JP2508639B2 - Perpendicular magnetic recording media - Google Patents

Perpendicular magnetic recording media

Info

Publication number
JP2508639B2
JP2508639B2 JP61121758A JP12175886A JP2508639B2 JP 2508639 B2 JP2508639 B2 JP 2508639B2 JP 61121758 A JP61121758 A JP 61121758A JP 12175886 A JP12175886 A JP 12175886A JP 2508639 B2 JP2508639 B2 JP 2508639B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
perpendicular magnetic
recording medium
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61121758A
Other languages
Japanese (ja)
Other versions
JPS62277624A (en
Inventor
薫 木島
直樹 本多
一郎 齋藤
一重 河副
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61121758A priority Critical patent/JP2508639B2/en
Publication of JPS62277624A publication Critical patent/JPS62277624A/en
Application granted granted Critical
Publication of JP2508639B2 publication Critical patent/JP2508639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、記録媒体面に対して垂直方向での残留磁化
を利用し信号の記録,再生を行う,いわゆる垂直磁化記
録方式において使用される垂直磁気記録媒体に関するも
のであり、特にNiFe合金薄膜等の軟磁性層とCOCr合金薄
膜等の垂直磁気異方性層とを順次積層形成してなる二層
構造の垂直磁気記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention is used in a so-called perpendicular magnetization recording system for recording and reproducing signals by utilizing residual magnetization in a direction perpendicular to a recording medium surface. The present invention relates to a perpendicular magnetic recording medium, and more particularly to a perpendicular magnetic recording medium having a two-layer structure in which a soft magnetic layer such as a NiFe alloy thin film and a perpendicular magnetic anisotropic layer such as a COCr alloy thin film are sequentially laminated. .

〔発明の概要〕 本発明は、非磁性支持体上に軟磁性層と垂直磁気異方
性層を順次積層してなる垂直磁気記録媒体において、 前記軟磁性層の残留磁化状態でのマイナーループの傾
きより求めた可逆透磁率の異方性を23%以下とすること
により、 再生エンベロープのモジュレーションの小さなディス
ク状垂直磁気記録媒体を提供しようとするするものであ
る。
[Outline of the Invention] The present invention provides a perpendicular magnetic recording medium comprising a non-magnetic support and a soft magnetic layer and a perpendicular magnetic anisotropy layer sequentially laminated on the non-magnetic support. By setting the anisotropy of reversible magnetic permeability obtained from the inclination to 23% or less, it is intended to provide a disk-shaped perpendicular magnetic recording medium having a small reproduction envelope modulation.

〔従来の技術〕[Conventional technology]

従来、例えばコンピュータの記憶媒体やオーディオテ
ープレコーダ,ビデオテープレコーダ等の記録媒体とし
て使用される磁気記録媒体に対して記録再生を行うに
は、基体上に被着形成される磁性層を水平方向に磁化
(面内方向磁化)し、その面内方向での残留磁化により
記録再生を行うのが一般的である。
Conventionally, in order to record / reproduce on / from a magnetic recording medium used as a recording medium such as a storage medium of a computer, an audio tape recorder, a video tape recorder, etc., a magnetic layer adhered and formed on a substrate is horizontally oriented. Magnetization (in-plane direction magnetization) is generally performed, and recording / reproduction is performed by residual magnetization in the in-plane direction.

ところが、この面内方向磁化による記録の場合、記録
信号が短波長になるにつれ、すなわち記録密度が高まる
につれ、媒体内の反磁界が増して残留磁束密度が減衰
し、再生出力が減少するという欠点を有する。
However, in the case of recording by the in-plane magnetization, as the recording signal becomes shorter in wavelength, that is, as the recording density increases, the demagnetizing field in the medium increases, the residual magnetic flux density decreases, and the reproduction output decreases. Have.

そこでさらに従来、磁気記録媒体の磁性層の厚さ方向
の磁化により記録再生を行う垂直磁化記録方式が提案さ
れており、この垂直磁化記録方式によれば記録波長が短
波長になるにしたがい減磁界が小さくなり、特に高密度
記録において上述した面内方向磁化による記録よりも有
利であることから、盛んに研究が進められている。
Therefore, conventionally, a perpendicular magnetization recording method has been proposed in which recording and reproduction are performed by magnetization in the thickness direction of the magnetic layer of the magnetic recording medium. According to this perpendicular magnetization recording method, the demagnetizing field is reduced as the recording wavelength becomes shorter. Has become smaller, which is more advantageous in high-density recording than the above-mentioned recording by in-plane magnetization, and therefore, research is being actively conducted.

この種の記録方式に用いられる垂直磁気記録媒体とし
ては、高分子フィルム等の非磁性支持体上にCO−Cr合金
材料等により垂直磁気異方性層を形成したものが考えら
れているが、なかでも非磁性支持体と実質的な記録再生
層である垂直磁気異方性層との間に面内磁化層としてNi
Fe合金等からなる高透磁率薄膜層(軟磁性層)を設けた
二層構造の垂直磁気記録媒体が装置構成や記録感度,再
生効率等の点で注目を集めている。
As a perpendicular magnetic recording medium used in this type of recording method, it is considered that a perpendicular magnetic anisotropic layer is formed of a CO-Cr alloy material or the like on a non-magnetic support such as a polymer film, Among them, Ni is used as an in-plane magnetized layer between the non-magnetic support and the perpendicular magnetic anisotropy layer which is a substantial recording / reproducing layer.
A two-layer perpendicular magnetic recording medium provided with a high-permeability thin film layer (soft magnetic layer) made of Fe alloy or the like has been attracting attention in terms of device configuration, recording sensitivity, reproduction efficiency, and the like.

ところで、この二層構造の垂直磁気記録媒体をディス
ク形状で使用すると、軟磁性層の磁気異方性によるモジ
ュレーションが生ずることは既に知られている。すなわ
ち、第2図に示すように、軟磁性層が面内磁気異方性を
有し磁化容易軸方向でのM−Hループ(第2図中曲線E
A)と困難軸方向でのM−Hループ(第2図中曲線HA)
とが異なると、フロッピーディスクの如きディスク形状
の垂直磁気記録媒体においては、磁気ヘッドが磁化容易
軸方向に通過するときは出力電圧が低く、磁化困難軸方
向に通過するときは出力電圧が高くなり、磁気ヘッドが
トラックを一周する間に再生エンブロープに山が2つ,
谷が2つ存在することが観察される。これは一定の出力
を得るという点において大きな問題である。
By the way, it is already known that when the perpendicular magnetic recording medium having the two-layer structure is used in the shape of a disk, modulation due to the magnetic anisotropy of the soft magnetic layer occurs. That is, as shown in FIG. 2, the soft magnetic layer has in-plane magnetic anisotropy and has an MH loop in the easy axis direction (curve E in FIG. 2).
A) and MH loop in the difficult axis direction (curve HA in Fig. 2)
In a disk-shaped perpendicular magnetic recording medium such as a floppy disk, the output voltage is low when the magnetic head passes in the easy magnetization axis direction, and the output voltage becomes high when it passes in the hard magnetization axis direction. , Two peaks on the playback envelope while the magnetic head goes around the track,
It is observed that there are two valleys. This is a big problem in obtaining a constant output.

かかる状況から、上記モジュレーションについての検
討ガ重ねられている。例えば、特開昭60−38718号公報
には、モジューレーションを低減する条件を媒体の静磁
気特性のみから求める方法が開示されている。すなわ
ち、この方法は軟磁性層の磁化容易軸方向と困難軸方向
で測定したメジャーM−Hループから求める方法であっ
て、 1)軟磁性層の面内方向の保磁力が15(Oe)以下である
こと、 2)磁化容易軸方向の保磁力が該方向に直交する磁化困
難軸方向の保磁力の1.2倍以下であること、 3)面内方向の磁化曲線の増磁曲線の磁界軸との交点に
おける接線の勾配の最大値がその値小値の2.5倍以下で
あること、 を骨子とするものである。
Under such circumstances, studies on the above-mentioned modulation have been repeated. For example, Japanese Patent Application Laid-Open No. 60-38718 discloses a method for obtaining the condition for reducing the modulation only from the magnetostatic characteristics of the medium. That is, this method is a method of obtaining from the major MH loop measured in the easy axis direction and the hard axis direction of the soft magnetic layer, and 1) the in-plane coercive force of the soft magnetic layer is 15 (Oe) or less. 2) The coercive force in the direction of easy axis of magnetization is 1.2 times or less of the coercive force in the direction of hard axis of magnetization orthogonal to the direction, 3) The magnetic field axis of the magnetization curve of the magnetization curve in the in-plane direction The main point is that the maximum value of the gradient of the tangent line at the intersection of is less than 2.5 times the small value.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところが、本発明者等が実験を重ねた結果、前記特開
昭60−38718号公報に記載される条件は、必ずしも低モ
ジュレーション媒体の得られる条件とはなっておらず、
さらに改善の余地があるとの結論を得るに至った。
However, as a result of repeated experiments by the present inventors, the conditions described in JP-A-60-38718 are not necessarily the conditions for obtaining a low modulation medium,
We came to the conclusion that there is room for further improvement.

本発明は、フロッピーディスク等のディスク型垂直磁
気記録媒体の再生エンブローブのモジュレーションを小
さくするための軟磁性層の磁気特性の条件を明らかにす
ることを目的とし、これによって再生出力に異方性の少
ない垂直磁気記録媒体を提供することを目的とする。
The present invention aims to clarify the condition of the magnetic characteristics of the soft magnetic layer in order to reduce the modulation of the reproducing emblobe of a disk type perpendicular magnetic recording medium such as a floppy disk, and thereby to obtain an anisotropic reproduction output. An object is to provide a small number of perpendicular magnetic recording media.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、垂直磁気記録媒体のモジュレーション
を実用に供し得る大きさに抑えるための軟磁性層の磁気
特性条件について研究を重ねた結果、残留磁化状態にお
けるマイナーループの傾きより求めた可逆透磁性率の異
方性を23%以下にすればモジュレーションが3dB以下に
抑えられることを見出すに至った。
As a result of repeated studies on the magnetic characteristic condition of the soft magnetic layer for suppressing the modulation of the perpendicular magnetic recording medium to a size that can be practically used, the present inventors have found that the reversible permeability obtained from the inclination of the minor loop in the remanent magnetization state. It has been found that the modulation can be suppressed to 3 dB or less by setting the magnetic anisotropy to 23% or less.

本発明の垂直磁気記録媒体は、かかる知見に基づいて
完成されたものであって、非磁性支持体上に軟磁性層と
垂直磁気異方性層を順次積層してなる垂直磁気記録媒体
において、前記軟磁性層の残留磁化状態でのマイナール
ープの傾きより求めた可逆透磁率の異方性が23%以下で
あることを特徴とするものである。
The perpendicular magnetic recording medium of the present invention has been completed based on such findings, and in a perpendicular magnetic recording medium comprising a nonmagnetic support, a soft magnetic layer and a perpendicular magnetic anisotropic layer are sequentially laminated, The anisotropy of reversible magnetic permeability obtained from the inclination of the minor loop in the remanent magnetization state of the soft magnetic layer is 23% or less.

本発明が適用される垂直磁気記録媒体は、高透磁率層
としてNiFe系合金等よりなる軟磁性層上にCO−Cr合金等
よりなる垂直磁気異方性層を順次積層形成した二層構造
の垂直磁気記録媒体であるが、軟磁性層や垂直磁気異方
性層の材質としてはこれらに限定されるものではなく、
通常この種の媒体に使用されるものであれば何れも使用
可能である。
The perpendicular magnetic recording medium to which the present invention is applied has a two-layer structure in which a perpendicular magnetic anisotropic layer made of a CO--Cr alloy or the like is sequentially formed on a soft magnetic layer made of a NiFe alloy or the like as a high magnetic permeability layer. Although it is a perpendicular magnetic recording medium, the materials of the soft magnetic layer and the perpendicular magnetic anisotropic layer are not limited to these.
Any medium that is normally used for this type of medium can be used.

この二層構造の垂直磁気記録媒体において、軟磁性層
の磁気特性はスパッタリング条件等によって左右される
が、例えば軟磁性層被着前のバックグラウンドプレッシ
ャーを制御し軟磁性層に若干の垂直磁気異方性を持たせ
ることにより、可逆透磁率の異方性が23%以下に抑えら
れる。
In this perpendicular magnetic recording medium having a two-layer structure, the magnetic characteristics of the soft magnetic layer depend on the sputtering conditions and the like. By providing the directionality, the anisotropy of reversible permeability can be suppressed to 23% or less.

〔作用〕[Action]

本発明者等は、二層構造の垂直磁気記録媒体における
軟磁性層を評価する手段として、実際の軟磁性層が置か
れる状態に近いであろうと考えられる残留磁化状態での
可逆透磁率に着目した。
As a means for evaluating the soft magnetic layer in the perpendicular magnetic recording medium having a two-layer structure, the present inventors have focused on the reversible magnetic permeability in the remanent magnetization state which is considered to be close to the state in which the actual soft magnetic layer is placed. .

この可逆透磁率μrは、第1図に示すようにマイナー
ループ(第1図中曲線M1)の傾きとして、磁場の変化Δ
Hと磁束密度の変化ΔBとから μr=ΔB/ΔH …(1)式 (ただし、ΔB=4πΔM+ΔH) に従って算出されるものである。
This reversible permeability μ r is the change of the magnetic field Δ as the inclination of the minor loop (curve M1 in FIG. 1) as shown in FIG.
It is calculated from H and the change in magnetic flux density ΔB according to μ r = ΔB / ΔH (1) (where ΔB = 4πΔM + ΔH).

ここで、上記マイナーループは、メジャーループ(第
1図中曲線MJ)の残留磁化状態(第1図中Mrで示す点)
でのマイナーループとした。本発明者等の実験によれ
ば、この残留磁化状態でのマイナーループの傾きより求
めた可逆透磁率μrは、二層構造の垂直磁気記録媒体の
軟磁性層の磁気特性を鋭敏に反映するもので、磁化困難
軸方向での可逆透磁率μrhと磁化容易軸方向での可逆透
磁率μReとの比がμrh/μre≦1.23であれば、モジュレ
ーションが実用レベルである3dB以下に抑えられること
が判明した。
Here, the minor loop is the remanent magnetization state of the major loop (curve MJ in FIG. 1) (point indicated by Mr in FIG. 1).
It was a minor loop in. According to the experiments by the present inventors, the reversible permeability μ r obtained from the inclination of the minor loop in this remanent magnetization state sensitively reflects the magnetic characteristics of the soft magnetic layer of the perpendicular magnetic recording medium having a double-layer structure. However, if the ratio of the reversible permeability μ rh in the hard axis direction to the reversible permeability μ Re in the easy axis direction is μ rh / μ re ≦ 1.23, the modulation falls below the practical level of 3 dB. It turned out to be suppressed.

また、上述の可逆透磁率により軟磁性層を評価すれ
ば、従来の方法に比べて精度が高いこと、静磁気特性な
ので振動試料型磁束計等の高感度,高精度な測定器が使
用できること、媒体の磁気特性の測定だけでモジュレー
ションを知ることができること等、数々の利点を有す
る。
Moreover, if the soft magnetic layer is evaluated by the above-mentioned reversible magnetic permeability, the accuracy is higher than that of the conventional method, and since the magnetostatic characteristics are used, a highly sensitive and highly accurate measuring instrument such as a vibrating sample type magnetometer can be used. It has a number of advantages such as the fact that modulation can be known only by measuring the magnetic properties of the medium.

〔実施例〕〔Example〕

以下、本発明を具体的な実施例により説明する。な
お、本発明がこれら実施例に限定されるものでないこと
は言うまでもない。
Hereinafter, the present invention will be described with reference to specific examples. Needless to say, the present invention is not limited to these examples.

(1)垂直磁気記録媒体の作製方法 厚さ50μmのポリエチレンテレフタレート基板に、Ni
Fe系の軟磁性層を厚さ0.5μmとなるように被着形成し
た。次いで、軟磁性層上に垂直磁気異方性層としてCO−
Cr膜を厚さ0.15μmとなるように製膜した。これらの膜
形成を基板の両面に行った。
(1) Method of manufacturing perpendicular magnetic recording medium A 50 μm thick polyethylene terephthalate substrate was coated with Ni.
An Fe-based soft magnetic layer was deposited and formed so as to have a thickness of 0.5 μm. Then, CO-as a perpendicular magnetic anisotropic layer on the soft magnetic layer
A Cr film was formed to a thickness of 0.15 μm. These films were formed on both sides of the substrate.

膜の作製方法としてはDCマグネトロン方式による連続
高速スパッタ法およびバッチ式RFスパッタ法を採用し
た。その製膜速度はDCマグネトロン方式が1分間あたり
4000Åとし、バッチ式RFスパッタ法が1分間あたり50Å
とした。
The continuous high-speed sputtering method by the DC magnetron method and the batch type RF sputtering method were adopted as the method for forming the film. The film formation rate is per minute for the DC magnetron method
4000 Å, batch type RF sputtering method 50 Å per minute
And

さらに、上記CO−Cr膜の表面に保護膜,潤滑剤層を設
け、垂直磁気記録媒体を得た。
Further, a protective film and a lubricant layer were provided on the surface of the CO-Cr film to obtain a perpendicular magnetic recording medium.

以上の方法に従い、軟磁性層作製時のバックグラウン
ドプレッシャーをコントロールしてこの軟磁性層の異方
性を制御し、各種試料を作製した。
According to the above method, the background pressure during the preparation of the soft magnetic layer was controlled to control the anisotropy of the soft magnetic layer, and various samples were prepared.

このとき、バックグラウンドプレッシャーのコントロ
ールの仕方としては、具体的には以下に示すように行っ
た。先ず、スパッタ装置内に水蒸気を導入して10-6TOrr
程度の圧力となるように調整した。次いで、軟磁性層の
保持磁力Hcを増大させる場合には、更にスパッタ装置内
にO2ガスを導入して10-6〜2×10-5TOrr程度の圧力とな
るように調整し、保磁力Hcを減少させる場合には、更に
スパッタ装置内にN2ガスを導入して同様に10-6〜2×10
-5TOrr程度の圧力となるように調整した。
At this time, the background pressure was specifically controlled as follows. First, steam was introduced into the sputtering system to reach 10 -6 TOrr.
The pressure was adjusted to be about the same. Next, in order to increase the coercive force Hc of the soft magnetic layer, O 2 gas is further introduced into the sputtering apparatus so that the coercive force is adjusted to a pressure of about 10 −6 to 2 × 10 −5 TOrr. In order to reduce Hc, N 2 gas is further introduced into the sputtering device and 10 −6 to 2 × 10 6 is similarly added.
The pressure was adjusted to about -5 TOrr.

これらの試料について、可逆透磁率,電磁変換特性
(特にモジュレーション)を測定した。
Reversible magnetic permeability and electromagnetic conversion characteristics (particularly modulation) of these samples were measured.

(2)可逆透磁率の測定 各試料について、媒体中心より5mm角の小片を切り出
し、これら小片の片面を酸で溶かし、片面にのみ軟磁性
層と垂直磁気異方性層が積層形成された状態のサンプル
を作製した。そして、これらサンプルについて、面内各
方向の軟磁性層の磁気特性を振動試料型磁束計により測
定した。可逆透磁率は、第1図に示すように、残留磁化
状態で約1.0エルステッドの磁場を変化させたときのマ
イナーループの傾きより、μr=ΔB/ΔHに従って算出
した。ここで、μrhは磁化困難軸方向での可逆透磁率で
あり、μreは磁化容易軸方向での可逆透磁率である。
(2) Measurement of reversible magnetic permeability For each sample, cut out small pieces of 5 mm square from the center of the medium, dissolve one side of these pieces with acid, and a state where a soft magnetic layer and a perpendicular magnetic anisotropy layer are laminated only on one side. The sample of was produced. Then, for these samples, the magnetic characteristics of the soft magnetic layer in each in-plane direction were measured by a vibrating sample magnetometer. As shown in FIG. 1, the reversible magnetic permeability was calculated according to μ r = ΔB / ΔH from the slope of the minor loop when the magnetic field of about 1.0 Oersted was changed in the remanent magnetization state. Here, μ rh is the reversible permeability in the direction of hard magnetization, and μ re is the reversible permeability in the direction of easy magnetization.

また、同時にメジャーループより磁化困難軸方向での
保磁力Hch,磁化容易軸方向での保磁力Hce,及びこれら
の比Hce/Hch,さらには磁化曲線のうち増磁曲線の磁界
軸との交点における接線の勾配の最大値Leと最小値Lh
比Le/Lhについても調べた。
At the same time, the coercive force Hc h in the hard axis direction, the coercive force Hc e in the easy axis direction, and their ratio Hc e / Hc h from the major loop, and the magnetic field axis of the magnetization curve of the magnetization curve The ratio L e / L h of the maximum value L e and the minimum value L h of the tangent gradient at the intersection with and was also examined.

(3)電磁変換特性の測定 磁気ヘッド:単磁極型垂直磁気ヘッド 主磁極:CO−Zr−Nb薄膜 厚さ0.3μm 飽和磁束密度Bs約12000ガウス 試 料:ディスク型両面垂直磁気記録媒体 (試料1〜試料10及び比較試料1〜比較試料6 ) 磁気ヘッド/媒体相対速度:6m/Sec CO−Cr膜の保磁力:450〜1060(0e) 以上の測定条件に従い、記録波長1.0μmのときのデ
シベル表示した再生出力の最大値EpmaXと最小値Epmin
求めEpmax−Epminをモジュレーション(単位:dB)とし
た。
(3) Measurement of electromagnetic conversion characteristics Magnetic head: Single magnetic pole type perpendicular magnetic head Main magnetic pole: CO-Zr-Nb thin film 0.3 μm thickness Saturation magnetic flux density Bs about 12000 gauss Sample: Disk type double sided perpendicular magnetic recording medium (Sample 1 ~ Sample 10 and comparative sample 1 to comparative sample 6) Magnetic head / medium relative velocity: 6 m / Sec CO-Cr film coercive force: 450 to 1060 (0e) Decibels at recording wavelength 1.0 μm under the above measurement conditions The maximum value Ep maX and the minimum value Ep min of the displayed playback output were calculated and Ep max −Ep min was defined as the modulation (unit: dB).

上述の(1)の方法で得られた各試料について、
(2),(3)の条件で測定を行った結果を次表に示
す。
For each sample obtained by the above method (1),
The following table shows the results of measurement under the conditions (2) and (3).

表中の試料1〜試料10は磁化困難軸方向での可逆透磁
率μrhと磁化容易軸方向での可逆透磁率μreの比が1.23
以下で、このときのモジュレーションは2.2dB以下であ
る。一方、比較試料1〜比較試料6はモジュレーション
が3.2dB以上あり、このときμrh/μreは1.23を越えて
いる。
In Samples 1 to 10 in the table, the ratio of the reversible permeability μ rh in the hard axis direction to the reversible permeability μ re in the easy axis direction is 1.23.
Below, the modulation at this time is 2.2 dB or less. On the other hand, in Comparative samples 1 to 6, the modulation is 3.2 dB or more, and at this time, μ rh / μ re exceeds 1.23.

尚、ここでの測定は記録波長1.0μmで行っている
が、記録波長0.5μm及び10μmの場合においても、モ
ジュレーションについて同様の結果が得られることを確
認している。
It should be noted that although the measurement here is performed at a recording wavelength of 1.0 μm, it has been confirmed that similar results can be obtained for modulation even at recording wavelengths of 0.5 μm and 10 μm.

〔発明の効果〕〔The invention's effect〕

以上の説明からも明らかなように、本発明によれば、
高透磁率層である軟磁性層の可逆透磁率を規定すること
によって、再生出力における異方性の小さな垂直磁気記
録媒体が実現される。
As is clear from the above description, according to the present invention,
By defining the reversible magnetic permeability of the soft magnetic layer, which is a high magnetic permeability layer, a perpendicular magnetic recording medium having small anisotropy in reproduction output can be realized.

【図面の簡単な説明】[Brief description of drawings]

第1図は可逆透磁率を説明する特性図であり、第2図は
二層構造の垂直磁気記録媒体における磁化容易軸方向で
のM−Hループ及び磁化困難軸方向でのM−Hループを
示す特性図である。
FIG. 1 is a characteristic diagram for explaining reversible magnetic permeability, and FIG. 2 shows the MH loop in the easy axis direction and the MH loop in the hard axis direction in a perpendicular magnetic recording medium having a two-layer structure. It is a characteristic view to show.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河副 一重 東京都品川区北品川6丁目7番35号 ソ ニー株式会社内 (56)参考文献 特開 昭60−202527(JP,A) 特開 昭60−38718(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ippie Kawazoe 6-735 Kita-Shinagawa, Shinagawa-ku, Tokyo Sony Corporation (56) References JP-A-60-202527 (JP, A) JP Sho 60-38718 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非磁性支持体上に軟磁性層と垂直磁気異方
性層を順次積層してなる垂直磁気記録媒体において、 前記軟磁性層の残留磁化状態でのマイナーループの傾き
より求めた可逆透磁率の異方性が23%以下であることを
特徴とする垂直磁気記録媒体。
1. A perpendicular magnetic recording medium in which a soft magnetic layer and a perpendicular magnetic anisotropy layer are sequentially laminated on a non-magnetic support, and the soft magnetic layer is obtained from the inclination of a minor loop in the remanent magnetization state. A perpendicular magnetic recording medium having anisotropy of reversible magnetic permeability of 23% or less.
JP61121758A 1986-05-27 1986-05-27 Perpendicular magnetic recording media Expired - Fee Related JP2508639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61121758A JP2508639B2 (en) 1986-05-27 1986-05-27 Perpendicular magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61121758A JP2508639B2 (en) 1986-05-27 1986-05-27 Perpendicular magnetic recording media

Publications (2)

Publication Number Publication Date
JPS62277624A JPS62277624A (en) 1987-12-02
JP2508639B2 true JP2508639B2 (en) 1996-06-19

Family

ID=14819157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61121758A Expired - Fee Related JP2508639B2 (en) 1986-05-27 1986-05-27 Perpendicular magnetic recording media

Country Status (1)

Country Link
JP (1) JP2508639B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202527A (en) * 1984-03-28 1985-10-14 Matsushita Electric Ind Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS62277624A (en) 1987-12-02

Similar Documents

Publication Publication Date Title
Iwasaki et al. Perpendicular magnetic recording with a composite anisotropy film
JPH07169037A (en) In-surface type magnetic recording medium and its manufacture and magnetic recorder employing the medium
US5900323A (en) Magnetic recording medium and magnetic recording drive
JP2508639B2 (en) Perpendicular magnetic recording media
JP3359706B2 (en) Magnetic recording media
JP2001101644A (en) Vertical magnetic recording medium and magnetic recording device
JP3625865B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2964596B2 (en) Manufacturing method of magnetic recording medium
JPH09298114A (en) Vertical magnetic recording medium and magnetic recording device using it
JP3030279B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JP3050421B2 (en) Magnetic recording media
JP3281292B2 (en) Magnetic recording / reproducing device
JP2615144B2 (en) Magnetic recording media
JP3204548B2 (en) In-plane magnetic storage medium and method of manufacturing the same
JP2795705B2 (en) Flying magnetic head
JP3394108B2 (en) Magnetic storage device and multilayer magnetic layer magnetic recording medium
JP2511997B2 (en) Magnetic recording media
JPH08138228A (en) Magnetic recording medium, its production and magnetic recorder
JPH0570205B2 (en)
JPS58171717A (en) Magnetic recording medium
JPS60160028A (en) Vertically magnetized recording body
JPH0527169B2 (en)
Speliotis Particulate Magnetic Recording Media
JPH0159643B2 (en)
JPH06103555A (en) Perpendicular magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees