In particular, when used in a metal-in-gap magnetic head, glass bonding can now be performed at a high temperature of 500° C. or higher, and a glass layer with sufficient strength can be formed. Further, the pseudo signal output based on the pseudo gap was also a low value of 2 dB or less.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は本発明の強磁性膜の磁歪定数と耐食日数
に及ぼす膜中のCr濃度の影響を示すグラフ図。
FIG. 1 is a graph showing the influence of the Cr concentration in the film on the magnetostriction constant and corrosion resistance days of the ferromagnetic film of the present invention.

【図2】図2は本発明の強磁性膜の磁歪定数と耐食日数
に及ぼす膜中のMo及びW濃度の影響を示すグラフ図。
FIG. 2 is a graph showing the influence of Mo and W concentrations in the film on the magnetostriction constant and corrosion resistance days of the ferromagnetic film of the present invention.

【図3】図3(A)は本発明の磁気ヘッドの斜視図、(
B)は本発明の磁気ヘッドのギャップ部近傍を示す平面
図。
FIG. 3(A) is a perspective view of the magnetic head of the present invention, (
B) is a plan view showing the vicinity of the gap portion of the magnetic head of the present invention.

【符号の説明】[Explanation of symbols]

1…基板、2…強磁性膜、3…充填ガラス、4…ギャッ
プ、5…コイル。
DESCRIPTION OF SYMBOLS 1...Substrate, 2...Ferromagnetic film, 3...Filled glass, 4...Gap, 5...Coil.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】Ti,Zr,Hf,V,Nb,Ta,Mo
,Wから選ばれる少なくとも1種以上の元素とB,C,
N,Oから選ばれる少なくとも1種以上の元素を同時に
含有する強磁性金属膜中にCrを存在せしめたことを特
徴とする耐食軟磁性膜。
[Claim 1] Ti, Zr, Hf, V, Nb, Ta, Mo
, at least one element selected from W and B, C,
A corrosion-resistant soft magnetic film characterized in that Cr is present in a ferromagnetic metal film containing at least one element selected from N and O.
【請求項2】前記強磁性金属膜がFeもしくはCoを主
成分とした微結晶からなることを特徴とする請求項1記
載の耐食軟磁性膜。
2. The corrosion-resistant soft magnetic film according to claim 1, wherein the ferromagnetic metal film is made of microcrystals containing Fe or Co as a main component.
【請求項3】前記Ti,Zr,Hf,V,Nb,Ta,
Mo,Wから選ばれる少なくとも1種以上の元素の強磁
性金属膜中の濃度が0.5 から15at%であること
を特徴とする請求項1記載の耐食軟磁性膜。
3. The Ti, Zr, Hf, V, Nb, Ta,
2. The corrosion-resistant soft magnetic film according to claim 1, wherein the concentration of at least one element selected from Mo and W in the ferromagnetic metal film is from 0.5 to 15 at%.
【請求項4】前記B,C,N,Oから選ばれる少なくと
も1種以上の元素の強磁性金属膜中の濃度が0.5 か
ら15at%であることを特徴とする請求項1記載の耐
食軟磁性膜。
4. Corrosion resistance according to claim 1, characterized in that the concentration of at least one element selected from B, C, N, and O in the ferromagnetic metal film is from 0.5 to 15 at%. Soft magnetic film.
【請求項5】前記Crの強磁性膜中の濃度が0.1 か
ら10at%であることを特徴とする請求項1記載の耐
食軟磁性膜。
5. The corrosion-resistant soft magnetic film according to claim 1, wherein the concentration of Cr in the ferromagnetic film is from 0.1 to 10 at%.
【請求項6】Ti,Zr,Hf,V,Nb,Ta,Mo
,Wから選ばれる少なくとも1種以上の元素、B,C,
N,Oから選ばれる少なくとも1種以上の元素、Crを
同時に含有する強磁性金属膜中にMoもしくはWを同時
に存在せしめたことを特徴とする耐食軟磁性膜。
[Claim 6] Ti, Zr, Hf, V, Nb, Ta, Mo
, at least one element selected from W, B, C,
A corrosion-resistant soft magnetic film characterized in that Mo or W is simultaneously present in a ferromagnetic metal film containing at least one element selected from N and O and Cr.
【請求項7】前記強磁性金属膜がFeもしくはCoを主
成分とした微結晶からなることを特徴とする請求項6記
載の耐食軟磁性膜。
7. The corrosion-resistant soft magnetic film according to claim 6, wherein the ferromagnetic metal film is made of microcrystals containing Fe or Co as a main component.
【請求項8】前記Ti,Zr,Hf,V,Nb,Ta,
Mo,Wから選ばれる少なくとも1種以上の元素の強磁
性金属膜中の濃度が0.5 から15at%であること
を特徴とする請求項2記載の耐食軟磁性膜。
8. The Ti, Zr, Hf, V, Nb, Ta,
3. The corrosion-resistant soft magnetic film according to claim 2, wherein the concentration of at least one element selected from Mo and W in the ferromagnetic metal film is from 0.5 to 15 at%.
【請求項9】前記B,C,N,Oから選ばれる少なくと
も1種以上の元素の強磁性金属膜中の濃度が0.5 か
ら15at%であることを特徴とする請求項2記載の耐
食軟磁性膜。
9. Corrosion resistance according to claim 2, characterized in that the concentration of at least one element selected from B, C, N, and O in the ferromagnetic metal film is from 0.5 to 15 at%. Soft magnetic film.
【請求項10】前記Crの強磁性膜中の濃度が0.1 
から10at%であることを特徴とする請求項2記載の
耐食軟磁性膜。
10. The concentration of Cr in the ferromagnetic film is 0.1.
3. The corrosion-resistant soft magnetic film according to claim 2, wherein the corrosion-resistant soft magnetic film has a content of from 10 at% to 10 at%.
【請求項11】前記MoもしくはWの強磁性膜中の濃度
が0.1 から10at%であることを特徴とする請求
項2記載の耐食軟磁性膜。
11. The corrosion-resistant soft magnetic film according to claim 2, wherein the concentration of Mo or W in the ferromagnetic film is from 0.1 to 10 at%.
【請求項12】請求項1もしくは6記載の耐食軟磁性膜
を有する磁気回路と、該磁気回路に磁気的に結合するコ
イルと、上記磁気回路の一部に設けられた磁気ギャップ
を有する磁気ヘッド。
12. A magnetic head comprising a magnetic circuit having the corrosion-resistant soft magnetic film according to claim 1 or 6, a coil magnetically coupled to the magnetic circuit, and a magnetic gap provided in a part of the magnetic circuit. .
【請求項13】前記磁気回路は、基板に前記磁性膜が被
着されてなる1対の磁気コアを、ガラスによって接合し
てなる請求項12記載の磁気ヘッド。
13. The magnetic head according to claim 12, wherein the magnetic circuit is formed by bonding a pair of magnetic cores each having the magnetic film adhered to a substrate using glass.
JP829391A 1991-01-28 1991-01-28 Corrosion-resistant magnetically soft film and magnetic head using the same Pending JPH04252006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP829391A JPH04252006A (en) 1991-01-28 1991-01-28 Corrosion-resistant magnetically soft film and magnetic head using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP829391A JPH04252006A (en) 1991-01-28 1991-01-28 Corrosion-resistant magnetically soft film and magnetic head using the same

Publications (1)

Publication Number Publication Date
JPH04252006A true JPH04252006A (en) 1992-09-08

Family

ID=11689120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP829391A Pending JPH04252006A (en) 1991-01-28 1991-01-28 Corrosion-resistant magnetically soft film and magnetic head using the same

Country Status (1)

Country Link
JP (1) JPH04252006A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135989A (en) * 1991-11-12 1993-06-01 Fuji Photo Film Co Ltd Manufacture of soft magnetic thin film
JPH0786037A (en) * 1993-09-03 1995-03-31 Korea Advanced Inst Of Sci Technol Iron-based soft-magnetism thin-film alloy for magnetic head, and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135989A (en) * 1991-11-12 1993-06-01 Fuji Photo Film Co Ltd Manufacture of soft magnetic thin film
JPH0786037A (en) * 1993-09-03 1995-03-31 Korea Advanced Inst Of Sci Technol Iron-based soft-magnetism thin-film alloy for magnetic head, and manufacture thereof

Similar Documents

Publication Publication Date Title
KR970002825B1 (en) Soft magnetic thin film
US5290629A (en) Magnetic film having a magnetic phase with crystallites of 200 A or less and an oxide phase present at the grain boundaries
JP2963003B2 (en) Soft magnetic alloy thin film and method of manufacturing the same
EP0234879B1 (en) Ferromagnetic thin film and magnetic head using it
JP2698814B2 (en) Soft magnetic thin film
US4707417A (en) Magnetic composite film
KR970011188B1 (en) Magnetic thin film & its using magnetic head
JP2508489B2 (en) Soft magnetic thin film
JPH04252006A (en) Corrosion-resistant magnetically soft film and magnetic head using the same
JPH03131006A (en) Magnetic head
JP2775770B2 (en) Method for manufacturing soft magnetic thin film
JPS58118015A (en) Magnetic head
JP3386270B2 (en) Magnetic head and magnetic recording device
JP3296829B2 (en) Soft magnetic multilayer film and magnetic head
KR0136419B1 (en) Soft magnetic alloy thin film substrate
JPH03292705A (en) Ferromagnetic film and magnet head using thereof
JPH0488605A (en) Highly corrosion-resistant soft magnetic material
JP3279591B2 (en) Ferromagnetic thin film and manufacturing method thereof
JPH07249519A (en) Soft magnetic alloy film, magnetic head, and method for adjusting coefficient of thermal expansion of soft magnetic alloy film
JP3243256B2 (en) Soft magnetic thin film and magnetic head
JP2979557B2 (en) Soft magnetic film
JP2727274B2 (en) Soft magnetic thin film
JPH08107036A (en) Soft magnetic thin film magnetic recording equipment using that film
JPH0555036A (en) Soft magnetic thin film and its manufacture, soft magnetic multilayer film and its manufacture as well as magnetic head
JPH04367205A (en) Soft magnetic thin film