JP3386270B2 - Magnetic head and magnetic recording device - Google Patents

Magnetic head and magnetic recording device

Info

Publication number
JP3386270B2
JP3386270B2 JP01573995A JP1573995A JP3386270B2 JP 3386270 B2 JP3386270 B2 JP 3386270B2 JP 01573995 A JP01573995 A JP 01573995A JP 1573995 A JP1573995 A JP 1573995A JP 3386270 B2 JP3386270 B2 JP 3386270B2
Authority
JP
Japan
Prior art keywords
magnetic
film
magnetic head
value
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01573995A
Other languages
Japanese (ja)
Other versions
JPH08213235A (en
Inventor
文良 桐野
茂一 大友
良嗣 小礒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP01573995A priority Critical patent/JP3386270B2/en
Priority to KR1019960001987A priority patent/KR960032314A/en
Priority to DE19603618A priority patent/DE19603618A1/en
Priority to US08/595,080 priority patent/US5873955A/en
Publication of JPH08213235A publication Critical patent/JPH08213235A/en
Priority to US09/174,445 priority patent/US6033792A/en
Application granted granted Critical
Publication of JP3386270B2 publication Critical patent/JP3386270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/657Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing inorganic, non-oxide compound of Si, N, P, B, H or C, e.g. in metal alloy or compound
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1274Structure or manufacture of heads, e.g. inductive with "composite" cores, i.e. cores composed in some parts of magnetic particles and in some other parts of magnetic metal layers
    • G11B5/1276Structure or manufacture of heads, e.g. inductive with "composite" cores, i.e. cores composed in some parts of magnetic particles and in some other parts of magnetic metal layers including at least one magnetic thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/131Amorphous metallic alloys, e.g. glassy metals containing iron or nickel

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微結晶析出型の軟磁性
薄膜及びそれを用いて作製した磁気ヘッド並びに磁気記
録装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microcrystalline precipitation type soft magnetic thin film, a magnetic head manufactured using the same, and a magnetic recording apparatus.

【0002】[0002]

【従来の技術】近年の高度情報化社会の進展にともな
い、小型でしかも高密度な情報記憶装置へのニーズが高
まっている。この中で、磁気記録装置は高密度記録、ダ
ウンサイジングへの研究が急速に進められている。高密
度磁気記録を実現するためには、記録した微小磁区が安
定に存在するように高保磁力を有する磁気記録媒体と、
その媒体に情報を安定に記録できる起磁力の大きな高性
能の磁気ヘッドが必要となる。高保磁力媒体を十分に磁
化して信号を記録できる磁気ヘッドを得るためには、高
飽和磁束密度を有して強い磁界を発生できる磁気ヘッド
材料が必要となる。
2. Description of the Related Art With the progress of the advanced information society in recent years, there is an increasing need for a compact and high-density information storage device. Among them, studies on high-density recording and downsizing of magnetic recording devices are being rapidly advanced. In order to realize high-density magnetic recording, a magnetic recording medium having a high coercive force so that the recorded fine magnetic domains are stably present,
A high-performance magnetic head having a large magnetomotive force capable of stably recording information on the medium is required. In order to obtain a magnetic head capable of recording a signal by sufficiently magnetizing a high coercive force medium, a magnetic head material having a high saturation magnetic flux density and capable of generating a strong magnetic field is required.

【0003】高飽和磁束密度を有する磁性材料として
は、Fe−C系やFe−N系のものが知られている。こ
れらの材料は、軟磁気特性を発現させるために、アルゴ
ンや窒素等の不活性ガス気流中において、必要に応じて
3〜10kOe程度の磁界を印加しながら、一定の温度
で熱処理を行っていた。磁気ヘッドがメタル・イン・ギ
ャップ(MIG)型ヘッドである場合には、ヘッド作製
工程にガラスボンディング工程を含み、熱処理温度はこ
のボンディング温度により決定される(軟磁気特性発現
温度よりボンディング温度の方が高い)ことから、少な
くともこれに耐えるだけの熱安定性の確保が必要とな
る。特に、磁性膜の軟磁気特性は熱処理により析出して
くる微結晶粒子サイズに依存していることから、良好な
軟磁気特性を有する磁性膜を得るためには、この結晶粒
子サイズを制御しなければならない。
As a magnetic material having a high saturation magnetic flux density, Fe--C type and Fe--N type materials are known. In order to develop soft magnetic properties, these materials were heat-treated at a constant temperature in an inert gas stream such as argon or nitrogen while applying a magnetic field of about 3 to 10 kOe as needed. . When the magnetic head is a metal-in-gap (MIG) type head, a glass bonding step is included in the head manufacturing step, and the heat treatment temperature is determined by this bonding temperature (bonding temperature is higher than soft magnetic characteristic expression temperature). Therefore, it is necessary to secure thermal stability at least to withstand this. In particular, since the soft magnetic characteristics of the magnetic film depend on the size of the fine crystal particles precipitated by heat treatment, the crystal particle size must be controlled in order to obtain a magnetic film having good soft magnetic characteristics. I have to.

【0004】さらに、これらの材料は、Feを主体とし
ているために、大気中の酸素や水と反応して水酸化物や
酸化物を生成し、磁気特性、特に、保磁力や飽和磁束密
度の変動を生じるために、磁気ヘッドの性能が低下する
場合があった。そこで、この材料を用いた磁気ヘッドの
実用化に当たっては、磁性膜を使用環境中へ放置したと
きの腐食による磁気特性の変動を抑制するとともに、ガ
ラスボンディング工程を経ても磁気特性が変動しないよ
うにする必要があり、その一つの方法として、磁性元素
以外に、耐食性を向上させるための元素を添加すること
が提案されているが、軟磁気特性と耐食性を両立させる
ことは困難であった。これらの点について検討した例と
して、特開平3−20444号公報をあげることができ
る。
Further, since these materials are mainly composed of Fe, they react with oxygen and water in the atmosphere to form hydroxides and oxides, and their magnetic properties, especially coercive force and saturation magnetic flux density Due to the fluctuation, the performance of the magnetic head may be deteriorated. Therefore, in practical application of a magnetic head using this material, while suppressing the variation of the magnetic characteristics due to corrosion when the magnetic film is left in the environment of use, the magnetic characteristics should not change even after the glass bonding process. As one of the methods, it has been proposed to add an element for improving corrosion resistance in addition to the magnetic element, but it has been difficult to achieve both soft magnetic characteristics and corrosion resistance. As an example of studying these points, Japanese Patent Laid-Open No. 3-20444 can be cited.

【0005】[0005]

【発明が解決しようとする課題】本発明者らの実験によ
ると、上記方法では、磁性膜の組成調整を行っても、必
ずしも飽和磁束密度及び軟磁気特性、特に保磁力と耐食
性とがバランスした十分な特性を有する磁性膜が得られ
るとは限らなかった。例えば、耐食性を確保すると磁気
特性、特に飽和磁束密度や保磁力が劣化し、本来のFe
−C系やFe−N系の磁性材料が有する性能が得られ
ず、磁気ヘッドの性能が低下してしまうので、記録を行
なった場合にエラーやノイズの原因となったり、高密度
記録ができない場合があった。逆に、磁気特性を重視す
ると十分な耐食性が確保できず、磁気ヘッドの信頼性が
低下する場合があった。
According to the experiments by the present inventors, in the above method, even if the composition of the magnetic film is adjusted, the saturation magnetic flux density and the soft magnetic characteristics, especially the coercive force and the corrosion resistance are well balanced. It was not always possible to obtain a magnetic film having sufficient characteristics. For example, if corrosion resistance is secured, the magnetic properties, especially the saturation magnetic flux density and the coercive force will deteriorate, and
Since the performance of the -C and Fe-N magnetic materials cannot be obtained and the performance of the magnetic head is deteriorated, it may cause an error or noise when recording, and high density recording cannot be performed. There were cases. On the contrary, if importance is attached to the magnetic characteristics, sufficient corrosion resistance cannot be ensured, and the reliability of the magnetic head may decrease.

【0006】また、磁性元素以外の元素添加による飽和
磁束密度の低下や磁歪定数の増大のために、良好に記録
ができなかったり、再生時に出力波形が歪んだりして、
記録再生特性に問題が生じることがあった。本発明の目
的は、高飽和磁束密度を有するFe又はCoを主体とす
る磁性薄膜において、磁気特性を維持しつつ耐食性を向
上させて高性能でしかも高信頼性を有する軟磁性薄膜を
得ること、さらにその軟磁性薄膜を用いた高性能でしか
も高信頼性を有する磁気ヘッド及び磁気記録装置を提供
することにある。
Further, due to the decrease of the saturation magnetic flux density and the increase of the magnetostriction constant due to the addition of an element other than the magnetic element, good recording cannot be performed or the output waveform is distorted during reproduction,
There may be a problem in recording / reproducing characteristics. An object of the present invention is to obtain a soft magnetic thin film having high performance and high reliability by improving corrosion resistance while maintaining magnetic characteristics in a magnetic thin film mainly composed of Fe or Co having a high saturation magnetic flux density, Another object of the present invention is to provide a magnetic head and a magnetic recording device using the soft magnetic thin film, which have high performance and high reliability.

【0007】[0007]

【課題を解決するための手段】本発明による軟磁性薄膜
は、XをNb,Ta,Hf,Zrの群から選ばれる少な
くとも1種類の元素、YをCr,Ru,Al,Si,T
i,Rhの群から選ばれる1種類又は2種類の元素、Z
をC,Nの群から選ばれる少なくとも1種類の元素とす
るとき、Fe100-a-b-cabcで表わされ、5≦a≦
20、0.5≦b≦15、1≦c≦20、かつ0.5≦
a/c≦0.7であることを特徴とする。
In the soft magnetic thin film according to the present invention, X is at least one element selected from the group of Nb, Ta, Hf and Zr, and Y is Cr, Ru, Al, Si and T.
i, one or two elements selected from the group of Rh, Z
Is represented by Fe 100-abc X a Y b Z c , where 5 ≦ a ≦
20, 0.5 ≦ b ≦ 15, 1 ≦ c ≦ 20, and 0.5 ≦
It is characterized in that a / c ≦ 0.7.

【0008】本発明による軟磁性薄膜は、また、XをN
b,Ta,Hf,Zrの群から選ばれる少なくとも1種
類の元素、YをCr,Ru,Al,Si,Ti,Rhの
群から選ばれる1種類又は2種類の元素、ZをC,Nの
群から選ばれる少なくとも1種類の元素とするとき、C
100-a-b-cabcで表わされ、5≦a≦20、0.
5≦b≦15、1≦c≦20、かつ0.5≦a/c≦
0.7であることを特徴とする。
The soft magnetic thin film according to the present invention also has X as N.
b, Ta, Hf, at least one element selected from the group of Zr, Y is one or two elements selected from the group of Cr, Ru, Al, Si, Ti, Rh, Z is C, N When at least one element selected from the group is C,
o 100-abc X a Y b Z c , and 5 ≦ a ≦ 20, 0.
5 ≦ b ≦ 15, 1 ≦ c ≦ 20, and 0.5 ≦ a / c ≦
It is characterized by being 0.7.

【0009】本発明による軟磁性薄膜は、また、XをN
b,Ta,Hf,Zrの群から選ばれる少なくとも1種
類の元素、YをCr,Ru,Al,Si,Ti,Rhの
群から選ばれる1種類又は2種類の元素、ZをC,Nの
群から選ばれる少なくとも1種類の元素とするとき、F
100-a-b-cabcで表わされ、5≦a≦20、0.
5≦b≦15、1≦c≦20、かつ0.5≦a/c≦
0.7であり、元素Xの炭化物又は窒化物の平均結晶粒
子サイズが3nm以下であることを特徴とする。
The soft magnetic thin film according to the present invention also has X as N.
b, Ta, Hf, at least one element selected from the group of Zr, Y is one or two elements selected from the group of Cr, Ru, Al, Si, Ti, Rh, Z is C, N When at least one element selected from the group is F,
e 100-abc X a Y b Z c , and 5 ≦ a ≦ 20, 0.
5 ≦ b ≦ 15, 1 ≦ c ≦ 20, and 0.5 ≦ a / c ≦
It is 0.7, and the average crystal grain size of the carbide or nitride of the element X is 3 nm or less.

【0010】本発明による軟磁性薄膜は、また、XをN
b,Ta,Hf,Zrの群から選ばれる少なくとも1種
類の元素、YをCr,Ru,Al,Si,Ti,Rhの
群から選ばれる1種類又は2種類の元素、ZをC,Nの
群から選ばれる少なくとも1種類の元素とするとき、C
100-a-b-cabcで表わされ、5≦a≦20、0.
5≦b≦15、1≦c≦20、かつ0.5≦a/c≦
0.7であり、元素Xの炭化物又は窒化物の平均結晶粒
子サイズが3nm以下であることを特徴とする。
The soft magnetic thin film according to the present invention also has X as N.
b, Ta, Hf, at least one element selected from the group of Zr, Y is one or two elements selected from the group of Cr, Ru, Al, Si, Ti, Rh, Z is C, N When at least one element selected from the group is C,
o 100-abc X a Y b Z c , and 5 ≦ a ≦ 20, 0.
5 ≦ b ≦ 15, 1 ≦ c ≦ 20, and 0.5 ≦ a / c ≦
It is 0.7, and the average crystal grain size of the carbide or nitride of the element X is 3 nm or less.

【0011】前記いずれの軟磁性薄膜においても、元素
Yは、好適にはAl−Si,Al,Cr−Ru,Cr−
Rh又はTi−Crである。aとcの比は、0.53≦
a/c≦0.70であるのが更に好適である。微結晶の
析出は、成膜中あるいは成膜後に薄膜に熱エネルギーを
与えることにより行うことができる。例えば成膜後の熱
処理条件は、550℃〜600℃で20分〜1時間とす
ることができる。
In any of the above soft magnetic thin films, the element Y is preferably Al--Si, Al, Cr--Ru, Cr--.
Rh or Ti-Cr. The ratio of a and c is 0.53 ≦
It is more preferable that a / c ≦ 0.70. Precipitation of microcrystals can be performed by applying heat energy to the thin film during or after film formation. For example, the heat treatment condition after film formation may be 550 ° C. to 600 ° C. for 20 minutes to 1 hour.

【0012】ここで、元素Xを5〜20at%の範囲と
したのは、5at%未満であるとα−Fe又はα−Co
が急激に成長し、保磁力が1Oeを超えて増大し、ヘッ
ド特性として不適であり、20at%を超えると逆に非
磁性になり、磁気ヘッド材料には適さないからである。
なお、5〜15at%の範囲とすると、保磁力が1Oe
以下となり透磁率μ≧1000となるので、より好まし
い。本発明による磁性膜において、Nb,Ta,Hf,
Zrは、磁気特性の面でも耐食性の面でも同等の効果を
有する。
Here, the element X is set in the range of 5 to 20 at% when the content of the element X is less than 5 at%.
Rapidly grows, the coercive force increases beyond 1 Oe, and is unsuitable as a head characteristic. When it exceeds 20 at%, on the contrary, it becomes non-magnetic and is not suitable as a magnetic head material.
When the range is 5 to 15 at%, the coercive force is 1 Oe.
The following is obtained, and the magnetic permeability μ ≧ 1000 is more preferable. In the magnetic film according to the present invention, Nb, Ta, Hf,
Zr has the same effect in terms of magnetic properties and corrosion resistance.

【0013】元素Yを0.5〜15at%の範囲とした
のは、元素Yを含まないと耐食性及び耐熱性を確保する
ことができず、また15at%を超えて添加すると元素
YがFe中へ固溶するため飽和磁束密度の劣化を招き、
さらには非磁性になってしまうからである。また、元素
Zを1〜20at%の範囲としたのは、1at%未満で
はα−Fe又はα−Coが急激に成長し、保磁力が1O
eを超えてしまうからであり、20at%を超えると逆
に非磁性になり、磁気ヘッド材料として不適であるから
である。なお、5〜15at%の範囲とすると、保磁力
が1Oe以下となりμ≧1000となるので、より好ま
しい。本発明による磁性膜において、CとNは磁気特性
の面でも耐食性の面でも同等の効果を有する。
The reason why the content of the element Y is in the range of 0.5 to 15 at% is that the corrosion resistance and heat resistance cannot be ensured unless the element Y is contained, and if the element Y is added in excess of 15 at%, the element Y is added to Fe. As a solid solution, the saturation magnetic flux density deteriorates,
Furthermore, it becomes non-magnetic. Further, the element Z is set in the range of 1 to 20 at% because when it is less than 1 at%, α-Fe or α-Co rapidly grows and the coercive force is 10 or less.
This is because it exceeds e, and when it exceeds 20 at%, it becomes nonmagnetic and is unsuitable as a magnetic head material. It is more preferable to set it in the range of 5 to 15 at% because the coercive force becomes 1 Oe or less and μ ≧ 1000. In the magnetic film according to the present invention, C and N have the same effect in terms of magnetic characteristics and corrosion resistance.

【0014】本発明による軟磁性薄膜は、磁気ヘッドコ
アの少なくとも一部に用いて磁気ヘッドを構成すること
ができる。磁気ヘッドとしては、メタル・イン・ギャッ
プ(MIG)型磁気ヘッドが特に好適である。この磁気
ヘッドを用いると、移動する情報記録媒体に磁気的性質
を用いて情報を記録する磁気記録装置を構成することが
できる。記録する情報は、画像情報及び/又は音声情報
とすることができ、移動する情報記録媒体としては、磁
気テープもしくは円板上に磁気記録媒体層が形成された
磁気ディスクを用いることができる。
The soft magnetic thin film according to the present invention can be used in at least a part of the magnetic head core to form a magnetic head. A metal-in-gap (MIG) type magnetic head is particularly suitable as the magnetic head. By using this magnetic head, it is possible to configure a magnetic recording device that records information on a moving information recording medium by using magnetic properties. The information to be recorded can be image information and / or audio information, and the moving information recording medium can be a magnetic tape or a magnetic disk having a magnetic recording medium layer formed on a disc.

【0015】[0015]

【作用】微結晶析出型の磁性薄膜の耐食性を高めるため
には、主元素であるFe又はCoの結晶粒子サイズと炭
化物或いは窒化物の結晶粒子サイズを制御することが重
要である。Fe又はCoの結晶粒子サイズは、Cr,R
u,Al,Si,Ti,Rhの群から選ばれる1種類或
いは2種類の元素をFe又はCo中へ固溶させることに
より制御することでき、Nb,Ta,Hf,Zrの炭化
物或いは窒化物の結晶粒子サイズは、Nb,Ta,H
f,Zrの濃度とC,Nの濃度との比を制御することに
より実現できる。
In order to improve the corrosion resistance of the microcrystalline precipitation type magnetic thin film, it is important to control the crystal grain size of Fe or Co which is the main element and the crystal grain size of carbide or nitride. The crystal grain size of Fe or Co is Cr, R
It can be controlled by dissolving one or two elements selected from the group of u, Al, Si, Ti, and Rh in Fe or Co as a solid solution, and it can be controlled by Nb, Ta, Hf, Zr carbides or nitrides. Crystal grain size is Nb, Ta, H
This can be realized by controlling the ratio between the f and Zr concentrations and the C and N concentrations.

【0016】元素Xと元素Zとの比を制御することによ
り、磁性膜成膜中の熱処理或いは成膜後の熱処理によっ
て析出する元素Xの炭化物或いは窒化物の結晶粒子サイ
ズの平均を3nm以下とすることができ、磁性膜の耐食
性を十分なものとすることができる。これと同時に、主
元素のFe又はCoはα−Fe又はα−Coとして存在
し、結晶面は(110)面が優先的に配向する。その結
果、ヘッドを作製した場合に、記録した情報を一定の消
去比で消去するのに要する電流が小さくなって消去特性
が良好になり、また記録時に形成される磁区形状の境界
領域が明確になる。
By controlling the ratio between the element X and the element Z, the average crystal grain size of the carbide or nitride of the element X precipitated by the heat treatment during film formation or after the film formation is set to 3 nm or less. Therefore, the corrosion resistance of the magnetic film can be made sufficient. At the same time, the main element Fe or Co exists as α-Fe or α-Co, and the (110) plane of the crystal plane is preferentially oriented. As a result, when the head is manufactured, the current required for erasing the recorded information with a constant erasing ratio is small, the erasing characteristics are good, and the boundary region of the magnetic domain shape formed during recording is clearly defined. Become.

【0017】[0017]

【実施例】以下、実施例によって本発明を詳細に説明す
る。 〔実施例1〕磁性薄膜としてFe−Ta−C−Cr−R
u合金膜を用いて磁気記録媒体を作製した。
The present invention will be described in detail below with reference to examples. [Example 1] Fe-Ta-C-Cr-R as a magnetic thin film
A magnetic recording medium was produced using the u alloy film.

【0018】磁性膜の成膜は、Arを放電ガスとするス
パッタ法によって行った。スパッタのターゲットには、
Fe,Ta,C,Cr,Ruの各元素の粉体を熱間静圧
プレス法(HIP法)により成型したものを用いた。タ
ーゲットの組成は、〔Fe85(Taxy150.9Cr8
Ru2とし、x+y=1の条件のもとで、比x/yを
0.48,0.53,0.68,0.70,0.74,
0.87と変化させた。このHIP法により形成したタ
ーゲットを用いると、薄膜化しても得られた膜の組成
は、ターゲット組成とほぼ同じである。磁気特性を測定
するための試料には、表面を光学研磨した結晶化ガラス
基板上に磁性膜を作製したものを用いた。スパッタの条
件はスパッタ装置等に依存して変化するが、本実施例で
は放電ガス圧力5mTorr、投入RF電力400W/
150mmφとした。形成した磁性膜の膜厚は5μmで
ある。成膜後、Ar雰囲気中において590℃で30分
間熱処理した。なお、熱処理雰囲気はArに限られず、
用いる材料に対して化学的に不活性であれば他の雰囲気
でもかまわない。
The magnetic film was formed by a sputtering method using Ar as a discharge gas. The target of spatter is
The powder of each element of Fe, Ta, C, Cr and Ru was molded by the hot isostatic pressing method (HIP method). The composition of the target is [Fe 85 (Ta x C y ) 15 ] 0.9 Cr 8
Ru 2 and the ratio x / y is 0.48, 0.53, 0.68, 0.70, 0.74 under the condition of x + y = 1.
It was changed to 0.87. When the target formed by this HIP method is used, the composition of the obtained film is almost the same as the target composition even if the target is thinned. As a sample for measuring the magnetic characteristics, a magnetic film prepared on a crystallized glass substrate whose surface was optically polished was used. The sputtering conditions change depending on the sputtering apparatus and the like, but in this embodiment, the discharge gas pressure was 5 mTorr and the input RF power was 400 W /
It was set to 150 mmφ. The thickness of the formed magnetic film is 5 μm. After the film formation, heat treatment was performed at 590 ° C. for 30 minutes in an Ar atmosphere. The heat treatment atmosphere is not limited to Ar,
Another atmosphere may be used as long as it is chemically inert to the material used.

【0019】まず、x/y=0.48,0.53,0.
68,0.70,0.74,0.87と変化させたとき
の磁性膜の磁気特性を調べた。その結果を、図1にまと
めて示す。飽和磁束密度Bsは、x/y値の増加ととも
に増大し、x/y=0.68付近で極大となった。さら
にx/y値が増加すると、Bsは逆に減少した。このよ
うに、Bsはx/y値に依存して変化し、大きなBsを
得るためにはx/y値を0.50以上とするするのが好
ましい。また、磁気ヘッドに使用したときの100MH
z以上の高周波領域でのスイッチング特性を考慮して保
磁力を0.5Oe以下とするためには、x/y値を0.
50以上とする必要がある。透磁率μの値は、x/y値
の増大とともに増加したが、最も小さな値でもx/y=
0.48で2500(1MHz)であり、軟磁気特性と
してはどのx/y値であっても特に問題はない。磁歪定
数λsは、x/y値に依存せず、ほぼ一定の値(2×1
-6)であった。比抵抗ρの値は、x/y値の増大とと
もに緩やかに減少し、98×10-8Ω・mから80×1
-8Ω・mへと変化した。
First, x / y = 0.48, 0.53, 0.
The magnetic characteristics of the magnetic film were examined when the values were changed to 68, 0.70, 0.74, 0.87. The results are shown together in FIG. The saturation magnetic flux density Bs increased as the x / y value increased, and reached the maximum around x / y = 0.68. When the x / y value was further increased, Bs was decreased. Thus, Bs changes depending on the x / y value, and it is preferable to set the x / y value to 0.50 or more in order to obtain a large Bs. Also, 100 MH when used for a magnetic head
In order to set the coercive force to 0.5 Oe or less in consideration of the switching characteristics in the high frequency region of z or more, the x / y value should be 0.
It should be 50 or more. The value of the magnetic permeability μ increased with the increase of the x / y value, but x / y =
The value is 0.48, which is 2500 (1 MHz), and there is no particular problem as to the soft magnetic characteristics regardless of the x / y value. The magnetostriction constant λs does not depend on the x / y value, and has a substantially constant value (2 × 1
It was 0 -6). The value of the specific resistance ρ decreases gradually with the increase of x / y value, from 98 × 10 −8 Ω · m to 80 × 1.
It changed to 0 -8 Ω · m.

【0020】磁性膜の結晶構造をX線回折法により調べ
た。その結果を図2に示す。x/y=0.48〜0.7
4の磁性膜では、得られたピークはFeの(110)
面、Feの(211)面及びTaCの(111)面であ
り、Feの(110)面が優先的に配向していた。これ
に対して、x/y=0.87の磁性膜では、前述の磁性
膜と異なり、Feの(110)面、Feの(211)
面、Feの(220)面、TaCの(111)面、Ta
Cの(200)面及びTaCの(220)面等多くの面
が観測され、しかもピーク強度が増大し、かつピークが
シャープになっていることから、磁性膜の結晶粒子が成
長していることがわかる。
The crystal structure of the magnetic film was examined by the X-ray diffraction method. The result is shown in FIG. x / y = 0.48-0.7
In the magnetic film of No. 4, the obtained peak is (110) of Fe.
Planes, the (211) plane of Fe and the (111) plane of TaC, and the (110) plane of Fe was preferentially oriented. On the other hand, in the magnetic film of x / y = 0.87, unlike the above-mentioned magnetic film, the (110) plane of Fe and the (211) plane of Fe
Plane, Fe (220) plane, TaC (111) plane, Ta
Many planes such as the (200) plane of C and the (220) plane of TaC are observed, and the peak intensity is increased and the peak is sharp, so that the crystal grains of the magnetic film are growing. I understand.

【0021】透過型電子顕微鏡によりこれらの磁性膜の
結晶粒子サイズを測定したところ、x/y=0.48〜
0.70の間では、Feの(110)面の結晶粒子サイ
ズが4nm〜10nmで、その平均が8nmであり、T
aCの(111)面について見ると、結晶粒子サイズが
2nm〜5nmで、その平均が3nmであった。x/y
=0.87の磁性膜では、前述の磁性膜と異なり、Fe
の(110)面の結晶粒子サイズが5nm〜11nm
で、その平均が8.5nmであり、TaCの(111)
面について見ると、結晶粒子サイズが4nm〜7nm
で、その平均が5.5nmであり、この結果は先のX線
回折の測定結果とも一致している。
When the crystal grain size of these magnetic films was measured by a transmission electron microscope, x / y = 0.48-
Between 0.70, the crystal grain size of the (110) plane of Fe is 4 nm to 10 nm, and the average thereof is 8 nm.
Looking at the (111) plane of aC, the crystal grain size was 2 nm to 5 nm, and the average thereof was 3 nm. x / y
In the magnetic film of 0.87, unlike the above-mentioned magnetic film, Fe
The crystal grain size of the (110) plane is 5 nm to 11 nm
And its average is 8.5 nm, which is (111) of TaC.
Looking at the surface, the crystal grain size is 4 nm to 7 nm
The average is 5.5 nm, and this result is in agreement with the previous measurement result of X-ray diffraction.

【0022】上述のx/y比の異なる磁性膜を0.5規
定塩化ナトリウム水溶液中(26℃)に浸漬し、飽和磁
束密度Bsの経時変化を測定することにより、各磁性膜
の耐食性を評価した。その結果を図3に示す。図3から
分かるように、x/y=0.48の場合、Bsは時間の
経過とともに僅かに減少した。x/y=0.53,0.
68,0.70では、2000時間以上この環境中に放
置してもBsの変化は見られなかった。さらにx/yの
比が大きいx/y=0.74,0.87では、Bsの劣
化が大きくなった。また、x/y=0.53,0.6
8,0.70の磁性膜を60℃−95%RH及び80℃
−95%RH等の高温高湿度環境中へ放置しても、磁気
特性の変化や孔食の発生は見られなかった。
Corrosion resistance of each magnetic film was evaluated by immersing the above-mentioned magnetic films having different x / y ratios in a 0.5N sodium chloride aqueous solution (26 ° C.) and measuring the change with time of the saturation magnetic flux density Bs. did. The result is shown in FIG. As can be seen from FIG. 3, Bs decreased slightly with the passage of time when x / y = 0.48. x / y = 0.53,0.
At 68,0.70, no change in Bs was observed even when left in this environment for 2000 hours or longer. Further, when x / y = 0.74, 0.87 where the ratio of x / y is large, the deterioration of Bs was large. Also, x / y = 0.53,0.6
8,0.70 magnetic film 60 ℃ -95% RH and 80 ℃
Even when left in a high temperature and high humidity environment such as −95% RH, no change in magnetic characteristics or pitting corrosion was observed.

【0023】以上の検討から、良好な磁気特性が得ら
れ、しかも高耐食性を有する膜が得られる組成として、
x/y=0.50〜0.70が適当であり、中でもx/
y=0.68がBsの観点から最も適していた。次に、
上述の磁性膜を用いて、概略構造を図4に示すMIG型
ヘッドを作製した。磁気ヘッドの作製に当たっては、ま
ず表面を凹凸に溝加工した単結晶フェライト基板2上に
Arを放電ガスとするスパッタによって軟磁性薄膜1を
5μmの厚さに形成した。用いた磁性膜の組成は、(F
78Ta8140.9(Cr60Ru 400.1である。磁性
膜の形成に先立ち、Cr,SiO2,Al,Cr23
の下地膜を5〜20nm程度設けても良い。下地膜は、
これより薄いと効果がなく、逆に厚いと磁気的ギャップ
となってしまう。ギャップ部3は、フェライト基板2上
の軟磁性薄膜1上にSiO2 を200nmの膜厚に形成
し、その上にCrを10nmの膜厚に形成することで設
けた。これを窒素気流中にて600℃で30分間熱処理
し、同一形状のヘッド基板を低融点ガラス4によりボン
ディングして磁気ヘッドとした。熱処理温度は、このガ
ラスボンディング工程における温度に支配される。基板
と磁性膜の間に設ける下地膜は、両者の接着性向上とと
もに、形成される磁性膜の結晶配向性の制御に利用され
る。これにより、ヘッドを形成した時の記録再生特性は
もとより、消去を行う場合に、一定の消去比を得るのに
必要な消去電流低減にも有効である。
From the above examination, good magnetic properties were obtained.
In addition, as a composition that can obtain a film having high corrosion resistance,
x / y = 0.50-0.70 is suitable, and among them x /
y = 0.68 was the most suitable from the viewpoint of Bs. next,
The MIG type whose schematic structure is shown in FIG.
A head was produced. When making a magnetic head,
On the single crystal ferrite substrate 2 whose surface is grooved with unevenness
The soft magnetic thin film 1 is formed by sputtering using Ar as a discharge gas.
It was formed to a thickness of 5 μm. The composition of the magnetic film used is (F
e78Ta8C14)0.9(Cr60Ru 40)0.1Is. Magnetism
Prior to forming the film, Cr, SiO2, Al, Cr2O3etc
You may provide the base film of 5-20 nm. The base film is
If it is thinner than this, there is no effect, and if it is thicker, the magnetic gap
Will be. The gap 3 is on the ferrite substrate 2.
On the soft magnetic thin film 1 of2Formed to a film thickness of 200 nm
Then, Cr is formed thereon to a film thickness of 10 nm.
I got it. This is heat-treated in a nitrogen stream at 600 ° C for 30 minutes
Then, the head substrate of the same shape is bonded with the low melting point glass 4.
To make a magnetic head. The heat treatment temperature is
It is controlled by the temperature in the lath bonding process. substrate
The base film provided between the magnetic film and the magnetic film improves the adhesion between the two.
It is mainly used to control the crystal orientation of the magnetic film that is formed.
It As a result, the recording / reproducing characteristics when the head is formed are
Of course, when erasing, to obtain a constant erasing ratio
It is also effective in reducing the required erase current.

【0024】この磁気ヘッドを用いて、VTR装置を作
製し、テープを走行させて画像情報を記録した。ハイビ
ジョンのディジタル情報を記録したところ、S/Nは4
0dB以上が得られた。ここで、相対速度は36m/
s、データ転送レートは46.1Mbps、トラック幅
は40μmである。このヘッドの耐食性を0.5規定塩
化ナトリウム水溶液中への浸漬試験法、及び高温高湿度
環境(60℃、相対湿度95%)中での結露試験法によ
り評価した。まず、MIG型ヘッドチップを0.5規定
塩化ナトリウム水溶液中へ500時間浸漬した。その
後、このヘッドを再び装置にセットして記録再生特性を
測定した。その結果、浸漬前と記録再生特性になんら違
いは見られなかった。高温高湿度環境中での結露試験法
による評価は、MIGヘッドをペルチェ素子上に固定し
て10℃に保ち、全体を温度60℃、相対湿度95%の
環境中へ放置した。その結果、ヘッド全体に結露が生じ
た。この状態で2000時間以上この環境中へ放置した
が、腐食の発生、あるいは記録特性や再生信号の劣化は
見られなかった。
A VTR device was produced using this magnetic head, and a tape was run to record image information. High-definition digital information recorded, S / N is 4
A value of 0 dB or more was obtained. Here, the relative speed is 36m /
s, the data transfer rate is 46.1 Mbps, and the track width is 40 μm. The corrosion resistance of this head was evaluated by the immersion test method in a 0.5N sodium chloride aqueous solution and the dew condensation test method in a high temperature and high humidity environment (60 ° C., relative humidity 95%). First, the MIG type head chip was immersed in a 0.5N sodium chloride aqueous solution for 500 hours. Then, the head was set again in the apparatus and the recording / reproducing characteristics were measured. As a result, no difference was seen in the recording / reproducing characteristics before immersion. In the evaluation by the dew condensation test method in a high temperature and high humidity environment, the MIG head was fixed on a Peltier device and kept at 10 ° C., and the whole was left in an environment of a temperature of 60 ° C. and a relative humidity of 95%. As a result, dew condensation occurred on the entire head. When left in this environment for more than 2000 hours in this state, neither corrosion nor deterioration of recording characteristics or reproduction signal was observed.

【0025】これまでVTR用の磁気ヘッドを例に説明
してきたが、本発明は磁気ディスクやヘリカルスキャン
方式を用いた磁気テープ装置等に対しても適用でき、同
様の効果を期待することができる。以上は、Fe−Ta
−C−Cr−Ru合金膜を磁性膜に用いた場合である
が、TaをNb,Hf,Zrに変えても、Cr−Ruを
Al−Si,Al,Cr−Rh,Ti−Cr等に変えて
も同様の効果が得られた。
Up to now, the magnetic head for the VTR has been described as an example, but the present invention can be applied to a magnetic disk or a magnetic tape device using a helical scan system, and the same effect can be expected. . The above is Fe-Ta
This is the case where the -C-Cr-Ru alloy film is used as the magnetic film, but even if Ta is changed to Nb, Hf, and Zr, Cr-Ru is changed to Al-Si, Al, Cr-Rh, Ti-Cr, or the like. Even if it changed, the same effect was obtained.

【0026】HIP法により成形したターゲットを用
い、スパッタガスにArを用いて5μmの膜厚に成膜し
た組成の異なる磁性薄膜の代表的なものについて、前記
方法と同様の方法で磁気特性及び耐食性を評価した。測
定結果を表1に示す。表中の飽和磁束密度Bsの単位は
T、保持力Hcの単位はOe、透磁率μは1MHzにお
ける値、磁歪定数λsの単位は10-6、比抵抗ρの単位
は10-8Ω・mである。また、Bs(0)は成膜後の磁性
膜の飽和磁束密度の値、Bs(t)は磁性膜を0.5規定
塩化ナトリウム水溶液中に200時間浸漬した後の飽和
磁束密度の値である。従って、Bs(t)/Bs(0)欄の
数値(%)は磁性膜の耐食性を表し、数値が大きいほど
耐食性が高いことを意味する。
Typical magnetic thin films having different compositions formed by using a target formed by the HIP method and using Ar as a sputtering gas to form a film having a thickness of 5 μm, the magnetic properties and the corrosion resistance are the same as those described above. Was evaluated. The measurement results are shown in Table 1. In the table, the unit of saturation magnetic flux density Bs is T, the unit of coercive force Hc is Oe, the permeability μ is a value at 1 MHz, the unit of magnetostriction constant λs is 10 −6 , the unit of specific resistance ρ is 10 −8 Ω · m. Is. Bs (0) is the value of the saturation magnetic flux density of the magnetic film after film formation, and Bs (t) is the value of the saturation magnetic flux density after the magnetic film is immersed in a 0.5N sodium chloride aqueous solution for 200 hours. . Therefore, the numerical value (%) in the Bs (t) / Bs (0) column represents the corrosion resistance of the magnetic film, and the larger the value, the higher the corrosion resistance.

【0027】 表 1 Bs Hc μ λ ρ Bs(t)/Bs(0) (Fe78Nb9C13)0.9(Cr70Ru30)0.1 1.45 <0.1 2500 1 98 100 (Fe78Hf9C13)0.9(Cr70Ru30)0.1 1.49 <0.1 3000 0.9 85 100 (Fe78Zr9C13)0.9(Cr70Ru30)0.1 1.45 <0.1 3000 2 93 100 (Fe78Ta8C14)0.9(Cr70Rh30)0.1 1.40 <0.1 2000 2 88 100 (Fe78Nb8C14)0.91(Cr70Rh30)0.09 1.42 <0.1 2000 1 89 100 (Fe79Hf7C14)0.9(Cr70Rh30)0.1 1.52 <0.1 3000 0.9 98 100 (Fe78Zr8C14)0.9(Cr70Rh30)0.1 1.43 <0.1 2500 1 93 100 (Fe78Ta8C14)0.9Al10 1.43 <0.1 3500 0.8 98 100 (Fe78Nb8C14)0.9Al10 1.40 <0.1 3000 0.9 95 100 (Fe79Hf7C14)0.9Al10 1.50 <0.1 3000 1 95 100 (Fe78Zr9C13)0.9Al10 1.40 <0.1 2300 1 89 100 (Fe78Ta9C13)0.9(Al65Si35)0.1 1.51 <0.1 3800 0.6 103 100 (Fe78Nb9C13)0.9(Al65Si35)0.1 1.43 <0.1 2900 0.7 98 100 (Fe80Hf7C13)0.9(Al65Si35)0.1 1.50 <0.1 3000 0.5 108 100 (Fe78Zr9C13)0.9(Al65Si35)0.1 1.40 <0.1 3000 0.8 95 100 (Fe78Ta9C13)0.9(Ti30Cr70)0.1 1.35 <0.1 2000 1 95 100 (Fe78Nb9C13)0.9(Ti30Cr70)0.1 1.36 <0.1 2100 1 96 100 (Fe80Hf7C13)0.9(Ti30Cr70)0.1 1.45 <0.1 2800 0.9 97 100 (Fe78Zr9C13)0.9(Ti30Cr70)0.1 1.40 <0.1 3000 1 95 100 (Fe78Ta4Nb5C13)0.9(Cr80Ru20)0.1 1.40 <0.1 2300 1 95 100 (Fe80Ta2Hf5C13)0.9(Cr80Rh20)0.1 1.50 <0.1 2800 0.8 95 100 (Fe78Ta5Zr4C13)0.9Al10 1.45 <0.1 2800 1 98 100 (Fe80Nb2Hf5C13)0.9(Al70Si30)0.1 1.51 <0.1 3000 0.7 98 100 (Fe80Hf5Zr2C13)0.9(Ti30Cr70)0.1 1.50 <0.1 2300 2 93 100 Table 1 Bs Hc μ λ ρ Bs (t) / Bs (0) (Fe 78 Nb 9 C 13 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.45 <0.1 2500 1 98 100 (Fe 78 Hf 9 C 13 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.49 <0.1 3000 0.9 85 100 (Fe 78 Zr 9 C 13 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.45 <0.1 3000 2 93 100 (Fe 78 Ta 8 C 14 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.40 <0.1 2000 2 88 100 (Fe 78 Nb 8 C 14 ) 0.91 (Cr 70 Rh 30 ) 0.09 1.42 <0.1 2000 1 89 100 (Fe 79 Hf 7 C 14 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.52 <0.1 3000 0.9 98 100 (Fe 78 Zr 8 C 14 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.43 <0.1 2500 1 93 100 (Fe 78 Ta 8 C 14 ) 0.9 Al 10 1.43 <0.1 3500 0.8 98 100 (Fe 78 Nb 8 C 14 ) 0.9 Al 10 1.40 <0.1 3000 0.9 95 100 (Fe 79 Hf 7 C 14 ) 0.9 Al 10 1.50 <0.1 3000 1 95 100 (Fe 78 Zr 9 C 13 ) 0.9 Al 10 1.40 <0.1 2300 1 89 100 (Fe 78 Ta 9 C 13 ) 0.9 (Al 65 Si 35 ) 0.1 1.51 <0.1 3800 0.6 103 100 (Fe 78 Nb 9 C 13 ) 0.9 (Al 65 Si 35 ) 0.1 1.43 <0.1 2900 0.7 98 100 (Fe 80 Hf 7 C 13 ) 0.9 (Al 65 Si 35 ) 0.1 1.50 <0.1 3000 0.5 108 100 (Fe 78 Zr 9 C 13 ) 0.9 (Al 65 Si 35 ) 0.1 1.40 <0 .1 3000 0.8 95 100 (Fe 78 Ta 9 C 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.35 <0.1 2000 1 95 100 (Fe 78 Nb 9 C 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.36 <0.1 2100 1 96 100 (Fe 80 Hf 7 C 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.45 <0.1 2800 0.9 97 100 (Fe 78 Zr 9 C 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.40 <0.1 3000 1 95 100 (Fe 78 Ta 4 Nb 5 C 13 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.40 <0.1 2300 1 95 100 (Fe 80 Ta 2 Hf 5 C 13 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.50 <0.1 2800 0.8 95 100 (Fe 78 Ta 5 Zr 4 C 13 ) 0.9 Al 10 1.45 <0.1 2800 1 98 100 (Fe 80 Nb 2 Hf 5 C 13 ) 0.9 (Al 70 Si 30 ) 0.1 1.51 <0.1 3000 0.7 98 100 (Fe 80 Hf 5 Zr 2 C 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.50 <0.1 2300 2 93 100

【0028】これらの磁性薄膜の保磁力は、組成に依存
せず、いずれも0.1Oeより小さな値を示した。添加
元素は、Feに固溶して金属間化合物などの合金を形成
している。そのために、熱処理時にFeの結晶成長が抑
制され、その結果、磁気特性を低下させずに耐食性を向
上させる以外に、さらに、耐熱性の向上も図れるものと
考えられる。
The coercive force of these magnetic thin films did not depend on the composition, and all showed a value smaller than 0.1 Oe. The additive element forms a solid solution with Fe to form an alloy such as an intermetallic compound. Therefore, it is considered that the crystal growth of Fe is suppressed during the heat treatment, and as a result, not only the corrosion resistance is improved without deteriorating the magnetic properties, but also the heat resistance is further improved.

【0029】しかし、Fe100-a-b-cabc(ただ
し、XはNb,Ta,Hf,Zrの群から選ばれる少な
くとも1種類の元素、YはCr,Ru,Al,Si,T
i,Rhの群から選ばれる1種類又は2種類の元素)で
表される磁性薄膜の組成が、5≦a≦20、0.5≦b
≦15、1≦c≦20、かつ0.5≦a/c≦0.7の
範囲を外れると、例えば以下の表2に示すように、所望
の軟磁気特性と耐食性を同時に満たすことはできなかっ
た。表中の飽和磁束密度Bsの単位はT、保持力Hcの
単位はOe、透磁率μは1MHzにおける値、磁歪定数
λsの単位は10 -6、比抵抗ρの単位は10-8Ω・mで
ある。また、Bs(0)は成膜後の磁性膜の飽和磁束密度
の値、Bs(t)は磁性膜を0.5規定塩化ナトリウム水
溶液中に200時間浸漬した後の飽和磁束密度の値であ
る。
However, Fe100-abcXaYbCc(However
X is a small number selected from the group of Nb, Ta, Hf and Zr.
At least one element, Y is Cr, Ru, Al, Si, T
i, one or two elements selected from the group of Rh)
The composition of the magnetic thin film represented is 5 ≦ a ≦ 20, 0.5 ≦ b
≦ 15, 1 ≦ c ≦ 20, and 0.5 ≦ a / c ≦ 0.7
If out of range, as shown in Table 2 below, for example,
Cannot satisfy the soft magnetic properties and corrosion resistance of
It was The unit of the saturation magnetic flux density Bs in the table is T and the holding force Hc
Unit is Oe, permeability μ is value at 1MHz, magnetostriction constant
The unit of λs is 10 -6, The unit of resistivity ρ is 10-8In Ω · m
is there. Bs (0) is the saturation magnetic flux density of the magnetic film after film formation.
Value, Bs (t) is 0.5 N sodium chloride water for the magnetic film.
The value of the saturation magnetic flux density after being immersed in the solution for 200 hours.
It

【0030】 表 2 Bs Hc μ λ ρ Bs(t)/Bs(0) (Fe72Ta14C14)0.9(Cr80Ru20)0.1 1.28 0.3 3000 1 95 60 (Fe72Nb14C14)0.9(Cr80Ru20)0.1 1.28 0.3 2800 2 93 60 (Fe74Hf12C14)0.9(Cr80Ru20)0.1 1.33 0.25 2900 1 97 60 (Fe72Zr14C14)0.9(Cr80Ru20)0.1 1.28 0.3 2500 2 90 60 (Fe72Ta14C14)0.9(Cr80Rh20)0.1 1.28 0.3 3100 2 95 60 (Fe72Nb14C14)0.9(Cr80Rh20)0.1 1.28 0.3 3000 2.5 93 60 (Fe74Hf12C14)0.9(Cr80Rh20)0.1 1.32 0.25 3000 1 97 60 (Fe72Zr14C14)0.9(Cr80Rh20)0.1 1.28 0.3 2900 2 91 60 (Fe72Ta14C14)0.9Al10 1.35 0.2 3000 1 99 80 (Fe72Nb14C14)0.9Al10 1.30 0.2 3000 2 95 70 (Fe74Hf12C14)0.9Al10 1.38 0.2 3500 1 98 80 (Fe72Zr14C14)0.9Al10 1.29 0.2 3000 1 97 70 (Fe78Ta11C11)0.9(Al60Si40)0.1 1.45 <0.1 3500 0.7 95 85 (Fe78Nb11C11)0.9(Al60Si40)0.1 1.43 <0.1 3500 0.8 95 78 (Fe78Hf11C11)0.9(Al60Si40)0.1 1.50 <0.1 3800 0.7 98 85 (Fe78Zr11C11)0.9(Al60Si40)0.1 1.45 <0.1 3300 0.8 95 78 (Fe78Ta11C11)0.9(Ti30Cr70)0.1 1.35 <0.1 3000 1 90 55 (Fe78Nb11C11)0.9(Ti30Cr70)0.1 1.32 <0.1 3500 2 89 55 (Fe78Hf11C11)0.9(Ti30Cr70)0.1 1.33 <0.1 3000 1 92 55 (Fe78Zr11C11)0.9(Ti30Cr70)0.1 1.32 <0.1 3200 2 92 55 (Fe78Ta6Nb5C11)0.9(Cr80Ru20)0.1 1.32 <0.1 2800 1 90 60 (Fe78Ta6Hf5C11)0.9(Cr80Rh20)0.1 1.35 <0.1 2700 2 89 60 (Fe78Ta6Zr5C11)0.9Al10 1.30 <0.1 2600 2 92 55 (Fe78Nb6Hf5C11)0.9(Al60Si40)0.1 1.35 <0.1 2700 1 91 60 (Fe78Hf5Zr6C11)0.9(Ti30Cr70)0.1 1.32 <0.1 2800 1 90 60 Table 2 Bs Hc μ λ ρ Bs (t) / Bs (0) (Fe 72 Ta 14 C 14 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.28 0.3 3000 1 95 60 (Fe 72 Nb 14 C 14 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.28 0.3 2800 2 93 60 (Fe 74 Hf 12 C 14 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.33 0.25 2900 1 97 60 (Fe 72 Zr 14 C 14 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.28 0.3 2500 2 90 60 (Fe 72 Ta 14 C 14 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.28 0.3 3100 2 95 60 (Fe 72 Nb 14 C 14 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.28 0.3 3000 2.5 93 60 (Fe 74 Hf 12 C 14 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.32 0.25 3000 1 97 60 (Fe 72 Zr 14 C 14 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.28 0.3 2900 2 91 60 (Fe 72 Ta 14 C 14 ) 0.9 Al 10 1.35 0.2 3000 1 99 80 (Fe 72 Nb 14 C 14 ) 0.9 Al 10 1.30 0.2 3000 2 95 70 (Fe 74 Hf 12 C 14 ) 0.9 Al 10 1.38 0.2 3500 1 98 80 (Fe 72 Zr 14 C 14 ) 0.9 Al 10 1.29 0.2 3000 1 97 70 (Fe 78 Ta 11 C 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.45 <0.1 3500 0.7 95 85 (Fe 78 Nb 11 C 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.43 <0.1 3500 0.8 95 78 (Fe 78 Hf 11 C 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.50 <0.1 3800 0.7 98 85 (Fe 78 Zr 11 C 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.45 <0.1 3300 0.8 95 78 (Fe 78 Ta 11 C 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.35 <0.1 3000 1 90 55 (Fe 78 Nb 11 C 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.32 <0.1 3500 2 89 55 (Fe 78 Hf 11 C 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.33 <0.1 3000 1 92 55 (Fe 78 Zr 11 C 11 ) 0.9 ( Ti 30 Cr 70 ) 0.1 1.32 <0.1 3200 2 92 55 (Fe 78 Ta 6 Nb 5 C 11 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.32 <0.1 2800 1 90 60 (Fe 78 Ta 6 Hf 5 C 11 ) 0.9 ( Cr 80 Rh 20 ) 0.1 1.35 <0.1 2700 2 89 60 (Fe 78 Ta 6 Zr 5 C 11 ) 0.9 Al 10 1.30 <0.1 2600 2 92 55 (Fe 78 Nb 6 Hf 5 C 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.35 <0.1 2700 1 91 60 (Fe 78 Hf 5 Zr 6 C 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.32 <0.1 2800 1 90 60

【0031】また、FeをCoに変えても、以下に示す
ように、飽和磁束密度BsがFeの場合より0.1T程
度小さくなるだけで他の点では同様な特性を示す軟磁性
薄膜が得られた。前記と同様にHIP法により成形した
ターゲットを用い、スパッタガスにArを用いて5μm
の膜厚に成膜した組成の異なる磁性薄膜の代表的なもの
について、前記と同様にして磁気特性及び耐食性を評価
した。測定結果を表3に示す。表中の飽和磁束密度Bs
の単位はT、保持力Hcの単位はOe、透磁率μは1M
Hzにおける値、磁歪定数λsの単位は10-6、比抵抗
ρの単位は10-8Ω・mである。また、Bs(0)は成膜
後の磁性膜の飽和磁束密度の値、Bs(t)は磁性膜を
0.5規定塩化ナトリウム水溶液中に200時間浸漬し
た後の飽和磁束密度の値である。
Even if Fe is changed to Co, as shown below, a soft magnetic thin film having similar characteristics in other respects can be obtained by only decreasing the saturation magnetic flux density Bs by about 0.1T as compared with the case of Fe. Was given. A target formed by the HIP method was used in the same manner as described above, and Ar was used as a sputtering gas to obtain a thickness of 5 μm.
Magnetic properties and corrosion resistance were evaluated in the same manner as described above with respect to typical magnetic thin films having different compositions formed in the same thickness. The measurement results are shown in Table 3. Saturation magnetic flux density Bs in the table
Is T, the coercive force Hc is Oe, and the magnetic permeability μ is 1M.
The value in Hz, the unit of the magnetostriction constant λs is 10 −6 , and the unit of the specific resistance ρ is 10 −8 Ω · m. Bs (0) is the value of the saturation magnetic flux density of the magnetic film after film formation, and Bs (t) is the value of the saturation magnetic flux density after the magnetic film is immersed in a 0.5N sodium chloride aqueous solution for 200 hours. .

【0032】 表 3 Bs Hc μ λ ρ Bs(t)/Bs(0) (Co78Ta9C13)0.9(Cr70Ru30)0.1 1.35 <0.1 2000 1 90 100 (Co78Nb9C13)0.9(Cr70Ru30)0.1 1.35 <0.1 2000 1 90 100 (Co78Hf9C13)0.9(Cr70Ru30)0.1 1.39 <0.1 2300 0.9 93 100 (Co78Zr9C13)0.9(Cr70Ru30)0.1 1.35 <0.1 2100 1 83 100 (Co78Ta8C14)0.9(Cr70Rh30)0.1 1.30 <0.1 2000 1 88 100 (Co78Nb8C14)0.91(Cr70Rh30)0.09 1.32 <0.1 2000 1 83 100 (Co79Hf7C14)0.9(Cr70Rh30)0.1 1.40 <0.1 2300 0.9 85 100 (Co78Zr8C14)0.9(Cr70Rh30)0.1 1.33 <0.1 2000 1 80 100 (Co78Ta8C14)0.9Al10 1.33 <0.1 2100 1 98 100 (Co78Nb8C14)0.9Al10 1.30 <0.1 2000 1 99 100 (Co79Hf7C14)0.9Al10 1.40 <0.1 2400 1 103 100 (Co78Zr9C13)0.9Al10 1.30 <0.1 2000 2 97 100 (Co78Ta9C13)0.9(Al65Si35)0.1 1.41 <0.1 2800 0.6 98 100 (Co78Nb9C13)0.9(Al65Si35)0.1 1.33 <0.1 2600 0.8 93 100 (Co80Hf7C13)0.9(Al65Si35)0.1 1.40 <0.1 3000 0.4 105 100 (Co78Zr9C13)0.9(Al65Si35)0.1 1.30 <0.1 2700 0.8 97 100 (Co78Ta9C13)0.9(Ti30Cr70)0.1 1.25 <0.1 2100 1 90 100 (Co78Nb9C13)0.9(Ti30Cr70)0.1 1.26 <0.1 2300 1 88 100 (Co80Hf7C13)0.9(Ti30Cr70)0.1 1.35 <0.1 2800 1 85 100 (Co78Zr9C13)0.9(Ti30Cr70)0.1 1.30 <0.1 1900 1 88 100 (Co78Ta4Nb5C13)0.9(Cr80Ru20)0.1 1.30 <0.1 1900 1 90 100 (Co80Ta2Hf5C13)0.9(Cr80Rh20)0.1 1.40 <0.1 1800 1 88 100 (Co78Ta5Zr4C13)0.9Al10 1.35 <0.1 1800 1 85 100 (Co80Nb2Hf5C13)0.9(Al70Si30)0.1 1.41 <0.1 2000 0.8 83 100 (Co80Hf5Zr2C13)0.9(Ti30Cr70)0.1 1.40 <0.1 1900 1 90 100 Table 3 Bs Hc μ λ ρ Bs (t) / Bs (0) (Co 78 Ta 9 C 13 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.35 <0.1 2000 1 90 100 (Co 78 Nb 9 C 13 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.35 <0.1 2000 1 90 100 (Co 78 Hf 9 C 13 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.39 <0.1 2300 0.9 93 100 (Co 78 Zr 9 C 13 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.35 <0.1 2100 1 83 100 (Co 78 Ta 8 C 14 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.30 <0.1 2000 1 88 100 (Co 78 Nb 8 C 14 ) 0.91 (Cr 70 Rh 30 ) 0.09 1.32 <0.1 2000 1 83 100 (Co 79 Hf 7 C 14 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.40 <0.1 2300 0.9 85 100 (Co 78 Zr 8 C 14 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.33 <0.1 2000 1 80 100 (Co 78 Ta 8 C 14 ) 0.9 Al 10 1.33 <0.1 2 100 1 98 100 (Co 78 Nb 8 C 14 ) 0.9 Al 10 1.30 <0.1 2000 1 99 100 (Co 79 Hf 7 C 14 ) 0.9 Al 10 1.40 <0.1 2400 1 103 100 (Co 78 Zr 9 C 13 ) 0.9 Al 10 1.30 <0.1 2000 2 97 100 (Co 78 Ta 9 C 13 ) 0.9 (Al 65 Si 35 ) 0.1 1.41 <0.1 2800 0.6 98 100 (Co 78 Nb 9 C 13 ) 0.9 (Al 65 Si 35 ) 0.1 1.33 <0.1 2600 0.8 93 100 (Co 80 Hf 7 C 13 ) 0.9 (Al 65 Si 35 ) 0.1 1.40 <0.1 3000 0.4 105 100 (Co 78 Zr 9 C 13 ) 0.9 (Al 65 Si 35 ) 0.1 1.30 <0.1 2700 0.8 97 100 (Co 78 Ta 9 C 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.25 <0.1 2100 1 90 100 ( Co 78 Nb 9 C 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.26 <0.1 2300 1 88 100 (Co 80 Hf 7 C 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.35 <0.1 2800 1 85 100 (Co 78 Zr 9 C 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.30 <0.1 1900 1 88 100 (Co 78 Ta 4 Nb 5 C 13 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.30 <0.1 1900 1 90 100 (Co 80 Ta 2 Hf 5 C 13 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.40 <0.1 1800 1 88 100 (Co 78 Ta 5 Zr 4 C 13 ) 0.9 Al 10 1.35 <0.1 1800 1 85 100 (Co 80 Nb 2 Hf 5 C 13 ) 0.9 ( Al 70 Si 30 ) 0.1 1.41 <0.1 2000 0.8 83 100 (Co 80 Hf 5 Zr 2 C 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.40 <0.1 1900 1 90 100

【0033】これらの磁性薄膜の保磁力Hcは、組成に
依存せず、いずれも0.1Oeより小さな値を示した。
添加元素は、Coに固溶して金属間化合物などの合金を
形成している。そのために、熱処理時にCoの結晶成長
が抑制され、その結果、磁気特性を低下させずに耐食性
を向上させる以外に、さらに、耐熱性の向上も図れるも
のと考えられる。
The coercive force Hc of these magnetic thin films did not depend on the composition, and all showed values smaller than 0.1 Oe.
The additive element forms a solid solution with Co to form an alloy such as an intermetallic compound. Therefore, it is considered that the crystal growth of Co is suppressed during the heat treatment and, as a result, not only the corrosion resistance is improved without deteriorating the magnetic properties but also the heat resistance is further improved.

【0034】しかし、Co100-a-b-cabc(ただ
し、XはNb,Ta,Hf,Zrの群から選ばれる少な
くとも1種類の元素、YはCr,Ru,Al,Si,T
i,Rhの群から選ばれる1種類又は2種類の元素)で
表される磁性薄膜の組成が、5≦a≦20、0.5≦b
≦15、1≦c≦20、かつ0.5≦a/c≦0.7の
範囲を外れると、例えば下記の表4に示すように、所望
の軟磁気特性と耐食性を同時に満たすことはできなかっ
た。表中の飽和磁束密度Bsの単位はT、保持力Hcの
単位はOe、透磁率μは1MHzにおける値、磁歪定数
λsの単位は10 -6、比抵抗ρの単位は10-8Ω・mで
ある。また、Bs(0)は成膜後の磁性膜の飽和磁束密度
の値、Bs(t)は磁性膜を0.5規定塩化ナトリウム水
溶液中に200時間浸漬した後の飽和磁束密度の値であ
る。
However, Co100-abcXaYbCc(However
X is a small number selected from the group of Nb, Ta, Hf and Zr.
At least one element, Y is Cr, Ru, Al, Si, T
i, one or two elements selected from the group of Rh)
The composition of the magnetic thin film represented is 5 ≦ a ≦ 20, 0.5 ≦ b
≦ 15, 1 ≦ c ≦ 20, and 0.5 ≦ a / c ≦ 0.7
If out of range, as shown in Table 4 below, for example,
Cannot satisfy the soft magnetic properties and corrosion resistance of
It was The unit of the saturation magnetic flux density Bs in the table is T and the holding force Hc
Unit is Oe, permeability μ is value at 1MHz, magnetostriction constant
The unit of λs is 10 -6, The unit of resistivity ρ is 10-8In Ω · m
is there. Bs (0) is the saturation magnetic flux density of the magnetic film after film formation.
Value, Bs (t) is 0.5 N sodium chloride water for the magnetic film.
The value of the saturation magnetic flux density after being immersed in the solution for 200 hours.
It

【0035】 表 4 Bs Hc μ λ ρ Bs(t)/Bs(0) (Co72Ta14C14)0.9(Cr80Ru20)0.1 1.18 0.4 2000 1 78 65 (Co72Nb14C14)0.9(Cr80Ru20)0.1 1.18 0.4 2500 1 88 65 (Co74Hf12C14)0.9(Cr80Ru20)0.1 1.23 0.2 2600 1 80 65 (Co72Zr14C14)0.9(Cr80Ru20)0.1 1.38 0.4 2800 1 83 65 (Co72Ta14C14)0.9(Cr80Rh20)0.1 1.18 0.4 2500 1 90 65 (Co72Nb14C14)0.9(Cr80Rh20)0.1 1.18 0.4 2000 1 93 65 (Co74Hf12C14)0.9(Cr80Rh20)0.1 1.22 0.4 2500 1 97 65 (Co72Zr14C14)0.9(Cr80Rh20)0.1 1.18 0.4 1800 1 91 65 (Co72Ta14C14)0.9Al10 1.25 0.2 3300 1 98 85 (Co72Nb14C14)0.9Al10 1.20 0.2 3200 1 96 75 (Co74Hf12C14)0.9Al10 1.28 0.2 3200 1 99 85 (Co72Zr14C14)0.9Al10 1.19 0.2 3100 1 95 80 (Co78Ta11C11)0.9(Al60Si40)0.1 1.35 <0.1 3100 0.7 95 85 (Co78Nb11C11)0.9(Al60Si40)0.1 1.33 <0.1 2900 0.9 90 85 (Co78Hf11C11)0.9(Al60Si40)0.1 1.40 <0.1 2800 0.5 98 85 (Co78Zr11C11)0.9(Al60Si40)0.1 1.35 <0.1 2500 0.9 90 85 (Co78Ta11C11)0.9(Ti30Cr70)0.1 1.25 <0.1 3000 1 93 65 (Co78Nb11C11)0.9(Ti30Cr70)0.1 1.22 <0.1 2800 1 90 65 (Co78Hf11C11)0.9(Ti30Cr70)0.1 1.23 <0.1 3100 1 98 65 (Co78Zr11C11)0.9(Ti30Cr70)0.1 1.22 <0.1 2800 1 90 65 (Co78Ta6Nb5C11)0.9(Cr80Ru20)0.1 1.22 <0.1 2000 1 90 70 (Co78Ta6Hf5C11)0.9(Cr80Rh20)0.1 1.25 <0.1 2100 1 92 70 (Co78Ta6Zr5C11)0.9Al10 1.20 <0.1 2000 1 89 60 (Co78Nb6Hf5C11)0.9(Al60Si40)0.1 1.25 <0.1 2300 0.6 95 65 (Co78Hf5Zr6C11)0.9(Ti30Cr70)0.1 1.22 <0.1 2200 0.6 95 65 Table 4 Bs Hc μ λ ρ Bs (t) / Bs (0) (Co 72 Ta 14 C 14 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.18 0.4 2000 1 78 65 (Co 72 Nb 14 C 14 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.18 0.4 2500 1 88 65 (Co 74 Hf 12 C 14 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.23 0.2 2600 1 80 65 (Co 72 Zr 14 C 14 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.38 0.4 2800 1 83 65 (Co 72 Ta 14 C 14 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.18 0.4 2500 1 90 65 (Co 72 Nb 14 C 14 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.18 0.4 2000 1 93 65 (Co 74 Hf 12 C 14 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.22 0.4 2500 1 97 65 (Co 72 Zr 14 C 14 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.18 0.4 1800 1 91 65 (Co 72 Ta 14 C 14 ) 0.9 Al 10 1.25 0.2 3300 1 98 85 (Co 72 Nb 14 C 14 ) 0.9 Al 10 1.20 0.2 3200 1 96 75 (Co 74 Hf 12 C 14 ) 0.9 Al 10 1.28 0.2 3200 1 99 85 (Co 72 Zr 14 C 14 ) 0.9 Al 10 1.19 0.2 3100 1 95 80 (Co 78 Ta 11 C 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.35 <0.1 3100 0.7 95 85 (Co 78 Nb 11 C 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.33 <0.1 2900 0.9 90 85 (Co 78 Hf 11 C 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.40 <0.1 2800 0.5 98 85 (Co 78 Zr 11 C 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.35 <0.1 2500 0.9 90 85 (Co 78 Ta 11 C 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.25 <0.1 3000 1 93 65 (Co 78 Nb 11 C 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.22 <0.1 2800 1 90 65 (Co 78 Hf 11 C 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.23 <0.1 3100 1 98 65 (Co 78 Zr 11 C 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.22 <0.1 2800 1 90 65 (Co 78 Ta 6 Nb 5 C 11 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.22 <0.1 2000 1 90 70 (Co 78 Ta 6 Hf 5 C 11 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.25 <0.1 2100 1 92 70 (Co 78 Ta 6 Zr 5 C 11 ) 0.9 Al 10 1.20 <0.1 2000 1 89 60 (Co 78 Nb 6 Hf 5 C 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.25 <0.1 2300 0.6 95 65 (Co 78 Hf 5 Zr 6 C 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.22 <0.1 2200 0.6 95 65

【0036】〔実施例2〕磁性薄膜としてFe−Ta−
N−Cr−Ru合金膜を用いて磁気記録媒体を作製し
た。磁性膜の成膜は、スパッタガスにAr/N2 混合ガ
スを用い、スパッタ法によって行った。スパッタのター
ゲットには、Fe,Ta,Cr,Ruの各元素及びその
窒化物の粉体を熱間静圧プレス法(HIP法)により成
型したものを用いた。N2 ガスの分圧を調整して、Ta
とNの濃度比x/y=0.48,0.55,0.68,
0.70,0.75,0.88と磁性薄膜の組成を変化
させた。磁気特性を測定するための試料には、表面を光
学研磨した結晶化ガラス基板上に磁性膜を作製したもの
を用いた。スパッタの条件はスパッタ装置等に依存して
変化するが、本実施例では放電ガス圧力5mTorr、
投入RF電力400W/150mmφとした。形成した
磁性膜の膜厚は5μmである。成膜後、Ar雰囲気中に
おいて590℃で30分間熱処理した。
Example 2 Fe-Ta-as a magnetic thin film
A magnetic recording medium was produced using the N-Cr-Ru alloy film. The magnetic film was formed by a sputtering method using Ar / N 2 mixed gas as the sputtering gas. As a target for sputtering, a powder of each element of Fe, Ta, Cr, Ru and its nitride was molded by a hot isostatic pressing method (HIP method). Adjust the partial pressure of N 2 gas to
And N concentration ratio x / y = 0.48, 0.55, 0.68,
The composition of the magnetic thin film was changed to 0.70, 0.75, 0.88. As a sample for measuring the magnetic characteristics, a magnetic film prepared on a crystallized glass substrate whose surface was optically polished was used. Although the sputtering conditions vary depending on the sputtering apparatus and the like, in the present embodiment, the discharge gas pressure is 5 mTorr,
The input RF power was 400 W / 150 mmφ. The thickness of the formed magnetic film is 5 μm. After the film formation, heat treatment was performed at 590 ° C. for 30 minutes in an Ar atmosphere.

【0037】(Fe100-x-yTaxy0.9Cr8Ru2
る組成を有し、x+y=20〜30で、かつ、x/y=
0.48,0.55,0.68,0.70,0.75,
0.88である磁性膜の飽和磁束密度Bsの変化を調べ
た。その結果を図5に示す。飽和磁束密度Bsはx/y
値の増加とともに増大し、x/y=0.68で極大とな
り、その時のBsは1.5Tであった。さらにx/y値
が増加するとBsは逆に減少した。このように、Bsは
x/y値に依存して変化することがわかる。図5から、
大きなBsを得るためには、x/yを0.50〜0.9
0の範囲とするのが効果的であることが分かる。x/y
=0.68における保磁力Hcは0.15Oe、透磁率
μは2300(1MHz)、磁歪定数λsは1.5×1
-6、比抵抗ρは95×10-8Ω・mであった。
[0037] have a (Fe 100-xy Ta x N y) 0.9 Cr 8 Ru 2 having a composition, in x + y = 20 to 30, and, x / y =
0.48, 0.55, 0.68, 0.70, 0.75
The change of the saturation magnetic flux density Bs of the magnetic film of 0.88 was investigated. The result is shown in FIG. Saturation magnetic flux density Bs is x / y
It increased as the value increased and reached a maximum at x / y = 0.68, and Bs at that time was 1.5T. When the x / y value was further increased, Bs was decreased. Thus, it can be seen that Bs changes depending on the x / y value. From FIG.
To obtain a large Bs, x / y is 0.50 to 0.9
It can be seen that the range of 0 is effective. x / y
= 0.68, the coercive force Hc is 0.15 Oe, the magnetic permeability μ is 2300 (1 MHz), and the magnetostriction constant λs is 1.5 × 1.
0 −6 , specific resistance ρ was 95 × 10 −8 Ω · m.

【0038】磁性膜の結晶粒子サイズを透過型電子顕微
鏡により調べた。x/y=0.48〜0.70の間で
は、Feの(110)面の結晶粒子サイズが4nm〜1
0nmで、その平均が8nmであり、TaNの(11
1)面について見ると、結晶粒子サイズが2nm〜5n
mであり、その平均が3nmであった。x/y=0.8
8の磁性膜では、前述の磁性膜と異なり、Feの(11
0)面の結晶粒子サイズが5nm〜11nmで、その平
均が8.5nmであり、TaNの(111)面について
見ると、結晶粒子サイズが4nm〜7nmであり、その
平均が5.5nmであった。
The crystal grain size of the magnetic film was examined by a transmission electron microscope. When x / y = 0.48 to 0.70, the crystal grain size of the (110) plane of Fe is 4 nm to 1
At 0 nm, the average is 8 nm, and (11 of TaN
1) Looking at the plane, the crystal grain size is 2 nm to 5 n
m, and the average was 3 nm. x / y = 0.8
In the magnetic film of No. 8, unlike the above-mentioned magnetic film, Fe (11
The crystal grain size of the (0) plane is 5 nm to 11 nm, and the average thereof is 8.5 nm. Looking at the (111) plane of TaN, the crystal grain size is 4 nm to 7 nm, and the average thereof is 5.5 nm. It was

【0039】上述のx/y比の異なる磁性膜を0.5規
定塩化ナトリウム水溶液中に浸漬させ、飽和磁束密度B
sの経時変化を測定することにより、磁性膜の耐食性を
評価した。その結果、x/y=0.48の場合、Bsは
時間の経過とともに、200時間で初期値の5%が減少
した。x/y=0.55〜0.70では2000時間以
上この環境中に放置してもBsの変化は見られなかっ
た。さらに、x/yの比が大きいx/y=0.75,
0.88では、Bsの劣化が大きくなり、x/yの比が
大きくなると、劣化の割合は大きくなった。また、x/
y=0.55,0.68,0.70の磁性膜を60℃−
95%RH及び80℃−95%RH等の高温高湿度環境
中へ上述の磁性膜を放置しても、磁気特性の変化や孔食
の発生は見られなかった。以上の検討から、良好な軟磁
気特性が得られ、しかも高耐食性を有する膜が得られる
組成範囲はx/y=0.50〜0.70であることが分
かり、中でもx/y=0.68付近がBsの観点から最
も適していることが分かる。
Saturation magnetic flux density B was obtained by immersing the above-mentioned magnetic films having different x / y ratios in 0.5N sodium chloride aqueous solution.
The corrosion resistance of the magnetic film was evaluated by measuring the change with time of s. As a result, in the case of x / y = 0.48, Bs decreased 5% of the initial value in 200 hours with the passage of time. When x / y = 0.55 to 0.70, no change in Bs was observed even when left in this environment for 2000 hours or longer. Furthermore, the ratio of x / y is large, x / y = 0.75.
At 0.88, the deterioration of Bs increased, and the ratio of deterioration increased as the ratio of x / y increased. Also, x /
The magnetic film of y = 0.55, 0.68, 0.70 is formed at 60.degree.
Even when the above-mentioned magnetic film was allowed to stand in a high temperature and high humidity environment such as 95% RH and 80 ° C.-95% RH, changes in magnetic properties and pitting corrosion were not observed. From the above examination, it was found that the composition range in which a film having good soft magnetic characteristics and high corrosion resistance can be obtained is x / y = 0.50 to 0.70, and among them, x / y = 0. It can be seen that the vicinity of 68 is most suitable from the viewpoint of Bs.

【0040】次に、上述の磁性膜を用いて、概略構造を
図4に示すMIG型ヘッドを作製した。磁気ヘッドの作
製に当たっては、まず表面を凹凸に溝加工した単結晶フ
ェライト基板2上にAr/N2 混合ガスを放電ガスとす
るスパッタによって軟磁性薄膜1を形成した。用いた磁
性膜の組成は、(Fe78Ta9130.9Cr8Ru2で、
前記x/y=0.69に相当する。ギャップ部3は、フ
ェライト基板2上の軟磁性薄膜1上にSiO2 を200
nmの膜厚に形成し、その上にCrを100nmの膜厚
に形成することで設けた。これを窒素気流中にて600
℃で1時間熱処理し、同一形状のヘッド基板を低融点ガ
ラス4によりボンディングして磁気ヘッドとした。熱処
理温度は、このガラスボンディング工程における温度に
支配される。基板と磁性膜の間に両者の接着性の向上の
ための接合層、例えば5nm〜20nm程度のCrやA
l等の金属層あるいはSiO2やCr23等の無機化合
物層を設けてもよい。
Next, using the above-mentioned magnetic film, a MIG type head whose schematic structure is shown in FIG. 4 was produced. In manufacturing a magnetic head, first, a soft magnetic thin film 1 was formed on a single crystal ferrite substrate 2 having a grooved surface, by sputtering using an Ar / N 2 mixed gas as a discharge gas. The composition of the magnetic film used, in (Fe 78 Ta 9 N 13) 0.9 Cr 8 Ru 2,
This corresponds to x / y = 0.69. The gap portion 3 is formed by coating the soft magnetic thin film 1 on the ferrite substrate 2 with SiO 2 200
It was formed by forming a film having a thickness of 100 nm and Cr having a film thickness of 100 nm thereon. 600 in a nitrogen stream
A heat treatment was performed at 1 ° C. for 1 hour, and a head substrate having the same shape was bonded with a low melting point glass 4 to form a magnetic head. The heat treatment temperature is controlled by the temperature in this glass bonding process. A bonding layer for improving the adhesiveness between the substrate and the magnetic film, such as Cr or A having a thickness of about 5 nm to 20 nm.
A metal layer such as 1 or an inorganic compound layer such as SiO 2 or Cr 2 O 3 may be provided.

【0041】この磁気ヘッドを用いて、VTR装置を作
製し、テープを走行させて画像情報を記録した。ハイビ
ジョンのディジタル情報を記録したところ、S/Nは4
0dB以上が得られた。ここで、相対速度は36m/
s、データレートは46.1Mbps、トラック幅は4
0μmである。このヘッドの耐食性を0.5規定塩化ナ
トリウム水溶液中への浸漬試験法、及び、高温高湿度環
境(60℃、相対湿度95%)中での結露試験法により
評価した。まず、MIG型ヘッドチップを0.5規定塩
化ナトリウム水溶液中へ500時間浸漬させた。その
後、このヘッドを再び装置にセットして記録再生特性を
測定した。その結果、浸漬前と記録再生特性になんら違
いは見られなかった。また、高温高湿度環境中での結露
試験法による評価は、MIGヘッドをペルチェ素子上に
固定して10℃に保ち、全体を60℃、相対湿度95%
環境中へ放置した。その結果、ヘッド全体に結露が生じ
た。この状態で2000時間以上この環境中へ放置した
が、腐食の発生や記録や再生信号の劣化は見られなかっ
た。
A VTR device was produced using this magnetic head, and a tape was run to record image information. High-definition digital information recorded, S / N is 4
A value of 0 dB or more was obtained. Here, the relative speed is 36m /
s, data rate 46.1 Mbps, track width 4
It is 0 μm. The corrosion resistance of this head was evaluated by the immersion test method in a 0.5N sodium chloride aqueous solution and the dew condensation test method in a high temperature and high humidity environment (60 ° C., 95% relative humidity). First, the MIG type head chip was immersed in a 0.5N sodium chloride aqueous solution for 500 hours. Then, the head was set again in the apparatus and the recording / reproducing characteristics were measured. As a result, no difference was seen in the recording / reproducing characteristics before immersion. Further, the evaluation by the dew condensation test method in a high temperature and high humidity environment was carried out by fixing the MIG head on the Peltier element and keeping it at 10 ° C, and the whole at 60 ° C and a relative humidity of 95%.
It was left in the environment. As a result, dew condensation occurred on the entire head. When left in this environment for more than 2000 hours in this state, neither corrosion nor deterioration of recording and reproducing signals was observed.

【0042】以上は、Fe−Ta−N−Cr−Ru合金
膜を磁性膜に用いた場合であるが、以下に示すように、
TaをNb,Hf,Zrに変えても、Cr−RuをAl
−Si,Al,Cr−Rh,Ti−Cr等に変えても同
様の効果が得られた。前記と同様にHIP法により成形
したターゲットを用い、スパッタガスにAr/N2 混合
ガスを用いて5μmの膜厚に成膜した組成の異なる磁性
薄膜の代表的なものについて、前記方法と同様の方法で
磁気特性及び耐食性を評価した。測定結果を表5に示
す。表中の飽和磁束密度Bsの単位はT、保持力Hcの
単位はOe、透磁率μは1MHzにおける値、磁歪定数
λsの単位は10-6、比抵抗ρの単位は10-8Ω・mで
ある。また、Bs(0)は成膜後の磁性膜の飽和磁束密度
の値、Bs(t)は磁性膜を0.5規定塩化ナトリウム水
溶液中に200時間浸漬した後の飽和磁束密度の値であ
る。
The above is the case where the Fe-Ta-N-Cr-Ru alloy film is used as the magnetic film. As shown below,
Even if Ta is changed to Nb, Hf, and Zr, Cr-Ru is changed to Al.
Similar effects were obtained even if the material was changed to -Si, Al, Cr-Rh, Ti-Cr, or the like. A typical magnetic thin film having a different composition was formed by using a target formed by the HIP method in the same manner as described above and using Ar / N 2 mixed gas as a sputtering gas to form a film having a different composition. The magnetic properties and corrosion resistance were evaluated by the method. The measurement results are shown in Table 5. In the table, the unit of saturation magnetic flux density Bs is T, the unit of coercive force Hc is Oe, the permeability μ is a value at 1 MHz, the unit of magnetostriction constant λs is 10 −6 , the unit of specific resistance ρ is 10 −8 Ω · m. Is. Bs (0) is the value of the saturation magnetic flux density of the magnetic film after film formation, and Bs (t) is the value of the saturation magnetic flux density after the magnetic film is immersed in a 0.5N sodium chloride aqueous solution for 200 hours. .

【0043】 表 5 Bs Hc μ λ ρ Bs(t)/Bs(0) (Fe78Nb9N13)0.9(Cr70Ru30)0.1 1.45 <0.1 2500 1 98 100 (Fe78Hf9N13)0.9(Cr70Ru30)0.1 1.49 <0.1 3000 0.9 85 100 (Fe78Zr9N13)0.9(Cr70Ru30)0.1 1.45 <0.1 3000 2 93 100 (Fe78Ta8N14)0.9(Cr70Rh30)0.1 1.40 <0.1 2000 2 88 100 (Fe78Nb8N14)0.91(Cr70Rh30)0.09 1.42 <0.1 2000 1 89 100 (Fe79Hf7N14)0.9(Cr70Rh30)0.1 1.52 <0.1 3000 0.9 98 100 (Fe78Zr8N14)0.9(Cr70Rh30)0.1 1.43 <0.1 2500 1 93 100 (Fe78Ta8N14)0.9Al10 1.43 <0.1 3500 0.8 98 100 (Fe78Nb8N14)0.9Al10 1.40 <0.1 3000 0.9 95 100 (Fe79Hf7N14)0.9Al10 1.50 <0.1 3000 1 95 100 (Fe78Zr9N13)0.9Al10 1.40 <0.1 2300 1 89 100 (Fe78Ta9N13)0.9(Al65Si35)0.1 1.51 <0.1 3800 0.6 103 100 (Fe78Nb9N13)0.9(Al65Si35)0.1 1.43 <0.1 2900 0.7 98 100 (Fe80Hf7N13)0.9(Al65Si35)0.1 1.50 <0.1 3000 0.5 108 100 (Fe78Zr9N13)0.9(Al65Si35)0.1 1.40 <0.1 3000 0.8 95 100 (Fe78Ta9N13)0.9(Ti30Cr70)0.1 1.35 <0.1 2000 1 95 100 (Fe78Nb9N13)0.9(Ti30Cr70)0.1 1.36 <0.1 2100 1 96 100 (Fe80Hf7N13)0.9(Ti30Cr70)0.1 1.45 <0.1 2800 0.9 97 100 (Fe78Zr9N13)0.9(Ti30Cr70)0.1 1.40 <0.1 3000 1 95 100 (Fe78Ta4Nb5N13)0.9(Cr80Ru20)0.1 1.40 <0.1 2300 1 95 100 (Fe80Ta2Hf5N13)0.9(Cr80Rh20)0.1 1.50 <0.1 2800 0.8 95 100 (Fe78Ta5Zr4N13)0.9Al10 1.45 <0.1 2800 1 98 100 (Fe80Nb2Hf5N13)0.9(Al70Si30)0.1 1.51 <0.1 3000 0.7 98 100 (Fe80Hf5Zr2N13)0.9(Ti30Cr70)0.1 1.50 <0.1 2300 2 93 100 Table 5 Bs Hc μ λ ρ Bs (t) / Bs (0) (Fe 78 Nb 9 N 13 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.45 <0.1 2500 1 98 100 (Fe 78 Hf 9 N 13 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.49 <0.1 3000 0.9 85 100 (Fe 78 Zr 9 N 13 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.45 <0.1 3000 2 93 100 (Fe 78 Ta 8 N 14 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.40 <0.1 2000 2 88 100 (Fe 78 Nb 8 N 14 ) 0.91 (Cr 70 Rh 30 ) 0.09 1.42 <0.1 2000 1 89 100 (Fe 79 Hf 7 N 14 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.52 <0.1 3000 0.9 98 100 (Fe 78 Zr 8 N 14 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.43 <0.1 2500 1 93 100 (Fe 78 Ta 8 N 14 ) 0.9 Al 10 1.43 <0.1 3500 0.8 98 100 (Fe 78 Nb 8 N 14 ) 0.9 Al 10 1.40 <0.1 3000 0.9 95 100 (Fe 79 Hf 7 N 14 ) 0.9 Al 10 1.50 <0.1 3000 1 95 100 (Fe 78 Zr 9 N 13 ) 0.9 Al 10 1.40 <0.1 2300 1 89 100 (Fe 78 Ta 9 N 13 ) 0.9 (Al 65 Si 35 ) 0.1 1.51 <0.1 3800 0.6 103 100 (Fe 78 Nb 9 N 13 ) 0.9 (Al 65 Si 35 ) 0.1 1.43 <0.1 2900 0.7 98 100 (Fe 80 Hf 7 N 13 ) 0.9 (Al 65 Si 35 ) 0.1 1.50 <0.1 3000 0.5 108 100 (Fe 78 Zr 9 N 13 ) 0.9 (Al 65 Si 35 ) 0.1 1.40 <0 .1 3000 0.8 95 100 (Fe 78 Ta 9 N 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.35 <0.1 2000 1 95 100 (Fe 78 Nb 9 N 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.36 <0.1 2100 1 96 100 (Fe 80 Hf 7 N 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.45 <0.1 2800 0.9 97 100 (Fe 78 Zr 9 N 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.40 <0.1 3000 1 95 100 (Fe 78 Ta 4 Nb 5 N 13 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.40 <0.1 2300 1 95 100 (Fe 80 Ta 2 Hf 5 N 13 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.50 <0.1 2800 0.8 95 100 (Fe 78 Ta 5 Zr 4 N 13 ) 0.9 Al 10 1.45 <0.1 2800 1 98 100 (Fe 80 Nb 2 Hf 5 N 13 ) 0.9 (Al 70 Si 30 ) 0.1 1.51 <0.1 3000 0.7 98 100 (Fe 80 Hf 5 Zr 2 N 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.50 <0.1 2300 2 93 100

【0044】表5から分かるように、CをNに変えても
磁性膜の磁気的特性にはほとんど変化が見られなかっ
た。これらの磁性膜においても、添加元素はFeに固溶
して金属間化合物などの合金を形成している。そのため
に、熱処理時にFeの結晶成長が抑制され、その結果、
磁気特性を低下させずに耐食性を向上させる以外に、さ
らに、耐熱性の向上も図れるものと考えられる。
As can be seen from Table 5, even if C was changed to N, there was almost no change in the magnetic characteristics of the magnetic film. Also in these magnetic films, the additional element forms a solid solution with Fe to form an alloy such as an intermetallic compound. Therefore, Fe crystal growth is suppressed during heat treatment, and as a result,
In addition to improving the corrosion resistance without deteriorating the magnetic properties, it is considered that the heat resistance can be further improved.

【0045】しかし、このFe−N系の磁性膜において
も、Fe100-a-b-cabc(ただし、XはNb,T
a,Hf,Zrの群から選ばれる少なくとも1種類の元
素、YはCr,Ru,Al,Si,Ti,Rhの群から
選ばれる1種類又は2種類の元素)で表される磁性薄膜
の組成が、5≦a≦20、0.5≦b≦15、1≦c≦
20、かつ0.5≦a/c≦0.7の範囲を外れると、
例えば下記の表6に示すように、所望の軟磁気特性と耐
食性を同時に満たすことはできなかった。表中の飽和磁
束密度Bsの単位はT、保持力Hcの単位はOe、透磁
率μは1MHzにおける値、磁歪定数λsの単位は10
-6、比抵抗ρの単位は10-8Ω・mである。また、Bs
(0)は成膜後の磁性膜の飽和磁束密度の値、Bs(t)は
磁性膜を0.5規定塩化ナトリウム水溶液中に200時
間浸漬した後の飽和磁束密度の値である。
However, even in this Fe--N type magnetic film, Fe 100-abc X a Y b N c (where X is Nb, T
composition of the magnetic thin film represented by at least one element selected from the group of a, Hf and Zr, Y is one or two elements selected from the group of Cr, Ru, Al, Si, Ti and Rh) 5 ≦ a ≦ 20, 0.5 ≦ b ≦ 15, 1 ≦ c ≦
20 and outside the range of 0.5 ≦ a / c ≦ 0.7,
For example, as shown in Table 6 below, desired soft magnetic properties and corrosion resistance could not be simultaneously satisfied. In the table, the unit of saturation magnetic flux density Bs is T, the unit of coercive force Hc is Oe, the permeability μ is a value at 1 MHz, and the unit of magnetostriction constant λs is 10.
-6 , the unit of the specific resistance ρ is 10 -8 Ω · m. Also, Bs
(0) is the value of the saturation magnetic flux density of the magnetic film after film formation, and Bs (t) is the value of the saturation magnetic flux density after the magnetic film was immersed in a 0.5N sodium chloride aqueous solution for 200 hours.

【0046】 表 6 Bs Hc μ λ ρ Bs(t)/Bs(0) (Fe72Ta14N14)0.9(Cr80Ru20)0.1 1.28 0.3 3000 1 95 60 (Fe72Nb14N14)0.9(Cr80Ru20)0.1 1.28 0.3 2800 2 93 60 (Fe74Hf12N14)0.9(Cr80Ru20)0.1 1.33 0.25 2900 1 97 60 (Fe72Zr14N14)0.9(Cr80Ru20)0.1 1.28 0.3 2500 2 90 60 (Fe72Ta14N14)0.9(Cr80Rh20)0.1 1.28 0.3 3100 2 95 60 (Fe72Nb14N14)0.9(Cr80Rh20)0.1 1.28 0.3 3000 2.5 93 60 (Fe74Hf12N14)0.9(Cr80Rh20)0.1 1.32 0.25 3000 1 97 60 (Fe72Zr14N14)0.9(Cr80Rh20)0.1 1.28 0.3 2900 2 91 60 (Fe72Ta14N14)0.9Al10 1.35 0.2 3000 1 99 80 (Fe72Nb14N14)0.9Al10 1.30 0.2 3000 2 95 70 (Fe74Hf12N14)0.9Al10 1.38 0.2 3500 1 98 80 (Fe72Zr14N14)0.9Al10 1.29 0.2 3000 1 97 70 (Fe78Ta11N11)0.9(Al60Si40)0.1 1.45 <0.1 3500 0.7 95 85 (Fe78Nb11N11)0.9(Al60Si40)0.1 1.43 <0.1 3500 0.8 95 78 (Fe78Hf11N11)0.9(Al60Si40)0.1 1.50 <0.1 3800 0.7 98 85 (Fe78Zr11N11)0.9(Al60Si40)0.1 1.45 <0.1 3300 0.8 95 78 (Fe78Ta11N11)0.9(Ti30Cr70)0.1 1.35 <0.1 3000 1 90 55 (Fe78Nb11N11)0.9(Ti30Cr70)0.1 1.32 <0.1 3500 2 89 55 (Fe78Hf11N11)0.9(Ti30Cr70)0.1 1.33 <0.1 3000 1 92 55 (Fe78Zr11N11)0.9(Ti30Cr70)0.1 1.32 <0.1 3200 2 92 55 (Fe78Ta6Nb5N11)0.9(Cr80Ru20)0.1 1.32 <0.1 2800 1 90 60 (Fe78Ta6Hf5N11)0.9(Cr80Rh20)0.1 1.35 <0.1 2700 2 89 60 (Fe78Ta6Zr5N11)0.9Al10 1.30 <0.1 2600 2 92 55 (Fe78Nb6Hf5N11)0.9(Al60Si40)0.1 1.35 <0.1 2700 1 91 60 (Fe78Hf5Zr6N11)0.9(Ti30Cr70)0.1 1.32 <0.1 2800 1 90 60 Table 6 Bs Hc μ λ ρ Bs (t) / Bs (0) (Fe 72 Ta 14 N 14 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.28 0.3 3000 1 95 60 (Fe 72 Nb 14 N 14 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.28 0.3 2800 2 93 60 (Fe 74 Hf 12 N 14 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.33 0.25 2900 1 97 60 (Fe 72 Zr 14 N 14 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.28 0.3 2500 2 90 60 (Fe 72 Ta 14 N 14 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.28 0.3 3100 2 95 60 (Fe 72 Nb 14 N 14 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.28 0.3 3000 2.5 93 60 (Fe 74 Hf 12 N 14 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.32 0.25 3000 1 97 60 (Fe 72 Zr 14 N 14 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.28 0.3 2900 2 91 60 (Fe 72 Ta 14 N 14 ) 0.9 Al 10 1.35 0.2 3000 1 99 80 (Fe 72 Nb 14 N 14 ) 0.9 Al 10 1.30 0.2 3000 2 95 70 (Fe 74 Hf 12 N 14 ) 0.9 Al 10 1.38 0.2 3500 1 98 80 (Fe 72 Zr 14 N 14 ) 0.9 Al 10 1.29 0.2 3000 1 97 70 (Fe 78 Ta 11 N 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.45 <0.1 3500 0.7 95 85 (Fe 78 Nb 11 N 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.43 <0.1 3500 0.8 95 78 (Fe 78 Hf 11 N 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.50 <0.1 3800 0.7 98 85 (Fe 78 Zr 11 N 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.45 <0.1 3300 0.8 95 78 (Fe 78 Ta 11 N 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.35 <0.1 3000 1 90 55 (Fe 78 Nb 11 N 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.32 <0.1 3500 2 89 55 (Fe 78 Hf 11 N 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.33 <0.1 3000 1 92 55 (Fe 78 Zr 11 N 11 ) 0.9 ( Ti 30 Cr 70 ) 0.1 1.32 <0.1 3200 2 92 55 (Fe 78 Ta 6 Nb 5 N 11 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.32 <0.1 2800 1 90 60 (Fe 78 Ta 6 Hf 5 N 11 ) 0.9 ( Cr 80 Rh 20 ) 0.1 1.35 <0.1 2700 2 89 60 (Fe 78 Ta 6 Zr 5 N 11 ) 0.9 Al 10 1.30 <0.1 2600 2 92 55 (Fe 78 Nb 6 Hf 5 N 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.35 <0.1 2700 1 91 60 (Fe 78 Hf 5 Zr 6 N 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.32 <0.1 2800 1 90 60

【0047】また、FeをCoに変えたCo−N系の磁
性膜においても、以下に示すように、飽和磁束密度Bs
がFeの場合より0.1T程度小さくなるだけで他の点
ではFe−N系と同様な特性を示す軟磁性薄膜が得られ
た。前記と同様にHIP法により成形したターゲットを
用い、スパッタガスにAr/N2 混合ガスを用いて5μ
mの膜厚に成膜した組成の異なる磁性薄膜の代表的なも
のについて、前記と同様にして磁気特性及び耐食性を評
価した。測定結果を表7に示す。表中の飽和磁束密度B
sの単位はT、保持力Hcの単位はOe、透磁率μは1
MHzにおける値、磁歪定数λsの単位は10-6、比抵
抗ρの単位は10-8Ω・mである。また、Bs(0)は成
膜後の磁性膜の飽和磁束密度の値、Bs(t)は磁性膜を
0.5規定塩化ナトリウム水溶液中に200時間浸漬し
た後の飽和磁束密度の値である。
Also in the Co--N type magnetic film in which Fe is changed to Co, the saturation magnetic flux density Bs is as shown below.
A soft magnetic thin film having the same characteristics as those of the Fe-N system was obtained except that it was about 0.1 T smaller than that of Fe. A target formed by the HIP method was used in the same manner as described above, and an Ar / N 2 mixed gas was used as a sputtering gas at
Magnetic properties and corrosion resistance were evaluated in the same manner as described above for typical magnetic thin films having different compositions formed to have a film thickness of m. The measurement results are shown in Table 7. Saturation magnetic flux density B in the table
The unit of s is T, the unit of coercive force Hc is Oe, and the magnetic permeability μ is 1.
The value in MHz, the unit of magnetostriction constant λs is 10 −6 , and the unit of specific resistance ρ is 10 −8 Ω · m. Bs (0) is the value of the saturation magnetic flux density of the magnetic film after film formation, and Bs (t) is the value of the saturation magnetic flux density after the magnetic film is immersed in a 0.5N sodium chloride aqueous solution for 200 hours. .

【0048】 表 7 Bs Hc μ λ ρ Bs(t)/Bs(0) (Co78Ta9N13)0.9(Cr70Ru30)0.1 1.35 <0.1 2000 1 90 100 (Co78Nb9N13)0.9(Cr70Ru30)0.1 1.35 <0.1 2000 1 90 100 (Co78Hf9N13)0.9(Cr70Ru30)0.1 1.39 <0.1 2300 0.9 93 100 (Co78Zr9N13)0.9(Cr70Ru30)0.1 1.35 <0.1 2100 1 83 100 (Co78Ta8N14)0.9(Cr70Rh30)0.1 1.30 <0.1 2000 1 88 100 (Co78Nb8N14)0.91(Cr70Rh30)0.09 1.32 <0.1 2000 1 83 100 (Co79Hf7N14)0.9(Cr70Rh30)0.1 1.40 <0.1 2300 0.9 85 100 (Co78Zr8N14)0.9(Cr70Rh30)0.1 1.35 <0.1 2000 1 80 100 (Co78Ta8N14)0.9Al10 1.33 <0.1 2100 1 98 100 (Co78Nb8N14)0.9Al10 1.30 <0.1 2000 1 99 100 (Co79Hf7N14)0.9Al10 1.40 <0.1 2400 1 103 100 (Co78Zr9N13)0.9Al10 1.30 <0.1 2000 2 97 100 (Co78Ta9N13)0.9(Al65Si35)0.1 1.41 <0.1 2800 0.6 98 100 (Co78Nb9N13)0.9(Al65Si35)0.1 1.33 <0.1 2600 0.8 93 100 (Co80Hf7N13)0.9(Al65Si35)0.1 1.40 <0.1 3000 0.4 105 100 (Co78Zr9N13)0.9(Al65Si35)0.1 1.30 <0.1 2700 0.8 97 100 (Co78Ta9N13)0.9(Ti30Cr70)0.1 1.25 <0.1 2100 1 90 100 (Co78Nb9N13)0.9(Ti30Cr70)0.1 1.26 <0.1 2300 1 88 100 (Co80Hf7N13)0.9(Ti30Cr70)0.1 1.35 <0.1 2800 1 85 100 (Co78Zr9N13)0.9(Ti30Cr70)0.1 1.30 <0.1 1900 1 88 100 (Co78Ta4Nb5N13)0.9(Cr80Ru20)0.1 1.30 <0.1 1900 1 90 100 (Co80Ta2Hf5N13)0.9(Cr80Rh20)0.1 1.40 <0.1 1800 1 88 100 (Co78Ta5Zr4N13)0.9Al10 1.35 <0.1 1800 1 85 100 (Co80Nb2Hf5N13)0.9(Al70Si30)0.1 1.41 <0.1 2000 0.8 83 100 (Co80Hf5Zr2N13)0.9(Ti30Cr70)0.1 1.40 <0.1 1900 1 90 100 Table 7 Bs Hc μ λ ρ Bs (t) / Bs (0) (Co 78 Ta 9 N 13 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.35 <0.1 2000 1 90 100 (Co 78 Nb 9 N 13 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.35 <0.1 2000 1 90 100 (Co 78 Hf 9 N 13 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.39 <0.1 2300 0.9 93 100 (Co 78 Zr 9 N 13 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.35 <0.1 2100 1 83 100 (Co 78 Ta 8 N 14 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.30 <0.1 2000 1 88 100 (Co 78 Nb 8 N 14 ) 0.91 (Cr 70 Rh 30 ) 0.09 1.32 <0.1 2000 1 83 100 (Co 79 Hf 7 N 14 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.40 <0.1 2300 0.9 85 100 (Co 78 Zr 8 N 14 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.35 <0.1 2000 1 80 100 (Co 78 Ta 8 N 14 ) 0.9 Al 10 1.33 <0.1 2 100 1 98 100 (Co 78 Nb 8 N 14 ) 0.9 Al 10 1.30 <0.1 2000 1 99 100 (Co 79 Hf 7 N 14 ) 0.9 Al 10 1.40 <0.1 2400 1 103 100 (Co 78 Zr 9 N 13 ) 0.9 Al 10 1.30 <0.1 2000 2 97 100 (Co 78 Ta 9 N 13 ) 0.9 (Al 65 Si 35 ) 0.1 1.41 <0.1 2800 0.6 98 100 (Co 78 Nb 9 N 13 ) 0.9 (Al 65 Si 35 ) 0.1 1.33 <0.1 2600 0.8 93 100 (Co 80 Hf 7 N 13 ) 0.9 (Al 65 Si 35 ) 0.1 1.40 <0.1 3000 0.4 105 100 (Co 78 Zr 9 N 13 ) 0.9 (Al 65 Si 35 ) 0.1 1.30 <0.1 2700 0.8 97 100 (Co 78 Ta 9 N 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.25 <0.1 2100 1 90 100 ( Co 78 Nb 9 N 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.26 <0.1 2300 1 88 100 (Co 80 Hf 7 N 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.35 <0.1 2800 1 85 100 (Co 78 Zr 9 N 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.30 <0.1 1900 1 88 100 (Co 78 Ta 4 Nb 5 N 13 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.30 <0.1 1900 1 90 100 (Co 80 Ta 2 Hf 5 N 13 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.40 <0.1 1800 1 88 100 (Co 78 Ta 5 Zr 4 N 13 ) 0.9 Al 10 1.35 <0.1 1800 1 85 100 (Co 80 Nb 2 Hf 5 N 13 ) 0.9 ( Al 70 Si 30 ) 0.1 1.41 <0.1 2000 0.8 83 100 (Co 80 Hf 5 Zr 2 N 13 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.40 <0.1 1900 1 90 100

【0049】これらの磁性薄膜の保磁力Hcは、組成に
依存せず、いずれも0.1Oeより小さな値を示した。
添加元素は、Coに固溶して金属間化合物などの合金を
形成している。そのために、熱処理時にCoの結晶成長
が抑制され、その結果、磁気特性を低下させずに耐食性
を向上させる以外に、さらに、耐熱性の向上も図れるも
のと考えられる。
The coercive force Hc of these magnetic thin films did not depend on the composition, and all showed values smaller than 0.1 Oe.
The additive element forms a solid solution with Co to form an alloy such as an intermetallic compound. Therefore, it is considered that the crystal growth of Co is suppressed during the heat treatment and, as a result, not only the corrosion resistance is improved without deteriorating the magnetic properties but also the heat resistance is further improved.

【0050】しかし、Co100-a-b-cabc(ただ
し、XはNb,Ta,Hf,Zrの群から選ばれる少な
くとも1種類の元素、YはCr,Ru,Al,Si,T
i,Rhの群から選ばれる1種類又は2種類の元素)で
表される磁性薄膜の組成が、5≦a≦20、0.5≦b
≦15、1≦c≦20、かつ0.5≦a/c≦0.7の
範囲を外れると、例えば下記の表8に示すように、所望
の軟磁気特性と耐食性を同時に満たすことはできなかっ
た。表中の飽和磁束密度Bsの単位はT、保持力Hcの
単位はOe、透磁率μは1MHzにおける値、磁歪定数
λsの単位は10 -6、比抵抗ρの単位は10-8Ω・mで
ある。また、Bs(0)は成膜後の磁性膜の飽和磁束密度
の値、Bs(t)は磁性膜を0.5規定塩化ナトリウム水
溶液中に200時間浸漬した後の飽和磁束密度の値であ
る。
However, Co100-abcXaYbNc(However
X is a small number selected from the group of Nb, Ta, Hf and Zr.
At least one element, Y is Cr, Ru, Al, Si, T
i, one or two elements selected from the group of Rh)
The composition of the magnetic thin film represented is 5 ≦ a ≦ 20, 0.5 ≦ b
≦ 15, 1 ≦ c ≦ 20, and 0.5 ≦ a / c ≦ 0.7
If out of range, as shown in Table 8 below, for example,
Cannot satisfy the soft magnetic properties and corrosion resistance of
It was The unit of the saturation magnetic flux density Bs in the table is T and the holding force Hc
Unit is Oe, permeability μ is value at 1MHz, magnetostriction constant
The unit of λs is 10 -6, The unit of resistivity ρ is 10-8In Ω · m
is there. Bs (0) is the saturation magnetic flux density of the magnetic film after film formation.
Value, Bs (t) is 0.5 N sodium chloride water for the magnetic film.
The value of the saturation magnetic flux density after being immersed in the solution for 200 hours.
It

【0051】 表 8 Bs Hc μ λ ρ Bs(t)/Bs(0) (Co72Ta14N14)0.9(Cr80Ru20)0.1 1.18 0.4 2000 1 78 65 (Co72Nb14N14)0.9(Cr80Ru20)0.1 1.18 0.4 2500 1 88 65 (Co74Hf12N14)0.9(Cr80Ru20)0.1 1.23 0.2 2600 1 80 65 (Co72Zr14N14)0.9(Cr80Ru20)0.1 1.38 0.4 2800 1 83 65 (Co72Ta14N14)0.9(Cr80Rh20)0.1 1.18 0.4 2500 1 90 65 (Co72Nb14N14)0.9(Cr80Rh20)0.1 1.18 0.4 2000 1 93 65 (Co74Hf12N14)0.9(Cr80Rh20)0.1 1.22 0.4 2500 1 97 65 (Co72Zr14N14)0.9(Cr80Rh20)0.1 1.18 0.4 1800 1 91 65 (Co72Ta14N14)0.9Al10 1.25 0.2 3300 1 98 85 (Co72Nb14N14)0.9Al10 1.20 0.2 3200 1 96 75 (Co74Hf12N14)0.9Al10 1.28 0.2 3200 1 99 85 (Co72Zr14N14)0.9Al10 1.19 0.2 3100 1 95 80 (Co78Ta11N11)0.9(Al60Si40)0.1 1.35 <0.1 3100 0.7 95 85 (Co78Nb11N11)0.9(Al60Si40)0.1 1.33 <0.1 2900 0.9 90 85 (Co78Hf11N11)0.9(Al60Si40)0.1 1.40 <0.1 2800 0.5 98 85 (Co78Zr11N11)0.9(Al60Si40)0.1 1.35 <0.1 2500 0.9 90 85 (Co78Ta11N11)0.9(Ti30Cr70)0.1 1.25 <0.1 3000 1 93 65 (Co78Nb11N11)0.9(Ti30Cr70)0.1 1.22 <0.1 2800 1 90 65 (Co78Hf11N11)0.9(Ti30Cr70)0.1 1.23 <0.1 3100 1 98 65 (Co78Zr11N11)0.9(Ti30Cr70)0.1 1.22 <0.1 2800 1 90 65 (Co78Ta6Nb5N11)0.9(Cr80Ru20)0.1 1.22 <0.1 2000 1 90 70 (Co78Ta6Hf5N11)0.9(Cr80Rh20)0.1 1.25 <0.1 2100 1 92 70 (Co78Ta6Zr5N11)0.9Al10 1.20 <0.1 2000 1 89 60 (Co78Nb6Hf5N11)0.9(Al60Si40)0.1 1.25 <0.1 2300 0.6 95 65 (Co78Hf5Zr6N11)0.9(Ti30Cr70)0.1 1.22 <0.1 2200 0.6 95 65 Table 8 Bs Hc μ λ ρ Bs (t) / Bs (0) (Co 72 Ta 14 N 14 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.18 0.4 2000 1 78 65 (Co 72 Nb 14 N 14 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.18 0.4 2500 1 88 65 (Co 74 Hf 12 N 14 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.23 0.2 2600 1 80 65 (Co 72 Zr 14 N 14 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.38 0.4 2800 1 83 65 (Co 72 Ta 14 N 14 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.18 0.4 2500 1 90 65 (Co 72 Nb 14 N 14 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.18 0.4 2000 1 93 65 (Co 74 Hf 12 N 14 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.22 0.4 2500 1 97 65 (Co 72 Zr 14 N 14 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.18 0.4 1800 1 91 65 (Co 72 Ta 14 N 14 ) 0.9 Al 10 1.25 0.2 3300 1 98 85 (Co 72 Nb 14 N 14 ) 0.9 Al 10 1.20 0.2 3200 1 96 75 (Co 74 Hf 12 N 14 ) 0.9 Al 10 1.28 0.2 3200 1 99 85 (Co 72 Zr 14 N 14 ) 0.9 Al 10 1.19 0.2 3100 1 95 80 (Co 78 Ta 11 N 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.35 <0.1 3100 0.7 95 85 (Co 78 Nb 11 N 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.33 <0.1 2900 0.9 90 85 (Co 78 Hf 11 N 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.40 <0.1 2800 0.5 98 85 (Co 78 Zr 11 N 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.35 <0.1 2500 0.9 90 85 (Co 78 Ta 11 N 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.25 <0.1 3000 1 93 65 (Co 78 Nb 11 N 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.22 <0.1 2800 1 90 65 (Co 78 Hf 11 N 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.23 <0.1 3100 1 98 65 (Co 78 Zr 11 N 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.22 <0.1 2800 1 90 65 (Co 78 Ta 6 Nb 5 N 11 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.22 <0.1 2000 1 90 70 (Co 78 Ta 6 Hf 5 N 11 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.25 <0.1 2100 1 92 70 (Co 78 Ta 6 Zr 5 N 11 ) 0.9 Al 10 1.20 <0.1 2000 1 89 60 (Co 78 Nb 6 Hf 5 N 11 ) 0.9 (Al 60 Si 40 ) 0.1 1.25 <0.1 2300 0.6 95 65 (Co 78 Hf 5 Zr 6 N 11 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.22 <0.1 2200 0.6 95 65

【0052】さらに、CとNを同時に含有させたFe−
C−N系あるいはCo−C−N系の磁性膜においても同
様な特性が得られた。磁性膜の成膜は、スパッタガスに
Ar/N2 混合ガスを用いるスパッタ法によって行っ
た。スパッタのターゲットには、所望の磁性膜の組成と
同じ元素及びその窒化物の粉体を熱間静圧プレス法によ
り成型したものを用いた。各磁性膜について前記方法と
同様の方法で磁気特性及び耐食性を評価した結果を表9
に示す。表中の飽和磁束密度Bsの単位はT、保持力H
cの単位はOe、透磁率μは1MHzにおける値、磁歪
定数λsの単位は10-6、比抵抗ρの単位は10-8Ω・
mである。また、Bs(0)は成膜後の磁性膜の飽和磁束
密度の値、Bs(t)は磁性膜を0.5規定塩化ナトリウ
ム水溶液中に200時間浸漬した後の飽和磁束密度の値
である。
Further, Fe-containing C and N at the same time
Similar characteristics were obtained in the C—N type or Co—C—N type magnetic film. The magnetic film was formed by the sputtering method using Ar / N 2 mixed gas as the sputtering gas. As the sputtering target, a powder obtained by molding a powder of the same element as the composition of the desired magnetic film and its nitride by the hot isostatic pressing method was used. Table 9 shows the results of evaluating the magnetic properties and corrosion resistance of each magnetic film by the same method as described above.
Shown in. The unit of saturation magnetic flux density Bs in the table is T, coercive force H
The unit of c is Oe, the permeability μ is a value at 1 MHz, the unit of magnetostriction constant λs is 10 −6 , and the unit of specific resistance ρ is 10 −8 Ω.
m. Bs (0) is the value of the saturation magnetic flux density of the magnetic film after film formation, and Bs (t) is the value of the saturation magnetic flux density after the magnetic film is immersed in a 0.5N sodium chloride aqueous solution for 200 hours. .

【0053】 表 9 Bs Hc μ λ ρ Bs(t)/Bs(0) (Fe78Ta9C8N5)0.9(Cr70Ru30)0.1 1.45 <0.1 2500 1 98 100 (Fe78Nb9C8N5)0.9(Cr70Ru30)0.1 1.45 <0.1 2500 1 98 100 (Fe78Hf9C8N5)0.9(Cr70Ru30)0.1 1.49 <0.1 3000 0.9 85 100 (Fe78Zr9C8N5)0.9(Cr70Ru30)0.1 1.45 <0.1 3000 2 93 100 (Fe78Ta8C8N6)0.9(Cr70Rh30)0.1 1.40 <0.1 2000 2 88 100 (Fe78Nb8C8N6)0.91(Cr70Rh30)0.09 1.42 <0.1 2000 1 89 100 (Fe79Hf7C8N6)0.9(Cr70Rh30)0.1 1.52 <0.1 3000 0.9 98 100 (Fe78Zr8C8N6)0.9(Cr70Rh30)0.1 1.43 <0.1 2500 1 93 100 (Fe78Ta8C8N6)0.9Al10 1.43 <0.1 3500 0.8 98 100 (Fe78Nb8C8N6)0.9Al10 1.40 <0.1 3000 0.9 95 100 (Fe79Hf7C8N6)0.9Al10 1.50 <0.1 3000 1 95 100 (Fe78Zr9C8N5)0.9Al10 1.40 <0.1 2300 1 89 100 (Fe78Ta9C8N5)0.9(Al65Si35)0.1 1.51 <0.1 3800 0.6 103 100 (Fe78Nb9C8N5)0.9(Al65Si35)0.1 1.43 <0.1 2900 0.7 98 100 (Fe80Hf7C8N5)0.9(Al65Si35)0.1 1.50 <0.1 3000 0.5 108 100 (Fe78Zr9C8N5)0.9(Al65Si35)0.1 1.40 <0.1 3000 0.8 95 100 (Fe78Ta9C8N5)0.9(Ti30Cr70)0.1 1.35 <0.1 2000 1 95 100 (Fe78Nb9C8N5)0.9(Ti30Cr70)0.1 1.36 <0.1 2100 1 96 100 (Fe80Hf7C8N5)0.9(Ti30Cr70)0.1 1.45 <0.1 2800 0.9 97 100 (Fe78Zr9C8N5)0.9(Ti30Cr70)0.1 1.40 <0.1 3000 1 95 100 (Fe78Ta4Nb5C8N5)0.9(Cr80Ru20)0.1 1.40 <0.1 2300 1 95 100 (Fe80Ta2Hf5C8N5)0.9(Cr80Rh20)0.1 1.50 <0.1 2800 0.8 95 100 (Fe78Ta5Zr4C8N5)0.9Al10 1.45 <0.1 2800 1 98 100 (Fe80Nb2Hf5C8N5)0.9(Al70Si30)0.1 1.51 <0.1 3000 0.7 98 100 (Fe80Hf5Zr2C8N5)0.9(Ti30Cr70)0.1 1.50 <0.1 2300 2 93 100 (Co78Ta9C8N5)0.9(Cr70Ru30)0.1 1.35 <0.1 2000 1 90 100 (Co78Nb9C8N5)0.9(Cr70Ru30)0.1 1.35 <0.1 2000 1 90 100 (Co78Hf9C8N5)0.9(Cr70Ru30)0.1 1.39 <0.1 2300 0.9 93 100 (Co78Zr9C8N5)0.9(Cr70Ru30)0.1 1.35 <0.1 2100 1 83 100 (Co78Ta8C8N6)0.9(Cr70Rh30)0.1 1.30 <0.1 2000 1 88 100 (Co78Nb8C8N6)0.91(Cr70Rh30)0.09 1.32 <0.1 2000 1 83 100 (Co79Hf7C8N6)0.9(Cr70Rh30)0.1 1.40 <0.1 2300 0.9 85 100 (Co78Zr8C8N6)0.9(Cr70Rh30)0.1 1.35 <0.1 2000 1 80 100 (Co78Ta8C8N6)0.9Al10 1.33 <0.1 2100 1 98 100 (Co78Nb8C8N6)0.9Al10 1.30 <0.1 2000 1 99 100 (Co79Hf7C8N6)0.9Al10 1.40 <0.1 2400 1 103 100 (Co78Zr9C8N5)0.9Al10 1.30 <0.1 2000 2 97 100 (Co78Ta9C8N5)0.9(Al65Si35)0.1 1.41 <0.1 2800 0.6 98 100 (Co78Nb9C8N5)0.9(Al65Si35)0.1 1.33 <0.1 2600 0.8 93 100 (Co80Hf7C8N5)0.9(Al65Si35)0.1 1.40 <0.1 3000 0.4 105 100 (Co78Zr9C8N5)0.9(Al65Si35)0.1 1.30 <0.1 2700 0.8 97 100 (Co78Ta9C8N5)0.9(Ti30Cr70)0.1 1.25 <0.1 2100 1 90 100 (Co78Nb9C8N5)0.9(Ti30Cr70)0.1 1.26 <0.1 2300 1 88 100 (Co80Hf7C8N5)0.9(Ti30Cr70)0.1 1.35 <0.1 2800 1 85 100 (Co78Zr9C8N5)0.9(Ti30Cr70)0.1 1.30 <0.1 1900 1 88 100 (Co78Ta4Nb5C8N5)0.9(Cr80Ru20)0.1 1.30 <0.1 1900 1 90 100 (Co80Ta2Hf5C8N5)0.9(Cr80Rh20)0.1 1.40 <0.1 1800 1 88 100 (Co78Ta5Zr4C8N5)0.9Al10 1.35 <0.1 1800 1 85 100 (Co80Nb2Hf5C8N5)0.9(Al70Si30)0.1 1.41 <0.1 2000 0.8 83 100 (Co80Hf5Zr2C8N5)0.9(Ti30Cr70)0.1 1.40 <0.1 1900 1 90 100 Table 9 Bs Hc μ λ ρ Bs (t) / Bs (0) (Fe 78 Ta 9 C 8 N 5 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.45 <0.1 2500 1 98 100 (Fe 78 Nb 9 C 8 N 5 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.45 <0.1 2500 1 98 100 (Fe 78 Hf 9 C 8 N 5 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.49 <0.1 3000 0.9 85 100 (Fe 78 Zr 9 C 8 N 5 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.45 <0.1 3000 2 93 100 (Fe 78 Ta 8 C 8 N 6 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.40 <0.1 2000 2 88 100 (Fe 78 Nb 8 C 8 N 6 ) 0.91 (Cr 70 Rh 30 ) 0.09 1.42 <0.1 2000 1 89 100 (Fe 79 Hf 7 C 8 N 6 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.52 <0.1 3000 0.9 98 100 (Fe 78 Zr 8 C 8 N 6 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.43 <0.1 2500 1 93 100 (Fe 78 Ta 8 C 8 N 6 ) 0.9 Al 10 1.43 <0.1 3500 0.8 98 100 (Fe 78 Nb 8 C 8 N 6 ) 0.9 Al 10 1.40 <0.1 3000 0.9 95 100 (Fe 79 Hf 7 C 8 N 6 ) 0.9 Al 10 1.50 <0.1 3000 1 95 100 (Fe 78 Zr 9 C 8 N 5 ) 0.9 Al 10 1.40 <0.1 2300 1 89 100 ( Fe 78 Ta 9 C 8 N 5 ) 0.9 (Al 65 Si 35 ) 0.1 1.51 <0.1 3800 0.6 103 100 (Fe 78 Nb 9 C 8 N 5 ) 0.9 (Al 65 Si 35 ) 0.1 1.43 <0.1 2900 0.7 98 100 ( Fe 80 Hf 7 C 8 N 5 ) 0.9 (Al 65 Si 35 ) 0.1 1.50 <0.1 3000 0.5 108 100 (Fe 78 Zr 9 C 8 N 5 ) 0.9 (Al 65 Si 35 ) 0.1 1.40 <0.1 3000 0.8 95 100 (Fe 78 Ta 9 C 8 N 5 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.35 <0.1 2000 1 95 100 (Fe 78 Nb 9 C 8 N 5 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.36 <0.1 2100 1 96 100 (Fe 80 Hf 7 C 8 N 5 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.45 <0.1 2800 0.9 97 100 (Fe 78 Zr 9 C 8 N 5 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.40 <0.1 3000 1 95 100 (Fe 78 Ta 4 Nb 5 C 8 N 5 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.40 <0.1 2300 1 95 100 (Fe 80 Ta 2 Hf 5 C 8 N 5 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.50 <0.1 2800 0.8 95 100 (Fe 78 Ta 5 Zr 4 C 8 N 5 ) 0.9 Al 10 1.45 <0.1 2800 1 98 100 (Fe 80 Nb 2 Hf 5 C 8 N 5 ) 0.9 (Al 70 Si 30 ) 0.1 1.51 <0.1 3000 0.7 98 100 ( Fe 80 Hf 5 Zr 2 C 8 N 5 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.50 <0.1 2300 2 93 100 (Co 78 Ta 9 C 8 N 5 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.35 <0.1 2000 1 90 100 (Co 78 Nb 9 C 8 N 5 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.35 <0.1 2000 1 90 100 (Co 78 Hf 9 C 8 N 5 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.39 <0.1 2300 0.9 93 100 (Co 78 Zr 9 C 8 N 5 ) 0.9 (Cr 70 Ru 30 ) 0.1 1.35 <0.1 2100 1 83 100 (Co 78 Ta 8 C 8 N 6 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.30 <0.1 2000 1 88 100 (Co 78 Nb 8 C 8 N 6 ) 0.91 (Cr 70 Rh 30 ) 0.09 1.32 <0.1 2000 1 83 100 (Co 79 Hf 7 C 8 N 6 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.40 <0.1 2300 0.9 85 100 (Co 78 Zr 8 C 8 N 6 ) 0.9 (Cr 70 Rh 30 ) 0.1 1.35 <0.1 2000 1 80 100 (Co 78 Ta 8 C 8 N 6 ) 0.9 Al 10 1.33 <0.1 2100 1 98 100 (Co 78 Nb 8 C 8 N 6 ) 0.9 Al 10 1.30 <0.1 2000 1 99 100 (Co 79 Hf 7 C 8 N 6 ) 0.9 Al 10 1.40 <0.1 2400 1 103 100 (Co 78 Zr 9 C 8 N 5 ) 0.9 Al 10 1.30 <0.1 2000 2 97 100 (Co 78 Ta 9 C 8 N 5 ) 0.9 (Al 65 Si 35 ) 0.1 1.41 <0.1 2800 0.6 98 100 (Co 78 Nb 9 C 8 N 5 ) 0.9 (Al 65 Si 35 ) 0.1 1.33 <0.1 2600 0.8 93 100 (Co 80 Hf 7 C 8 N 5 ) 0.9 (Al 65 Si 35 ) 0.1 1.40 <0.1 3000 0.4 105 100 (Co 78 Zr 9 C 8 N 5 ) 0.9 (Al 65 Si 35 ) 0.1 1.30 <0.1 2700 0.8 97 100 (Co 78 Ta 9 C 8 N 5 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.25 <0.1 2100 1 90 100 (Co 78 Nb 9 C 8 N 5 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.26 <0.1 2300 1 88 100 (Co 80 Hf 7 C 8 N 5 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.35 <0.1 2800 1 85 100 (Co 78 Zr 9 C 8 N 5 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.30 <0.1 1900 1 88 100 (Co 78 Ta 4 Nb 5 C 8 N 5 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.30 <0.1 1900 1 90 100 (Co 80 Ta 2 Hf 5 C 8 N 5 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.40 <0.1 1800 1 88 100 (Co 78 Ta 5 Zr 4 C 8 N 5 ) 0.9 Al 10 1.35 <0.1 1800 1 85 100 (Co 80 Nb 2 Hf 5 C 8 N 5 ) 0.9 (Al 70 Si 30 ) 0.1 1.41 <0.1 2000 0.8 83 100 (Co 80 Hf 5 Zr 2 C 8 N 5 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.40 <0.1 1900 1 90 100

【0054】しかし、これらの磁性膜においても、Fe
100-a-b-cab(C−N)c、又はCo100-a-b-ca
b(C−N)c(ただし、XはNb,Ta,Hf,Zrの
群から選ばれる少なくとも1種類の元素、YはCr,R
u,Al,Si,Ti,Rhの群から選ばれる1種類又
は2種類の元素)で表される磁性薄膜の組成が、5≦a
≦20、0.5≦b≦15、1≦c≦20、かつ0.5
≦a/c≦0.7の範囲を外れると、例えば下記の表1
0に示すように、所望の軟磁気特性と耐食性を同時に満
たすことはできなかった。表中の飽和磁束密度Bsの単
位はT、保持力Hcの単位はOe、透磁率μは1MHz
における値、磁歪定数λsの単位は10 -6、比抵抗ρの
単位は10-8Ω・mである。また、Bs(0)は成膜後の
磁性膜の飽和磁束密度の値、Bs(t)は磁性膜を0.5
規定塩化ナトリウム水溶液中に200時間浸漬した後の
飽和磁束密度の値である。
However, even in these magnetic films, Fe
100-abcXaYb(C-N)c, Or Co100-abcXaY
b(C-N)c(However, X is Nb, Ta, Hf, Zr
At least one element selected from the group, Y is Cr, R
one kind selected from the group of u, Al, Si, Ti, Rh or
Is a two-element type), the composition of the magnetic thin film is 5 ≦ a
≤ 20, 0.5 ≤ b ≤ 15, 1 ≤ c ≤ 20, and 0.5
When out of the range of ≦ a / c ≦ 0.7, for example, the following Table 1
As shown in 0, the desired soft magnetic properties and corrosion resistance are simultaneously satisfied.
I couldn't do it. Saturation magnetic flux density Bs in the table
The unit is T, the coercive force Hc is Oe, and the magnetic permeability μ is 1 MHz.
And the unit of the magnetostriction constant λs is 10 -6, Resistivity ρ
Unit is 10-8Ω · m. In addition, Bs (0) is
The value of the saturation magnetic flux density of the magnetic film, Bs (t) is 0.5 for the magnetic film.
After immersing in normal sodium chloride solution for 200 hours
It is the value of the saturation magnetic flux density.

【0055】 表 10 Bs Hc μ λ ρ Bs(t)/Bs(0) (Fe72Ta14C8N6)0.9(Cr80Ru20)0.1 1.28 0.3 3000 1 95 60 (Fe72Nb14C8N6)0.9(Cr80Ru20)0.1 1.28 0.3 2800 2 93 60 (Fe74Hf12C8N6)0.9(Cr80Ru20)0.1 1.33 0.25 2900 1 97 60 (Fe72Zr14C8N6)0.9(Cr80Ru20)0.1 1.28 0.3 2500 2 90 60 (Fe72Ta14C8N6)0.9(Cr80Rh20)0.1 1.28 0.3 3100 2 95 60 (Fe72Nb14C8N6)0.9(Cr80Rh20)0.1 1.28 0.3 3000 2.5 93 60 (Fe74Hf12C8N6)0.9(Cr80Rh20)0.1 1.32 0.25 3000 1 97 60 (Fe72Zr14C8N6)0.9(Cr80Rh20)0.1 1.28 0.3 2900 2 91 60 (Fe72Ta14C8N6)0.9Al10 1.35 0.2 3000 1 99 80 (Fe72Nb14C8N6)0.9Al10 1.30 0.2 3000 2 95 70 (Fe74Hf12C8N6)0.9Al10 1.38 0.2 3500 1 98 80 (Fe72Zr14C8N6)0.9Al10 1.29 0.2 3000 1 97 70 (Fe78Ta11C7N4)0.9(Al60Si40)0.1 1.45 <0.1 3500 0.7 95 85 (Fe78Nb11C7N4)0.9(Al60Si40)0.1 1.43 <0.1 3500 0.8 95 78 (Fe78Hf11C7N4)0.9(Al60Si40)0.1 1.50 <0.1 3800 0.7 98 85 (Fe78Zr11C7N4)0.9(Al60Si40)0.1 1.45 <0.1 3300 0.8 95 78 (Fe78Ta11C7N4)0.9(Ti30Cr70)0.1 1.35 <0.1 3000 1 90 55 (Fe78Nb11C7N4)0.9(Ti30Cr70)0.1 1.32 <0.1 3500 2 89 55 (Fe78Hf11C7N4)0.9(Ti30Cr70)0.1 1.33 <0.1 3000 1 92 55 (Fe78Zr11C7N4)0.9(Ti30Cr70)0.1 1.32 <0.1 3200 2 92 55 (Fe78Ta6Nb5C7N4)0.9(Cr80Ru20)0.1 1.32 <0.1 2800 1 90 60 (Fe78Ta6Hf5C7N4)0.9(Cr80Rh20)0.1 1.35 <0.1 2700 2 89 60 (Fe78Ta6Zr5C7N4)0.9Al10 1.30 <0.1 2600 2 92 55 (Fe78Nb6Hf5C7N4)0.9(Al60Si40)0.1 1.35 <0.1 2700 1 91 60 (Fe98Hf5Zr6C7N4)0.9(Ti30Cr70)0.1 1.32 <0.1 2800 1 90 60 (Co72Ta14C8N6)0.9(Cr80Ru20)0.1 1.18 0.4 2000 1 78 65 (Co72Nb14C8N6)0.9(Cr80Ru20)0.1 1.18 0.4 2500 1 88 65 (Co74Hf12C8N6)0.9(Cr80Ru20)0.1 1.23 0.2 2600 1 80 65 (Co72Zr14C8N6)0.9(Cr80Ru20)0.1 1.38 0.4 2800 1 83 65 (Co72Ta14C8N6)0.9(Cr80Rh20)0.1 1.18 0.4 2500 1 90 65 (Co72Nb14C8N6)0.9(Cr80Rh20)0.1 1.18 0.4 2000 1 93 65 (Co74Hf12C8N6)0.9(Cr80Rh20)0.1 1.22 0.4 2500 1 97 65 (Co72Zr14C8N6)0.9(Cr80Rh20)0.1 1.18 0.4 1800 1 91 65 (Co72Ta14C8N6)0.9Al10 1.25 0.2 3300 1 98 85 (Co72Nb14C8N6)0.9Al10 1.20 0.2 3200 1 96 75 (Co74Hf12C8N6)0.9Al10 1.28 0.2 3200 1 99 85 (Co72Zr14C8N6)0.9Al10 1.19 0.2 3100 1 95 80 (Co78Ta11C7N4)0.9(Al60Si40)0.1 1.35 <0.1 3100 0.7 95 85 (Co78Nb11C7N4)0.9(Al60Si40)0.1 1.33 <0.1 2900 0.9 90 85 (Co78Hf11C7N4)0.9(Al60Si40)0.1 1.40 <0.1 2800 0.5 98 85 (Co78Zr11C7N4)0.9(Al60Si40)0.1 1.35 <0.1 2500 0.9 90 85 (Co78Ta11C7N4)0.9(Ti30Cr70)0.1 1.25 <0.1 3000 1 93 65 (Co78Nb11C7N4)0.9(Ti30Cr70)0.1 1.22 <0.1 2800 1 90 65 (Co78Hf11C7N4)0.9(Ti30Cr70)0.1 1.23 <0.1 3100 1 98 65 (Co78Zr11C7N4)0.9(Ti30Cr70)0.1 1.22 <0.1 2800 1 90 65 (Co78Ta6Nb5C7N4)0.9(Cr80Ru20)0.1 1.22 <0.1 2000 1 90 70 (Co78Ta6Hf5C7N4)0.9(Cr80Rh20)0.1 1.25 <0.1 2100 1 92 70 (Co78Ta6Zr5C7N4)0.9Al10 1.20 <0.1 2000 1 89 60 (Co78Nb6Hf5C7N4)0.9(Al60Si40)0.1 1.25 <0.1 2300 0.6 95 65 (Co98Hf5Zr6C7N4)0.9(Ti30Cr70)0.1 1.22 <0.1 2200 0.6 95 65 Table 10 Bs Hc μ λ ρ Bs (t) / Bs (0) (Fe 72 Ta 14 C 8 N 6 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.28 0.3 3000 1 95 60 (Fe 72 Nb 14 C 8) N 6 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.28 0.3 2800 2 93 60 (Fe 74 Hf 12 C 8 N 6 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.33 0.25 2900 1 97 60 (Fe 72 Zr 14 C 8 N 6 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.28 0.3 2500 2 90 60 (Fe 72 Ta 14 C 8 N 6 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.28 0.3 3100 2 95 60 (Fe 72 Nb 14 C 8 N 6 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.28 0.3 3000 2.5 93 60 (Fe 74 Hf 12 C 8 N 6 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.32 0.25 3000 1 97 60 (Fe 72 Zr 14 C 8 N 6 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.28 0.3 2900 2 91 60 (Fe 72 Ta 14 C 8 N 6 ) 0.9 Al 10 1.35 0.2 3000 1 99 80 (Fe 72 Nb 14 C 8 N 6 ) 0.9 Al 10 1.30 0.2 3000 2 95 70 ( Fe 74 Hf 12 C 8 N 6 ) 0.9 Al 10 1.38 0.2 3500 1 98 80 (Fe 72 Zr 14 C 8 N 6 ) 0.9 Al 10 1.29 0.2 3000 1 97 70 (Fe 78 Ta 11 C 7 N 4 ) 0.9 (Al 60 Si 40 ) 0.1 1.45 <0.1 3500 0.7 95 85 (Fe 78 Nb 11 C 7 N 4 ) 0.9 (Al 60 Si 40 ) 0.1 1.43 <0.1 3500 0.8 95 78 (Fe 78 Hf 11 C 7 N 4 ) 0.9 (Al 60 Si 40 ) 0.1 1.50 <0.1 3800 0.7 98 85 (Fe 78 Zr 11 C 7 N 4 ) 0.9 (Al 60 Si 40 ) 0.1 1.45 <0.1 3300 0.8 95 78 (Fe 78 Ta 11 C 7 N 4 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.35 <0.1 3000 1 90 55 (Fe 78 Nb 11 C 7 N 4 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.32 <0.1 3500 2 89 55 (Fe 78 Hf 11 C 7 N 4 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.33 <0.1 3000 1 92 55 (Fe 78 Zr 11 C 7 N 4 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.32 <0.1 3200 2 92 55 (Fe 78 Ta 6 Nb 5 C 7 N 4 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.32 <0.1 2800 1 90 60 (Fe 78 Ta 6 Hf 5 C 7 N 4 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.35 <0.1 2700 2 89 60 (Fe 78 Ta 6 Zr 5 C 7 N 4 ) 0.9 Al 10 1.30 <0.1 2600 2 92 55 (Fe 78 Nb 6 Hf 5 C 7 N 4 ) 0.9 (Al 60 Si 40 ) 0.1 1.35 <0.1 2700 1 91 60 (Fe 98 Hf 5 Zr 6 C 7 N 4 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.32 <0.1 2800 1 90 60 (Co 72 Ta 14 C 8 N 6 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.18 0.4 2000 1 78 65 (Co 72 Nb 14 C 8 N 6 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.18 0.4 2500 1 88 65 (Co 74 Hf 12 C 8 N 6 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.23 0.2 2600 1 80 65 (Co 72 Zr 14 C 8 N 6 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.38 0 .4 2800 1 83 65 (Co 72 Ta 14 C 8 N 6 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.18 0.4 2500 1 90 65 (Co 72 Nb 14 C 8 N 6 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.18 0.4 2000 1 93 65 (Co 74 Hf 12 C 8 N 6 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.22 0.4 2500 1 97 65 (Co 72 Zr 14 C 8 N 6 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.18 0.4 1800 1 91 65 (Co 72 Ta 14 C 8 N 6 ) 0.9 Al 10 1.25 0.2 3300 1 98 85 (Co 72 Nb 14 C 8 N 6 ) 0.9 Al 10 1.20 0.2 3200 1 96 75 (Co 74 Hf 12 C 8 N 6 ) 0.9 Al 10 1.28 0.2 3200 1 99 85 (Co 72 Zr 14 C 8 N 6 ) 0.9 Al 10 1.19 0.2 3100 1 95 80 (Co 78 Ta 11 C 7 N 4 ) 0.9 (Al 60 Si 40 ) 0.1 1.35 <0.1 3100 0.7 95 85 (Co 78 Nb 11 C 7 N 4 ) 0.9 (Al 60 Si 40 ) 0.1 1.33 <0.1 2900 0.9 90 85 (Co 78 Hf 11 C 7 N 4 ) 0.9 (Al 60 Si 40 ) 0.1 1.40 <0.1 2800 0.5 98 85 (Co 78 Zr 11 C 7 N 4 ) 0.9 (Al 60 Si 40 ) 0.1 1.35 <0.1 2500 0.9 90 85 (Co 78 Ta 11 C 7 N 4 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.25 <0.1 3000 1 93 65 (Co 78 Nb 11 C 7 N 4 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.22 <0.1 2800 1 90 65 (Co 78 Hf 11 C 7 N 4 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.23 <0.1 3100 1 98 65 ( Co 78 Zr 11 C 7 N 4 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.22 <0.1 2800 1 90 65 (Co 78 Ta 6 Nb 5 C 7 N 4 ) 0.9 (Cr 80 Ru 20 ) 0.1 1.22 <0.1 2000 1 90 70 (Co 78 Ta 6 Hf 5 C 7 N 4 ) 0.9 (Cr 80 Rh 20 ) 0.1 1.25 <0.1 2100 1 92 70 (Co 78 Ta 6 Zr 5 C 7 N 4 ) 0.9 Al 10 1.20 <0.1 2000 1 89 60 (Co 78 Nb 6 Hf 5 C 7 N 4 ) 0.9 (Al 60 Si 40 ) 0.1 1.25 <0.1 2300 0.6 95 65 (Co 98 Hf 5 Zr 6 C 7 N 4 ) 0.9 (Ti 30 Cr 70 ) 0.1 1.22 <0.1 2200 0.6 95 65

【0056】[0056]

【発明の効果】本発明によれば、Fe又はCoを主体と
する微結晶析出型の磁性膜において、Fe,Co及び炭
化物或いは窒化物の結晶粒子サイズを制御することによ
り、磁気特性を確保しつつ軟磁性薄膜の耐食性を向上さ
せることができる。この効果は、Fe又はCo層中へ元
素を固溶させることによりFe又はCoの結晶粒子サイ
ズを制御でき、また、元素Nb,Ta,Hf,Zrと元
素C,Nの比を制御することにより炭化物或いは窒化物
の結晶粒子サイズを制御できることによると考えられ
る。
According to the present invention, in a microcrystalline precipitation type magnetic film mainly composed of Fe or Co, magnetic characteristics are secured by controlling the crystal grain size of Fe, Co and carbide or nitride. At the same time, the corrosion resistance of the soft magnetic thin film can be improved. This effect can be achieved by controlling the crystal grain size of Fe or Co by dissolving the element in the Fe or Co layer and controlling the ratio of the elements Nb, Ta, Hf, Zr and the elements C, N. It is considered that the crystal grain size of carbide or nitride can be controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】軟磁性薄膜の磁気特性のTa/C比依存性を示
す図。
FIG. 1 is a diagram showing the Ta / C ratio dependence of the magnetic characteristics of a soft magnetic thin film.

【図2】各種組成の磁性膜のX線回折スペクトルを示す
図。
FIG. 2 is a diagram showing X-ray diffraction spectra of magnetic films having various compositions.

【図3】各種組成の磁性膜を0.5規定塩化ナトリウム
水溶液中に浸漬させたときの飽和磁束密度の経時変化を
示す図。
FIG. 3 is a diagram showing changes with time in saturation magnetic flux density when magnetic films having various compositions are immersed in a 0.5 N sodium chloride aqueous solution.

【図4】MIG型磁気ヘッドの構造を示す図。FIG. 4 is a diagram showing a structure of an MIG type magnetic head.

【図5】軟磁性薄膜の飽和磁束密度のTa/N比依存性
を示す図。
FIG. 5 is a diagram showing the Ta / N ratio dependence of the saturation magnetic flux density of a soft magnetic thin film.

【符号の説明】[Explanation of symbols]

1…軟磁性薄膜、2…フェライト基板、3…ギャップ
部、4…低融点ガラス
1 ... Soft magnetic thin film, 2 ... Ferrite substrate, 3 ... Gap part, 4 ... Low melting point glass

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−12508(JP,A) 特開 平3−265104(JP,A) 特開 平5−135989(JP,A) 特開 平4−305807(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 10/12 - 10/16 G11B 5/127 G11B 5/31 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-4-12508 (JP, A) JP-A-3-265104 (JP, A) JP-A-5-135989 (JP, A) JP-A-4- 305807 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01F 10/12-10/16 G11B 5/127 G11B 5/31

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 XをNb,Ta,Hf,Zrの群から選
ばれる少なくとも1種類の元素、YをCr,Ru,A
l,Si,Ti,Rhの群から選ばれる1種類又は2種
類の元素、ZをC,Nの群から選ばれる少なくとも1種
類の元素とするとき、 Co100-a-b-cabc で表わされ、5≦a≦20、0.5≦b≦15、1≦c
≦20、かつ0.5≦a/c≦0.7である軟磁性薄膜
を含むことを特徴とする磁気ヘッド。
1. X is at least one element selected from the group of Nb, Ta, Hf and Zr, and Y is Cr, Ru and A.
When one or two kinds of elements selected from the group of l, Si, Ti, and Rh and Z is at least one kind of element selected from the group of C and N, Co 100-abc X a Y b Z c 5 ≦ a ≦ 20, 0.5 ≦ b ≦ 15, 1 ≦ c
A magnetic head including a soft magnetic thin film satisfying ≦ 20 and 0.5 ≦ a / c ≦ 0.7.
【請求項2】 YはAl−Si,Al,Cr−Ru,C
r−Rh又はTi−Crであることを特徴とする請求項
1記載の磁気ヘッド。
2. Y is Al-Si, Al, Cr-Ru, C
The magnetic head according to claim 1, wherein the magnetic head is r-Rh or Ti-Cr.
【請求項3】 0.53≦a/c≦0.70であること
を特徴とする請求項2記載の磁気ヘッド。
3. The magnetic head according to claim 2, wherein 0.53 ≦ a / c ≦ 0.70.
【請求項4】 XをNb,Ta,Hf,Zrの群から選
ばれる少なくとも1種類の元素、YをCr,Ru,A
l,Si,Ti,Rhの群から選ばれる1種類又は2種
類の元素、ZをC,Nの群から選ばれる少なくとも1種
類の元素とするとき、 Fe100-a-b-cabc で表わされ、5≦a≦20、0.5≦b≦15、1≦c
≦20、かつ0.5≦a/c≦0.7であり、元素Xの
炭化物又は窒化物の平均結晶粒子サイズが3nm以下で
ある軟磁性薄膜を含むことを特徴とする磁気ヘッド。
4. X is at least one element selected from the group of Nb, Ta, Hf and Zr, and Y is Cr, Ru and A.
When one or two kinds of elements selected from the group of l, Si, Ti, and Rh and Z is at least one kind of element selected from the group of C and N, Fe 100-abc X a Y b Z c 5 ≦ a ≦ 20, 0.5 ≦ b ≦ 15, 1 ≦ c
A magnetic head comprising: a soft magnetic thin film having ≦ 20 and 0.5 ≦ a / c ≦ 0.7, and an average crystal grain size of a carbide or a nitride of the element X is 3 nm or less.
【請求項5】 YはAl−Si,Al,Cr−Ru,C
r−Rh又はTi−Crであることを特徴とする請求項
4記載の磁気ヘッド。
5. Y is Al-Si, Al, Cr-Ru, C
The magnetic head according to claim 4, wherein the magnetic head is r-Rh or Ti-Cr.
【請求項6】 0.53≦a/c≦0.70であること
を特徴とする請求項5記載の磁気ヘッド。
6. The magnetic head according to claim 5, wherein 0.53 ≦ a / c ≦ 0.70.
【請求項7】 XをNb,Ta,Hf,Zrの群から選
ばれる少なくとも1種類の元素、YをCr,Ru,A
l,Si,Ti,Rhの群から選ばれる1種類又は2種
類の元素、ZをC,Nの群から選ばれる少なくとも1種
類の元素とするとき、 Co100-a-b-cabc で表わされ、5≦a≦20、0.5≦b≦15、1≦c
≦20、かつ0.5≦a/c≦0.7であり、元素Xの
炭化物又は窒化物の平均結晶粒子サイズが3nm以下で
ある軟磁性薄膜を含むことを特徴とする磁気ヘッド。
7. X is at least one element selected from the group of Nb, Ta, Hf and Zr, and Y is Cr, Ru and A.
When one or two kinds of elements selected from the group of l, Si, Ti, and Rh and Z is at least one kind of element selected from the group of C and N, Co 100-abc X a Y b Z c 5 ≦ a ≦ 20, 0.5 ≦ b ≦ 15, 1 ≦ c
A magnetic head comprising: a soft magnetic thin film having ≦ 20 and 0.5 ≦ a / c ≦ 0.7, and an average crystal grain size of a carbide or a nitride of the element X is 3 nm or less.
【請求項8】 YはAl−Si,Al,Cr−Ru,C
r−Rh又はTi−Crであることを特徴とする請求項
7記載の磁気ヘッド。
8. Y is Al-Si, Al, Cr-Ru, C
8. The magnetic head according to claim 7, which is r-Rh or Ti-Cr.
【請求項9】 0.53≦a/c≦0.70であること
を特徴とする請求項8記載の磁気ヘッド。
9. The magnetic head according to claim 8, wherein 0.53 ≦ a / c ≦ 0.70.
【請求項10】 メタル・イン・ギャップ型であること
を特徴とする請求項1〜のいずれか1項に記載の磁気
ヘッド。
10. A magnetic head according to any one of claims 1 to 9, characterized in that a metal-in-gap type.
【請求項11】 請求項1〜10のいずれか1項記載の
磁気ヘッドと、磁性層を有する磁気記録媒体とを備える
ことを特徴とする磁気記録装置。
11. A magnetic recording apparatus comprising the magnetic head according to claim 1 and a magnetic recording medium having a magnetic layer.
JP01573995A 1994-08-12 1995-02-02 Magnetic head and magnetic recording device Expired - Fee Related JP3386270B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP01573995A JP3386270B2 (en) 1995-02-02 1995-02-02 Magnetic head and magnetic recording device
KR1019960001987A KR960032314A (en) 1995-02-02 1996-01-30 Magnetic thin film and magnetic head and magnetic recording device using the same
DE19603618A DE19603618A1 (en) 1995-02-02 1996-02-01 Soft magnetic thin film having high saturation magnetisation
US08/595,080 US5873955A (en) 1994-08-12 1996-02-01 Soft magnetic thin film, and magnetic head and magnetic recording device using the same
US09/174,445 US6033792A (en) 1995-02-02 1998-10-19 Soft magnetic thin film, and magnetic head and magnetic recording device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01573995A JP3386270B2 (en) 1995-02-02 1995-02-02 Magnetic head and magnetic recording device

Publications (2)

Publication Number Publication Date
JPH08213235A JPH08213235A (en) 1996-08-20
JP3386270B2 true JP3386270B2 (en) 2003-03-17

Family

ID=11897138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01573995A Expired - Fee Related JP3386270B2 (en) 1994-08-12 1995-02-02 Magnetic head and magnetic recording device

Country Status (3)

Country Link
JP (1) JP3386270B2 (en)
KR (1) KR960032314A (en)
DE (1) DE19603618A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5755986A (en) * 1995-09-25 1998-05-26 Alps Electric Co., Ltd. Soft-magnetic dielectric high-frequency composite material and method for making the same

Also Published As

Publication number Publication date
JPH08213235A (en) 1996-08-20
KR960032314A (en) 1996-09-17
DE19603618A1 (en) 1996-08-08

Similar Documents

Publication Publication Date Title
KR0178080B1 (en) Soft magnetic thin film and magnetic head and magnetic recording device using the same
JPH07302711A (en) Soft magnetic alloy thin film and its manufacture
US6033792A (en) Soft magnetic thin film, and magnetic head and magnetic recording device using the same
JP3230223B2 (en) Magnetic recording media
JP3386270B2 (en) Magnetic head and magnetic recording device
US5873955A (en) Soft magnetic thin film, and magnetic head and magnetic recording device using the same
JP3200787B2 (en) Manufacturing method of magnetic recording medium
JP3517067B2 (en) Magnetic head
JP2570337B2 (en) Soft magnetic laminated film
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JP3030279B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JPH09283333A (en) Soft-magnetic thin film and magnetic head made from soft-magnetic thin film
JPH08316032A (en) Soft magnetic thin film, magnetic head using the film and magnetic recorder
JPH0887710A (en) Soft magnetic thin film, magnetic head using same and magnetic recorder
JPH08236348A (en) Soft magnetic thin film, magnetic head formed thereof, and magnetic recording device
JPH07288207A (en) Soft magnetic thin film and magnetic head using the same
JP3279591B2 (en) Ferromagnetic thin film and manufacturing method thereof
JP2001344726A (en) Perpendicular magnetic recording medium and magnetic storage device
JPH04252006A (en) Corrosion-resistant magnetically soft film and magnetic head using the same
JPH08181030A (en) Manufacture of magnetic thin film, magnetic head using the same and magnetic recorder
JPH08107036A (en) Soft magnetic thin film magnetic recording equipment using that film
JPH07288208A (en) Soft magnetic thin film and magnetic head using the same
JPH10233333A (en) Manufacturing method of magnetic recording medium
JPH10233334A (en) Manufacturing method of magnetic recording medium
JPH07235421A (en) Soft magnetic thin film, magnetic head and magnetic recorder using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees