JP3030279B2 - Magnetic recording medium and magnetic recording / reproducing device - Google Patents

Magnetic recording medium and magnetic recording / reproducing device

Info

Publication number
JP3030279B2
JP3030279B2 JP10167089A JP16708998A JP3030279B2 JP 3030279 B2 JP3030279 B2 JP 3030279B2 JP 10167089 A JP10167089 A JP 10167089A JP 16708998 A JP16708998 A JP 16708998A JP 3030279 B2 JP3030279 B2 JP 3030279B2
Authority
JP
Japan
Prior art keywords
magnetic
film
recording
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10167089A
Other languages
Japanese (ja)
Other versions
JP2000003509A (en
Inventor
和悦 吉田
正昭 二本
信幸 稲葉
義幸 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10167089A priority Critical patent/JP3030279B2/en
Priority to US09/285,751 priority patent/US6183893B1/en
Publication of JP2000003509A publication Critical patent/JP2000003509A/en
Application granted granted Critical
Publication of JP3030279B2 publication Critical patent/JP3030279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、垂直磁気異方性を
有する強磁性薄膜を記録層として用いた磁気記録媒体に
関わり、熱揺らぎに対して安定した特性をもつ磁気記録
媒体とそれを用いた磁気記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium using a ferromagnetic thin film having perpendicular magnetic anisotropy as a recording layer. Related to a magnetic recording and reproducing apparatus.

【0002】[0002]

【従来の技術】近年の情報量の増大には目覚ましいもの
があり、ファイルメディアとして用いられる磁気ディス
クやフロッピーディスク、磁気テープの記憶容量の飛躍
的な向上が強く望まれている。このような情勢の中で、
磁気記録媒体は、微細な磁性粉を用いた塗布型媒体か
ら、強磁性金属薄膜を用いた薄膜型媒体へと移行しつつ
ある。
2. Description of the Related Art In recent years, there has been a remarkable increase in the amount of information, and there is a strong demand for a dramatic improvement in the storage capacity of magnetic disks, floppy disks, and magnetic tapes used as file media. In such a situation,
The magnetic recording medium is shifting from a coating type medium using fine magnetic powder to a thin film type medium using a ferromagnetic metal thin film.

【0003】ところで、磁気記録においては、情報の記
録は記録媒体となる強磁性層の微小領域の磁化の向きを
反転させることによって行われる。現行においては、磁
化の向きを媒体面に対して平行に書き込む、いわゆる長
手記録方式が広く用いられている。この記録方式におい
ては、その高記録密度化は媒体の保磁力を高めるか、磁
性層の厚さを薄くすることによって進められている。し
かし、現行の長手記録媒体においては既にその厚さは3
0nm以下であり、さらに薄膜化するにはトライボロジ
的に強度があり、かつ欠陥の少ない膜を形成する高度な
製膜技術が必要となる。またそれに加えて、記録・再生
特性の面から見ても、薄膜化による再生出力の低下及び
信号対雑音比の劣化を避けることは困難である。高記録
密度化に伴う信号対雑音比の劣化を防ぐためには、記録
薄膜を構成する結晶粒子を微細化する必要があるため熱
的な撹乱に弱くなり、長時間経過すると記録情報が失わ
れる、いわゆる熱減磁が大きな問題となりつつある。
[0003] In magnetic recording, information is recorded by reversing the direction of magnetization in a minute region of a ferromagnetic layer serving as a recording medium. At present, a so-called longitudinal recording method, in which the direction of magnetization is written in parallel to the medium surface, is widely used. In this recording method, the increase in recording density has been promoted by increasing the coercive force of the medium or reducing the thickness of the magnetic layer. However, the thickness is already 3 in the current longitudinal recording medium.
To be thinner than 0 nm, further thinning requires an advanced film forming technique for forming a film having tribological strength and few defects. In addition, from the viewpoint of recording / reproducing characteristics, it is difficult to avoid a decrease in reproduction output and a deterioration of a signal-to-noise ratio due to thinning. In order to prevent the signal-to-noise ratio from deteriorating due to the increase in recording density, it is necessary to reduce the size of the crystal grains constituting the recording thin film, so that the recording thin film is vulnerable to thermal disturbance, and after a long time, recorded information is lost. So-called thermal demagnetization is becoming a major problem.

【0004】一方、上記した欠点を解決する方法とし
て、記録磁化を媒体膜面に対して垂直方向に磁化する垂
直記録方式が提案されている。この方式では膜面垂直方
向に強い磁気異方性をもつ材料が必要であり、Co−C
r系合金に代表される厚さ0.02〜0.5ハmの比較
的厚めの合金磁性膜が広く用いられている。この記録方
式の優れた点は、記録密度が高くなるほど記録された磁
化がエネルギー的に安定となり、本質的に高密度記録に
向いていることにある。しかも、この方式では長手記録
方式と異なり、記録密度を上げるために膜厚を薄くした
り、保磁力を高める必要がないという製造上の利点を持
っている。また膜厚を薄くする必要がないことは、長手
記録媒体に比較し薄膜を構成する微結晶の体積を大きく
設定できることを意味している。このことは、長手記録
媒体に比較し、垂直記録媒体の方が熱的な撹乱に対して
安定化しやすいことを意味しており、耐熱揺らぎという
観点からも垂直記録方式は高密度記録方式として優れて
いる。
On the other hand, as a method for solving the above-mentioned disadvantage, a perpendicular recording system in which recording magnetization is magnetized in a direction perpendicular to the medium film surface has been proposed. In this method, a material having strong magnetic anisotropy in the direction perpendicular to the film surface is required, and Co-C
A relatively thick alloy magnetic film having a thickness of 0.02 to 0.5 ham represented by an r-based alloy is widely used. The advantage of this recording method is that the higher the recording density, the more stable the recorded magnetization becomes in terms of energy, and is essentially suitable for high-density recording. In addition, unlike the longitudinal recording method, this method has an advantage in manufacturing that it is not necessary to reduce the film thickness or increase the coercive force in order to increase the recording density. Further, the necessity of reducing the film thickness means that the volume of the microcrystal constituting the thin film can be set to be larger than that of the longitudinal recording medium. This means that the perpendicular recording medium is easier to stabilize against thermal disturbance than the longitudinal recording medium, and the perpendicular recording method is superior as a high-density recording method from the viewpoint of heat fluctuation. ing.

【0005】この垂直記録用記録媒体に関しては、特開
昭57−109127号公報あるいは、日本応用磁気学
会誌、9巻2号、57〜60頁(1985年)、あるい
は IEEE Trans., MAG-24, No.6, pp.2706-2708(1988)等
に示されているように、Co−Cr系の合金薄膜が用い
られており、媒体を構成する微小粒子の粒界に非磁性の
Cr原子を偏析させることが好ましいとされている。こ
れは、粒子表面にCr濃度の高い領域を作ることによっ
て、耐食性が向上すること、及び長手記録媒体の場合と
同様に非磁性のCr原子が粒界に偏析することにより粒
子間の磁気的な交換相互作用が断ち切られ、磁区が微細
化し媒体雑音が低減するためと考えられているからであ
る。
The recording medium for perpendicular recording is disclosed in JP-A-57-109127, Journal of the Japan Society of Applied Magnetics, Vol. 9, No. 2, pp. 57-60 (1985), or IEEE Trans., MAG-24. No. 6, pp. 2706-2708 (1988), a Co-Cr alloy thin film is used, and non-magnetic Cr atoms Is preferably segregated. This is because the corrosion resistance is improved by creating a region with a high Cr concentration on the particle surface, and magnetic separation between particles is caused by segregation of non-magnetic Cr atoms at the grain boundaries as in the case of the longitudinal recording medium. This is because it is considered that the exchange interaction is cut off, the magnetic domain becomes finer, and the medium noise is reduced.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、リング
ヘッドと単層垂直磁気記録媒体の組み合わせにおいて
は、Cr原子の偏析が進行した条件で作製したとして
も、必ずしも熱揺らぎに強い媒体が得られている訳では
なく、垂直記録の利点を引き出すまでには至っていなか
った。本発明の目的は、上記した垂直磁気記録の問題点
を解決し、熱揺らぎに対して安定した特性を有する磁気
記録媒体及びそれを用いた磁気記録再生装置を提供する
ことにある。
However, in a combination of a ring head and a single-layer perpendicular magnetic recording medium, a medium that is always resistant to thermal fluctuations is always obtained even if manufactured under the condition that segregation of Cr atoms progresses. Rather, it was not until the benefits of perpendicular recording were brought out. An object of the present invention is to solve the above-described problem of perpendicular magnetic recording and to provide a magnetic recording medium having stable characteristics against thermal fluctuations and a magnetic recording / reproducing apparatus using the same.

【0007】[0007]

【課題を達成するための手段】本発明者等は、磁気記録
再生特性と媒体特性の関係を鋭意検討した結果、熱揺ら
ぎに対する安定性は、記録層の最表面領域の磁気的な特
性と密接に関係していることを見出し、本発明に到っ
た。すなわち、垂直記録で広く用いられるCo−Cr系
合金垂直磁化膜においては、その最表面層における磁気
異方性が膜内部より小さいため、まず最表面に逆磁区の
種が発生し、それが核となって逆磁区が膜の内部にまで
伝播していく。このために、逆磁区の発生する磁界強度
が低下し、熱的に不安定な構造となる。これを防ぐに
は、記録膜の表面に垂直磁気異方性の強い薄膜を設ける
方法が有効である。しかしそのためにはCo−Cr系合
金よりかなり大きな異方性定数を持つ材料が必要であ
り、そのような材料はCo−Pt系等のごく一部の材料
に限られている。
The inventors of the present invention have conducted intensive studies on the relationship between magnetic recording / reproducing characteristics and medium characteristics. As a result, the stability against thermal fluctuation is closely related to the magnetic characteristics of the outermost surface region of the recording layer. And reached the present invention. That is, in the perpendicular magnetization film of a Co—Cr alloy widely used in perpendicular recording, the magnetic anisotropy in the outermost surface layer is smaller than the inside of the film. As a result, the reverse magnetic domain propagates to the inside of the film. Therefore, the strength of the magnetic field generated by the reverse magnetic domain is reduced, and the structure becomes thermally unstable. To prevent this, it is effective to provide a thin film having strong perpendicular magnetic anisotropy on the surface of the recording film. However, for that purpose, a material having a much larger anisotropy constant than a Co—Cr alloy is required, and such a material is limited to a very small number of materials such as a Co—Pt alloy.

【0008】本発明においては、垂直磁化容易特性を持
つ磁気記録膜の両面もしくは片面に膜厚が10nm以下
のSm−Co系磁性膜もしくはFe−Nd−B系磁性膜
を形成したことによって前記目的を達成する。この面内
磁化容易特性を持つ磁性膜としては、異方性定数が大き
く、熱揺らぎの影響を受けにくいSm−Co系磁性膜あ
るいはFe−Nd−B系磁性膜が特に適している。
[0008] In the present invention, it has the property of easy perpendicular magnetization.
10 nm or less on both sides or one side of magnetic recording film
Sm-Co based magnetic film or Fe-Nd-B based magnetic film
The above object is achieved by forming . As the magnetic film having the in-plane easy magnetization characteristic, an Sm-Co-based magnetic film or an Fe-Nd-B-based magnetic film which has a large anisotropy constant and is hardly affected by thermal fluctuation is particularly suitable.

【0009】すなわち、本発明は、垂直磁気記録に用い
られる記録媒体において、垂直磁化容易特性を持つ磁気
記録膜の両面もしくは片面に面内磁化容易特性を持つ
m−Co系磁性膜あるいはFe−Nd−B系磁性膜を形
成したことを特徴とする。面内磁化容易特性を持つSm
−Co系磁性膜あるいはFe−Nd−B系磁性膜は膜厚
が10nm以下、より好ましくは概ね1nmであるのが
よい。これは、膜厚が厚くなりすぎると、面内記録され
た成分が大きくなり、垂直記録の利点が損なわれるため
である。
Accordingly, the present invention is, S with the recording medium used in the perpendicular magnetic recording, the in-plane easy magnetization characteristic on both surfaces or one surface of the magnetic recording film having a perpendicular easy magnetization characteristic
An m-Co-based magnetic film or an Fe-Nd-B-based magnetic film is formed. Sm with easy in-plane magnetization characteristics
The -Co magnetic film or the Fe-Nd-B magnetic film preferably has a thickness of 10 nm or less, more preferably approximately 1 nm. This is because if the film thickness is too large, the in-plane recorded component becomes large and the advantage of perpendicular recording is lost.

【0010】面内磁化容易特性を持つSm−Co系磁性
膜あるいはFe−Nd−B系磁性膜は、面内方向で測定
した時の保磁力が100Oe以上、より好ましくは50
0Oe以上であるのがよい。保磁力が100Oe未満で
あると、面内磁化膜に磁壁が生じやすくなり、ノイズの
原因となる。面内磁化容易特性を持つ磁性膜としては、
Sm−Co系磁性膜もしくはFe−Nd−B系磁性膜が
好適である。Sm−Co系磁性膜においては、Smが1
5〜22at%、好ましくは18〜20at%の組成で
高い保磁力を得ることができる。Fe−Nd−B系磁性
膜では、Ndが10〜35at%、Bが5〜20at%
の組成範囲が好ましく、より好ましい組成範囲はNdが
10〜15at%、Bが5〜10at%である。
[0010] Sm-Co based magnetism having easy in-plane magnetization characteristics
The film or the Fe-Nd-B-based magnetic film has a coercive force of 100 Oe or more, more preferably 50 Oe, when measured in the in-plane direction.
It is preferably at least 0 Oe. If the coercive force is less than 100 Oe, domain walls are likely to be formed in the in-plane magnetized film, which causes noise. As a magnetic film with easy in-plane magnetization characteristics,
Sm-Co based magnetic films or Fe-Nd-B based magnetic films are preferred. In the Sm-Co based magnetic film, Sm is 1
A high coercive force can be obtained with a composition of 5 to 22 at%, preferably 18 to 20 at%. In the Fe—Nd—B based magnetic film, Nd is 10 to 35 at% and B is 5 to 20 at%.
Is more preferable, and the more preferable composition range is Nd of 10 to 15 at% and B of 5 to 10 at%.

【0011】本発明は、また、磁気記録媒体と、磁気記
録媒体を回転駆動する駆動部と、記録再生用の磁気ヘッ
ドと、磁気ヘッドを前記磁気記録媒体に対して相対運動
させる手段と、磁気ヘッドからの出力信号再生を行う手
段とを含む磁気記録再生装置において、磁気記録媒体と
して前記した本発明による磁気記録媒体を用いたことを
特徴とする。
The present invention is also directed to a magnetic recording medium, a driving unit for driving the magnetic recording medium to rotate, a magnetic head for recording and reproducing, a means for moving the magnetic head relative to the magnetic recording medium, A magnetic recording / reproducing apparatus including means for reproducing an output signal from a head, wherein the magnetic recording medium according to the present invention is used as a magnetic recording medium.

【0012】本発明によれば、垂直磁気記録用Co−C
r系薄膜媒体において、膜表面に極薄の面内容易磁化膜
であるSm−Co系磁性膜あるいはFe−Nd−B系磁
性膜を設けることにより、熱揺らぎに対する安定性が向
上する。さらに、副次的な効果として、高い再生出力と
低い媒体雑音特性が得られ、信号対雑音比(S/N)も
改善される。また、本発明による垂直磁気記録媒体を用
いた磁気記録再生装置は、高い再生出力とS/N比、な
らびに優れた記録保持寿命特性を有する。
According to the present invention, Co-C for perpendicular magnetic recording
Ultra-thin in-plane easy magnetization film on r-type thin film medium
Sm-Co based magnetic film or Fe-Nd-B based magnetic film
By providing the conductive film , stability against thermal fluctuation is improved. Further, as a secondary effect, a high reproduction output and a low medium noise characteristic are obtained, and the signal-to-noise ratio (S / N) is also improved. Further, the magnetic recording / reproducing apparatus using the perpendicular magnetic recording medium according to the present invention has a high reproduction output, an S / N ratio, and excellent recording retention life characteristics.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。 <実施の形態1>ニッケル(Ni)と燐(P)合金めっ
き膜が施された、Al−Mg合金からなるディスク基板
上に、スパッタリング法を用いて厚さ30nmのTi−
10at%Cr合金膜を形成した後、Co−35at%
Crの組成を持つ厚さ0.02ハmの非磁性Co−Cr
合金薄膜からなる下地層を基板温度200℃で形成し
た。その後、厚さ30nmのCo−19at%Cr−1
0%Pt−2%Taの4元合金を磁気記録層として形成
した。さらに、その上に、表面層における逆磁区の発生
を抑えることを目的として、Co−18at%Smの組
成をもつ磁性膜を基板温度300℃で厚さ2nmに形成
した。最後に、保護膜として厚さ15nmのカーボン膜
を形成した。このような方法で作製した試料をディスク
S1とする。
Embodiments of the present invention will be described below. <Embodiment 1> A 30-nm-thick Ti— film is formed on a disk substrate made of an Al—Mg alloy, on which a nickel (Ni) and phosphorus (P) alloy plating film is applied, by a sputtering method.
After forming a 10 at% Cr alloy film, Co-35 at%
Non-magnetic Co-Cr of 0.02 ham thickness with Cr composition
An underlayer made of an alloy thin film was formed at a substrate temperature of 200 ° C. Thereafter, a Co-19 at% Cr-1 having a thickness of 30 nm was used.
A quaternary alloy of 0% Pt-2% Ta was formed as the magnetic recording layer. Further, a magnetic film having a composition of Co-18 at% Sm was formed to a thickness of 2 nm at a substrate temperature of 300 ° C. for the purpose of suppressing generation of reverse magnetic domains in the surface layer. Finally, a carbon film having a thickness of 15 nm was formed as a protective film. A sample manufactured by such a method is referred to as a disk S1.

【0014】また、Co−Sm合金膜の厚さを1nmと
した以外は、ディスクS1と同じ条件で作製した同じ構
造の試料をディスクS2とした。さらに、比較用として
Co−Sm薄膜を形成しない点を除いてディスクS1と
同じ構造の試料を同じ条件で作製し、ディスクR1とし
た。上記した方法で作製したディスクS1,S2,R1
のCo−19at%Cr−10at%Pt−2at%T
a磁気記録層は、その結晶構造がともに六方晶であり、
そのc軸が膜面に対して垂直方向に配向していること
を、X線回折装置により確認した。このようにして作製
した試料の磁気特性を、振動試料型磁力計(VSM)で
測定し、飽和磁化(Ms)、保磁力(Hc)を求めた。
なお、磁界の印加方向は膜面垂直方向とした。その結果
を、図1の磁化曲線に示すとともに、下記の表1にまと
めて示す。
A disk S2 was made of the same structure as the disk S1 except that the thickness of the Co—Sm alloy film was changed to 1 nm. Further, for comparison, a sample having the same structure as that of the disk S1 was prepared under the same conditions except that a Co-Sm thin film was not formed, and was used as a disk R1. Disks S1, S2, R1 manufactured by the above method
Co-19at% Cr-10at% Pt-2at% T
a The magnetic recording layer has a hexagonal crystal structure.
It was confirmed by an X-ray diffractometer that the c-axis was oriented in a direction perpendicular to the film surface. The magnetic properties of the sample thus manufactured were measured with a vibrating sample magnetometer (VSM) to determine the saturation magnetization (Ms) and the coercive force (Hc).
The magnetic field was applied in a direction perpendicular to the film surface. The results are shown in the magnetization curve of FIG. 1 and collectively shown in Table 1 below.

【0015】図1から明らかなように、ディスクS1は
磁界強度が減少するにつれ、表面の面内磁化曲線の減磁
によるゆるやかな磁化の減少が見られるが、磁界方向が
逆転しても、約400Oeの強さまではこの傾向は変わ
らない。さらに、逆磁界強度が400Oe以上になると
磁化曲線に肩ができ、それ以上の磁界になると非可逆な
磁化反転が起こり急激に磁化が減少し始める。すなわ
ち、ディスクS1においては、400Oe付近で垂直磁
化膜に逆磁区が発生していることを示している。
As is apparent from FIG. 1, as the magnetic field strength of the disk S1 decreases, a gradual decrease in magnetization is observed due to the demagnetization of the in-plane magnetization curve of the surface. This tendency does not change at a strength of 400 Oe. Further, when the reverse magnetic field intensity is 400 Oe or more, the magnetization curve has a shoulder, and when the reverse magnetic field intensity is more than 400 Oe, irreversible magnetization reversal occurs and the magnetization starts to decrease rapidly. That is, in the disk S1, it is shown that a reverse magnetic domain is generated in the perpendicular magnetization film near 400 Oe.

【0016】これに対してディスクR1では、磁化曲線
の肩は第1象限と第4象限にあり、磁界方向が逆転する
直前ですでに非可逆な磁化反転が始まっている。このよ
うに本発明によるディスクS1と比較用のディスクR1
とでは、磁化曲線における肩の位置での磁界の大きさに
大きな違いが見られる。なお、Co−Sm膜の厚さが1
nmのディスクS2の磁化曲線はS1とほとんど同じ形
状をしており、Co−Sm膜の厚さが1nmと薄い場合
においても同様な効果が現れることが確認できる。この
逆磁区の発生を抑制するために設ける膜は、面内磁化容
易膜であるため、垂直記録を行った時に何らかの障害を
引き起こす可能性がある。従って、表面に設ける膜の厚
さは出来るだけ薄くすることが望ましい。
On the other hand, in the disk R1, the shoulder of the magnetization curve is in the first quadrant and the fourth quadrant, and irreversible magnetization reversal has already started just before the direction of the magnetic field is reversed. Thus, the disc S1 according to the present invention and the disc R1 for comparison are used.
There is a great difference in the magnitude of the magnetic field at the shoulder position in the magnetization curve. The thickness of the Co-Sm film is 1
The magnetization curve of the disk S2 of nm has almost the same shape as that of S1, and it can be confirmed that the same effect appears even when the thickness of the Co-Sm film is as thin as 1 nm. Since the film provided to suppress the generation of the reverse magnetic domain is an in-plane magnetization easy film, there is a possibility that some trouble may be caused when perpendicular recording is performed. Therefore, it is desirable to make the thickness of the film provided on the surface as small as possible.

【0017】次に、これらのディスクS1,S2,R1
の記録再生特性を、磁気ディスク記録再生テスターを用
いて評価した。記録と再生に用いた磁気ヘッドは、ギャ
ップ長0.2μm、トラック幅4.5μm、コイル巻数
30ターンの薄膜ヘッドである。ヘッドの媒体対向面と
媒体表面の距離、浮上高さを0.04ハm、周速10m
/sとし、線記録密度200kFCIの条件で、‘オー
ル1’の信号を記録した時の再生出力と媒体雑音を測定
した。また200kFCIの記録を行った後そのまま放
置し、再生出力の経時変化を調べた。結果を表1に示し
た。
Next, these disks S1, S2, R1
Were evaluated using a magnetic disk recording / reproducing tester. The magnetic head used for recording and reproduction is a thin film head having a gap length of 0.2 μm, a track width of 4.5 μm, and a coil turn of 30 turns. The distance between the medium facing surface of the head and the medium surface, the flying height is 0.04 Ham, and the peripheral speed is 10 m.
/ S, and under the condition of a linear recording density of 200 kFCI, the reproduction output and the medium noise when the “all 1” signal was recorded were measured. Further, after recording at 200 kFCI, the recording medium was left as it was, and the change with time of the reproduction output was examined. The results are shown in Table 1.

【0018】表1から明らかなように、本実施の形態に
よるディスクS1,S2の100時間後の再生出力を比
較ディスクR1と比較すると、ディスクR1の出力が8
%低下しているのに対して、ディスクS1とS2ではそ
れぞれ0.5%、0.8%と出力の低下をほとんど認め
ることが出来なかった。また、再生出力と媒体雑音のど
ちらにおいてもディスクS1とS2の方が比較ディスク
R1より優れており、記録再生特性を改善する上でも効
果を有することが分かる。
As is apparent from Table 1, when the reproduced output of the disks S1 and S2 according to the present embodiment after 100 hours is compared with the comparative disk R1, the output of the disk R1 is 8
%, Whereas the discs S1 and S2 showed almost no decrease in output of 0.5% and 0.8%, respectively. Further, the discs S1 and S2 are superior to the comparative disc R1 in both the reproduction output and the medium noise, and it can be seen that the discs S1 and S2 are also effective in improving the recording and reproduction characteristics.

【0019】以上の結果は、非可逆な磁化反転を起こす
磁界、すなわち磁化曲線の肩部の位置が最初に印加した
磁界方向とは逆であり、なおかつその絶対値が大きいほ
ど磁気記録媒体としての記録再生特性が優れること、ま
た熱的な揺らぎに対しても安定していることを示してい
る。ディスクS1とS2でこのような磁気特性が得られ
たのは、磁気記録膜の表面に異方性磁界が大きく、かつ
その磁化容易方向が面内になるような磁性膜を形成した
ことによる。この膜は、厚さ1nmないしは2nmと非
常に薄くても、膜表面での非可逆的な磁化反転を起こす
原因となるニュークリエーションサイト、すなわち逆磁
区の発生を抑える上で大きな効果を持つものと推定され
る。この逆磁区は媒体雑音の主原因であり、逆磁区が生
じにくくなることによって媒体雑音も低減したものと考
えられる。また、同様に逆磁区が生じにくいことが熱的
な安定性を改善する上で良い効果をもたらしたものと考
えられる。
The above results indicate that the magnetic field causing irreversible magnetization reversal, that is, the position of the shoulder of the magnetization curve is opposite to the direction of the magnetic field applied first, and the larger the absolute value is, the more the magnetic recording medium can be used. This indicates that the recording / reproducing characteristics are excellent and that the recording medium is stable against thermal fluctuation. The reason why such magnetic characteristics were obtained in the disks S1 and S2 is that a magnetic film was formed on the surface of the magnetic recording film such that the anisotropic magnetic field was large and the direction of easy magnetization was in-plane. Even if the film is very thin, having a thickness of 1 nm or 2 nm, it has a great effect in suppressing the generation of nucleation sites that cause irreversible magnetization reversal on the film surface, that is, reverse magnetic domains. Presumed. It is considered that the reverse magnetic domain is a main cause of the medium noise, and the medium noise is also reduced because the reverse magnetic domain hardly occurs. Similarly, it is considered that the fact that the reverse magnetic domain is unlikely to be generated has a good effect in improving the thermal stability.

【0020】なお、本実施の形態においてはCo−Sm
膜の厚さが1〜2nmと薄いため、Co−Sm膜の結晶
構造と面内保磁力を同定することが出来なかった。結晶
構造と磁気特性を調べるため、下地層であるCo−35
at%Cr層をスッパッタリング法で形成し、厚さ30
nmのCo−Sm膜を作製した。その結果、結晶構造は
非晶質であること、及び磁気特性の測定から、面内保磁
力が約800Oeの面内磁化容易膜であることを確認し
た。
In this embodiment, Co-Sm
Since the thickness of the film was as thin as 1 to 2 nm, the crystal structure and in-plane coercive force of the Co-Sm film could not be identified. In order to examine the crystal structure and magnetic properties, the underlayer Co-35 was used.
An at% Cr layer is formed by a sputtering method and has a thickness of 30%.
A Co-Sm film of nm was produced. As a result, it was confirmed from the measurement of the magnetic characteristics that the crystal structure was amorphous and that the film was an in-plane magnetization easy film having an in-plane coercive force of about 800 Oe.

【0021】<実施の形態2>次に、垂直磁気記録膜の
表面にFe−Nb−B系磁性薄膜を形成した例について
説明する。試料の作製法は実施の形態1と同じである
が、本実施の形態においては、Co−19at%Cr−
10at%Pt−2at%Taの4元合金を記録層とし
て形成した後、表面磁性膜としてFe−12at%Nd
−8at%Bの組成を持つ、厚さ2nmの磁性膜を基板
温度350℃にて形成した。その後、厚さ15nmのカ
ーボン保護膜を形成しディスクS3とした。
<Embodiment 2> Next, an example in which an Fe-Nb-B-based magnetic thin film is formed on the surface of a perpendicular magnetic recording film will be described. The method of preparing the sample is the same as that in Embodiment 1, but in this embodiment, Co-19 at% Cr-
After forming a quaternary alloy of 10 at% Pt-2 at% Ta as a recording layer, Fe-12 at% Nd was used as a surface magnetic film.
A magnetic film having a composition of −8 at% B and a thickness of 2 nm was formed at a substrate temperature of 350 ° C. Thereafter, a carbon protective film having a thickness of 15 nm was formed to obtain a disk S3.

【0022】ディスクS3の磁気特性と記録再生特性
を、下記の表1にまとめた。表1から分かるように、デ
ィスクS3ではニュークリエーション磁界の値が負とな
り、比較ディスクS3より逆磁区が発生しにくくなって
いる。これに伴い、記録再生特性と熱揺らぎに対する安
定性がともに向上している。これらの効果は、ディスク
S1,S2ほどではないが、Fe−Nb−B系の磁性膜
でもSm−Co系磁性膜と同様の効果を持っていること
を示している。また、この試料においても、Fe−Nb
−B膜の結晶構造と磁気特性を調べるため、下地層の上
に直接厚さ30nmのFe−12at%Nb−8at%
B膜を作製した。その結果、Fe−Nb−B膜は、結晶
構造が非晶質、面内保磁力が300Oeの面内磁化容易
膜であることを確認した。
The magnetic characteristics and recording / reproducing characteristics of the disk S3 are summarized in Table 1 below. As can be seen from Table 1, the value of the nucleation magnetic field is negative in the disk S3, and reverse magnetic domains are less likely to be generated than in the comparative disk S3. As a result, both the recording / reproducing characteristics and the stability against thermal fluctuation have been improved. These effects are not as great as those of the disks S1 and S2, but show that the Fe-Nb-B-based magnetic film has the same effect as the Sm-Co-based magnetic film. Also in this sample, Fe-Nb
In order to examine the crystal structure and magnetic properties of the B film, a 30 nm thick Fe-12 at% Nb-8 at% was directly formed on the underlayer.
A B film was produced. As a result, it was confirmed that the Fe—Nb—B film was an in-plane magnetization easy film having an amorphous crystal structure and an in-plane coercive force of 300 Oe.

【0023】<実施の形態3>垂直磁気記録膜の裏面、
すなわち基板側に、面内磁化容易特性をもつ磁性薄膜を
形成した例について説明する。試料の作製法は実施の形
態1とほぼ同じであるが、本実施の形態においては、C
o−35at%Crの非磁性Co−Cr膜を形成した
後、Co−18at%Smの面内磁化膜を基板温度30
0℃で厚さ2nmに形成した。しかる後に、厚さ30n
mのCo−19at%Cr−10at%Pt−2at%
Taの垂直磁化膜を磁気記録層として形成し、その上に
保護膜として厚さ15nmのカーボン膜を形成した。す
なわち、本実施の形態では、面内磁化膜は磁性層の裏面
に形成されている。
<Embodiment 3> Back surface of perpendicular magnetic recording film,
That is, an example in which a magnetic thin film having in-plane easy magnetization characteristics is formed on the substrate side will be described. The method of preparing the sample is almost the same as that in Embodiment 1, but in this embodiment, C
After forming a non-magnetic Co-Cr film of o-35 at% Cr, a Co-18 at% Sm in-plane magnetized film is formed at a substrate temperature of 30.
It was formed to a thickness of 2 nm at 0 ° C. After a while, thickness 30n
m Co-19 at% Cr-10 at% Pt-2 at%
A perpendicular magnetization film of Ta was formed as a magnetic recording layer, and a carbon film having a thickness of 15 nm was formed thereon as a protective film. That is, in the present embodiment, the in-plane magnetization film is formed on the back surface of the magnetic layer.

【0024】このような方法で作製した試料をディスク
S4として、実施の形態1と同じ方法で磁化曲線と記録
再生特性の測定を行った。その結果を表1に示した。表
1から明らかなように、ディスクS4においても、ディ
スクS1,S2と同様にニュークリエーション磁界が−
415Oeと大きな値を示し、逆磁区が発生しにくくな
っていることが分かる。記録再生特性と100時間後の
出力減少も、比較ディスクR1より優れていることが分
かった。
Using the sample prepared in this manner as a disk S4, the magnetization curve and the recording / reproducing characteristics were measured in the same manner as in the first embodiment. The results are shown in Table 1. As is evident from Table 1, the nucleation magnetic field of the disk S4 is-as in the case of the disks S1 and S2.
It shows a large value of 415 Oe, which indicates that a reverse magnetic domain is hardly generated. It was also found that the recording / reproducing characteristics and the output decrease after 100 hours were superior to the comparative disk R1.

【0025】<実施の形態4>垂直記録膜の表面と裏面
に面内磁化膜を形成した試料を作製した。本実施の形態
の試料の作製法は、実施の形態1及び3を合わせたもの
であり、厚さ2nmのCo−18at%Smからなる面
内磁化膜が、Co−19at%Cr−10at%Pt−
2at%Taの垂直磁化膜の裏面と表面に施された膜構
成となっている。この試料をディスク5として、実施の
形態1と同様な方法で磁気特性と記録再生特性を測定し
た。その結果を、表1に示す。表1から明らかなよう
に、垂直磁化膜の表裏両面に面内磁化膜を設けることに
より、ニュークリエーション磁界は−520Oeと片面
のみに面内磁化膜を設けた場合よりも大きくなり、記録
再生特性、100時間後の出力減少も更に改善されるこ
とが分かった。
<Embodiment 4> A sample was prepared in which an in-plane magnetized film was formed on the front and back surfaces of a perpendicular recording film. The manufacturing method of the sample of the present embodiment is a combination of the first and third embodiments. The in-plane magnetized film made of Co-18 at% Sm having a thickness of 2 nm is made of Co-19 at% Cr-10 at% Pt. −
The film configuration is such that the rear surface and the front surface of the perpendicular magnetization film of 2 at% Ta are formed. Using this sample as a disk 5, the magnetic characteristics and the recording / reproducing characteristics were measured in the same manner as in the first embodiment. Table 1 shows the results. As is clear from Table 1, the provision of the in-plane magnetic film on both the front and back surfaces of the perpendicular magnetic film results in a nucleation magnetic field of -520 Oe, which is larger than the case where the in-plane magnetic film is provided only on one side, and the recording / reproducing characteristics It was also found that the output reduction after 100 hours was further improved.

【0026】[0026]

【表1】 * 符号は、最初に印加した磁界方向をプラスとした。こ
こで、ニュークリエーション磁界とは、磁化曲線が非可
逆な磁化反転を起こし始める磁界の大きさ、すなわち磁
化曲線の肩の位置の磁界である。**比較用磁気ディスク
R1の値を0dBとした。
[Table 1] * The sign indicates that the direction of the applied magnetic field was positive. Here, the nucleation magnetic field is the magnitude of the magnetic field at which the magnetization curve starts irreversible magnetization reversal, that is, the magnetic field at the shoulder of the magnetization curve. ** The value of the comparison magnetic disk R1 was set to 0 dB.

【0027】<実施の形態5>図2は、本発明の磁気デ
ィスク装置の一例の模式図である。ヘッド・ディスク・
アッセンブリ4中に、複数枚の磁気ディスク1がスピン
ドル軸に取り付けられており、媒体駆動系(モータ)5
により高速回転される。この磁気ディスク1として、上
記の実施の形態で作製したディスクが用いられている。
このディスクの磁気記録面に対して信号を記録・再生す
る磁気ヘッド2が配置されており、その1個は、サーボ
ヘッドとして作用する。磁気ヘッド2は、ヘッド駆動系
6によりアクチュエータ3を介して磁気ディスク1の略
半径方向に移動される。さらに、本装置には、データの
記録再生を行う記録再生系7、その信号を処理する信号
処理系8、これら及び上記駆動系を制御するための制御
系9、上位装置とのデータのやり取りを行う装置I/F
部10等が設けられている。
<Embodiment 5> FIG. 2 is a schematic view showing an example of a magnetic disk drive according to the present invention. Head disk
A plurality of magnetic disks 1 are mounted on a spindle shaft in an assembly 4 and a medium drive system (motor) 5
Is rotated at high speed. As the magnetic disk 1, the disk manufactured in the above embodiment is used.
A magnetic head 2 for recording / reproducing a signal on / from a magnetic recording surface of the disk is arranged, and one of the magnetic heads 2 functions as a servo head. The magnetic head 2 is moved in a substantially radial direction of the magnetic disk 1 by the head drive system 6 via the actuator 3. The apparatus further includes a recording / reproducing system 7 for recording / reproducing data, a signal processing system 8 for processing the signals, a control system 9 for controlling these and the driving system, and exchange of data with a host device. Device I / F to perform
The unit 10 and the like are provided.

【0028】この磁気ディスク装置を用い、上記の実施
の形態で作製した磁気ディスクにより読み出しを行った
ところ、いずれも十分に高い再生出力と、低い媒体雑音
を得ることができた。また、情報を記録した後、100
時間以上放置しても再生出力の減少は殆ど認められず、
熱的な安定性も優れていることが分かった。
When reading was performed using the magnetic disk device manufactured in the above-described embodiment using this magnetic disk device, a sufficiently high reproduction output and low medium noise could be obtained in each case. After recording information, 100
Even if it is left for more than an hour, there is almost no decrease in playback output,
The thermal stability was also found to be excellent.

【0029】[0029]

【発明の効果】本発明によると、磁気記録媒体の熱的な
安定性を改善し、記録情報の保持寿命特性を向上するこ
とができる。さらに、再生出力が向上するとともに媒体
雑音が減少する。
According to the present invention, the thermal stability of a magnetic recording medium can be improved, and the retention life of recorded information can be improved. Further, the reproduction output is improved and the medium noise is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】表面に面内磁化容易膜を設けた本発明による試
料と比較試料の磁化曲線を示す図。
FIG. 1 is a diagram showing magnetization curves of a sample according to the present invention and a comparative sample in which an in-plane magnetization easy film is provided on the surface.

【図2】磁気記録再生装置の一例を示す模式図。FIG. 2 is a schematic diagram illustrating an example of a magnetic recording / reproducing apparatus.

【符号の説明】[Explanation of symbols]

1…磁気ディスク 2…磁気ヘッド2 3…アクチュエータ 4…ヘッド・ディスク・アッセンブリ 5…媒体駆動系 6…ヘッド駆動系 7…記録再生系 8…信号処理系 9…制御系 10…装置I/F部 DESCRIPTION OF SYMBOLS 1 ... Magnetic disk 2 ... Magnetic head 2 3 ... Actuator 4 ... Head disk assembly 5 ... Medium drive system 6 ... Head drive system 7 ... Recording / reproducing system 8 ... Signal processing system 9 ... Control system 10 ... Device I / F part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平山 義幸 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社 日立製作所 中央研究所内 (56)参考文献 特開 平10−334443(JP,A) 特開 昭60−261026(JP,A) 特開 昭63−56812(JP,A) 特開 平1−125715(JP,A) 特開 平7−176027(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/66 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiyuki Hirayama 1-280 Higashi Koigabo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-10-334443 (JP, A) JP-A-60 -261026 (JP, A) JP-A-63-56812 (JP, A) JP-A-1-125715 (JP, A) JP-A-7-176027 (JP, A) (58) Fields investigated (Int. . 7, DB name) G11B 5/66

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】垂直磁気記録に用いられる記録媒体におい
て、垂直磁化容易特性を持つ磁気記録膜の両面もしくは
片面に膜厚が10nm以下のSm−Co系磁性膜もしく
はFe−Nd−B系磁性膜を形成したことを特徴とする
磁気記録媒体。
In a recording medium used for perpendicular magnetic recording, an Sm-Co-based magnetic film having a thickness of 10 nm or less is formed on both surfaces or one surface of a magnetic recording film having easy perpendicular magnetization characteristics.
Is a magnetic recording medium formed with an Fe-Nd-B-based magnetic film .
【請求項2】磁気記録媒体と、前記磁気記録媒体を回転
駆動する駆動部と、記録再生用の磁気ヘッドと、前記磁
気ヘッドを前記磁気記録媒体に対して相対運動させる手
段と、前記磁気ヘッドからの出力信号再生を行う手段と
を含む磁気記録再生装置において、前記磁気記録媒体と
して請求項記載の磁気記録媒体を用いたことを特徴と
する磁気記録再生装置。
2. A magnetic recording medium, a drive unit for driving the magnetic recording medium to rotate, a magnetic head for recording and reproduction, a means for moving the magnetic head relative to the magnetic recording medium, and the magnetic head A magnetic recording / reproducing apparatus comprising: means for reproducing an output signal from the apparatus; wherein the magnetic recording medium according to claim 1 is used as the magnetic recording medium.
JP10167089A 1998-04-06 1998-06-15 Magnetic recording medium and magnetic recording / reproducing device Expired - Fee Related JP3030279B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10167089A JP3030279B2 (en) 1998-06-15 1998-06-15 Magnetic recording medium and magnetic recording / reproducing device
US09/285,751 US6183893B1 (en) 1998-04-06 1999-04-05 Perpendicular magnetic recording medium and magnetic storage apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10167089A JP3030279B2 (en) 1998-06-15 1998-06-15 Magnetic recording medium and magnetic recording / reproducing device

Publications (2)

Publication Number Publication Date
JP2000003509A JP2000003509A (en) 2000-01-07
JP3030279B2 true JP3030279B2 (en) 2000-04-10

Family

ID=15843224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10167089A Expired - Fee Related JP3030279B2 (en) 1998-04-06 1998-06-15 Magnetic recording medium and magnetic recording / reproducing device

Country Status (1)

Country Link
JP (1) JP3030279B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100387237B1 (en) * 2001-01-10 2003-06-12 삼성전자주식회사 Perpendicular magnetic thin film for ultrahigh density recording
JP3930281B2 (en) * 2001-09-27 2007-06-13 株式会社東芝 Method for reducing noise in a perpendicular magnetic recording / reproducing apparatus

Also Published As

Publication number Publication date
JP2000003509A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
US6426157B1 (en) Perpendicular magnetic recording medium
US6183893B1 (en) Perpendicular magnetic recording medium and magnetic storage apparatus using the same
US6001447A (en) Longitudinal magnetic recording media and magnetic storage apparatus using the same
JP3686929B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP3919047B2 (en) Perpendicular magnetic recording medium
KR890003038B1 (en) Magnetic recording carrier
JP3030279B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JP2001283428A (en) Perpendicular magnetic recording medium and perpendicular magnetic recording/reproducing device
JP3274615B2 (en) Perpendicular magnetic recording medium and magnetic recording device using the same
JP3625865B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2991688B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JP2002063714A (en) Perpendicular magnetic recording medium and perpendicular magnetic recording and reproducing apparatus
JP3340420B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3204548B2 (en) In-plane magnetic storage medium and method of manufacturing the same
JPH1079307A (en) Magnetic recording medium and magnetic recording reproduction device
JP3204655B2 (en) Magnetic disk storage
JPH1125439A (en) Perpendicular magnetic recording medium and magnetic recording and reproducing device using the same
JP2508639B2 (en) Perpendicular magnetic recording media
JPH10135039A (en) Magnetic recording medium and magnetic storage device
JPH1040527A (en) Magnetic recording medium
JP2000123343A (en) Magnetic recording medium and magnetic recording and reproducing device using the same
JPH0319101A (en) Magnetic disk device
JPH0570205B2 (en)
JP2000030235A (en) Magnetic recording medium and magnetic memory device
JPH07220262A (en) Magnetic recording medium and magnetic disk device using the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees