JPH0319101A - Magnetic disk device - Google Patents

Magnetic disk device

Info

Publication number
JPH0319101A
JPH0319101A JP1152337A JP15233789A JPH0319101A JP H0319101 A JPH0319101 A JP H0319101A JP 1152337 A JP1152337 A JP 1152337A JP 15233789 A JP15233789 A JP 15233789A JP H0319101 A JPH0319101 A JP H0319101A
Authority
JP
Japan
Prior art keywords
magnetic
recording
head
magnetic head
magnetic disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1152337A
Other languages
Japanese (ja)
Inventor
Kazuo Shiiki
椎木 一夫
Isamu Yuhito
勇 由比藤
Yoshihiro Hamakawa
濱川 佳弘
Koji Takano
公史 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1152337A priority Critical patent/JPH0319101A/en
Publication of JPH0319101A publication Critical patent/JPH0319101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To improve recording density and to obtain a small and mass storage magnetic disk device by specifying the interval of the magnetic head and the magnetic disk, the saturation magnetic flux density of the tip part of a magnetic pole in the magnetic head and the coercive force of the magnetic recording medium of the magnetic disk. CONSTITUTION:The ring type thin film magnetic head 2 of high saturation magnetic flux density and the magnetic recording medium 3 of high coercive force are provided, and the medium 3 is formed as the magnetic disk. Then, one or plural disks are connected by a single spindle and they rotate. At least 0.1mum is secured for the interval of the medium 3 and the magnetic head 2 and reliability is guaranteed. The magnetic head 2 is one whose saturation magnetic density of the tip part of the magnetic pole is more than 12kG and the recording medium 3 is the application type medium where a cirular particles are applied and it is the this film medium whose coercive force is more than about 7000e. Thus, the magnetization of the recording medium 3 can efficiently be detected at the time of reproduction, the recording density of the device 1 can considerably be improved and the mass storage device 1 in the same floor space can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野】 本発明は磁気ディスク装置に関する。とくに小型大容量
の磁気ディスク装置に関する。
[Field of Industrial Application] The present invention relates to a magnetic disk device. In particular, it relates to small-sized, large-capacity magnetic disk drives.

【従来の技術1 従来の大型固定磁気ディスク装置は保磁カ4 0 0 
0 e程度の塗布型媒体と、飽和磁束密度5kG程度の
フエライトバルクヘッドとの組み合せによって記録再生
を行なってきた。最近,磁気ヘッドとして飽和磁束密度
10kGf4度のパーマロイを磁極材料として用いた薄
膜ヘッドが使われるようになってきたが、゜これら従来
の低飽和磁束密度の磁気ヘッドと低保磁力の記録媒体と
の組み合せでは、信頼性を損なわずに磁気ディスク装置
の゛記録密度を高めることができない。すなわち、現在
使用されている磁気ディスク装置の面記録密度は20〜
4 0 M b /in”程度であるが、従来の記録媒
体と磁気ヘッドの組み合わせのままこれを高めようとす
るとヘッド媒体間スペーシングを現在のおよそ0.2μ
mから、0.1μm程度以下に小さくしなければならな
い。 スペーシングを縮めずに記録密度を向上させるには、使
用する記録媒体と磁気ヘッドの特性について検討する必
要がある。 磁気ヘッドの高性能化の試みとしては例えば、第7回日
本応用磁気学会学術講演概要集の第117頁や、ジャー
ナル オブ アプライド フィジクス,63 (198
8年)第4020頁から第4022頁(J.Appl.
Phys, 6 3 (8)(1988)pp.402
0−4022) に示されるような、高飽和磁束密度材
料を磁極として用いた薄膜磁気ヘッドの例がある.しか
しこれらの例では、単に磁気ヘッドの記録能力を高める
試みしかされておらず、磁気ディスク装置として高い記
録密度を得るという点については検討が不十分であった
。 すなわち、記録能力が高くても、再生効率が低ければ、
装置を動作させるのに十分なS/Nを得ることができず
、また波形歪(ウイグル)等を発生すればエラーを生じ
るため記録密度が高められないことになる. また記録媒体について言えば、保磁力を高めることによ
って信号磁化の保存力は高まる.しかし十分に記録でき
ない場合は再生信号が小さくなり、雑音も増大するなど
、必ずしも装置の記録密度を高めることはできない。 したがって、磁気ヘッドおよび記録媒体の各々の能力を
単独に高めても、必ずしも磁気ディスク装置の記録密度
が向上するわけではない.また記S密度向上の一方法と
しては、従来の面内磁気記録にかわる垂直磁気記録方式
が最近検討されている.これは媒体面に垂直方向に磁化
しやすい、いわゆる垂直磁化媒体と単磁極型磁気ヘッド
を組み合せて記録再生を行う方法である.この方式では
数100kBPI程度の非常に高い密度まで信号を磁気
媒体に記録できることが実験室的に確認されている.し
かし磁気ディスク装置として動作させるためには、この
ような高記録密度では面内記録と同様にS/Nが十分で
はない,垂直記録方式にした場合にも従来の記録媒体と
磁気ヘッドでは記録密度が低い数10kBPI程度でし
か実用できない. 【発明が解決しようとする課題】 上記従来技術は,磁気ディスク装置としての記録密度向
上については十分な配慮がされていない。 本発明の目的は磁気ディスク装置の信頼性を損なわずに
、記録密度を向上し、小型大容量の磁気ディスク装置を
実現することにある.
[Conventional technology 1] A conventional large fixed magnetic disk device has a coercive force of 400
Recording and reproduction have been performed using a combination of a coated medium with a magnetic flux density of about 0.0 e and a ferrite bulk head with a saturation magnetic flux density of about 5 kG. Recently, thin-film heads using permalloy as a magnetic pole material with a saturation magnetic flux density of 10 kGf4 degrees have been used as magnetic heads. In combination, it is not possible to increase the recording density of a magnetic disk device without impairing reliability. In other words, the areal recording density of currently used magnetic disk devices is 20~
40 Mb/in", but if we try to increase this with the combination of conventional recording media and magnetic heads, the spacing between the head and media will be reduced to the current approximately 0.2 μm.
m, it must be reduced to about 0.1 μm or less. In order to improve recording density without reducing spacing, it is necessary to consider the characteristics of the recording medium and magnetic head used. Examples of attempts to improve the performance of magnetic heads include page 117 of the 7th Japanese Society of Applied Magnetics Academic Lecture Abstracts, Journal of Applied Physics, 63 (198
8) pages 4020 to 4022 (J. Appl.
Phys, 6 3 (8) (1988) pp. 402
There is an example of a thin film magnetic head using a high saturation magnetic flux density material as the magnetic pole, as shown in 0-4022). However, in these examples, only attempts have been made to increase the recording capacity of the magnetic head, and insufficient consideration has been given to obtaining a high recording density as a magnetic disk device. In other words, even if the recording capacity is high, if the playback efficiency is low,
It is not possible to obtain a sufficient S/N ratio to operate the device, and if waveform distortion (wiggle) occurs, errors occur, making it impossible to increase the recording density. Regarding recording media, increasing the coercive force increases the conservation power of signal magnetization. However, if sufficient recording is not possible, the reproduction signal becomes small and noise increases, so it is not necessarily possible to increase the recording density of the device. Therefore, increasing the capabilities of the magnetic head and the recording medium independently does not necessarily improve the recording density of the magnetic disk device. Furthermore, as a method for increasing the S density, a perpendicular magnetic recording system has recently been studied to replace the conventional longitudinal magnetic recording. This is a method of recording and reproducing by combining a so-called perpendicular magnetization medium, which is easily magnetized in the direction perpendicular to the medium surface, and a single-pole magnetic head. It has been experimentally confirmed that this method can record signals on magnetic media at extremely high densities of several hundred kBPI. However, in order to operate as a magnetic disk device, with such high recording density, the S/N is not sufficient as with longitudinal recording, and even when using the perpendicular recording method, the recording density is insufficient with conventional recording media and magnetic heads. It can only be put into practical use at low PPI of several tens of kBPI. [Problems to be Solved by the Invention] The above-mentioned prior art does not give sufficient consideration to improving the recording density of the magnetic disk device. An object of the present invention is to improve the recording density without impairing the reliability of the magnetic disk device, and to realize a compact, large-capacity magnetic disk device.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達威するため、媒体と磁気ヘッドの間隔は少
なくとも0.1μmを確保し信頼性を保証すると同時に
、磁極先端部の飽和磁束密度が12kG以上の磁気ヘッ
ドと保存力に優れた記録媒体を組み合わせて面記録密度
5 0 M b /in”以上のディスク装置とした.
高密度記録が可能な保存力に優れた記録媒体は、針状な
との微粒子を塗布した塗布型媒体で約700Oe、めっ
き法やスパッタ法,蒸着法等によって形成される薄膜媒
体で約120000が必要である。
In order to achieve the above objectives, the distance between the medium and the magnetic head must be at least 0.1 μm to ensure reliability, and at the same time, the magnetic head has a saturation magnetic flux density of 12 kG or more at the tip of the magnetic pole and a recording medium with excellent storage power. A disk device with an areal recording density of 50 Mb/in" or higher is created by combining the following.
Recording media that can perform high-density recording and have excellent storage power are coated media coated with acicular fine particles of approximately 700 Oe, and thin film media formed by plating, sputtering, vapor deposition, etc. of approximately 120,000 Oe. is necessary.

【作用】[Effect]

本発明によれば磁気特性を制御した高飽和磁束密度材料
を磁極とする磁気ヘッドは、媒体,ヘッド間に0.1μ
m以上のスペーシングを設けても記録時には高保磁力媒
体を完全に磁化し、再生時には記録媒体の磁化を効率よ
く検出するので、磁気ディスク装置の記録密度を大きく
向上できる。 第1表に本発明の磁気ヘッドに用いる磁極材料の特性を
示す。 第1表 本願発明の磁気ヘッドに要求される特性を満たす材料は
例えばCo基非晶質金とFe基結晶質合金である.その
飽和磁束密度Bsは各々表に示した.比較のために従来
の材料であるパーマロイ(Bs〜10kG)も用いた。 Co基非晶質合金はCoNbZr,CoWZr,CoT
aZrなどであって、磁歪定数λSはほぼ零となるよう
に合金組或を選んだa F e基結晶質合金はFeC合
金やFeSi合金をNiFe合金を中間層として多層化
することによって透磁率向上を図った合金であって、こ
れらも磁歪定数がほぼ零となるように組或を選択した.
これらの磁極材料はRFスパッタ法によって或膜した.
薄膜ヘッドはVLSIなどの半導体を作製するホトリソ
グラフィ技術によって基板上に形成し、切断,研削,研
磨などの機械工程を経て作製した.これは従来公知の方
法であるので説明は省略する. 本発明に用いる磁気記録媒体を第2表に示す.第2表 本願発明に用いる媒体の材料として好ましいものは例え
ば塗布媒体ではCo一γ−FelO3, F e ,B
aフェライト等を磁性粉とする媒体でバインダ材料と共
に基板上に塗布して作製したスパッタ媒体ではCoNi
系の合金であって、スバッタ条件を変えることによって
保磁力を制御した。比較のために従来、磁気ディスク装
置に使われているγ−Fe20,塗布媒体など低保磁力
の媒体も用いた。 記録媒体磁気ディスクを回転させ、相対速度30m/s
として磁気ヘッドを,スペーシング0.2μmで浮上さ
せ、記録再生特性を測定した。 第2図に種々の記録媒体と磁気ヘッドの組合わせによる
S/Nと記録密度の関係を示す.横軸の記録密度は面記
録密度[bit/inch”]である。磁気ヘッドのト
ラック幅Twは記録密度特性がもつとものびる値を実験
的に選んで示した。S/Nは再生出力s [vp−p]
と雑音N[vP−P]ノ比であって、周波数帯域は各線
記録密度に対応する周波数の2倍までをとった.なおア
ンプは、現在入手できる中で最も雑音が低いものを選ん
だが,雑音は0.3nV/VHzである.また磁気ヘッ
ドのコイルの巻数は22ターンで、抵抗は約150であ
ったが、ヘッド雑音はこの抵抗による熱雑音であった。 これらのアンプやヘッドに関する技術は従来技術を用い
た。 信号弁別法などに従来技術を用いるとすると、磁気ディ
スク装置として動作が可能なS/Nは約2以上である.
したがって、従来のヘッド■と記録媒体Aとの組み合せ
ではおよそ4 0 M b /in”が限界で5 0 
Mb/in”を越えることはできない).これに対し、
本発明のヘッド■と記録媒体Bとの組み合せでは約7 
5 M b /in”、本発明のヘッド■と記録媒体D
との組み合せでは約150Mb/in2程度まで、磁気
ディスク装置として動作する可能性がある. 第3図は記録媒体の保磁力He [Oe]と出力半減線
記録密度D.。[kBPI]との関係を示したグラフで
ある.飽和磁束密度が〜10kGの従来の磁気ヘッドI
を用いた場合は、塗布媒体に対しては保磁力が7 0 
0 0 e以上,スパッタ媒体に対しては1200Oe
以上にしてもD,。は大きくならず高々35kBPIど
まりである。しかも保磁力が大きくなるとオーパライト
特性が悪くなるので,単に保磁力を大きくしても記録密
度を高めることはできない。 これに対し飽和磁束密度12kGの本発明の磁気ヘッド
■を用いた場合は、塗布媒体に対して700〜1200
Oe、スパッタ媒体に対して1200〜1500Oeの
範囲で特に高いD,。が得られ、出力の効率化を図るこ
とができる。また飽和磁束密度20kGの本発明の磁気
ヘッド■を用いた場合は塗布媒体に対して1500Oe
、スパッタ媒体に対して2400Oeを越えてもD,。 はさらにのびる傾向にある. 第4図は磁気ヘッドの飽和磁束密度Bs[kG]とオー
バライト特性[d B]との関係を示したグラフである
.オーバライト特性は、低記録密度(1kBPI)の信
号を記録した上に、D,。の記録密度の信号を記録し、
これに対するもとの低記録密度信号の消え残りで表わし
た.保磁力が400Oeの従来の塗布媒体Aを用いた場
合、磁気ヘッドの飽和磁束密度が従来通り10kGあれ
ば、オーバライトは装置動作条件の約25dBを大きく
越えている.しかし保磁力が700Oeの本発明の記録
媒体Bを用いた場合は、ディスク装置としての動作を可
能にするには、ヘッドの飽和磁束密度は12kG以上必
要である.また、保磁力1500Oeの記録媒体Dを用
いた場合は、飽和磁束密度が約18kG以上必要である
ことが分る。 [実施例】 以下,本発明の実施例を説明する. 本実施例の磁気ディスク装1i1は第1図に示すように
少くとも高飽和磁束密度のリング型薄膜磁気ヘッド2と
、高保磁力の磁気記録媒体3を有する。磁気記録媒体3
は磁気ディスクとして形成され、1枚あるいは複数のデ
ィスクが単一のスピンドルにより結合され、回転するこ
とができる。磁気ヘッド2は、磁気記録媒体の各記録面
に間隔を設けて設置されている.この磁気ヘッドは通常
、アクチュエータ手段等により磁気ディスクの径方向に
移動可能とされ、トラック間の移動ができるようになっ
ている.磁気ヘッドには記録・再生回路が接続され、記
録・再生をおこなう。 具体的な装置の1例を第6図に示す。 第6図の実施例では、1つの磁気ディスク装置内で、同
一の記録面に複数のヘッド2を有する本実施例の磁気デ
ィスク装置は、ディスク面3面を、同一のアーム310
に接続された複数の磁気ヘッド2で記録・再生する.第
6図では4ヶのヘッドが搭載されている.本実施例では
、CPU130から送られたデータをコントローラ14
0を介して記録再生回路100を起動し、ヘッド選択ス
イッチ320により、ヘッドを選択して媒体面3上に情
報を記録再生する. 本実施例の磁気ヘッド2は、 USP4190872に示されるような薄膜磁気ヘッド
で、面内記録をおこなう.このヘッドの磁極材料は第1
表に示した、Co基非晶質合金あるいはFe基結晶合金
である. CoTaZrなどであって、磁歪定数λSはほぼ零とな
るように合金組或を選んだ。Fe基結晶質合金はFeC
合金やFeSi合金をNiFe合金を中間層として多層
化することによって透磁率向上を図った合金であって,
これらも磁歪定数がほぼ零となるように組或を選択した
。これらの磁極材料はRFスパッタ法によって成膜した
。薄膜ヘッドはVLSIなどの半導体を作製するボトリ
ングラフィ技術によって基板上に形或し,切断,研削,
研磨などの機械工程を経て作製した。これは従来公知の
方法であるので説明は省酩する。 磁気記録媒体は第2表に示した塗布媒体とスパッタ媒体
を用いた。塗布媒体はGo−γ−Fe203,Fe,B
aフェライト等を磁性粉とする媒体でバインダ材料と共
に基板上に塗布して作製したスパッタ媒体はCoNi系
の合金であって、スパッタ条件を変えることによって保
磁力を制御した。 記録媒体磁気ディスクを回転させ、相対速度3 0 m
 / sとして磁気ヘッドを、スペーシング0.2μm
で浮上させ、記録再生特性を測定した.第2図に種々の
記録媒体と磁気ヘッドの組合せのS/Nと記録密度の関
係を示す。横軸の記録密度は面記録密度[bit/in
ch”]である。磁気ヘッドのトラック@T Vは記録
密度特性がもっとものびる値を実験的に選んで示した。 S/Nは再生出力S [Vp−plと雑音N [Vp−
pl (7)比であって、周波数帯域は各線記録密度に
対応する周波数の2倍までをとった。なお、記録・再生
回路アンプは、現在入手できる中で最も雑音が低いもの
を選んだが、雑音は0 . 3 n V / v’ H
 zである。また磁気ヘッドのコイルの巻数は22ター
ンで、抵抗は約15Ωであったが、ヘッド雑音はこの抵
抗による熱雑音であった。これらのアンプやヘッドに関
する技術は従来技術を用いた。 本発明のヘッド■と記録媒体Bとの組み合せでは約75
Mb/in”、本発明のヘッド■と記録媒体Dとの組み
合せでは約150Mb/in”程度まで2以上のS/N
を得ることができ、磁気ディスク装置として動作する可
能性がある。 第3図は記録媒体の保磁力Hc [Oe]と出力半減線
記録密度D,,[kBPI]との関係を示したグラフで
ある. 飽和磁束密度12kGの本発明の磁気ヘッド■を用いた
場合ある程度以上媒体の保磁力が上ると却ってD,。は
下がり、塗布媒体に対して700〜1200Oe、スパ
ッタ媒体に対して1200〜1500Oeの範囲で高い
Dsaが得られる。また飽和磁束密度20kGの本発明
の磁気ヘッド■を用いた場合は塗布媒体に対して1 5
 0 0 0 e、スパッタ媒体に対して2 4 0 
0 0 sを越えてもD,。 はさらにのびる傾向にあり、本発明の優れていることが
わかる. 第4図は磁気ヘッドの飽和磁束密度Bs[kG]とオー
バライト特性[d B]との関係を示したグラフである
.オーバライト特性は、低記録密度(1kBPI)の信
号を記録した上に、D,。の記録密度の信号を記録し、
これに対するもとの低記録密度信号の消え残りで表わし
た。 保磁力が700Oeの本発明の記録媒体Bを用いた場合
は,ディスク装置としての動作を可能にするにはヘッド
の飽和磁束密度は12kG以上必要である.また保磁力
1500Oeの記録媒体Dを用いた場合は、飽和磁束密
度が約18kG以上必要であることが分る. 以上示したように、ヘッド磁極の飽和磁束密度と媒体の
保磁力とを適当に組み合せることによって、初めて従来
の磁気ディスク装置の耐摺動信頼性を損なわずに、すな
わちヘッド媒体間のスペーシングを大きく変えずに、高
密度記録が可能になることがわかる.従来、記録媒体の
保磁力を高める研究や、ヘッド磁極の飽和磁束密度を高
める研究は行なわれているが、本実施例の結果からわか
るように単に、保磁力や飽和磁束密度を高めただけでは
磁気ディスク装置としての動作記録密度が高くなるとは
限らない.単に保磁力を高くすれば記録密度を高くでき
る訳ではない. 本発明は、高飽和磁束密度の磁気ヘッドと高保磁力の記
録媒体を開発し試作評価をくりかえすことによって初め
て可能になったものである。 なお、薄膜磁気ヘッドの性能は磁極材料の飽和磁束密度
材料だけでは代表できない.たとえば高い再生出力を得
ようとすると磁極材料の磁気異方性磁界は4〜15Oe
の範囲に制御する必要がある.飽和磁束密度14kGの
CoTaZr非晶質合金に対する結果(ヘッド■)を第
5図に示す.ここで、異方性磁界の制御は磁界中で熱処
理し、熱処理温度と時間,磁界方向を変えて行なった。 記録媒体を保磁力1200Oeの塗布媒体(媒体C)と
したときの再生出力である.異方性磁界が4〜15Oe
の範囲で、より望ましくは5〜8Oeの範囲で高い再生
出力が得られる。なお、容易磁化方向はヘッドのトラッ
ク幅方向とすることが望ましく、これから大きく傾いた
場合は波形歪(ウイグル)を生じたり再生出力が低下す
る場合がある.また磁極材料の磁歪定数も重要で−5〜
+5×10−7の範囲からはずれると波形歪の発生や再
生出力低下の問題を生じる。 高飽和磁束密度の磁極材料としては、Co基非晶質合金
か、Fe基結晶質合金が使用可能である.Co基非晶質
合金としては、CoMoZr,CoWZr,CoZrR
e,CoNbZr,CoTaZrなどを使うことができ
るが、飽和磁束密度は約15kGが上限である。Fe基
結晶質合金はさらに高い飽和磁束密度を得ることが可能
で、FeSi,FeC,FeN合金などを使うことがで
きる。この場合結晶質合金は一般に磁気異方性を制御す
ることが難しいので、他の中間層材料を介して多層構造
として使うことが望ましい。 ヘッド媒体間のスペーシングは小さくなると、ヘッドク
ラッシュ等の問題を生じる。スペーシングは0.1μm
を境いとして急激に信頼性が低下する。また媒体面の面
粗さは0.15μm以下にしようとすると、加工が非常
に難しくなる。本発明によれば0.1μmで約250M
b/in”、0.15pmでは2 0 0 M b /
in”の面記録密度を達成できるので実用上有利である
。 【発明の効果] 本発明によれば、従来の耐摺動信頼性を大きく損なわず
に磁気ディスク装置の面記11R密度を向上できるので
、同一床面積で大容量の装置を得ることができる.また
現在の記録密度を維持するならヘッド媒体間のスペーシ
ングを拡大できるので、信頼性を向上することもできる
According to the present invention, a magnetic head whose magnetic pole is made of a high saturation magnetic flux density material with controlled magnetic properties has a gap of 0.1 μm between the medium and the head.
Even if a spacing of m or more is provided, the high coercive force medium is completely magnetized during recording, and the magnetization of the recording medium is efficiently detected during reproduction, so that the recording density of the magnetic disk device can be greatly improved. Table 1 shows the characteristics of the magnetic pole material used in the magnetic head of the present invention. Table 1 Materials that satisfy the characteristics required for the magnetic head of the present invention include, for example, Co-based amorphous gold and Fe-based crystalline alloy. The saturation magnetic flux density Bs is shown in the table. For comparison, a conventional material, Permalloy (Bs ~ 10 kG), was also used. Co-based amorphous alloys include CoNbZr, CoWZr, CoT
aFe-based crystalline alloys, such as aZr, whose alloy composition is selected so that the magnetostriction constant λS is almost zero, can have improved magnetic permeability by multilayering FeC alloys or FeSi alloys with a NiFe alloy as an intermediate layer. These alloys were also selected so that their magnetostriction constants were approximately zero.
These magnetic pole materials were deposited using RF sputtering.
The thin film head was formed on a substrate using photolithography technology used to fabricate semiconductors such as VLSI, and was fabricated through mechanical processes such as cutting, grinding, and polishing. Since this is a conventionally known method, its explanation will be omitted. Table 2 shows the magnetic recording media used in the present invention. Table 2 Preferable materials for the medium used in the present invention include, for example, Co, γ-FelO3, Fe, B
a Sputtering medium made by coating a substrate with a binder material using a medium containing magnetic powder such as ferrite, CoNi
The coercive force was controlled by changing the sputtering conditions. For comparison, low coercive force media such as γ-Fe20 and coated media conventionally used in magnetic disk drives were also used. The recording medium magnetic disk is rotated at a relative speed of 30 m/s.
The magnetic head was floated at a spacing of 0.2 μm, and the recording and reproducing characteristics were measured. Figure 2 shows the relationship between S/N and recording density for various combinations of recording media and magnetic heads. The recording density on the horizontal axis is the areal recording density [bit/inch"]. The track width Tw of the magnetic head is shown by experimentally selecting a value that increases with the recording density characteristics. The S/N is the reproduction output s [vp -p]
and noise N[vP-P], and the frequency band was up to twice the frequency corresponding to each linear recording density. The amplifier selected has the lowest noise among those currently available, and the noise is 0.3 nV/VHz. Further, the number of turns of the magnetic head coil was 22 turns, and the resistance was about 150, and the head noise was thermal noise caused by this resistance. Conventional technology was used for these amplifiers and heads. If conventional techniques are used for signal discrimination, etc., the S/N that can operate as a magnetic disk device is about 2 or more.
Therefore, with the combination of the conventional head (2) and the recording medium A, the limit is approximately 40 Mb/in" and 50 Mb/in".
Mb/in”).On the other hand,
The combination of the head (1) of the present invention and the recording medium B is approximately 7.
5 M b /in'', head ■ of the present invention and recording medium D
In combination with this, it is possible to operate as a magnetic disk device up to approximately 150 Mb/in2. FIG. 3 shows the coercive force He [Oe] of the recording medium and the output half-loss line recording density D. . This is a graph showing the relationship with [kBPI]. Conventional magnetic head I with a saturation magnetic flux density of ~10kG
When using the coating medium, the coercive force is 70
0 0 e or more, 1200 Oe for sputtering media
Even with the above, D. is not large and is only 35 kBPI at most. Moreover, as the coercive force increases, the operite characteristics worsen, so simply increasing the coercive force does not increase the recording density. On the other hand, when using the magnetic head (2) of the present invention with a saturation magnetic flux density of 12 kG, the
Oe, particularly high D, in the range 1200-1500 Oe for sputtering media. can be obtained, and output efficiency can be improved. In addition, when using the magnetic head (2) of the present invention with a saturation magnetic flux density of 20 kG, the magnetic head
, D, even at over 2400 Oe for the sputtering medium. tends to grow further. Figure 4 is a graph showing the relationship between the saturation magnetic flux density Bs [kG] and the overwrite characteristic [dB] of the magnetic head. The overwrite characteristics are D, in addition to recording a low recording density (1 kBPI) signal. record a signal with a recording density of
This is expressed as the remaining part of the original low recording density signal. When conventional coating medium A with a coercive force of 400 Oe is used and the saturation magnetic flux density of the magnetic head is 10 kG as before, overwriting greatly exceeds the device operating condition of approximately 25 dB. However, when recording medium B of the present invention having a coercive force of 700 Oe is used, the saturation magnetic flux density of the head must be 12 kG or more to enable operation as a disk device. Furthermore, when recording medium D having a coercive force of 1500 Oe is used, it is found that the saturation magnetic flux density is required to be approximately 18 kG or more. [Examples] Examples of the present invention will be described below. As shown in FIG. 1, the magnetic disk drive 1i1 of this embodiment has at least a ring-shaped thin film magnetic head 2 with a high saturation magnetic flux density and a magnetic recording medium 3 with a high coercive force. Magnetic recording medium 3
is formed as a magnetic disk, and one or more disks can be coupled and rotated by a single spindle. The magnetic heads 2 are installed at intervals on each recording surface of the magnetic recording medium. This magnetic head is usually movable in the radial direction of the magnetic disk by actuator means or the like, so that it can be moved between tracks. A recording/reproducing circuit is connected to the magnetic head to perform recording and reproduction. An example of a specific device is shown in FIG. In the embodiment shown in FIG. 6, the magnetic disk device of this embodiment has a plurality of heads 2 on the same recording surface within one magnetic disk device, and three disk surfaces are covered by the same arm 310.
Recording/reproduction is performed using multiple magnetic heads 2 connected to the magnetic head. In Figure 6, four heads are installed. In this embodiment, data sent from the CPU 130 is sent to the controller 14.
0, the recording/reproducing circuit 100 is activated, a head is selected by the head selection switch 320, and information is recorded/reproduced on the medium surface 3. The magnetic head 2 of this embodiment is a thin film magnetic head as shown in US Pat. No. 4,190,872, and performs in-plane recording. The magnetic pole material of this head is the first
These are Co-based amorphous alloys or Fe-based crystalline alloys shown in the table. An alloy set such as CoTaZr was selected so that the magnetostriction constant λS was approximately zero. Fe-based crystalline alloy is FeC
An alloy whose magnetic permeability is improved by multilayering an alloy or FeSi alloy with a NiFe alloy as an intermediate layer,
These were also selected in such a way that the magnetostriction constant was approximately zero. These magnetic pole materials were formed into films by RF sputtering. Thin film heads are formed on a substrate using bottling techniques used to fabricate semiconductors such as VLSI, and then cut, ground, and
It was manufactured through mechanical processes such as polishing. Since this is a conventionally known method, the explanation will be omitted. The coating media and sputtering media shown in Table 2 were used as magnetic recording media. The coating medium is Go-γ-Fe203, Fe, B
The sputtering medium, which was prepared by coating a substrate with a magnetic powder such as a-ferrite together with a binder material, was a CoNi-based alloy, and the coercive force was controlled by changing the sputtering conditions. The recording medium magnetic disk is rotated at a relative speed of 30 m.
/s magnetic head, spacing 0.2 μm
The recording and reproducing characteristics were measured. FIG. 2 shows the relationship between S/N and recording density for various combinations of recording media and magnetic heads. The recording density on the horizontal axis is the areal recording density [bit/in
The track @TV of the magnetic head is shown by experimentally selecting the value that gives the most extended recording density characteristics. S/N is the reproduction output S [Vp-pl and the noise N [Vp-
pl (7) ratio, and the frequency band was up to twice the frequency corresponding to each linear recording density. The recording/playback circuit amplifier was chosen to have the lowest noise among those currently available, but the noise was 0. 3 n V / v'H
It is z. Further, the number of turns of the magnetic head coil was 22 turns, and the resistance was about 15Ω, and the head noise was thermal noise due to this resistance. Conventional technology was used for these amplifiers and heads. In the combination of the head (■) of the present invention and the recording medium B, approximately 75
Mb/in", and the combination of the head (■) of the present invention and the recording medium D has an S/N of 2 or more up to about 150 Mb/in"
It has the potential to operate as a magnetic disk device. FIG. 3 is a graph showing the relationship between the coercive force Hc [Oe] of the recording medium and the output half-loss linear recording density D, [kBPI]. When using the magnetic head (2) of the present invention with a saturation magnetic flux density of 12 kG, if the coercive force of the medium increases beyond a certain level, the result will be D. A high Dsa can be obtained in the range of 700 to 1200 Oe for coating media and 1200 to 1500 Oe for sputtering media. In addition, when using the magnetic head (■) of the present invention with a saturation magnetic flux density of 20 kG, 1 5
0 0 0 e, 2 4 0 for sputtering media
D even if it exceeds 0 0 s. It is clear that the present invention is superior. Figure 4 is a graph showing the relationship between the saturation magnetic flux density Bs [kG] and the overwrite characteristic [dB] of the magnetic head. The overwrite characteristics are D, in addition to recording a low recording density (1 kBPI) signal. record a signal with a recording density of
This is expressed as the remaining part of the original low recording density signal. When recording medium B of the present invention having a coercive force of 700 Oe is used, the saturation magnetic flux density of the head must be 12 kG or more to enable operation as a disk device. Furthermore, when recording medium D with a coercive force of 1500 Oe is used, it is found that the saturation magnetic flux density is required to be approximately 18 kG or more. As shown above, by appropriately combining the saturation magnetic flux density of the head magnetic pole and the coercive force of the medium, it is possible to improve the spacing between the head medium without impairing the sliding reliability of conventional magnetic disk drives. It can be seen that high-density recording is possible without significantly changing the In the past, research has been conducted to increase the coercive force of recording media and the saturation magnetic flux density of the head magnetic pole, but as can be seen from the results of this example, simply increasing the coercive force and saturation magnetic flux density is insufficient. It does not necessarily mean that the operating recording density of a magnetic disk device will be higher. Simply increasing the coercive force does not necessarily increase the recording density. The present invention was made possible for the first time by developing a magnetic head with a high saturation magnetic flux density and a recording medium with a high coercive force and repeatedly conducting prototype evaluations. Note that the performance of a thin-film magnetic head cannot be represented solely by the saturation magnetic flux density material of the magnetic pole material. For example, when trying to obtain high reproduction output, the magnetic anisotropy field of the magnetic pole material is 4 to 15 Oe.
It is necessary to control it within the range of . Figure 5 shows the results (head ■) for a CoTaZr amorphous alloy with a saturation magnetic flux density of 14 kG. Here, the anisotropic magnetic field was controlled by performing heat treatment in a magnetic field and changing the heat treatment temperature, time, and direction of the magnetic field. This is the reproduction output when the recording medium is a coated medium (medium C) with a coercive force of 1200 Oe. Anisotropic magnetic field is 4 to 15 Oe
A high reproduction output can be obtained in the range of 5 to 8 Oe, more preferably in the range of 5 to 8 Oe. Note that it is desirable that the easy magnetization direction be in the track width direction of the head, and if it is tilted significantly from this direction, waveform distortion (wiggle) may occur or the reproduction output may decrease. The magnetostriction constant of the magnetic pole material is also important;
If it deviates from the range of +5×10 −7 , problems such as generation of waveform distortion and reduction in reproduction output will occur. As the magnetic pole material with high saturation magnetic flux density, a Co-based amorphous alloy or a Fe-based crystalline alloy can be used. Co-based amorphous alloys include CoMoZr, CoWZr, CoZrR
e, CoNbZr, CoTaZr, etc. can be used, but the upper limit of the saturation magnetic flux density is about 15 kG. Fe-based crystalline alloys can obtain even higher saturation magnetic flux density, and FeSi, FeC, FeN alloys, etc. can be used. In this case, since it is generally difficult to control the magnetic anisotropy of crystalline alloys, it is desirable to use them as a multilayer structure with other intermediate layer materials interposed therebetween. As the spacing between head media becomes smaller, problems such as head crashes occur. Spacing is 0.1μm
Reliability decreases rapidly after . Furthermore, if the surface roughness of the medium surface is to be reduced to 0.15 μm or less, processing becomes extremely difficult. According to the present invention, approximately 250M at 0.1μm
b/in”, 200 Mb/in at 0.15pm
This is advantageous in practice because it is possible to achieve an areal recording density of "in". [Effects of the Invention] According to the present invention, the areal 11R density of a magnetic disk device can be improved without significantly impairing the conventional sliding reliability. Therefore, a large-capacity device can be obtained with the same floor space.Also, if the current recording density is maintained, the spacing between the head media can be expanded, which can improve reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示す模式図、第2図〜第5図は
それぞれ本発明の効果を示す図、第6図は本発明の一実
施例を示すブロック図である.第 / 図 7..,  #&入デ′≧ス7値工 2Iも説;Fo績東貧及 ヘツ1′゛ 3 1賄レ籠fI媒倦 41D森ク Hこ r0己)
FIG. 1 is a schematic diagram showing the configuration of the present invention, FIGS. 2 to 5 are diagrams each showing the effects of the present invention, and FIG. 6 is a block diagram showing an embodiment of the present invention. No./Figure 7. .. , # & enter de' ≧ s 7 value engineering 2I also theory;

Claims (1)

【特許請求の範囲】 1、磁気ディスクと、該磁気ディスクに信号の記録及び
再生のうち少なくとも一つを行う磁気ヘッドと、上記磁
気ディスクを回転させる手段と、上記磁気ヘッドに接続
される記録再生回路と、上記磁気ヘッドを上記磁気ディ
スク上で移動させる手段とを有する磁気ディスク装置に
おいて、上記磁気ヘッドと磁気ディスクの間隔が0.1
μm以上であり、上記磁気ヘッドの磁極の先端部の飽和
磁束密度が12kG以上であり、上記磁気ディスクの磁
気記録媒体は保磁力が700Oe以上の塗布型媒体であ
ることを特徴とする磁気ディスク装置。 2、磁気ディスクと、該磁気ディスクに信号の記録及び
再生のうち少なくとも一つを行う磁気ヘッドと、上記磁
気ディスクを回転させる手段と、上記磁気ヘッドに接続
される記録再生回路と、上記磁気ヘッドを上記磁気ディ
スク上で移動させる手段とを有する磁気ディスク装置に
おいて、上記磁気ヘッドと磁気ディスクの間隔が0.1
μm以上であり、上記磁気ヘッドの磁極の先端部の飽和
磁束密度が12kG以上であり、上記磁気ディスクの磁
気記録媒体は保磁力が1200Oe以上の連続媒体であ
ることを特徴とする磁気ディスク装置。 3、前記磁気ヘッドと磁気ディスクの間隔が0.15μ
m以上であることを特徴とする請求項1又は2記載の磁
気ディスク装置。 4、前記磁気ヘッドの磁極の少なくとも一部の磁気異方
性磁界が4〜15Oeであり、かつ磁化容易軸が前記磁
気ディスク上のトラック幅方向を向いていることを特徴
とする請求項1〜3のうちいずれかに記載の磁気ディス
ク装置。 5、前記磁気ヘッドの磁極の少なくとも一部の磁気異方
性磁界が5〜8Oeであることを特徴とする請求項4記
載の磁気ディスク装置。 6、前記磁気ヘッドの磁極の少なくとも一部の磁歪定数
の絶対値が5×10^−^7以下であることを特徴とす
る請求項1〜5のうちいずれかに記載の磁気ディスク装
置。 7、前記磁気ヘッドの磁極の少なくとも一部が、CoN
bZr、CoWZr、CoTaZrのうちから選ばれる
一種以上で形成されることを特徴とする請求項1〜6の
うちいずれかに記載の磁気ディスク装置。 8、前記磁気ヘッドの磁極の少なくとも一部が、FeS
iとNiFeよりなる多層膜で形成されることを特徴と
する請求項1〜6のうちいずれかに記載の磁気ディスク
装置。 9、前記磁気ヘッドの磁極の少なくとも一部が、FeC
とNiFeよりなる多層膜で形成されることを特徴とす
る請求項1〜6のうちいずれかに記載の磁気ディスク装
置。 10、磁気記録媒体と、該磁気記録媒体に信号の記録及
び再生のうち少なくとも一つを行う磁気ヘッドと、上記
磁気記録媒体を上記磁気ヘッドと相対的に運動させる手
段と、上記磁気ヘッドに接続される記録再生回路とを有
する磁気記録装置において、上記磁気ヘッドの磁極の少
なくとも一部が飽和磁束密度が12kG以上の非晶質合
金であり、上記磁気記録媒体は保磁力が700〜120
0Oeの塗布型媒体であることを特徴とする磁気記録装
置。 11、前記塗布型媒体は、CoγFe_2O_2、Fe
、Baフェライトのうち少なくとも1以上の磁性粉が、
バインダ材料と共に基板上に塗布されてなることを特徴
とする請求項10記載の磁気記録装置。 12、磁気記録媒体と、該磁気記録媒体に信号の記録及
び再生のうち少なくとも一つを行う磁気ヘッドと、上記
磁気記録媒体を上記磁気ヘッドと相対的に運動させる手
段と、上記磁気ヘッドに接続される記録再生回路とを有
する磁気記録装置において、上記磁気ヘッドの磁極の少
なくとも一部が飽和磁束密度が12kG以上の非晶質合
金であり、上記磁気記録媒体は保磁力が1200〜15
00Oeの連続媒体であることを特徴とする磁気記録装
置。 13、前記連続媒体はCoNi系のスパッタ媒体である
ことを特徴とする請求項12記載の磁気記録装置。 14、前記磁気記録媒体と磁気ヘッド間のスペーシング
が0.1μm以上あることを特徴とする請求項10〜1
3のうちいずれかに記載の磁気記録装置。
[Claims] 1. A magnetic disk, a magnetic head that performs at least one of recording and reproducing signals on the magnetic disk, means for rotating the magnetic disk, and a recording/reproducing device connected to the magnetic head. In a magnetic disk device comprising a circuit and means for moving the magnetic head on the magnetic disk, an interval between the magnetic head and the magnetic disk is 0.1.
μm or more, the saturation magnetic flux density at the tip of the magnetic pole of the magnetic head is 12 kG or more, and the magnetic recording medium of the magnetic disk is a coated medium with a coercive force of 700 Oe or more. . 2. A magnetic disk, a magnetic head that performs at least one of recording and reproducing signals on the magnetic disk, means for rotating the magnetic disk, a recording and reproducing circuit connected to the magnetic head, and the magnetic head. and a means for moving the magnetic head on the magnetic disk, wherein the distance between the magnetic head and the magnetic disk is 0.1.
μm or more, the saturation magnetic flux density at the tip of the magnetic pole of the magnetic head is 12 kG or more, and the magnetic recording medium of the magnetic disk is a continuous medium with a coercive force of 1200 Oe or more. 3. The distance between the magnetic head and the magnetic disk is 0.15μ
3. The magnetic disk device according to claim 1, wherein the magnetic disk drive is greater than or equal to m. 4. The magnetic anisotropy field of at least part of the magnetic pole of the magnetic head is 4 to 15 Oe, and the axis of easy magnetization is oriented in the track width direction on the magnetic disk. 3. The magnetic disk device according to any one of 3. 5. The magnetic disk device according to claim 4, wherein the magnetic anisotropy field of at least a portion of the magnetic pole of the magnetic head is 5 to 8 Oe. 6. The magnetic disk device according to claim 1, wherein the absolute value of the magnetostriction constant of at least part of the magnetic poles of the magnetic head is 5×10^-^7 or less. 7. At least a part of the magnetic pole of the magnetic head is made of CoN.
7. The magnetic disk device according to claim 1, wherein the magnetic disk device is made of one or more selected from bZr, CoWZr, and CoTaZr. 8. At least a part of the magnetic pole of the magnetic head is made of FeS
7. The magnetic disk device according to claim 1, wherein the magnetic disk device is formed of a multilayer film made of i and NiFe. 9. At least a part of the magnetic pole of the magnetic head is made of FeC
7. The magnetic disk device according to claim 1, wherein the magnetic disk device is formed of a multilayer film made of NiFe and NiFe. 10. A magnetic recording medium, a magnetic head that performs at least one of recording and reproducing signals on the magnetic recording medium, means for moving the magnetic recording medium relative to the magnetic head, and a connection to the magnetic head. In a magnetic recording device having a recording and reproducing circuit, at least a part of the magnetic pole of the magnetic head is made of an amorphous alloy with a saturation magnetic flux density of 12 kG or more, and the magnetic recording medium has a coercive force of 700 to 120 kG.
A magnetic recording device characterized in that it is a coating type medium of 0 Oe. 11. The coating type medium is CoγFe_2O_2, Fe
, at least one magnetic powder of Ba ferrite,
11. The magnetic recording device according to claim 10, wherein the magnetic recording device is coated on a substrate together with a binder material. 12. A magnetic recording medium, a magnetic head that performs at least one of recording and reproducing signals on the magnetic recording medium, means for moving the magnetic recording medium relative to the magnetic head, and a connection to the magnetic head. In the magnetic recording device having a recording/reproducing circuit, at least a part of the magnetic pole of the magnetic head is made of an amorphous alloy having a saturation magnetic flux density of 12 kG or more, and the magnetic recording medium has a coercive force of 1200 to 15 kG.
A magnetic recording device characterized by being a continuous medium of 00 Oe. 13. The magnetic recording device according to claim 12, wherein the continuous medium is a CoNi-based sputtering medium. 14. Claims 10 to 1, characterized in that the spacing between the magnetic recording medium and the magnetic head is 0.1 μm or more.
3. The magnetic recording device according to any one of 3.
JP1152337A 1989-06-16 1989-06-16 Magnetic disk device Pending JPH0319101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1152337A JPH0319101A (en) 1989-06-16 1989-06-16 Magnetic disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1152337A JPH0319101A (en) 1989-06-16 1989-06-16 Magnetic disk device

Publications (1)

Publication Number Publication Date
JPH0319101A true JPH0319101A (en) 1991-01-28

Family

ID=15538333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1152337A Pending JPH0319101A (en) 1989-06-16 1989-06-16 Magnetic disk device

Country Status (1)

Country Link
JP (1) JPH0319101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452758B2 (en) 1994-04-21 2002-09-17 Hitachi, Ltd. Magnetic storage apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452758B2 (en) 1994-04-21 2002-09-17 Hitachi, Ltd. Magnetic storage apparatus

Similar Documents

Publication Publication Date Title
JPH06318302A (en) Magnetic recording and reproducing device
JP2001344725A (en) Vertical magnetic recording medium and magnetic recording and reproducing device
US5109311A (en) Magnetic disk device and method of recording/retrieving information
Inamura et al. Ultra high density perpendicular magnetic recording technologies
US5812337A (en) Magnetic disk device using reproducing head having a large reproducing width
JPH0319101A (en) Magnetic disk device
JP3274615B2 (en) Perpendicular magnetic recording medium and magnetic recording device using the same
KR100296731B1 (en) Magnetic recording method
Miura Advances in magnetic disk storage technology
JP3281292B2 (en) Magnetic recording / reproducing device
Ishida et al. More than 1 Gb/in/sup 2/recording on obliquely oriented thin film tape
JP3030279B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JP3340420B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2991688B2 (en) Magnetic recording medium and magnetic recording / reproducing device
Tanaka et al. Perpendicular Magnetic Recording
JPH03181016A (en) Perpendicular magnetic recording medium and perpendicular magnetic recording device
Speliotis Particulate magnetic recording media
JP2508639B2 (en) Perpendicular magnetic recording media
Bai et al. Micromagnetic modeling of SNR performance of longitudinal and perpendicular media with various head/SUL combinations
JP2958187B2 (en) Magnetic disk drive
JPH11213345A (en) Magneto-resistance effect type magnetic head, its production, and information recording and reproducing device
JPH0887702A (en) Magnetic recording signal reproducing method
JP2000123343A (en) Magnetic recording medium and magnetic recording and reproducing device using the same
JPH0570205B2 (en)
Berghof Head and Media Requirements for High-Density Recording