JPH0744108B2 - Soft magnetic thin film - Google Patents

Soft magnetic thin film

Info

Publication number
JPH0744108B2
JPH0744108B2 JP1304811A JP30481189A JPH0744108B2 JP H0744108 B2 JPH0744108 B2 JP H0744108B2 JP 1304811 A JP1304811 A JP 1304811A JP 30481189 A JP30481189 A JP 30481189A JP H0744108 B2 JPH0744108 B2 JP H0744108B2
Authority
JP
Japan
Prior art keywords
thin film
heat treatment
soft magnetic
composition
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1304811A
Other languages
Japanese (ja)
Other versions
JPH02275605A (en
Inventor
寛次 中西
治 清水
敏 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to DE69015652T priority Critical patent/DE69015652T2/en
Priority to EP90101621A priority patent/EP0380136B1/en
Priority to US07/470,662 priority patent/US5117321A/en
Publication of JPH02275605A publication Critical patent/JPH02275605A/en
Priority to US07/878,624 priority patent/US5421915A/en
Priority to US08/178,441 priority patent/US6183568B1/en
Publication of JPH0744108B2 publication Critical patent/JPH0744108B2/en
Priority to US08/775,518 priority patent/US5772797A/en
Priority to US08/957,791 priority patent/US6238492B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/131Amorphous metallic alloys, e.g. glassy metals containing iron or nickel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,高飽和磁束密度と高周波透磁率を持ち,高密
度記録再生用磁気ヘッドのコア材料等に好適な軟磁性薄
膜に関する。
TECHNICAL FIELD The present invention relates to a soft magnetic thin film having a high saturation magnetic flux density and a high frequency magnetic permeability, which is suitable for a core material of a magnetic head for high density recording / reproducing.

〔発明の背景〕[Background of the Invention]

例えばオーディオテープレコーダやVTR(ビデオテープ
レコーダ)等の磁気記録再生装置においては,記録信号
の高密度化や高品質化等が進められており,この高記録
密度化に対応して,磁気記録媒体として磁性粉にFe,Co,
Ni等の金属あるいは合金からなる粉末を用いた,いわゆ
るメタルテープや,強磁性金属材料を真空薄膜形成技術
によりベースフィルム上に直接被着した,いわゆる蒸着
テープ等が開発され,各分野で実用化されている。
For example, in magnetic recording / reproducing devices such as audio tape recorders and VTRs (video tape recorders), higher recording density and higher quality of recording signals are being advanced. As magnetic powder Fe, Co,
Developed a so-called metal tape using powder made of a metal or alloy such as Ni, and a so-called vapor-deposition tape in which a ferromagnetic metal material is directly deposited on a base film by a vacuum thin film forming technology, and put into practical use in various fields. Has been done.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be Solved by Prior Art and Invention]

ところで,このような所定の保磁力を有する磁気記録媒
体の特性を発揮せしめるためには,磁気ヘッドのコア材
料の特性として,高い飽和磁束密度を有するとともに,
同一の磁気ヘッドで再生を行なおうとする場合において
は、高透磁率を併せて有することが要求される。
By the way, in order to exert the characteristics of the magnetic recording medium having such a predetermined coercive force, in addition to having a high saturation magnetic flux density as the characteristics of the core material of the magnetic head,
When reproducing with the same magnetic head, it is required to have high magnetic permeability as well.

従来は,センダスト合金(Fe−Si−Al,Bs10KG)や,Co
系アモルファス合金などが用いられていたが,センダス
ト合金は,膜の内部応力が大きく,また結晶粒が成長し
易く厚膜化が難しい。また,飽和磁束密度Bsが10KG程度
で,今以上の高密度記録には飽和磁束密度Bsが不充分で
ある。また,Co系アモルファス合金は特性も良く高飽和
磁束密度Bsのものも作製できるが,450℃程度で結晶化し
てしまうため,ヘッド形成する際に高温でガラス接合で
きず,充分な接合強度が得られないという難点があっ
た。
Conventionally, sendust alloys (Fe-Si-Al, Bs10KG) and Co
Although amorphous amorphous alloys have been used, sendust alloys have large internal stress in the film, and it is difficult to increase the film thickness because crystal grains grow easily. Moreover, the saturation magnetic flux density Bs is about 10 KG, which is insufficient for higher density recording. In addition, Co-based amorphous alloys with good characteristics can also be produced with high saturation magnetic flux density Bs, but since they crystallize at about 450 ° C, glass bonding cannot be performed at high temperature during head formation, and sufficient bonding strength is obtained. There was a difficulty that I could not do it.

その他の軟磁性材料としては窒化鉄があり,一般に,窒
素含有雰囲気中で鉄をターゲットとしてイオンビーム蒸
着あるいはスパッタリング等により薄膜状に形成され
る。さらに,この薄膜は必要に応じて熱処理されること
もあった。しかしながら,この軟磁性薄膜は,熱処理又
は加熱によって保磁力が大幅に上昇してしまい特性の安
定性が不充分であるという問題があった。
Another soft magnetic material is iron nitride, which is generally formed into a thin film by ion beam deposition or sputtering with iron as a target in a nitrogen-containing atmosphere. Furthermore, this thin film was sometimes heat-treated if necessary. However, this soft magnetic thin film has a problem that the coercive force is significantly increased by heat treatment or heating, and the stability of the characteristics is insufficient.

特開昭63−299219号公報には,このような問題点を改良
せんとした次の軟磁性薄膜が記載されている。
Japanese Unexamined Patent Publication No. 63-299219 describes the following soft magnetic thin film, which is intended to improve such problems.

「Fe(ただし、x,y,zは各々組成比を原子%
として表し,AはSi,Al,Ta,B,Mg,Ca,Sr,Ba,Cr,Mn,Zr,Nb,T
i,Mo,V,W,Hf,Ga,Ge,希土類元素の少なくとも1種を表
す。)なる組成式で示され、その組成範囲が 0.5≦y≦5.0 0.5≦z≦7.5 x+y+z=100 であることを特徴とする軟磁性薄膜。」 しかし,特開昭63−299219号公報に記載の軟磁性薄膜も
また熱処理によって保磁力が上昇するのを避けられな
い。
“Fe x N y A z (where x, y, and z are composition ratios in atomic%
, A is Si, Al, Ta, B, Mg, Ca, Sr, Ba, Cr, Mn, Zr, Nb, T
Represents at least one of i, Mo, V, W, Hf, Ga, Ge, and rare earth elements. ), The composition range is 0.5 ≦ y ≦ 5.0 0.5 ≦ z ≦ 7.5 x + y + z = 100. However, the coercive force of the soft magnetic thin film described in JP-A-63-299219 is inevitably increased by heat treatment.

さらに一軸異方性を有していないため高周波における透
磁率を高くすることができないという欠点がある。
Furthermore, there is a drawback in that the magnetic permeability at high frequencies cannot be increased because it does not have uniaxial anisotropy.

また,製膜条件にもよるが,一般的に結晶質材料は,膜
を付着する過程でセルフシャドウイング効果によって柱
状晶になり易く,粒界部にボイドが形成されるために磁
気的に不連続になり軟磁気特性が劣化してしまう傾向が
ある。このセルフシャドウイング効果は,磁気ヘッドを
作製する際の様に下地に段差がある場合や厚膜化する場
合に特に顕著となり,充分な特性が得られないという難
点があった。
In addition, depending on the film forming conditions, generally, crystalline materials are apt to become columnar crystals due to the self-shadowing effect during the process of depositing the film, and voids are formed at the grain boundary parts, so that they are magnetically inferior. It tends to be continuous and the soft magnetic characteristics tend to deteriorate. This self-shadowing effect becomes particularly noticeable when there is a step on the underlayer or when the film is thickened as in the case of manufacturing a magnetic head, and there is a drawback that sufficient characteristics cannot be obtained.

本発明は,上記従来技術の問題点を改良した軟磁性薄膜
の提供を目的とする。
It is an object of the present invention to provide a soft magnetic thin film that solves the above problems of the prior art.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明によれば次の軟磁性薄膜により上記目的を達成す
ることができる。
According to the present invention, the above object can be achieved by the following soft magnetic thin film.

Fe(但し,a,b,cは各々原子%を示し、BはZ
r,Hf,Ti,Nb,Ta,V,Mo,Wの少なくとも1種以上を表わ
す。)なる組成式で示され、その組成範囲は 0<b≦20 0<c≦22 の範囲(但し,b≦7.5かつc≦5を除く)であることを
特徴とする軟磁性薄膜。この組成範囲を点E,F,G,H,I,J
により第1図に示す。
Fe a B b N c (where a, b, and c are each atomic%, B is Z
It represents at least one of r, Hf, Ti, Nb, Ta, V, Mo and W. ), And the composition range is 0 <b ≦ 20 0 <c ≦ 22 (excluding b ≦ 7.5 and c ≦ 5). This composition range is defined as points E, F, G, H, I, J.
Is shown in FIG.

好ましくは,前記組成範囲は 69≦a≦93 2≦b≦15 5<c≦22 の範囲である。この組成範囲を点Q,K,L,U,Mにより第1
図に示す。
Preferably, the composition range is 69 ≦ a ≦ 93 2 ≦ b ≦ 15 5 <c ≦ 22. This composition range is first defined by points Q, K, L, U, M
Shown in the figure.

また好ましくは,Fe(但し,a,b,cは各々原子
%を示し,BはZr,Hf,Ti,Nb,Ta,V,Mo,Wの少なくとも1種
以上を表わす。)なる組成式で示され,その組成範囲
は,前記三者の三成分組成座標系(Fe,B,N)において P(91,2,7) Q(93,2,5) R(88,7,5) S(73,12,15) T(69,12,19) U(69,9,22) V(76,5,19) の7点を結ぶ線分で囲まれた範囲であることを特徴とす
る軟磁性薄膜である。この組成範囲を点P,Q,R,S,T,U,V
により第1図に示す。
Preferably, Fe a B b N c (where a, b and c each represent atomic% and B represents at least one of Zr, Hf, Ti, Nb, Ta, V, Mo and W). ), And its composition range is P (91,2,7) Q (93,2,5) R (88, in the three-component three-component composition coordinate system (Fe, B, N). 7,5) S (73,12,15) T (69,12,19) U (69,9,22) V (76,5,19) It is the range surrounded by the line segment connecting 7 points. This is a soft magnetic thin film. This composition range is defined by points P, Q, R, S, T, U, V.
Is shown in FIG.

結晶粒径は,好ましくは300Å以下である。The crystal grain size is preferably 300 Å or less.

〔好適な実施態様及び作用〕[Preferable Embodiment and Action]

本発明の軟磁性薄膜は,Fe及びNと,特定の添加元素B,
即ち,Zr,Hf,Ti,Nb,Ta,V,Mo,Wの少なくとも1種以上の元
素とから成り,これらFeとNと特定の添加元素B(2種
以上も含む)の三者は,前記特定の組成範囲内にある。
The soft magnetic thin film of the present invention comprises Fe and N, a specific additive element B,
That is, it consists of at least one element of Zr, Hf, Ti, Nb, Ta, V, Mo and W, and these three elements, Fe and N, and the specific additive element B (including two or more elements) are Within the specific composition range.

前記組成範囲が,0<b≦20かつ,0<c≦22の範囲(但
し,b≦7.5かつc≦5を除く)である場合,好ましくは,
b≧0.5かつc≧0.5とする。b<0.5又はc<0.5の場合
にはその存在による効果が発揮されないことが多いから
である。
When the composition range is 0 <b ≦ 20 and 0 <c ≦ 22 (excluding b ≦ 7.5 and c ≦ 5), preferably,
b ≧ 0.5 and c ≧ 0.5. This is because in the case of b <0.5 or c <0.5, the effect due to their presence is often not exhibited.

前記添加元素Bが20原子%を越えるか,又は,Nが22原子
%を越える場合には,良好な軟磁性が得られない。
If the additive element B exceeds 20 atom%, or N exceeds 22 atom%, good soft magnetism cannot be obtained.

前記組成範囲が,69≦a≦93かつ2≦b≦15かつ5<c
≦22(より好ましくは5.5<c≦22)の場合は,より良
好な軟磁性を示す。
The composition range is 69 ≦ a ≦ 93 and 2 ≦ b ≦ 15 and 5 <c
When ≦ 22 (more preferably 5.5 <c ≦ 22), better soft magnetism is exhibited.

また,好ましくは,前記組成は,前記三者の三成分組成
座標系(Fe,B,N)において,前記特定の点P,Q,R,S,T,U,
Vの7点を結ぶ線分で囲まれた範囲である。この組成範
囲では保磁力が小さいので,特に磁気ヘッドのコア材料
等に好適である。最も好ましくは,保磁力が1.5Oe以下
(さらには1Oe以下)を示す組成範囲である。
Also, preferably, the composition is the specific points P, Q, R, S, T, U, in the three-component three-component composition coordinate system (Fe, B, N).
It is the area surrounded by the line segment connecting the seven points of V. Since the coercive force is small in this composition range, it is particularly suitable as a core material of a magnetic head. Most preferably, the composition range is a coercive force of 1.5 Oe or less (further, 1 Oe or less).

前記添加元素BがZrである場合,軟磁性薄膜の好ましい
組成範囲は, Fe(Zr1−e100−d 77≦d≦88 0.3≦e≦0.38 で示される範囲である。この組成範囲を点W,X,Y,Zによ
り第1図に示す。これらの点W,X,Y,Zの座標は,ほぼ次
のとおりである。
When the additional element B is Zr, the preferred composition range of the soft magnetic thin film is in the range represented by Fe d (Zr e N 1- e) 100-d 77 ≦ d ≦ 88 0.3 ≦ e ≦ 0.38. This composition range is shown in FIG. 1 by points W, X, Y and Z. The coordinates of these points W, X, Y and Z are almost as follows.

W(88,3.6,8.4) X(88,4.56,7.44) Y(77,8.74,14.26) Z(77,6.9,16.1) 即ち,この範囲では,Feを77〜88原子%含み,かつ,Zrの
含有率b(原子%)とNの含有率c(原子%)の比c/b
がおよそ1.63〜2.33となっている。この組成範囲の軟磁
性薄膜は,良好な軟磁性(例えば,保磁力Hc<5Oe)を
示す。
W (88,3.6,8.4) X (88,4.56,7.44) Y (77,8.74,14.26) Z (77,6.9,16.1) That is, in this range, Fe is 77 to 88 atomic% and Zr Ratio c / b of the content rate b (atomic%) of N and the content rate c (atomic%) of N
Is about 1.63 to 2.33. The soft magnetic thin film in this composition range exhibits excellent soft magnetism (for example, coercive force Hc <5 Oe).

前記添加元素は,一種又は二種以上にすることができ
る。例えばZrのみ添加することができるが,その他の添
加元素でZrの一部(例えば添加されるZrのうちの30原子
%)を置き換えることができる。
The additive element may be one kind or two or more kinds. For example, only Zr can be added, but a part of Zr (for example, 30 atom% of added Zr) can be replaced by other additive element.

また,FeはCo,Ni又はRuの一種以上で置き換えることがで
きる。例えば軟磁性薄膜を構成するFeのうちの30原子%
程度まで置き換えることができる。
Further, Fe can be replaced by one or more of Co, Ni or Ru. For example, 30 atomic% of Fe in the soft magnetic thin film
Can be replaced to a degree.

本発明の軟磁性薄膜は,例えばRFスパッタ法等の気相析
着法により前記特定組成の非晶質薄膜を得て,この非晶
質薄膜を例えば350〜650℃で熱処理し前記非晶質薄膜の
一部ないし全部を結晶化させて製造することができる。
好ましくは,前記熱処理時に磁界を印加して一軸磁気異
方性を誘導し前記非晶質薄膜の一部ないし全部を結晶化
させて製造することができる。
The soft magnetic thin film of the present invention is an amorphous thin film having the above-mentioned specific composition obtained by vapor deposition method such as RF sputtering, and the amorphous thin film is heat treated at 350 to 650 ° C. It can be manufactured by crystallizing a part or all of the thin film.
Preferably, a magnetic field may be applied during the heat treatment to induce uniaxial magnetic anisotropy to crystallize a part or all of the amorphous thin film.

本発明の軟磁性薄膜を前記の方法により製造する場合,
形成される基板の種類により製造後の軟磁性薄膜の諸特
性に差が生じる場合があるので,適宜基板を選択して製
造することが好ましい。
When the soft magnetic thin film of the present invention is manufactured by the above method,
Since various characteristics of the soft magnetic thin film after production may differ depending on the type of substrate to be formed, it is preferable to appropriately select and produce the substrate.

〔実施例〕 (実施例1) Fe100−yZr(y=5.0,10.0,15.0(at%))の組成の
合金ターゲットを作製し,それぞれ2.5〜12.5モル%の
窒素を含む,窒素含有アルゴンガス雰囲気中で,ガス圧
力0.6Pa,投入電力200Wの条件で高周波スパッタリングを
行なった。これによって得られた各薄膜の磁界中熱処理
後の飽和磁束密度Bs,保磁力Hcを測定した。BsおよびHc
の測定は交流BHトレーサー(印加磁界50Hz,25Oe,ただし
Hc>25の場合は,90Oe)による(以下同様)。基板には
結晶化ガラス基板(PEG3130C HOYA製)及び単結晶サフ
ァイア基板を用いた。また膜厚はいずれも0.6μm程度
とした。
Example 1 An alloy target having a composition of Fe 100-y Zr y (y = 5.0, 10.0, 15.0 (at%)) was prepared, and each contained 2.5 to 12.5 mol% nitrogen and contained nitrogen. High-frequency sputtering was performed in an argon gas atmosphere with a gas pressure of 0.6 Pa and an input power of 200 W. The saturation magnetic flux density Bs and the coercive force Hc of each thin film thus obtained after heat treatment in a magnetic field were measured. Bs and Hc
AC BH tracer (applied magnetic field 50Hz, 25Oe,
When Hc> 25, 90 Oe) (same as below). As the substrate, a crystallized glass substrate (PEG3130C HOYA) and a single crystal sapphire substrate were used. The film thickness was about 0.6 μm in each case.

これらの結果を第1−A表に示す。なお,Hcは容易軸方
向の値で示す。また,一部の軟磁性薄膜については,5MH
zにおける透磁率μ及び磁歪について測定した。磁歪
は,膜に応力を加えた時のBH特性の変化から磁歪の正負
判定を行なった。この結果も第1−A表に示す。
The results are shown in Table 1-A. Hc is shown as a value in the easy axis direction. For some soft magnetic thin films, 5MH
The magnetic permeability μ and the magnetostriction at z were measured. For magnetostriction, the sign of magnetostriction was judged from the change in BH characteristics when stress was applied to the film. The results are also shown in Table 1-A.

一方,第1−B図には,スパッタ時の雰囲気中に窒素を
含有しない以外は前記実施例1と同様にして結晶化ガラ
ス基板上に得られた3種の熱処理薄膜(比較例1のNo.
1,2,3)の組成,飽和磁束密度Bs及び保磁力Hcの測定結
果を示す。
On the other hand, in FIG. 1-B, three kinds of heat-treated thin films (No. of Comparative Example 1) obtained on the crystallized glass substrate in the same manner as in Example 1 except that nitrogen was not contained in the atmosphere during sputtering. .
The measurement results of the composition of 1,2,3), the saturation magnetic flux density Bs, and the coercive force Hc are shown.

また,前記実施例の方法により製造した軟磁性薄膜の組
成と保磁力Hcの関係及び磁歪の正負判定(結晶化ガラス
基板を用い550℃で熱処理した場合)を第2図に示す。
さらに,Fe−Zr合金ターゲット中のFe含有量及びスパッ
タガス中のN2含有量の軟磁性薄膜製造条件と,保磁力Hc
と,飽和磁歪λsとの関係(結晶化ガラス基板を用い55
0℃で熱処理した場合)を第3図に示す。
Further, FIG. 2 shows the relationship between the composition and coercive force Hc of the soft magnetic thin film manufactured by the method of the above-mentioned example and the positive / negative judgment of the magnetostriction (when heat-treated at 550 ° C. using a crystallized glass substrate).
Furthermore, the Fe content in the Fe-Zr alloy target and the N 2 content in the sputter gas, the manufacturing conditions of the soft magnetic thin film, and the coercive force Hc
And the saturation magnetostriction λs (using a crystallized glass substrate
FIG. 3 shows the case of heat treatment at 0 ° C.).

X線回折と電気抵抗率 前記実施例中Fe80.9Zr6.512.6の組成について未熱処
理(as depo)の薄膜と,250,350,450又は550℃で熱処理
した薄膜についてのX線回折の結果を第4図に示し電気
抵抗率の測定結果を第2表に示す。第4図によれば,550
℃熱処理の薄膜の結晶粒径は半値幅から約130Åである
ことがわかった。なお,as depoの薄膜及び250℃熱処理
の薄膜はアモルファスであり,350℃及び450℃熱処理の
薄膜は微結晶から成り,550℃熱処理の薄膜はさらに成長
した微結晶から成ることがわかった。これらの微結晶は
薄膜の軟磁性に寄与すると考えられ,このような微結晶
の生成はN及びZrの存在によるものと考えられる。第2
表によれば熱処理温度を高めることによって,この薄膜
の抵抗率は低下していくが,550℃まで温度を上げて熱処
理した場合でも,その値は,純鉄,パーマロイなどより
はるかに高く,Fe−Si合金,センダストとほぼ同等の値
となっている。従って,磁気ヘッドのコアとして用いた
場合には,渦電流損失が小さく有利である。
X-Ray Diffraction and Electrical Resistivity The results of X-ray diffraction of the thin film which was not heat-treated (as depo) and the thin film which was heat-treated at 250, 350, 450 or 550 ° C. for the composition of Fe 80.9 Zr 6.5 N 12.6 in the above Examples are shown in FIG. Table 2 shows the measurement results of the electric resistivity. According to Figure 4, 550
It was found that the crystal grain size of the thin film annealed at ℃ was about 130Å from the half-width. It was found that the as depo thin film and the 250 ° C heat-treated thin film were amorphous, the 350 ° C and 450 ° C heat-treated thin film consisted of microcrystals, and the 550 ° C heat-treated thin film consisted of further grown microcrystals. These microcrystals are considered to contribute to the soft magnetism of the thin film, and the formation of such microcrystals is considered to be due to the presence of N and Zr. Second
According to the table, the resistivity of this thin film decreases with increasing heat treatment temperature, but even when the temperature is increased up to 550 ℃ and heat treatment is performed, its value is much higher than that of pure iron, permalloy, etc. -The values are almost the same as those of Si alloy and Sendust. Therefore, when used as the core of a magnetic head, eddy current loss is small and advantageous.

ビッカーズ硬度 さらにFe80.9Zr6.512.6の組成の薄膜について,ビッ
カース硬度を測定した結果Hv=1000(kg/mm2,加重10g)
の値が得られた。この値は従来から磁気ヘッド材料とし
て用いられているセンダストやCo系アモルファス合金
(Hv=500〜650)に比べてはるかに高く,耐摩耗性も従
来より充分高めることができる。
Vickers hardness Furthermore, the Vickers hardness was measured for a thin film having a composition of Fe 80.9 Zr 6.5 N 12.6 Hv = 1000 (kg / mm 2 , weight 10 g)
The value of was obtained. This value is much higher than Sendust and Co-based amorphous alloys (Hv = 500 to 650), which have been used as magnetic head materials, and wear resistance can be sufficiently improved.

BH曲線 前記実施例中のいくつかの薄膜の交流BHトレーサーによ
るBH曲線を第5図に示した。
BH Curves BH curves of some thin films in the above examples by AC BH tracer are shown in FIG.

第5図に示したサンプルは,製膜後1kOeの磁界中,10Tor
rN2雰囲気中において550℃,60分間熱処理してある。こ
の図から明らかな様に,磁界中熱処理によって薄膜には
明確な面内一軸異方性が誘導されている。従って,この
薄膜の困難軸方向を磁方向とすることによって,1MHzよ
り高い周波数での透磁率を充分高くすることができ,こ
の点からも磁気ヘッド材料として有利である。また,こ
の異方性磁界Hkは,組成によって3〜18Oeと変化するた
め,目標とする透磁率の大きさ,使用する周波数範囲に
よって材料を選ぶことができる。例えば10MHz以下にお
いて高い透磁率を得たい場合には,Hk=3〜5Oeとなる組
成を用い,それ以上高い周波数でも透磁率を劣化させな
いためには,Hkがもっと高い組成を用いることもでき
る。
The sample shown in Fig. 5 is 10 Tor in a magnetic field of 1 kOe after film formation.
Heat-treated at 550 ° C for 60 minutes in rN 2 atmosphere. As is clear from this figure, a clear in-plane uniaxial anisotropy is induced in the thin film by the heat treatment in the magnetic field. Therefore, by making the hard axis direction of this thin film the magnetic direction, the magnetic permeability at frequencies higher than 1 MHz can be made sufficiently high, which is also advantageous as a magnetic head material. Since this anisotropic magnetic field Hk changes from 3 to 18 Oe depending on the composition, the material can be selected depending on the target magnetic permeability and the frequency range to be used. For example, when it is desired to obtain a high magnetic permeability at 10 MHz or less, a composition with Hk = 3 to 5 Oe can be used, and a higher Hk composition can be used in order to prevent the magnetic permeability from deteriorating even at higher frequencies.

MH曲線 第6図には,前記実施例1中のFe80.9Zr6.512.6の組
成の薄膜についてVSMを用いて測定したMH曲線の結果に
ついて示した。図中(a)は製膜直後(as depo)の薄
膜について,(b)は550℃の磁界中熱処理後の薄膜に
ついてのMH曲線を示している。(反磁界補正は行なって
いない。ただし,サンプル形状は,φ5mm×t0.63μmで
あった。)VSMを用いて測定した保磁力は,交流BHトレ
ーサーで求めた値より一桁以上小さく,(b)より約50
mOeと求まった。この値はセンダストやCo系アモルファ
ス合金とほぼ同等であり,軟磁気特性が優れていること
が解る。また,(b)より4πMs=14.5KGと求まり,こ
の値はセンダストやCo系アモルファス合金より充分高
く,高保磁力媒体に記録するための磁気ヘッド材料とし
て有利である。
MH Curve FIG. 6 shows the result of the MH curve measured using VSM for the thin film of the composition of Fe 80.9 Zr 6.5 N 12.6 in Example 1 above. In the figure, (a) shows the MH curve for the thin film immediately after film formation (as depo), and (b) shows the MH curve for the thin film after heat treatment in a magnetic field at 550 ° C. (No demagnetizing field correction was performed. However, the sample shape was φ5 mm × t0.63 μm.) The coercive force measured using VSM was one digit or more smaller than the value obtained by the AC BH tracer, and (b ) About 50
I got mOe. This value is almost the same as that of Sendust and Co-based amorphous alloys, and it can be seen that the soft magnetic characteristics are excellent. Further, from (b), 4πMs = 14.5KG, which is sufficiently higher than that of Sendust or Co-based amorphous alloy, and is advantageous as a magnetic head material for recording on a high coercive force medium.

熱処理前の薄膜の4πMsは13.0KGであり熱処理後よりや
や低い。また,垂直異方性(Hk400Oe)をもっており,
Hcも高く,軟磁気特性は悪い。
The 4πMs of the thin film before heat treatment is 13.0 KG, which is slightly lower than that after heat treatment. It also has a vertical anisotropy (Hk400Oe),
The Hc is also high and the soft magnetic characteristics are poor.

耐食性 前記実施例1中のFe80.9Zr6.512.6の組成の薄膜につ
いて耐食性の評価を,水道水に約一週間浸漬した後の表
面状態の変化から行なった。その結果,本サンプルの表
面状態は鏡面のまま全く変化しなかった。比較のため
に,Co88.4Nb8.0Zr3.6アモルファス合金膜及びFe−Si合
金(電磁鋼板)についても同様の実験を行なった。その
結果Co−Nb−Zr合金も全く変化しなかったが,Fe−Si合
金は全面に錆が発生した。以上より,本発明の合金薄膜
は耐食性にも優れていることが解った。
Corrosion Resistance The thin film having the composition of Fe 80.9 Zr 6.5 N 12.6 in Example 1 was evaluated for corrosion resistance based on the change in the surface condition after immersion in tap water for about 1 week. As a result, the surface condition of this sample remained mirror-like and did not change at all. For comparison, similar experiments were conducted for Co 88.4 Nb 8.0 Zr 3.6 amorphous alloy film and Fe-Si alloy (magnetic steel sheet). As a result, the Co-Nb-Zr alloy did not change at all, but the Fe-Si alloy had rust on the entire surface. From the above, it was found that the alloy thin film of the present invention has excellent corrosion resistance.

(実施例2) Fe92.5Zr7.5の組成の合金ターゲットを用い,2.5,5.0,7.
5,10.0又は12.5モル%の窒素を夫々含む窒素含有アルゴ
ンガス雰囲気中で高周波スパッタリングを行ない,種々
の組成のFe−Zr−N非晶質薄膜をサファイア基板(R
面)上に形成した。
(Example 2) Using an alloy target having a composition of Fe 92.5 Zr 7.5 , 2.5, 5.0, 7.
High-frequency sputtering was performed in a nitrogen-containing argon gas atmosphere containing nitrogen of 5, 10.0 or 12.5 mol% respectively, and Fe-Zr-N amorphous thin films of various compositions were formed on a sapphire substrate (R
Surface).

前記基板上に形成した非晶質薄膜を350℃又は550℃で1
時間熱処理して,本発明のFe−Zr−N軟磁性薄膜を得
た。得られたFe−Zr−N軟磁性薄膜の組成,飽和磁束密
度Bs,保磁力Hcを第3表に示す。
Amorphous thin film formed on the substrate at 350 ℃ or 550 ℃ 1
The Fe-Zr-N soft magnetic thin film of the present invention was obtained by heat treatment for a period of time. Table 3 shows the composition, the saturation magnetic flux density Bs, and the coercive force Hc of the obtained Fe-Zr-N soft magnetic thin film.

(比較例2) スパッタ時の雰囲気中に窒素を含有しない以外は前記実
施例2と同様にして得た熱処理薄膜の組成,飽和磁束密
度Bs,保磁力Hcも第3表に示す。
(Comparative Example 2) Table 3 also shows the composition, saturation magnetic flux density Bs, and coercive force Hc of the heat-treated thin film obtained in the same manner as in Example 2 except that the atmosphere during sputtering did not contain nitrogen.

(実施例3) Fe90Zr10(at%)の組成のターゲットを用い,6.0モル%
の窒素を含有する窒素含有アルゴンガス雰囲気中でガス
圧力0.6Pa,投入電力400Wの条件で高周波スパッタリング
を行ない,サファイア基板(R面,{102}面)上に
Fe75.9Zr7.316.8非晶質薄膜を形成した。
(Example 3) Using a target having a composition of Fe 90 Zr 10 (at%), 6.0 mol%
High-frequency sputtering was carried out in a nitrogen-containing argon gas atmosphere containing nitrogen at a gas pressure of 0.6 Pa and an input power of 400 W, and was placed on a sapphire substrate (R surface, {102} surface).
Fe 75.9 Zr 7.3 N 16.8 An amorphous thin film was formed.

前記基板上に形成した非晶質薄膜を,250℃,350℃,450
℃,500℃又は550℃で60分間,120分間,180分間,240分間,
540分間,1140分間,2400分間又は4800分間等温磁界(<0
010>方向に1.1kOe印加)中で熱処理して,本発明の軟
磁性薄膜を得た。得られたFe−Zr−N軟磁性薄膜のBH特
性(測定磁界Hm=25(Oe)),保磁力Hc及び異方性磁界
Hkを第7図に示す。
Amorphous thin film formed on the substrate, 250 ℃, 350 ℃, 450
℃, 500 ℃ or 550 ℃ 60 minutes, 120 minutes, 180 minutes, 240 minutes,
540 minutes, 1140 minutes, 2400 minutes or 4800 minutes Isothermal magnetic field (<0
Then, a soft magnetic thin film according to the present invention was obtained. BH characteristics (measurement magnetic field Hm = 25 (Oe)), coercive force Hc and anisotropic magnetic field of the obtained Fe-Zr-N soft magnetic thin film
Hk is shown in FIG.

第8図は,熱処理時間t[min]に対して得られたFe−Z
r−N軟磁性薄膜の(a)保磁力Hc及び(b)異方性磁
界Hkの関係を夫々示す。また,第9図は,(a)熱処理
時間t[min]と熱処理温度と保磁力Hcとの関係,及
び,(b)熱処理時間t[min]と熱処理温度と異方性
磁界Hkとの関係を夫々示す。
Figure 8 shows the Fe-Z obtained for the heat treatment time t [min].
The relationship between (a) coercive force Hc and (b) anisotropic magnetic field Hk of the r-N soft magnetic thin film is shown respectively. FIG. 9 shows (a) the relationship between the heat treatment time t [min], the heat treatment temperature and the coercive force Hc, and (b) the relationship between the heat treatment time t [min], the heat treatment temperature and the anisotropic magnetic field Hk. Are shown respectively.

これらより、熱処理温度によるBH特性の変化は,350〜50
0℃の範囲と,500℃を越える範囲と,350℃未満の範囲の
3つの温度域で異なることがわかる。
From these, the change in BH characteristics depending on the heat treatment temperature is 350 to 50.
It can be seen that there are three temperature ranges: 0 ° C, over 500 ° C, and under 350 ° C.

また,前記Fe75.9Zr7.316.8非晶質薄膜を,250℃で480
0分間,350℃で240分間,450℃で180分間,500℃で180分間
又は550℃で1140分間夫々熱処理して得られた5種類の
軟磁性薄膜の組成(at%),軟磁性薄膜のZr含有率(at
%)とFe含有率(at%)との比Zr/Fe,N含有率(at%)
とZr含有率(at%)との比N/Zr,及びBH特性(測定磁界H
m=25(Oe))を第4表に示す。下記各組成は,Fe
91.2(Zr・N8.8但しx=N/Zrで表現できる。
In addition, the Fe 75.9 Zr 7.3 N 16.8 amorphous thin film at 480 at 480
The composition (at%) of five kinds of soft magnetic thin films obtained by heat treatment at 0 min, 350 ° C. for 240 min, 450 ° C. for 180 min, 500 ° C. for 180 min, or 550 ° C. for 1140 min. Zr content (at
%) And Fe content (at%) ratio Zr / Fe, N content (at%)
To Zr content (at%) ratio N / Zr and BH characteristics (measurement magnetic field H
m = 25 (Oe)) is shown in Table 4. Each composition below is Fe
91.2 (Zr · N x ) 8.8 However, it can be expressed by x = N / Zr.

第4表によれば,N/Zrの値は,熱処理温度250℃までの範
囲内と,350℃〜500℃の範囲内でほぼ一定であり,熱処
理温度約300℃付近と約500℃付近にN/Zrの値が急に変化
する熱処理温度が存在するということが推定できる。
According to Table 4, the value of N / Zr is almost constant in the range up to heat treatment temperature 250 ℃ and in the range 350 ℃ ~ 500 ℃, the heat treatment temperature around 300 ℃ and around 500 ℃ It can be estimated that there is a heat treatment temperature at which the N / Zr value changes abruptly.

X線回折パターン 前記実施例3で得られたFe−Zr−N軟磁性薄膜と,熱処
理前のFe75.9Zr7.316.8非晶質薄膜(as depo)のX線
回折パターン(線源CuKα線40kV,30mA,λ=1.5405Å)
を第10図に示す。以下,このX線回折パターンについて
述べる。
X-Ray Diffraction Patterns X-ray diffraction patterns of the Fe-Zr-N soft magnetic thin film obtained in Example 3 and the Fe 75.9 Zr 7.3 N 16.8 amorphous thin film (as depo) before heat treatment (source Cu Kα ray 40 kV , 30mA, λ = 1.5405Å)
Is shown in FIG. The X-ray diffraction pattern will be described below.

as depoの薄膜の場合,典型的なハローパターンを示し
ており,非晶質化していることを裏付けている。
The thin film of as depo shows a typical halo pattern, which confirms that it is amorphized.

主ピークの位置は熱処理温度が高くなるにつれ広角側に
ずれ,550℃熱処理で最終的に2θ=44.6゜となりαFe
(110)ピークと一致している。250℃×4800分では2θ
=43.7゜となり,これはFe3Zr(440)ピークと一致して
いる。350℃から500℃の熱処理では2θ≒44゜であり,
これはαFe(110)とFe3Zr(440)ピークのほぼ中間の
値に対応している。
The position of the main peak shifts to the wide-angle side as the heat treatment temperature rises, and finally becomes 2θ = 44.6 ° by heat treatment at 550 ° C and αFe
Consistent with the (110) peak. 2θ at 250 ° C x 4800 minutes
= 43.7 °, which is consistent with the Fe 3 Zr (440) peak. In the heat treatment from 350 ° C to 500 ° C, 2θ≈44 °,
This corresponds to a value approximately midway between the αFe (110) and Fe 3 Zr (440) peaks.

主ピークの半値幅からScherrerの式により求めた結晶粒
サイズは,250℃から450℃で約100Å,500℃×180分で約1
20Å,550℃×1140分で約170Å(550℃×60分間では約13
0Å(実施例1及び第4図参照))と温度×時間により
連続的に大きくなっている。
The crystal grain size calculated from the half-width of the main peak by the Scherrer's equation is about 100Å from 250 ℃ to 450 ℃, and about 1 at 500 ℃ × 180 minutes.
Approx. 170 Å at 20Å, 550 ℃ x 1140 minutes (Approx. 13 at 550 ℃ x 60 minutes)
0 Å (see Example 1 and FIG. 4)) and temperature × time, and continuously increases.

550℃熱処理の時間と主ピークの位置,結晶粒サイズの
関係は下記の様になっている。
The relationship between the 550 ° C heat treatment time, the position of the main peak, and the grain size is as follows.

このことから,550℃熱処理では比較的早く微細なαFe相
が析出するが,時間とともにわずかながら結晶粒の成長
が生じていることが解る。
From this, it can be seen that, although a fine αFe phase precipitates relatively quickly in the 550 ° C heat treatment, the crystal grains grow slightly with time.

また,550℃熱処理では,αFe以外に新たにFe3Zr,ZrNと
思われるピークが観測され,これらが微細に析出してき
ていると考えられる。
In addition, at 550 ℃ heat treatment, new peaks of Fe 3 Zr and ZrN were observed in addition to αFe, and it is considered that these peaks are finely precipitated.

(実施例4) Fe90Zr10(at%)の組成のターゲットを用い,5.0モル%
の窒素を含有する窒素含有アルゴンガス雰囲気中でガス
圧力0.6Pa,投入電力200Wの条件で高周波スパッタリング
を行ない,サファイア基板(R面)上にFe−Zr−N非晶
質薄膜を形成した。
(Example 4) Using a target having a composition of Fe 90 Zr 10 (at%), 5.0 mol%
In a nitrogen-containing argon gas atmosphere containing nitrogen, the high-frequency sputtering was performed under the conditions of a gas pressure of 0.6 Pa and an input power of 200 W to form a Fe-Zr-N amorphous thin film on the sapphire substrate (R surface).

前記基板上に形成した非晶質薄膜(厚さ約0.6μm)の
磁化の温度変化(室温の磁化で規格化してある。)をVS
Mにより測定した。その結果を第11図に示す。測定は,
室温から開始して約3℃/minで昇温しながら行ない,試
料Bは340℃で120分間,試料Dは450℃で60分間,試料
Eは500℃で60分間,試料Gは520℃で180分間,試料F
は550℃で120分間保持した。その後今度は,−3℃/min
で室温まで降温しながら測定した。第11図より,熱処理
前のFe−Zr−N非晶質薄膜(as depo)のキュリー温度
は,約250℃であり,少なくとも340℃以上で温度保持す
ると磁化の値が上昇し,キュリー温度が上昇していくこ
とがわかる。550℃で120分間保持した場合,キュリー温
度は700℃以上となり,熱処理によってαFeのキュリー
温度(770℃)に近づいていくことがわかる。室温での
磁化は,いずれの場合もas depoの非晶質薄膜より高い
が,520〜550℃保持でほぼ飽和し,as depoの非晶質薄膜
の1.12〜1.14倍となっている。
The change in temperature of the magnetization of the amorphous thin film (about 0.6 μm thick) formed on the substrate (normalized by the magnetization at room temperature) is VS.
Measured by M. The results are shown in Fig. 11. The measurement is
Start from room temperature and raise the temperature at about 3 ° C / min, sample B at 340 ° C for 120 minutes, sample D at 450 ° C for 60 minutes, sample E at 500 ° C for 60 minutes, sample G at 520 ° C. 180 minutes, sample F
Was kept at 550 ° C for 120 minutes. Then this time, -3 ℃ / min
The temperature was lowered to room temperature at. From Fig. 11, the Curie temperature of the Fe-Zr-N amorphous thin film (as depo) before the heat treatment is about 250 ° C, and the magnetization value rises when the temperature is kept at 340 ° C or higher, and the Curie temperature increases. You can see that it will rise. It can be seen that, when kept at 550 ° C for 120 minutes, the Curie temperature rises above 700 ° C and approaches the Curie temperature of αFe (770 ° C) by heat treatment. Although the magnetization at room temperature is higher than that of the as depo amorphous thin film in all cases, it is almost saturated when kept at 520 to 550 ° C, which is 1.12 to 1.14 times that of the as depo amorphous thin film.

実施例3及び実施例4からわかったことを熱処理温度ご
とに述べる。
What is found from Example 3 and Example 4 will be described for each heat treatment temperature.

(a)熱処理前(as depo) 構造的には,非晶質である。軟磁性は得られておらず,
キュリー温度がαFeに比べかなり低く,磁気モーメント
が熱処理後よりも低い。これらはFe系の非晶質合金とし
て,考え得る特性である。また,Nの含有量は16.8%と多
く,N/Zr=2.3となっている。
(A) Before heat treatment (as depo) Structurally amorphous. Soft magnetism is not obtained,
The Curie temperature is much lower than that of αFe, and the magnetic moment is lower than that after heat treatment. These are properties that can be considered as an Fe-based amorphous alloy. The N content is as high as 16.8% and N / Zr = 2.3.

(b)250℃熱処理 BH特性はas depoよりはやや改善され,Hcが5〜7Oeを示
していた。熱処理時間を長くすることにより4800分で結
晶化がX線的に確認され,また一軸異方性膜(Hc=1.4O
e)が得られた。主ピークの位置は,Fe3Zr(440)ピーク
に対応している。熱処理後のN含有量は,as depoと変わ
らない。
(B) Heat treatment at 250 ° C BH characteristics were slightly improved as compared with as depo, and Hc was 5 to 7 Oe. Crystallization was confirmed by X-ray at 4800 minutes by increasing the heat treatment time, and the uniaxial anisotropic film (Hc = 1.4O
e) was obtained. The position of the main peak corresponds to the Fe 3 Zr (440) peak. The N content after heat treatment is the same as as depo.

(c)350〜500℃熱処理 主ピークは,Fe3Zr(400)とαFe(110)ピークの中間に
位置するが,ZrN(200)付近にもブロードな盛り上がり
が見られ,複雑な状態になっていると考えられる。BH特
性的には,Hc0.7〜0.9Oe,Hk=9〜12Oeで熱処理時間×
温度が大きくなるにつれHkが大きくなる傾向にある。キ
ュリー温度はこの範囲で連続的に変化しているが、室温
の磁化は,熱処理前の1.06〜1.08倍とほぼ一定である。
熱処理後のN含有量は500℃では熱処理前よりもやや低
下するが,N/Zr2の領域である。
(C) Heat treatment at 350-500 ° C The main peak is located between the Fe 3 Zr (400) and αFe (110) peaks, but a broad swelling is seen near ZrN (200), resulting in a complicated state. It is thought that In terms of BH characteristics, Hc 0.7 to 0.9 Oe, Hk = 9 to 12 Oe, heat treatment time ×
Hk tends to increase as the temperature increases. The Curie temperature changes continuously in this range, but the magnetization at room temperature is 1.06 to 1.08 times that before heat treatment, which is almost constant.
The N content after heat treatment is slightly lower at 500 ° C than before heat treatment, but it is in the N / Zr2 region.

(d)550℃熱処理 主ピークは,明らかにαFe(110)ピークに対応してお
り,新たに,Fe3Zr,ZrNと思われるピークも出現してく
る。このことから550℃熱処理後には(110)配向したα
Feの微細結晶(粒径100〜200Å程度)とさらに微細なFe
3Zr,ZrN等が析出しているものと考えられる。しかし,
キュリー温度は,αFeのキュリー温度770℃よりも低め
であり,これは結晶粒が微細なことと関係していると考
えられる。
(D) 550 ° C heat treatment The main peak clearly corresponds to the αFe (110) peak, and new peaks believed to be Fe 3 Zr and ZrN also appear. From this, it was found that after heat treatment at 550 ° C, α oriented in (110)
Fine crystals of Fe (grain size 100-200Å) and finer Fe
3 It is considered that Zr, ZrN, etc. are precipitated. However,
The Curie temperature is lower than the Curie temperature of αFe at 770 ℃, which is considered to be related to the fact that the crystal grains are fine.

Hcは長時間熱処理で低下し約400分で極小となり,その
後またわずかに増加する。Hkは時間とともに低下し,約
250分でほぼ等方的になる。
Hc decreases with long-term heat treatment, reaches a minimum at about 400 minutes, and then increases slightly again. Hk decreases with time,
It becomes almost isotropic in 250 minutes.

熱処理後のN含有量は熱処理時間に依存し,60分熱処理
ではN/Zr1.8,1140分熱処理ではN/Zr1.1まで低下し
ている。550℃熱処理により一部の窒素はN2ガスとして
試料外に放出されるものと考えられる。
The N content after heat treatment depends on the heat treatment time, and it decreases to N / Zr1.8 in the heat treatment for 60 minutes and N / Zr1.1 in the heat treatment for 1140 minutes. It is considered that a part of nitrogen is released outside the sample as N 2 gas by the heat treatment at 550 ° C.

このように,Fe−Zr−N非晶質薄膜を熱処理すると,熱
処理温度によって得られる軟磁性薄膜の構造及び性質が
異なる。このことは,実施例1の電気抵抗率を示す第2
表とも対応する。
Thus, when the Fe-Zr-N amorphous thin film is heat-treated, the structure and properties of the soft magnetic thin film obtained differ depending on the heat-treatment temperature. This means that the second electric resistance of Example 1
Corresponds to the table.

以上の内容を第12図に模式的に示した。The above contents are schematically shown in FIG.

(実施例5) Fe90Zr10の組成の合金ターゲットを用い,6.0モル%の窒
素を含有する窒素含有アルゴンガス雰囲気中で高周波ス
パッタリングを行なうことにより,Fe76.2Zr7.316.5
Fe75.9Zr7.316.8の2種の組成の非晶質薄膜を夫々サ
ファイア基板(R面)上に形成した。ただし前者はφ6
インチターゲットを用い全圧0.15Pa,投入電力1kWで,後
者はφ4インチターゲットを用い全圧0.6Pa,投入電力40
0Wでスパッタリングした。
(Example 5) Fe 76.2 Zr 7.3 N 16.5 was obtained by high frequency sputtering using an alloy target having a composition of Fe 90 Zr 10 in a nitrogen-containing argon gas atmosphere containing 6.0 mol% of nitrogen.
Amorphous thin films of two compositions of Fe 75.9 Zr 7.3 N 16.8 were respectively formed on the sapphire substrate (R surface). However, the former is φ6
The total pressure is 0.15Pa and the input power is 1kW using an inch target. The latter is a φ4 inch target and the total pressure is 0.6Pa and the input power is 40kW.
Sputtered at 0W.

前記基板上に形成したFe76.2Zr7.316.5非晶質薄膜を5
50℃で60分間磁界中熱処理して,Fe77.8Zr7.614.6軟磁
性薄膜(膜厚は約1μm)を得た。また,前記基板上に
形成したFe75.9Zr7.316.8非晶質薄膜を550℃で磁界中
熱処理して,本発明の軟磁性薄膜を得た。軟磁性薄膜の
組成は,熱処理時間が60分間の場合にはFe79.2Zr7.5
13.3であり,1140分間の場合にはFe83.2Zr8.08.8であ
った。得られたこれらの軟磁性薄膜の組成,飽和磁束密
度Bs,保磁力Hc及び異方性磁界Hkを第5表に示す。
5 Fe 76.2 Zr 7.3 N 16.5 amorphous thin film formed on the substrate
After heat treatment in a magnetic field at 50 ° C. for 60 minutes, a Fe 77.8 Zr 7.6 N 14.6 soft magnetic thin film (thickness: about 1 μm) was obtained. Further, the Fe 75.9 Zr 7.3 N 16.8 amorphous thin film formed on the substrate was heat-treated at 550 ° C. in a magnetic field to obtain a soft magnetic thin film of the present invention. The composition of the soft magnetic thin film is Fe 79.2 Zr 7.5 N when the heat treatment time is 60 minutes.
It was 13.3 and was Fe 83.2 Zr 8.0 N 8.8 after 1140 minutes. Table 5 shows the composition, the saturation magnetic flux density Bs, the coercive force Hc, and the anisotropic magnetic field Hk of these obtained soft magnetic thin films.

(実施例6) Fe100−yHf(y=5.0,10.0,15.0(at%))の組成の
合金ターゲットを用い,2,4,6,8,10又は12モル%の窒素
を含む窒素含有アルゴンガス雰囲気中で高周波スパッタ
リングを行なうことにより,種々の組成のFe−Hf−N非
晶質薄膜をサファイア基板(R面)上に形成した。
Example 6 Using an alloy target having a composition of Fe 100−y Hf y (y = 5.0,10.0,15.0 (at%)), nitrogen containing 2,4,6,8,10 or 12 mol% of nitrogen was used. Fe-Hf-N amorphous thin films having various compositions were formed on the sapphire substrate (R surface) by high-frequency sputtering in an atmosphere of contained argon gas.

前記基板上に形成した非晶質薄膜を350℃又は550℃,1.1
kOeの磁界中で1時間熱処理して,本発明で特定する組
成範囲内のFe−Hf−N軟磁性薄膜(膜厚約1μm)を得
た。得られたFe−Hf−N軟磁性薄膜の組成,飽和磁束密
度Bs,保磁力Hcを第6表に示す。
Amorphous thin film formed on the substrate 350 ℃ or 550 ℃, 1.1
After heat treatment in a magnetic field of kOe for 1 hour, an Fe—Hf—N soft magnetic thin film (film thickness: about 1 μm) within the composition range specified in the present invention was obtained. Table 6 shows the composition, the saturation magnetic flux density Bs, and the coercive force Hc of the obtained Fe-Hf-N soft magnetic thin film.

(比較例3) スパッタ時の雰囲気中に窒素を含有しない以外は前記実
施例6と同様にして得た3種の熱処理薄膜の組成,飽和
磁束密度Bs,保磁力Hcも第6表に示す。
(Comparative Example 3) Table 6 also shows the composition, saturation magnetic flux density Bs, and coercive force Hc of three kinds of heat-treated thin films obtained in the same manner as in Example 6 except that the atmosphere during sputtering did not contain nitrogen.

(実施例7) Fe100−yTa(y=5.0,10.0,15.0(at%))の組成の
合金ターゲットを用い,2,4,6,8,10又は12モル%の窒素
を含む窒素含有アルゴンガス雰囲気中で高周波スパッタ
リングを行なうことにより,種々の組成のFe−Ta−N非
晶質薄膜をサファイア基板(R面)上に形成した。
Example 7 Using an alloy target having a composition of Fe 100−y Ta y (y = 5.0,10.0,15.0 (at%)), nitrogen containing 2,4,6,8,10 or 12 mol% of nitrogen was used. Fe-Ta-N amorphous thin films having various compositions were formed on the sapphire substrate (R surface) by high-frequency sputtering in an atmosphere of contained argon gas.

前記基板上に形成した非晶質薄膜を350℃又は550℃,1.1
kOeの磁界中で1時間熱処理して,本発明で特定する組
成範囲内のFe−Ta−N軟磁性薄膜(膜厚約1μm)を得
た。得られたFe−Ta−N軟磁性薄膜の組成,飽和磁束密
度Bs,保磁力Hcを第7表に示す。
Amorphous thin film formed on the substrate 350 ℃ or 550 ℃, 1.1
By heat-treating for 1 hour in a magnetic field of kOe, an Fe-Ta-N soft magnetic thin film (film thickness: about 1 μm) within the composition range specified in the present invention was obtained. Table 7 shows the composition, the saturation magnetic flux density Bs, and the coercive force Hc of the obtained Fe-Ta-N soft magnetic thin film.

(比較例4) スパッタ時の雰囲気中に窒素を含有しない以外は前記実
施例7と同様にして得た熱処理薄膜の組成,飽和磁束密
度Bs,保磁力Hcも第7表に示す。
(Comparative Example 4) Table 7 also shows the composition, saturation magnetic flux density Bs, and coercive force Hc of the heat-treated thin film obtained in the same manner as in Example 7 except that the atmosphere during sputtering did not contain nitrogen.

(実施例8) Fe100−yNb(y=5.0,10.0,15.0(at%))の組成の
合金ターゲットを用い,2,4,6,8又は10モル%の窒素を含
む窒素含有アルゴンガス雰囲気中で高周波スパッタリン
グを行なうことにより,種々の組成のFe−Nb−N非晶質
薄膜をサファイア基板(R面)上に形成した。
Example 8 Using an alloy target having a composition of Fe 100−y Nb y (y = 5.0,10.0,15.0 (at%)), nitrogen containing argon containing 2, 4, 6, 8 or 10 mol% nitrogen was used. Fe-Nb-N amorphous thin films having various compositions were formed on a sapphire substrate (R surface) by performing high frequency sputtering in a gas atmosphere.

前記基板上に形成した非晶質薄膜を350℃又は550℃,1.1
kOeの磁界中で1時間熱処理して,本発明で特定する組
成範囲内のFe−Nb−N軟磁性薄膜(膜厚約1μm)を得
た。得られたFe−Nb−N軟磁性薄膜の組成,飽和磁束密
度Bs,保磁力Hcを第8表に示す。
Amorphous thin film formed on the substrate 350 ℃ or 550 ℃, 1.1
By heat-treating for 1 hour in a magnetic field of kOe, an Fe—Nb—N soft magnetic thin film (film thickness: about 1 μm) within the composition range specified in the present invention was obtained. Table 8 shows the composition, the saturation magnetic flux density Bs, and the coercive force Hc of the obtained Fe-Nb-N soft magnetic thin film.

(比較例5) スパッタ時の雰囲気中に窒素を含有しない以外は前記実
施例8と同様にして得た熱処理薄膜の組成,飽和磁束密
度Bs,保磁力Hcも第8表に示す。
(Comparative Example 5) Table 8 also shows the composition, saturation magnetic flux density Bs, and coercive force Hc of the heat-treated thin film obtained in the same manner as in Example 8 except that the atmosphere during sputtering did not contain nitrogen.

(実施例9) Fe90Zr10(at%)の組成のターゲットを用い,6.0モル%
の窒素を含む窒素含有アルゴンガス雰囲気中で,高周波
スパッタリングを行なうことにより,Fe−Zr−N非晶質
薄膜を基板上に形成した。基板としては,フェライト基
板上にSiO2膜を製膜して成るSiO2膜被覆フェライト基板
を用いた。前記非晶質薄膜は,前記SiO2膜の表面に形成
した。
Example 9 Using a target having a composition of Fe 90 Zr 10 (at%), 6.0 mol%
Fe-Zr-N amorphous thin film was formed on the substrate by high frequency sputtering in a nitrogen-containing argon gas atmosphere containing nitrogen. As the substrate, using the SiO 2 film coated ferrite substrate formed by film formation of the SiO 2 film on the ferrite substrate. The amorphous thin film was formed on the surface of the SiO 2 film.

前記基板上に形成した非晶質薄膜を、550℃,1時間磁界
中(磁界強度1.1kOe)で熱処理して,一軸磁気異方性を
有する軟磁性薄膜(膜厚5.9μm)を得た。得られた軟
磁性薄膜の組成は,前記基板のかわりにサファイア基板
を用いる以外は同一の条件で得られた軟磁性薄膜の組成
から,Fe77.8Zr7.614.6と推定した。
The amorphous thin film formed on the substrate was heat-treated in a magnetic field (magnetic field strength 1.1 kOe) at 550 ° C. for 1 hour to obtain a soft magnetic thin film (film thickness 5.9 μm) having uniaxial magnetic anisotropy. The composition of the obtained soft magnetic thin film was estimated to be Fe 77.8 Zr 7.6 N 14.6 from the composition of the soft magnetic thin film obtained under the same conditions except that a sapphire substrate was used instead of the above substrate.

得られた薄膜の電気抵抗率ρは77μΩ・cmであり、ビッ
カース硬度Hvは1010kg/mm2であった。また,得られた軟
磁性薄膜の透磁率の周波数特性を第13−A図に示し,B−
Hカーブを第13−B図に示す。
The electrical resistivity ρ of the obtained thin film was 77 μΩ · cm, and the Vickers hardness Hv was 1010 kg / mm 2 . The frequency characteristics of permeability of the obtained soft magnetic thin film are shown in Fig. 13-A, and B-
The H curve is shown in Figure 13-B.

(実施例10) Fe90Hf10(at%)の組成のターゲットを用い,4.0モル%
の窒素を含む窒素含有アルゴンガス雰囲気中で,高周波
スパッタリングを行なうことにより,Fe−Hf−N非晶質
薄膜を基板上に形成した。基板としては,フェライト基
板上にSiO2膜を製膜して成るSiO2膜被覆フェライト基板
を用いた。前記非晶質薄膜は,前記SiO2膜の表面に形成
した。
Example 10 Using a target having a composition of Fe 90 Hf 10 (at%), 4.0 mol%
The Fe-Hf-N amorphous thin film was formed on the substrate by high-frequency sputtering in a nitrogen-containing argon gas atmosphere containing nitrogen. As the substrate, using the SiO 2 film coated ferrite substrate formed by film formation of the SiO 2 film on the ferrite substrate. The amorphous thin film was formed on the surface of the SiO 2 film.

前記基板上に形成した非晶質薄膜の膜厚は4.7μmであ
った。これを550℃,1.1[kOe]の磁界中で1時間熱処理
し軟磁性薄膜を得た。そして,この薄膜の透磁率および
異方性磁界Hkを測定してからさらに,時間以外は前記と
同様な条件で2時間の追加の熱処理を行った(合計3時
間の熱処理)。ここでまた透磁率および異方性磁界を測
定し,さらに時間以外は前記と同様な条件で3時間の追
加の熱処理(合計6時間の熱処理)をして,透磁率およ
び異方性磁界Hkを測定した。得られた3種の軟磁性薄膜
の組成は,前記基板のかわりにサファイア基板を用い膜
厚を1μmとした以外は同一の条件で得られた軟磁性薄
膜の組成から,夫々,Fe77.4Hf7.515.1(1時間熱処
理),及びFe82.6Hf7.79.7(6時間熱処理)と推定し
た。
The thickness of the amorphous thin film formed on the substrate was 4.7 μm. This was heat-treated in a magnetic field of 1.1 [kOe] at 550 ° C for 1 hour to obtain a soft magnetic thin film. Then, after measuring the magnetic permeability and anisotropic magnetic field Hk of this thin film, an additional heat treatment was performed for 2 hours under the same conditions as above except for the time (heat treatment for a total of 3 hours). Here, the magnetic permeability and the anisotropic magnetic field were measured, and the additional heat treatment was performed for 3 hours (heat treatment for a total of 6 hours) under the same conditions as described above except for the time to determine the magnetic permeability and the anisotropic magnetic field Hk. It was measured. The compositions of the three kinds of soft magnetic thin films obtained were respectively Fe 77.4 Hf 7.5 from the compositions of the soft magnetic thin films obtained under the same conditions except that a sapphire substrate was used instead of the above substrate and the film thickness was 1 μm. It was estimated to be N 15.1 (1 hour heat treatment) and Fe 82.6 Hf 7.7 N 9.7 (6 hour heat treatment).

得られた軟磁性薄膜(6時間熱処理)の電気抵抗率ρは
60μΩ・cmであり,ビッカース硬度Hvは1100kg/mm2であ
った。また,得られた軟磁性薄膜の透磁率の周波数特性
を第14−A図に示し,B−Hカーブを第14−B図に示す。
The electrical resistivity ρ of the obtained soft magnetic thin film (heat treatment for 6 hours) is
It was 60 μΩ · cm and Vickers hardness Hv was 1100 kg / mm 2 . The frequency characteristic of magnetic permeability of the obtained soft magnetic thin film is shown in FIG. 14-A, and the BH curve is shown in FIG. 14-B.

また,前記3種の熱処理段階の透磁率(1MHzで)μ1MHz
及び異方性磁界Hkを第14−C図に示す。第14−C図は,F
e−Hf−N薄膜の熱処理時間に対する透磁率μ1MHz及び
異方性磁界Hkの変化を示している。
In addition, the magnetic permeability (at 1MHz) μ 1MHz of the above three heat treatment steps
And the anisotropic magnetic field Hk is shown in FIG. 14-C. Figure 14-C shows F
It shows changes in the magnetic permeability μ 1 MHz and the anisotropic magnetic field Hk with respect to the heat treatment time of the e-Hf-N thin film.

(実施例11) Fe85Ta15(at%)の組成のターゲットを用い,6.0モル%
の窒素を含む窒素含有アルゴンガス雰囲気中で,高周波
スパッタリングを行なうことにより,Fe−Ta−N非晶質
薄膜を基板上に形成した。基板としては、フェライト基
板上SiO2膜を製膜して成るSiO2膜被覆フェライト基板を
用いた。前記非晶質薄膜は、前記SiO2膜の表面に形成し
た。
Example 11 Using a target having a composition of Fe 85 Ta 15 (at%), 6.0 mol%
Fe-Ta-N amorphous thin film was formed on the substrate by high frequency sputtering in a nitrogen-containing argon gas atmosphere containing nitrogen. As the substrate, using the SiO 2 film coated ferrite substrate formed by film formation of the ferrite substrate on the SiO 2 film. The amorphous thin film was formed on the surface of the SiO 2 film.

前記基板上に形成した非晶質薄膜を,550℃,1時間磁界
(磁界強度1.1kOe)中で熱処理して,一軸磁気異方性を
有する軟磁性薄膜(膜厚5.6μm)を得た。得られた軟
磁性薄膜の組成は,前記基板のかわりにサファイア基板
を用いる以外は同一の条件で得られた軟磁性薄膜の組成
から,Fe69.8Ta11.518.7と推定した。
The amorphous thin film formed on the substrate was heat-treated in a magnetic field (magnetic field strength 1.1 kOe) at 550 ° C. for 1 hour to obtain a soft magnetic thin film (film thickness 5.6 μm) having uniaxial magnetic anisotropy. The composition of the obtained soft magnetic thin film was estimated to be Fe 69.8 Ta 11.5 N 18.7 from the composition of the soft magnetic thin film obtained under the same conditions except that a sapphire substrate was used instead of the above substrate.

得られた軟磁性薄膜の電気抵抗率ρは86μΩ・cmであ
り,ビッカース硬度Hvは1220kg/mm2であった。また,得
られた軟磁性薄膜の透磁率の周波数特性を第15−A図に
示し,B−Hカーブを第15−B図に示す。
The electrical resistivity ρ of the obtained soft magnetic thin film was 86 μΩ · cm, and the Vickers hardness Hv was 1220 kg / mm 2 . The frequency characteristic of magnetic permeability of the obtained soft magnetic thin film is shown in FIG. 15-A, and the BH curve is shown in FIG. 15-B.

〔発明の効果〕〔The invention's effect〕

本発明の軟磁性薄膜は,上述の説明からも明らかな様
に,センダスト合金やアモルファス軟磁性合金よりもは
るかに高い飽和磁束密度を有し,かつ,磁歪を零とする
ことができ,低保磁力,高透磁率の優れた軟磁気特性を
得ることができる。
As is apparent from the above description, the soft magnetic thin film of the present invention has a much higher saturation magnetic flux density than sendust alloys and amorphous soft magnetic alloys, can have zero magnetostriction, and has low retention. It is possible to obtain excellent soft magnetic characteristics such as magnetic force and high magnetic permeability.

また,電気抵抗率もセンダスト並に高く磁界中熱処理に
よって一軸異方性を持たせることができ,その大きさも
組成や熱処理時間によって制御することができるので,
目的に応じた高周波透磁率を得ることができる。さらに
650℃までの熱処理によっても特性が劣化しないことか
ら,ガラスボンディングなどに対する耐熱性にも優れて
おり,あわせて高い硬度と耐食性を持つことから,耐摩
耗性も高く,信頼性の高い材料となっている。
Moreover, the electrical resistivity is as high as Sendust, and uniaxial anisotropy can be given by heat treatment in a magnetic field, and its size can be controlled by the composition and heat treatment time.
It is possible to obtain high frequency magnetic permeability according to the purpose. further
Since the characteristics do not deteriorate even by heat treatment up to 650 ° C, it has excellent heat resistance against glass bonding, etc., and also has high hardness and corrosion resistance, which makes it a highly wear-resistant and highly reliable material. ing.

本発明の軟磁性薄膜は,製膜時には非晶質合金として形
成し熱処理によって後から微結晶化させることができる
ので,膜形成にあたってステップカバレッジが良好でか
つ鏡面が得られ易く多層膜化などの手段に依らなくても
結晶粒の粗大化を防ぐことができるので,厚膜化するこ
とが可能である。
Since the soft magnetic thin film of the present invention can be formed as an amorphous alloy at the time of film formation and can be microcrystallized later by heat treatment, it has good step coverage and is easy to obtain a mirror surface when forming a film, and thus can be formed into a multilayer film. Since it is possible to prevent the crystal grains from becoming coarse without resorting to any means, it is possible to increase the film thickness.

従って,本発明の軟磁性薄膜を例えば磁気ヘッドのコア
材料として用いることによって,高保磁力の磁気記録媒
体に対応することができ,高品質化,高帯域化,高記録
密度化を図ることができる。
Therefore, by using the soft magnetic thin film of the present invention as a core material of a magnetic head, for example, it is possible to deal with a magnetic recording medium having a high coercive force, and it is possible to achieve high quality, high bandwidth, and high recording density. .

【図面の簡単な説明】[Brief description of drawings]

第1図は,本発明の軟磁性薄膜の組成範囲を示す図であ
る。第2図は,実施例で製造した軟磁性薄膜の組成と保
磁力Hcの関係,及び磁歪の正負判定を示す図である。第
3図は,軟磁性薄膜製造条件とそれにより製造された軟
磁性薄膜の保磁力Hcと飽和磁歪λsとの関係を示す図で
ある。第4図は,熱処理条件の異なる薄膜のX線回折測
定結果を示す図である。第5図は,組成の異なる薄膜の
交流BH曲線を示す図である。第6図は,VSMより求めた熱
処理前後の薄膜のIH曲線を示す図である。 第7図は,Fe−Zr−N軟磁性薄膜のBH特性,保磁力Hc及
び異方性磁界Hkを示す図である。第8図は,熱処理時間
tに対して得られたFe−Zr−N軟磁性薄膜の保磁力Hc及
び異方性磁界Hkの関係を示す図である。第9(a)図及
び第9(b)図は,熱処理時間tと熱処理温度と保磁力
Hcとの関係,及び熱処理時間tと熱処理温度と異方性磁
界Hkとの関係を夫々示す図である。第10図は,Fe−Zr−
N軟磁性薄膜と,熱処理前の非晶質薄膜のX線回折パタ
ーンを示す図である。第11図は,Fe−Zr−N軟磁性薄膜
の磁化の温度変化を示す図である。第12図は,熱処理時
間tと熱処理温度によって得られる軟磁性薄膜の特性の
推定を示す図である。第13−A図,第14−A図及び第15
−A図は,夫々,本発明の一実施例の軟磁性薄膜の透磁
率の周波数特性を示す図である。第13−B図,第14−B
図及び第15−B図は,夫々,本発明の一実施例の軟磁性
薄膜の容易軸方向(上段)及び困難軸方向(下段)の交
流BH曲線を示す図であり,Bは任意単位である。第14−C
図は,Fe−Hf−N非晶質薄膜の熱処理時間に対するFe−H
f−N軟磁性薄膜の透磁率μ1MHz及び異方性磁界Hkの変
化を示す図である。
FIG. 1 is a diagram showing the composition range of the soft magnetic thin film of the present invention. FIG. 2 is a diagram showing the relationship between the composition and the coercive force Hc of the soft magnetic thin film manufactured in the example, and the positive / negative judgment of magnetostriction. FIG. 3 is a diagram showing the relationship between the coercive force Hc and the saturation magnetostriction λs of the soft magnetic thin film manufacturing conditions and the soft magnetic thin film manufactured thereby. FIG. 4 is a diagram showing the X-ray diffraction measurement results of thin films having different heat treatment conditions. FIG. 5 is a diagram showing AC BH curves of thin films having different compositions. FIG. 6 is a diagram showing IH curves of the thin film before and after the heat treatment, which are obtained from VSM. FIG. 7 is a diagram showing BH characteristics, coercive force Hc, and anisotropic magnetic field Hk of the Fe-Zr-N soft magnetic thin film. FIG. 8 is a diagram showing the relationship between the coercive force Hc and the anisotropic magnetic field Hk of the Fe—Zr—N soft magnetic thin film obtained with respect to the heat treatment time t. 9 (a) and 9 (b) show heat treatment time t, heat treatment temperature and coercive force.
It is a figure which shows the relationship with Hc, the heat processing time t, the heat processing temperature, and the relationship of an anisotropic magnetic field Hk, respectively. Figure 10 shows Fe-Zr-
It is a figure which shows the X-ray-diffraction pattern of N soft magnetic thin film and the amorphous thin film before heat processing. FIG. 11 is a diagram showing the temperature change of the magnetization of the Fe—Zr—N soft magnetic thin film. FIG. 12 is a diagram showing the estimation of the characteristics of the soft magnetic thin film obtained by the heat treatment time t and the heat treatment temperature. Figures 13-A, 14-A and 15
FIG. 6A is a diagram showing frequency characteristics of magnetic permeability of the soft magnetic thin film of one embodiment of the present invention. 13-B, 14-B
FIG. 15 and FIG. 15-B are diagrams respectively showing AC BH curves in the easy axis direction (upper stage) and the hard axis direction (lower stage) of the soft magnetic thin film of one embodiment of the present invention, where B is an arbitrary unit. is there. 14th-C
The figure shows the Fe-Hf-N amorphous thin film with respect to the heat treatment time.
FIG. 3 is a diagram showing changes in magnetic permeability μ 1 MHz and anisotropic magnetic field Hk of an fN soft magnetic thin film.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Fe(但し,a,b,cは各々原子%を
示し,BはZr,Hf,Ti,Nb,Ta,V,Mo,Wの少なくとも1種以上
を表わす。)なる組成式で示され,その組成範囲は 0<b≦20 0<c≦22 の範囲(但し,b≦7.5かつc≦5を除く)であることを
特徴とする軟磁性薄膜。
1. Fe a B b N c (where a, b and c each represent atomic% and B represents at least one of Zr, Hf, Ti, Nb, Ta, V, Mo and W) .), And the composition range is 0 <b ≦ 20 0 <c ≦ 22 (excluding b ≦ 7.5 and c ≦ 5).
【請求項2】前記組成範囲は 69≦a≦93 2≦b≦15 5<c≦22 の範囲であることを特徴とする請求項1記載の軟磁性薄
膜。
2. The soft magnetic thin film according to claim 1, wherein the composition range is 69 ≦ a ≦ 93 2 ≦ b ≦ 155 5 <c ≦ 22.
【請求項3】Fe(但し,a,b,cは各々原子%を
示し,BはZr,Hf,Ti,Nb,Ta,V,Mo,Wの少なくとも1種以上
を表わす。)なる組成式で示され,その組成範囲は,前
記三者の三成分組成座標系(Fe,B,N)において P(91,2,7) Q(93,2,5) R(88,7,5) S(73,12,15) T(69,12,19) U(69,9,22) V(76,5,19) の7点を結ぶ線分で囲まれた範囲であることを特徴とす
る軟磁性薄膜。
3. Fe a B b N c (where a, b and c each represent atomic% and B represents at least one of Zr, Hf, Ti, Nb, Ta, V, Mo and W) .) And the composition range is P (91,2,7) Q (93,2,5) R (88) in the three-component three-component composition coordinate system (Fe, B, N). , 7,5) S (73,12,15) T (69,12,19) U (69,9,22) V (76,5,19) In the area surrounded by the line segment connecting 7 points A soft magnetic thin film characterized by being present.
【請求項4】結晶粒径が300Å以下であることを特徴と
する請求項1〜3の一に記載の軟磁性薄膜。
4. The soft magnetic thin film according to claim 1, wherein the crystal grain size is 300 Å or less.
JP1304811A 1989-01-26 1989-11-27 Soft magnetic thin film Expired - Lifetime JPH0744108B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE69015652T DE69015652T2 (en) 1989-01-26 1990-01-26 Soft magnetic thin film, process for its production and magnetic head.
EP90101621A EP0380136B1 (en) 1989-01-26 1990-01-26 Soft magnetic thin film, method for preparing same and magnetic head
US07/470,662 US5117321A (en) 1989-01-26 1990-01-26 Soft magnetic thin film, method for preparing same and magnetic head
US07/878,624 US5421915A (en) 1989-01-26 1992-05-05 Method for preparing same and magnetic head
US08/178,441 US6183568B1 (en) 1989-01-26 1994-01-06 Method for preparing a magnetic thin film
US08/775,518 US5772797A (en) 1989-01-26 1997-01-02 Soft magnetic thin film, method for preparing same and magnetic head
US08/957,791 US6238492B1 (en) 1989-01-26 1997-10-24 Soft magnetic thin film, method for preparing same and magnetic head

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1511289 1989-01-26
JP1-15112 1989-01-26

Publications (2)

Publication Number Publication Date
JPH02275605A JPH02275605A (en) 1990-11-09
JPH0744108B2 true JPH0744108B2 (en) 1995-05-15

Family

ID=11879744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1304811A Expired - Lifetime JPH0744108B2 (en) 1989-01-26 1989-11-27 Soft magnetic thin film

Country Status (1)

Country Link
JP (1) JPH0744108B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263306A (en) * 1990-02-02 1991-11-22 Nec Corp Magnetic film and magnetic head
JP2782994B2 (en) * 1991-08-13 1998-08-06 松下電器産業株式会社 Manufacturing method of magnetic head
JPH06338410A (en) * 1993-03-31 1994-12-06 Matsushita Electric Ind Co Ltd Soft magnetic multilayer film and magnetic head
JPH06295418A (en) * 1993-04-09 1994-10-21 Nec Corp Combined magnetic head and magnetic recording and reproducing device
US5858548A (en) * 1994-08-12 1999-01-12 Hitachi, Ltd. Soft magnetic thin film, and magnetic head and magnetic recording device using the same
US5873955A (en) * 1994-08-12 1999-02-23 Hitachi, Ltd. Soft magnetic thin film, and magnetic head and magnetic recording device using the same
US6033792A (en) * 1995-02-02 2000-03-07 Hitachi, Ltd. Soft magnetic thin film, and magnetic head and magnetic recording device using the same
KR20020078705A (en) * 2001-04-09 2002-10-19 한국과학기술연구원 FeTiN based soft magnetic thin films compositions
KR100818994B1 (en) 2006-01-24 2008-04-02 삼성전자주식회사 Fabricating method for semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158306A (en) * 1986-01-07 1987-07-14 Hitachi Ltd High density iron system magnetic material film and manufacture thereof
JPS62210607A (en) * 1986-03-12 1987-09-16 Matsushita Electric Ind Co Ltd Magnetic alloy film
JPS6357758A (en) * 1986-08-26 1988-03-12 Matsushita Electric Ind Co Ltd Nitriding magnetic alloy film
JPS63236304A (en) * 1987-03-25 1988-10-03 Hitachi Ltd Corrosion-resistant ferromagnetic film
JPS63254708A (en) * 1987-04-10 1988-10-21 Matsushita Electric Ind Co Ltd Magnetic alloy film containing nitrogen
JPS63299219A (en) * 1987-05-29 1988-12-06 Sony Corp Magnetically soft thin film
JPH02290004A (en) * 1989-02-03 1990-11-29 Matsushita Electric Ind Co Ltd Soft magnetic alloy film and its manufacture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415112A (en) * 1987-07-10 1989-01-19 Toshiba Corp Air cleaning filter
JP2529274B2 (en) * 1987-07-10 1996-08-28 松下電器産業株式会社 Heat treatment method for nitrided alloy film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158306A (en) * 1986-01-07 1987-07-14 Hitachi Ltd High density iron system magnetic material film and manufacture thereof
JPS62210607A (en) * 1986-03-12 1987-09-16 Matsushita Electric Ind Co Ltd Magnetic alloy film
JPS6357758A (en) * 1986-08-26 1988-03-12 Matsushita Electric Ind Co Ltd Nitriding magnetic alloy film
JPS63236304A (en) * 1987-03-25 1988-10-03 Hitachi Ltd Corrosion-resistant ferromagnetic film
JPS63254708A (en) * 1987-04-10 1988-10-21 Matsushita Electric Ind Co Ltd Magnetic alloy film containing nitrogen
JPS63299219A (en) * 1987-05-29 1988-12-06 Sony Corp Magnetically soft thin film
JPH02290004A (en) * 1989-02-03 1990-11-29 Matsushita Electric Ind Co Ltd Soft magnetic alloy film and its manufacture

Also Published As

Publication number Publication date
JPH02275605A (en) 1990-11-09

Similar Documents

Publication Publication Date Title
EP0380136B1 (en) Soft magnetic thin film, method for preparing same and magnetic head
US5772797A (en) Soft magnetic thin film, method for preparing same and magnetic head
US5439754A (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JP3759191B2 (en) Thin film magnetic element
JPH0744108B2 (en) Soft magnetic thin film
US5421915A (en) Method for preparing same and magnetic head
JPH07116563B2 (en) Fe-based soft magnetic alloy
JP2866911B2 (en) Magnetic head
JPH0744123B2 (en) Method for manufacturing soft magnetic thin film
JP2950917B2 (en) Soft magnetic thin film
JP2704157B2 (en) Magnetic parts
JPH0484403A (en) Soft magnetic thin film
JP2698864B2 (en) Method for manufacturing soft magnetic thin film
JPH03263306A (en) Magnetic film and magnetic head
JP2784105B2 (en) Soft magnetic thin film
JP2808547B2 (en) Composite magnetic head
JP2508479B2 (en) Soft magnetic ferrite thin film
JPH02263416A (en) Manufacture of soft magnetic alloy film
JP2556863B2 (en) Fe-based magnetic alloy film
JP2584687B2 (en) Method for manufacturing soft magnetic thin film
JP2698813B2 (en) Soft magnetic thin film
JP2657710B2 (en) Method for manufacturing soft magnetic thin film
JPH0853739A (en) Soft magnetic alloy
JP2893706B2 (en) Iron-based soft magnetic film
JP2551008B2 (en) Soft magnetic thin film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080515

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 15