JPH05217746A - Ferromagnetic film - Google Patents

Ferromagnetic film

Info

Publication number
JPH05217746A
JPH05217746A JP4250435A JP25043592A JPH05217746A JP H05217746 A JPH05217746 A JP H05217746A JP 4250435 A JP4250435 A JP 4250435A JP 25043592 A JP25043592 A JP 25043592A JP H05217746 A JPH05217746 A JP H05217746A
Authority
JP
Japan
Prior art keywords
film
concentration
magnetic
heat treatment
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4250435A
Other languages
Japanese (ja)
Inventor
Yuichi Osawa
裕一 大沢
Hitoshi Iwasaki
仁志 岩崎
Reiko Kondo
玲子 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4250435A priority Critical patent/JPH05217746A/en
Publication of JPH05217746A publication Critical patent/JPH05217746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To provide a heat-resistant, good ferromagnetic film with high Bs and low Hc by using a Co-Fe alloy containing at least one element selected from specific transition metals. CONSTITUTION:A ferromagnetic film is composed of an alloy whose composition is expressed by CoxFeyTz, where T is selected from Al, Ta, Ti, Zr, Nb, Hf, Mo, and W. Assuming that x, y and z are given in at%, then 73<x<94, 5<y<=15, 1<z<12, and z+y+z=100. The addition of the selected element preferentially produces either (111)-oriented fcc crystal or (100)-oriented hcp crystal. Therefore, the magnetic anisotropy in the film is not significantly large, thus resulting in low Hc. If the T content is less than 1 at% high orientation is not realized. With the T content greater than 12 ate, on the other hand, low Hc is not achieved because of the intermetallic compound between T and Co, especially if the film is heat-treated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、磁気ヘッド等に適し
た強磁性膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic film suitable for magnetic heads and the like.

【0002】[0002]

【従来の技術】一般に磁気ヘッド用磁性膜には、高保持
力(高Hc)記録媒体に対して十分な記録能力を発揮で
きるように、高飽和磁束密度(高Bs)と低保持力(低
Hc)の軟磁気特性とが要求される。
2. Description of the Related Art Generally, a magnetic film for a magnetic head has a high saturation magnetic flux density (high Bs) and a low holding power (low Bs) so that it can exhibit a sufficient recording ability for a high holding power (high Hc) recording medium. Hc) soft magnetic properties are required.

【0003】Fe、Co又はFeCo基合金は、高Bs
を示すが、結晶磁気異方性が大きいため、Hcが必要以
上に大きくなり、磁気ヘッド等に適した良好な軟磁気特
性を得ることが困難である。また、これらの合金に添加
物を加えることにより、結晶磁気異方性を零に近づけた
FeAlSi合金膜やNiFe合金膜は、低Hcを示す
が、Bsは最大でも1.1[T]である。また、多くの
Fe系又はCo系合金膜は、アモルファス化すると低H
cを示すが、耐熱性等を考慮するとそのBsは最大で
1.0[T]である。
Fe, Co or FeCo based alloys have high Bs
However, since the crystal magnetic anisotropy is large, Hc becomes unnecessarily large, and it is difficult to obtain good soft magnetic characteristics suitable for a magnetic head or the like. Further, the FeAlSi alloy film and the NiFe alloy film whose crystal magnetic anisotropy is close to zero by adding an additive to these alloys show low Hc, but Bs is 1.1 [T] at the maximum. .. In addition, many Fe-based or Co-based alloy films have a low H content when made amorphous.
Although c is shown, its Bs is 1.0 [T] at maximum in consideration of heat resistance and the like.

【0004】しかしながら、理論的には、結晶磁気異方
性が大きい膜でも結晶配向制御により低Hcを示すこと
ができる。具体的には、立方晶(111)面配向した場
合には、結晶磁気異方性定数K1 の影響が膜面内では無
視でき、低Hcを示す。例えば、bcc相Fe固溶体の
場合、FeSi/ZnSnのように、適当な下地を選択
することにより(111)面配向を呈し、低Hcを示す
(Hosono et al., J.Appl.Phys., 67,6990(1990))。
However, theoretically, even a film having a large magnetocrystalline anisotropy can exhibit a low Hc by controlling the crystal orientation. Specifically, in the case of cubic (111) plane orientation, the influence of the magnetocrystalline anisotropy constant K1 can be neglected within the film plane, and low Hc is exhibited. For example, in the case of bcc phase Fe solid solution, (111) plane orientation is exhibited by selecting an appropriate underlayer, such as FeSi / ZnSn, and low Hc is exhibited (Hosono et al., J. Appl. Phys., 67). , 6990 (1990)).

【0005】ところがFe系の場合、bcc相が安定で
あるため、通常(100)又は(110)面配向を示
す。(111)配向は表面エネルギーが大きく、ZnS
eの如く限定された基板以外では安定成長しにくい。
In the case of Fe type, however, the bcc phase is stable, so that it usually exhibits (100) or (110) plane orientation. The surface energy of the (111) orientation is large and ZnS
It is difficult to grow stably except for the limited substrates such as e.

【0006】一方、Co系の場合、Co90Fe10付近の
組成を有する合金(Bs約1.9[T])では、状態図
からfcc単相の安定状態が存在することが確認でき
る。fcc相においては、(111)面が表面エネルギ
ーが低く安定成長面である。実際に、このような合金
は、fcc相(111)面配向することが知られてい
る。しかし、実際にはこのようなfcc相の合金膜で
も、良好な(111)面配向の形成が困難である。
On the other hand, in the case of Co-based alloy, it can be confirmed from the phase diagram that a stable state of fcc single phase exists in an alloy (Bs about 1.9 [T]) having a composition near Co 90 Fe 10 . In the fcc phase, the (111) plane has a low surface energy and is a stable growth plane. In fact, such alloys are known to be oriented in the fcc phase (111) plane. However, in practice, it is difficult to form a good (111) plane orientation even with such an fcc phase alloy film.

【0007】また、FeやCoに、ZrやTa等の遷移
金属及び窒素が添加された磁性膜は、Bsが高く、熱に
よる軟磁性の劣化がなく、将来の磁気記録ヘッドとして
有望である。さらに、塩素を含む高湿度環境での実用性
を考えると、Fe系の磁性膜は耐食性に問題があるの
で、Co系の磁性膜が適すると考えられる。
A magnetic film in which a transition metal such as Zr or Ta and nitrogen are added to Fe or Co has a high Bs and is free from deterioration of soft magnetism due to heat, and is promising as a future magnetic recording head. Further, considering practicality in a high humidity environment containing chlorine, it is considered that the Co-based magnetic film is suitable because the Fe-based magnetic film has a problem in corrosion resistance.

【0008】Co系の窒素添加膜としては、多層構造の
窒素濃度変調膜(IEEE Trans.Magn.,23,3707(1987))、
単層のCoNbZrN膜(J.Appl.Phy.,68,4760(1990)
)、本発明者らが鋭意研究を進めてきたCoFeAl
N膜(第14回日本応用磁気学会学術講演概要集,292(1
990))等が知られている。これらの磁性膜は、従来の磁
性膜に匹敵する80[A/m]以下の低Hc、すなわち
良好な軟磁性を示すことが知られている。
As the Co-based nitrogen-added film, a nitrogen concentration modulation film having a multilayer structure (IEEE Trans. Magn., 23, 3707 (1987)),
Single layer CoNbZrN film (J. Appl. Phy., 68, 4760 (1990)
), CoFeAl, which the present inventors have intensively researched
N-film (Proceedings of the 14th Annual Meeting of the Japan Society for Applied Magnetics, 292 (1
990)) etc. are known. It is known that these magnetic films exhibit low Hc of 80 [A / m] or less, that is, comparable to conventional magnetic films, that is, exhibit good soft magnetism.

【0009】しかしながら、上記これらの磁性膜は、そ
れぞれ以下のような欠点がある。例えば、窒素濃度変調
膜は、軟磁性が約700[℃]まで維持され非常に良好
な耐熱性を示すが、多層構造であるため製造工程が煩雑
である。これに対して、CoNbZrN膜又はCoFe
AlN膜は単層であるので、製造が容易であるが、40
0[℃]以上で熱処理すると徐々に結晶成長が進行する
結果、Hcの増加、抵抗率の減少を招く。特に、600
[℃]以上での高温製造工程が採用されるラミネート型
ヘッドにこれらの磁性膜を適用しようとする場合には、
結晶成長に伴うHcの増加が非常に問題となる。また、
抵抗率が減少すると渦電流が増加するので、高周波特性
が劣化する。さらに、CoNbZrN膜では、イオンビ
ームスパッタ法では良好な特性が得られるが、通常のR
Fマグネトロンスパッタ法では垂直磁気異方性が発生し
やすいため良好な特性を得ることが困難であり、製造マ
ージンが狭いことが知られている。一方、CoFeAl
N膜に関しては、水中での耐食性が不十分である。
However, each of these magnetic films has the following drawbacks. For example, a nitrogen concentration modulation film has very good heat resistance with soft magnetism maintained up to about 700 [° C.], but its manufacturing process is complicated because of its multilayer structure. On the other hand, CoNbZrN film or CoFe
Since the AlN film is a single layer, it is easy to manufacture.
When heat treatment is performed at 0 [° C.] or higher, crystal growth gradually progresses, resulting in an increase in Hc and a decrease in resistivity. Especially 600
When applying these magnetic films to a laminate type head that employs a high temperature manufacturing process above [° C.],
An increase in Hc accompanying crystal growth becomes a serious problem. Also,
Since the eddy current increases when the resistivity decreases, the high frequency characteristics deteriorate. Further, the CoNbZrN film can obtain good characteristics by the ion beam sputtering method, but the normal R
It is known that in the F magnetron sputtering method, it is difficult to obtain good characteristics because perpendicular magnetic anisotropy is likely to occur, and the manufacturing margin is narrow. On the other hand, CoFeAl
The N film has insufficient corrosion resistance in water.

【0010】[0010]

【発明が解決しようとする課題】以上のように結晶磁気
異方性の大きなCoFe系合金は、1.9[T]以上の
高い飽和磁束密度を有するが、良好な(111)配向が
実現できないために、ヘッド磁極の磁性膜に適するほど
十分低いHcを実現することが困難であった。
As described above, a CoFe alloy having a large crystal magnetic anisotropy has a high saturation magnetic flux density of 1.9 [T] or more, but cannot achieve a good (111) orientation. Therefore, it is difficult to realize Hc that is low enough to be suitable for the magnetic film of the head magnetic pole.

【0011】また、Co等の強磁性金属にZrやTa等
の遷移金属と窒素とが添加された磁性膜は、高温で熱処
理すると徐々に結晶成長が進行する結果、Hcの増加、
抵抗率の減少を招くという耐熱性の問題や、通常のRF
マグネトロンスパッタ法では垂直磁気異方性が発生し易
いため良好な特性を得ることが困難であるという問題が
あった。
Further, in a magnetic film in which a transition metal such as Zr or Ta and nitrogen are added to a ferromagnetic metal such as Co, heat treatment at a high temperature causes gradual crystal growth to result in an increase in Hc,
The problem of heat resistance that causes a decrease in resistivity and normal RF
The magnetron sputtering method has a problem that it is difficult to obtain good characteristics because perpendicular magnetic anisotropy is likely to occur.

【0012】本発明の目的は、高Bs及び低Hc、良好
な耐熱性を有する軟磁性、広い製造マージン及び高耐食
性を満足する磁気ヘッドに適した強磁性膜を提供するこ
とにある。
It is an object of the present invention to provide a ferromagnetic film suitable for a magnetic head satisfying high Bs and low Hc, soft magnetic properties having good heat resistance, a wide manufacturing margin and high corrosion resistance.

【0013】[0013]

【課題を解決するための手段】一般式Cox Fey z
で表わされる合金において、TはAl,Ta,Ti,Z
r,Nb,Hf,Mo,Wからなる群より選択される少
なくとも1種の原子であり、x,y,zはそれぞれの組
成比をat%で示すとき、 73<x<94 5<y≦15 1<z<12 x+y+z=100 の範囲に規定する。
[Means for Solving the Problems] General formula Co x Fe y T z
In the alloy represented by, T is Al, Ta, Ti, Z
At least one atom selected from the group consisting of r, Nb, Hf, Mo, and W, and x, y, and z, when the respective composition ratios are represented by at%, 73 <x <945 5 <y ≦ 15 1 <z <12 x + y + z = 100.

【0014】また、一般式(Ma b x y で表わさ
れる合金において、MはCo又はCo及びFeであり、
TはTa,Nb,Zr,Hf,Ti,Cr,Mo,Wか
らなる遷移金属の群より選択される少なくとも1種の原
子及びAl、Nは窒素であり、a,b,x,yはそれぞ
れの組成比をat%で示すとき、 85<a<96 4<b<15 a+b=100 80<x<98 2<y<20 x+y=100 M中のFeの含有率は0≦Fe≦15at% T中のAlの含有率は4<Al≦50at%) の範囲に規定する。
In the alloy represented by the general formula (M a T b ) x N y , M is Co or Co and Fe,
T is at least one atom selected from the group of transition metals consisting of Ta, Nb, Zr, Hf, Ti, Cr, Mo and W, and Al and N are nitrogen, and a, b, x and y are respectively When the composition ratio of is expressed as at%, 85 <a <96 4 <b <15 a + b = 100 80 <x <98 2 <y <20 x + y = 100 The Fe content in M is 0 ≦ Fe ≦ 15 at% The content ratio of Al in T is defined in the range of 4 <Al ≦ 50 at%).

【0015】また、一般式(Ma b x y で表わさ
れる合金において、MはCoとFeであり、TはTa又
はNbから選択された少なくとも1種の原子であり、N
は窒素であり、a,b,x,yはそれぞれの組成比をa
t%で示すとき、 85<a<95 5<b<15 a+b=100 82<x<97.5 2.5<y<18 x+y=100) の範囲に規定すると共に、MにおけるFeの含有率は
2.5≦Fe≦12.5at%の範囲に規定する。
In the alloy represented by the general formula (M a T b ) x N y , M is Co and Fe, T is at least one atom selected from Ta or Nb, and N is N.
Is nitrogen, and a, b, x, and y are the composition ratios of each.
When expressed by t%, it is specified in the range of 85 <a <95 5 <b <15 a + b = 100 82 <x <97.5 2.5 <y <18 x + y = 100), and the Fe content in M is Is specified within the range of 2.5 ≦ Fe ≦ 12.5 at%.

【0016】請求項3の磁性膜にPd又はReの中から
選択された少なくとも1種の原子の含有率が15at%
未満であることを特徴とする強磁性膜。
In the magnetic film of claim 3, the content of at least one atom selected from Pd and Re is 15 at%.
A ferromagnetic film characterized by being less than.

【0017】[0017]

【作用】第1発明の強磁性膜は、アルゴンガスを用いた
各種スパッタ法(DC、RF、イオンビームスパッタ)
や真空蒸着法により作製することができる。また、成膜
後に処理を施すことにより軟磁気特性を向上させること
ができる。なお、スパッタリングによる成膜では、当
然、膜中に微量の酸素やアルゴンが不可避的に含まれ
る。
The ferromagnetic film of the first invention is formed by various sputtering methods using argon gas (DC, RF, ion beam sputtering).
Alternatively, it can be manufactured by a vacuum deposition method. Further, the soft magnetic characteristics can be improved by performing the treatment after the film formation. In the film formation by sputtering, a small amount of oxygen or argon is inevitably contained in the film.

【0018】本発明によれば、Al,Ta,Ti,Z
r,Nb,Hf,Mo,WのT成分からなる群から選択
された少なくとも1種の元素を添加することにより、f
cc相(111)面を優先配向し、或いは、hcp相の
(100)面を優先配向することが可能となり、膜面内
に大きな結晶磁気異方性を生じさせず、低Hcを実現す
ることができる。
According to the present invention, Al, Ta, Ti, Z
By adding at least one element selected from the group consisting of T components of r, Nb, Hf, Mo and W, f
It is possible to preferentially orientate the cc phase (111) plane or the (100) plane of the hcp phase, and to achieve low Hc without causing large magnetocrystalline anisotropy in the film plane. You can

【0019】本発明において、T成分の添加量を1以上
12at%以下としたのは、1%未満では上述した高配
向が実現できないために低Hcを達成することができ
ず、12at%以上では、特に熱処理を施した場合は、
Coとの金属間化合物の生成により低Hcを達成するこ
とができないためである。なお、低Hcが得られる適正
な組成範囲は、成膜方法、成膜条件、加熱処理条件で幾
分変化する。
In the present invention, the amount of the T component added is set to 1 or more and 12 at% or less. When it is less than 1%, the above-mentioned high orientation cannot be realized, so that low Hc cannot be achieved, and when it is 12 at% or more. , Especially when subjected to heat treatment,
This is because low Hc cannot be achieved due to the formation of an intermetallic compound with Co. The appropriate composition range in which low Hc is obtained varies somewhat depending on the film forming method, film forming conditions, and heat treatment conditions.

【0020】本発明の強磁性膜では、T成分の添加量を
前記の範囲に規定することにより、1.3〜1.9
[T]の高Bs、かつ150[A/m]以下の低Hcを
得ることができるようになる。従って、この強磁性膜を
用いれば、高密度記録に極めて有利な磁気ヘッドを安定
して供給することができる。
In the ferromagnetic film of the present invention, by defining the addition amount of the T component within the above range, 1.3 to 1.9 is obtained.
It is possible to obtain a high Bs of [T] and a low Hc of 150 [A / m] or less. Therefore, by using this ferromagnetic film, a magnetic head extremely advantageous for high density recording can be stably supplied.

【0021】第2発明の磁性膜は、アルゴン及び窒素の
混合ガス雰囲気における通常のRFマグネトロンスパッ
タリング法により製造でき、必ずしもイオンビームスパ
ッタ等の特殊な方法を用いる必要はない。また、必要に
応じて成膜後に熱処理を施すことにより軟磁気特性を向
上させることができる。なお、スパッタリングによる成
膜では、膜中に微量の酸素やアルゴンが不可避的に含ま
れる。
The magnetic film of the second invention can be manufactured by a usual RF magnetron sputtering method in a mixed gas atmosphere of argon and nitrogen, and it is not always necessary to use a special method such as ion beam sputtering. Further, the soft magnetic characteristics can be improved by performing heat treatment after the film formation if necessary. Note that in film formation by sputtering, a trace amount of oxygen or argon is inevitably contained in the film.

【0022】本発明の強磁性膜は、Co系窒化膜におい
て遷移金属及びAlを添加することにより、以下のよう
な効果を達成できる。(1)600[℃]以上の高温熱
処理も、約30[A/m]以下の良好な軟磁気特性が維
持できる。(2)抵抗率が上昇するため、渦電流による
高周波特性の劣化を防止できる。(3)通常のRFマグ
ネトロンスパッタ法でも製造マージンが広い。本発明に
おいて、膜中の各成分の濃度を前記のように規定したの
は以下のような理由による。
The ferromagnetic film of the present invention can achieve the following effects by adding a transition metal and Al to the Co type nitride film. (1) A good soft magnetic property of about 30 [A / m] or less can be maintained even at a high temperature heat treatment of 600 [° C.] or more. (2) Since the resistivity increases, it is possible to prevent the deterioration of the high frequency characteristics due to the eddy current. (3) The manufacturing margin is wide even with the ordinary RF magnetron sputtering method. In the present invention, the concentration of each component in the film is defined as above for the following reasons.

【0023】T成分の濃度bが4at%未満、Nの濃度
yが2at%未満では、熱処理により低Hcが得られな
くなる。一方、T成分の濃度bが15at%を超え、N
の濃度yが20at%を超えると、熱処理により余分な
窒化物が形成されるため軟磁性が劣化する。T成分の濃
度bが4at%以上、かつNの濃度yが2at%以上に
なると、耐熱性に優れた微結晶構造が得られ、軟磁気特
性の耐熱性が向上する。
When the concentration b of T component is less than 4 at% and the concentration y of N is less than 2 at%, low Hc cannot be obtained by heat treatment. On the other hand, the concentration b of the T component exceeds 15 at% and N
If the concentration y exceeds 20 at%, an excessive nitride is formed by the heat treatment, so that the soft magnetism deteriorates. When the concentration b of the T component is 4 at% or more and the concentration y of N is 2 at% or more, a microcrystalline structure having excellent heat resistance is obtained, and the heat resistance of the soft magnetic characteristics is improved.

【0024】また、M成分のうちFeの含有率が15a
t%を超えると、熱処理後でもbcc相の混入が顕著に
なるので、磁気歪が増加する(+1×10-5以上)、M
成分中のFeの含有率が0〜15at%の範囲では、熱
処理後にfcc相が主になるので低磁気歪(+3×10
-6以下)が実現できる。M成分中のFeの含有率は10
at%以下であることがより好ましい。
The Fe content of the M component is 15a.
If it exceeds t%, the bcc phase becomes conspicuous even after the heat treatment, so that the magnetostriction increases (+ 1 × 10 −5 or more), M
When the content of Fe in the component is in the range of 0 to 15 at%, the fcc phase becomes predominant after the heat treatment, so that low magnetostriction (+ 3 × 10
-6 or less) can be realized. The content ratio of Fe in the M component is 10
It is more preferably at% or less.

【0025】T成分(遷移金属及びAl)のうちAlの
含有率が4at%以下では、添加の効果がなく、高温熱
処理により結晶粒が成長するためHcを低下させること
が困難になる。一方、T成分のうちAlの含有率が50
at%を超えると、耐食性が劣化する、抵抗率が低下す
る、軟磁気特性の耐熱性が劣化する、等の悪影響が生じ
る。T成分のうちAlの含有率を4以上50at%以下
の適正な範囲に規定することにより、従来のCo系窒化
膜に比べて、耐熱性が良好で、高抵抗率を示し、作製マ
ージンも広い磁性膜が得られる。T成分のうちAlの含
有率は25以上50at%以下であることがより好まし
い。この範囲内であれば熱処理前でも低Hcを示す。
When the content of Al in the T component (transition metal and Al) is 4 at% or less, there is no effect of addition, and crystal grains grow by high temperature heat treatment, so that it becomes difficult to reduce Hc. On the other hand, the Al content of the T component is 50
When it exceeds at%, adverse effects such as deterioration of corrosion resistance, decrease of resistivity, deterioration of heat resistance of soft magnetic characteristics, and the like occur. By defining the Al content in the T component within an appropriate range of 4 or more and 50 at% or less, the heat resistance is good, the resistivity is high, and the manufacturing margin is wide as compared with the conventional Co-based nitride film. A magnetic film is obtained. The content of Al in the T component is more preferably 25 or more and 50 at% or less. Within this range, low Hc is exhibited even before heat treatment.

【0026】さらに、Alを含有していなくても、Ta
及びNbについては以下のように規定することで、同様
に、耐熱性に優れたCo系窒化膜が通常のスパッタ法で
作製できる。
Furthermore, even if Al is not contained, Ta
Similarly, by defining Nb and Nb as follows, a Co-based nitride film having excellent heat resistance can be similarly produced by a normal sputtering method.

【0027】すなわち、MにおけるCoの一部を2.5
以上12.5at%以下の割合でFeに置換すること
で、Coのみの窒化膜では膜面垂直方向に発生しやすか
った磁気異方性や粗(不均一)な膜成長を通常のスパッ
タ法による作製でも低減でき、その結果メタルインギャ
ップヘッド(以下「MIGヘッド」という)に必要な5
50[℃]以上の耐熱性を有する軟磁性(80[A/
m]以下の低Hc、+3×10-6以下の低磁気歪)が得
られる。さらに、上記Fe濃度を5at%を越えて1
2.5at%以下とすると、熱処理前あるいは400
[℃]程度の比較的低い温度でbcc相が析出して、そ
の後fcc相とT窒化物への相変態を生じる。この時、
650[℃]以上の高温でも結晶粒成長が抑制されて良
好な軟磁性を示す。その結果、MIGヘッドだけでなく
ラミネ−ト型ヘッドにも適する650〜700[℃]の
耐熱性を有する軟磁性膜が得られる。一方、5at%以
下のFe濃度膜ではbcc相が出現せずfcc相からf
cc相+Ta窒化物に相分離するので結晶粒が比較的速
く成長して、その結果650[℃]の耐熱性が得られな
い。なお、Fe濃度が12.5at%を越えると、低磁
気歪に必要なfcc相が形成困難になり、高い磁気歪
(+1×10-5以上)を示すbcc相が安定になる。
That is, a part of Co in M is 2.5
By substituting Fe at a ratio of 12.5 at% or less, a magnetic anisotropy or rough (non-uniform) film growth that is likely to occur in the direction perpendicular to the film surface in the nitride film containing only Co can be achieved by the normal sputtering method. It can be reduced even by manufacturing, and as a result, 5 required for a metal in-gap head (hereinafter referred to as “MIG head”)
Soft magnetism (80 [A /
m] or less and a low Hc of + 3 × 10 −6 or less). Furthermore, if the Fe concentration exceeds 5 at%,
If it is 2.5 at% or less, before heat treatment or 400
The bcc phase precipitates at a relatively low temperature of about [° C.], and then the fcc phase and a phase transformation into T nitride occur. At this time,
Even at a high temperature of 650 [° C.] or higher, crystal grain growth is suppressed and good soft magnetism is exhibited. As a result, it is possible to obtain a soft magnetic film having heat resistance of 650 to 700 [° C.], which is suitable not only for MIG heads but also for laminate type heads. On the other hand, in the Fe concentration film of 5 at% or less, the bcc phase does not appear and
Since phase separation occurs in the cc phase + Ta nitride, the crystal grains grow relatively quickly, and as a result, heat resistance of 650 [° C.] cannot be obtained. When the Fe concentration exceeds 12.5 at%, it becomes difficult to form the fcc phase required for low magnetostriction, and the bcc phase exhibiting high magnetostriction (+ 1 × 10 −5 or more) becomes stable.

【0028】さらに、前述したCoの一部をFeで置換
する効果を得るためには、T成分の濃度を5at%を越
えて15at%未満に、また望ましくは7.2at%以
上15at%未満に設定する必要がある。この理由を以
下に示すと、まず、T成分の濃度が5at%以下では成
膜直後にアモルファス状の微結晶が得られず、その結果
Hc≦80[A/m]の軟磁性が得られない。また、1
5at%以上のT成分濃度を有すると、後述するように
T成分の増加に対応して窒素濃度も増加する必要がある
ので、(1)低Hcを阻害する過剰な窒化物が形成され
る、(2)垂直磁気異方性が発生し易くなる、(3)膜
剥離が発生し易くなる、等の悪影響がある。ここで、T
成分濃度が7at%未満では窒化物の形成が少ないため
に550[℃]までの耐熱性が限界であり、ラミネ−ト
型ヘッドまでへの適用を考えると、7.2at%以上1
5at%未満のT成分濃度が望ましい。
Further, in order to obtain the effect of substituting a part of Co with Fe, the concentration of the T component should be more than 5 at% and less than 15 at%, and preferably 7.2 at% or more and less than 15 at%. Must be set. The reason for this is as follows. First, when the T component concentration is 5 at% or less, amorphous microcrystals cannot be obtained immediately after film formation, and as a result, soft magnetism of Hc ≦ 80 [A / m] cannot be obtained. .. Also, 1
When the T component concentration is 5 at% or more, the nitrogen concentration also needs to increase in response to the increase in the T component as described later, so that (1) excessive nitride that inhibits low Hc is formed. There are adverse effects such as (2) vertical magnetic anisotropy is likely to occur, and (3) film peeling is likely to occur. Where T
If the component concentration is less than 7 at%, the heat resistance up to 550 [° C.] is the limit because the formation of nitrides is small. Considering application to laminate type heads, 7.2 at% or more 1
A T component concentration of less than 5 at% is desirable.

【0029】さらに、今まで述べてきた効果を得るため
には、窒素濃度を2.5at%を越えて18at%未満
に設定する必要がある。この理由を以下に示すと、ま
ず、窒素がT成分に対して2.5at%以下では熱処理
前に微結晶又はアモルファス化が得られにくいことに加
えて、たとえこのような結晶状態が得られてもMIGヘ
ッドに必要な550[℃]の熱処理を行った後に結晶粒
が成長して、その結果低Hcが得られない。なお、ラミ
ネ−ト型ヘッドまでの適用を考えると、結晶成長が起こ
りHcが増大する温度を650[℃]以上にすることが
望ましいので、窒素濃度の下限はより厳しくなり、6a
t%を越えることが望ましい。一方、窒素濃度が18a
t%以上になると過剰なT成分濃度の悪影響と同様な悪
影響が現れる。
Further, in order to obtain the effects described so far, it is necessary to set the nitrogen concentration to more than 2.5 at% and less than 18 at%. The reason for this is as follows. First, when nitrogen is 2.5 at% or less with respect to the T component, it is difficult to obtain microcrystals or amorphization before heat treatment, and even if such a crystal state is obtained. Also, after the heat treatment of 550 [° C.] required for the MIG head is performed, crystal grains grow, and as a result, low Hc cannot be obtained. Considering application to a laminate type head, it is desirable to set the temperature at which crystal growth occurs and Hc increases to 650 [° C.] or higher, so the lower limit of the nitrogen concentration becomes stricter and 6 a
It is desirable to exceed t%. On the other hand, the nitrogen concentration is 18a
If it is t% or more, the same adverse effect as that of the excessive T component concentration appears.

【0030】ここで、上記組成範囲の磁性膜にさらに1
5at%未満のPd又はReを加えることにより、Fe
AlSi以上の高Bsと耐熱性に優れた軟磁気特性を維
持して、磁気ヘッドへの適用に望ましい磁気歪零への調
整が特にFe濃度の高い組成範囲で可能となる。また、
Pd又はReの添加により耐蝕性が改善される。
Here, one more is added to the magnetic film having the above composition range.
Fe by adding less than 5 at% of Pd or Re
While maintaining the high Bs higher than that of AlSi and the soft magnetic property excellent in heat resistance, adjustment to zero magnetostriction desirable for application to a magnetic head becomes possible especially in a composition range with a high Fe concentration. Also,
The corrosion resistance is improved by adding Pd or Re.

【0031】以上の結果、Coの一部をFeで置換して
Ta又はNbを加えたCo系窒化膜は1.3[T]以上
の高Bs、80[A/m]以下の低Hc、+3×10-6
以下の低磁気歪を示し、また、これらの磁気特性は55
0[℃]熱処理後でも、さらに組成範囲によっては65
0[℃]以上の熱処理でも劣化しないので、MIGヘッ
ドやラミネ−ト型ヘッドに適用することができるように
なる。
As a result, a Co-based nitride film in which a part of Co is replaced by Fe and Ta or Nb is added has a high Bs of 1.3 [T] or more and a low Hc of 80 [A / m] or less, +3 x 10 -6
It exhibits the following low magnetostriction, and these magnetic properties are 55
Even after the heat treatment at 0 [° C.], 65 depending on the composition range
Since it does not deteriorate even by heat treatment at 0 [° C.] or higher, it can be applied to MIG heads and laminate type heads.

【0032】[0032]

【実施例】以下、図面を参照しながら本発明の一実施例
について説明する。 [第1発明] (実施例1)基板として有機アルカリ洗浄を施した結晶
化ガラス又はSi単結晶を用い、Co−11.5at%
Fe−4at%Al合金ターゲット又はCo−10at
%Fe合金ターゲットの上に、添加物T成分のチップを
おいた複合ターゲットを用い、Arガス雰囲気中で2極
マグネトロンスパッタにより、膜厚約1μmの磁性膜を
成膜した。T成分の濃度は約5at%となるように調整
した。スパッタリングは以下の条件で行った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. [First Invention] (Example 1) A crystallized glass or Si single crystal subjected to organic alkali cleaning is used as a substrate and Co-11.5 at%
Fe-4at% Al alloy target or Co-10at
A magnetic film having a film thickness of about 1 μm was formed by bipolar magnetron sputtering in an Ar gas atmosphere using a composite target in which a chip of the additive T component was placed on the% Fe alloy target. The concentration of T component was adjusted to be about 5 at%. Sputtering was performed under the following conditions.

【0033】 高周波電力密度 :3.2[W/cm2 ] 全スパッタガス圧力:0.27〜0.1[Pa] 電極間距離 :90[mm] 予備排気 :1.3×10-4[Pa] 得られた磁性膜について各種物性を以下のようにして測
定した。飽和磁束密度Bsと保持力Hcは、磁性膜の困
難軸方向に最大400[kA/m]の磁界を加えて測定
した。膜の結晶構造は、θ−2θスキャンのX線解析法
(CuKα線使用)により調べた。膜中のCo、Fe及
びT成分の濃度は、XFR(蛍光X線)分析により調べ
た。
High frequency power density: 3.2 [W / cm 2 ] Total sputtering gas pressure: 0.27 to 0.1 [Pa] Electrode distance: 90 [mm] Pre-evacuation: 1.3 × 10 -4 [ Pa] Various physical properties of the obtained magnetic film were measured as follows. The saturation magnetic flux density Bs and the coercive force Hc were measured by applying a maximum magnetic field of 400 [kA / m] in the hard axis direction of the magnetic film. The crystal structure of the film was examined by an X-ray analysis method using a θ-2θ scan (using CuKα ray). The concentrations of Co, Fe and T components in the film were examined by XFR (fluorescent X-ray) analysis.

【0034】前記条件により作成された磁性膜につい
て、2θ〜44度のピークの回折強度(以下、「Imai
n」という)と保持力Hcとの関係を図1に示す。な
お、図1の値はas−made状態(熱処理されていな
い状態)で測定した。また、図1の曲線は添加元素Tの
種類によらず、Imainと保持力Hcとの関係を示してい
る。このピークはfcc相(111)又はhcp相(0
02)ピークと考えられる。
With respect to the magnetic film formed under the above conditions, the diffraction intensity of the peak at 2θ to 44 ° (hereinafter referred to as “Imai
1) and the holding force Hc are shown in FIG. The values in FIG. 1 were measured in the as-made state (not heat-treated). The curve in FIG. 1 shows the relationship between Imain and the coercive force Hc regardless of the type of the additive element T. This peak is in the fcc phase (111) or the hcp phase (0
02) It is considered to be a peak.

【0035】図1から、Imainが増加するほど、保持力
Hcは単調に減少しているのがわかる。ここで、Ta,
Ti,Al,Nb,Hf,W,Moを添加した場合に
は、Imainが105 cps程度まで増大し、保持力Hc
も低下している。一方、Si,Pd,Ruを添加した場
合には、Imainは104 cps未満であり、103 [A
/m]を越える高保持力を示している。
From FIG. 1, it can be seen that the holding force Hc decreases monotonically as Imain increases. Where Ta,
When Ti, Al, Nb, Hf, W and Mo are added, Imain increases up to about 10 5 cps and the holding force Hc
Is also declining. On the other hand, when Si, Pd and Ru are added, Imain is less than 10 4 cps and 10 3 [A
/ M], which shows a high holding power.

【0036】ここで、Hc>103 [A/m]すなわち
Imain<104 cpsのサンプルと、Hc≦200[A
/m]すなわちImain>105 cpsのサンプルの代表
的な結晶構造を図2に示す。図2(a)はCoFePd
膜(組成:CoBAL Fe9 Pd5 )、図2(b)はCo
FeTa膜(組成:CoBAL Fe9 Ta4 )のX線回折
像である。
Here, a sample with Hc> 10 3 [A / m], that is, Imain <10 4 cps, and Hc ≦ 200 [A]
/ M], that is, a typical crystal structure of a sample having Imain> 10 5 cps is shown in FIG. FIG. 2A shows CoFePd.
Film (composition: Co BAL Fe 9 Pd 5 ), FIG.
3 is an X-ray diffraction image of a FeTa film (composition: Co BAL Fe 9 Ta 4 ).

【0037】図2(a)のCoFePd膜では、2θ=
41度付近に「肩」が確認できる。これは、hcp相
(100)面反射に対応している。本サンプルのHcは
6[kA/m]と大きい。この他の多くのHcが大きい
サンプルでもX線回折曲線にこの「肩」が確認された。
一方、図2(b)のCoFeTa膜等のImain>105
の場合は、この「肩」は確認できなかった。なお、Ima
in>105 膜の主ピークのロッキングカーブを測定した
ところ、その半値幅は11度以下であった。
In the CoFePd film of FIG. 2A, 2θ =
A "shoulder" can be seen near 41 degrees. This corresponds to the hcp phase (100) plane reflection. The Hc of this sample is as large as 6 [kA / m]. This "shoulder" was confirmed in the X-ray diffraction curve in many other samples having a large Hc.
On the other hand, Imain> 10 5 of the CoFeTa film or the like in FIG.
In the case of, this "shoulder" could not be confirmed. In addition, Ima
When the rocking curve of the main peak of the in> 10 5 film was measured, the full width at half maximum was 11 degrees or less.

【0038】以上の結果から、著しく高強度の主ピーク
のみで他のピークが認められない場合、すなわち、fc
c(111)又はhcp(002)高配向を示す場合に
低Hcの得られることがわかる。次に、今まで述べてき
た回折面が膜面に平行な場合のX線回折曲線に対して、
一部の膜について回折面を膜面平行からずらしてX線回
折曲線を測定し、確認される主ピークがどちらの相から
の反射に起因するかを調べた。その結果を図3に示す。
図3(a)は、回折面を54.7度ずらした場合の回折
曲線である(主ピークがfcc(111)ピークであれ
ば、fcc(200)ピークのみが確認される)。ま
た、図3(b)は、回折面を61.6度ずらした場合の
回折曲線である(主ピークがhcp(002)ピークで
あれば、hcp(101)ピークが確認される)。な
お、X線の入射方向を膜面内方向に対して変化させても
回折曲線に大きな変化はみられず、膜面内には配向して
いなかった。図3(a)において、Al添加膜はfcc
(200)ピークのみが確認され、これはfcc(10
0)配向であることを意味している。また、TaやNb
添加膜はどちらのピークも認められなかった。一方、図
3(b)においては、Ta添加膜はhcp(101)ピ
ークが確認され、これはhcp(001)配向膜である
ことを意味している。なお、Ti添加膜では、どちらの
反射も認められず、hcp相であるかfcc相であるか
の判別ができなかった。
From the above results, when the main peak of remarkably high intensity and no other peaks are observed, that is, fc
It can be seen that low Hc can be obtained when c (111) or hcp (002) high orientation is exhibited. Next, for the X-ray diffraction curve when the diffraction surface described so far is parallel to the film surface,
The X-ray diffraction curve was measured by shifting the diffraction surface of some films from the plane parallel to the film surface, and it was examined which phase the reflection of the main peak was attributed to. The result is shown in FIG.
FIG. 3A is a diffraction curve when the diffraction plane is shifted by 54.7 degrees (if the main peak is the fcc (111) peak, only the fcc (200) peak is confirmed). Further, FIG. 3B is a diffraction curve when the diffraction surface is shifted by 61.6 degrees (if the main peak is the hcp (002) peak, the hcp (101) peak is confirmed). Even if the X-ray incident direction was changed with respect to the in-plane direction of the film, the diffraction curve did not change significantly, and the film was not oriented in the film plane. In FIG. 3A, the Al-added film is fcc.
Only the (200) peak was confirmed, which is fcc (10
0) means orientation. Also, Ta and Nb
Neither peak was observed in the added film. On the other hand, in FIG. 3B, the hcp (101) peak is confirmed in the Ta-added film, which means that it is the hcp (001) oriented film. In the Ti-added film, neither reflection was observed, and it was not possible to discriminate between the hcp phase and the fcc phase.

【0039】図4に添加元素濃度とas−made状態
の磁性膜の飽和磁束密度(Bs)との関係を示す。添加
元素のない磁性膜は、約1.9[T]のBsを示す。添
加元素の濃度が増加するに従い、Bs単調に減少する。
添加元素がPdの場合はこの単調減少傾向が僅かであ
り、逆にRu,Crの場合にはこの単調減少傾向が顕著
であった。一般に、添加元素の濃度が約10at%で約
1.4[T]のBsを示す。この値は、センダスト、パ
ーマロイ又はCo系アモルファス合金よりも高い。
FIG. 4 shows the relationship between the additive element concentration and the saturation magnetic flux density (Bs) of the magnetic film in the as-made state. The magnetic film without added element shows Bs of about 1.9 [T]. As the concentration of the additional element increases, Bs monotonically decreases.
When the additive element was Pd, this monotonous decrease tendency was slight, and conversely, when it was Ru or Cr, this monotonic decrease tendency was remarkable. Generally, when the concentration of the additional element is about 10 at%, Bs of about 1.4 [T] is shown. This value is higher than that of Sendust, Permalloy, or Co-based amorphous alloy.

【0040】次に、低Hcを示したTaを含有する磁性
膜について、Ta濃度とHc及びBsとの関係を図5に
示す。なお、図5では熱処理前後の値を示している。熱
処理条件を以下に示す。
Next, FIG. 5 shows the relationship between Ta concentration and Hc and Bs for the magnetic film containing Ta showing low Hc. Note that FIG. 5 shows the values before and after the heat treatment. The heat treatment conditions are shown below.

【0041】 加熱温度 :500[℃] 加熱時間 :約1時間 加熱雰囲気 :真空中(2〜3×10-3[Pa]) 印加磁界 :20[kA/m] サンプル回転数:100[rpm] 熱処理の有無にかかわらず、Ta濃度が2at%ではH
c>500[A/m]の高Hcを示した。なお、このと
きのX線回折曲線はTaを加えていないCoFe膜の場
合に高配向膜は得ることはできなかった。Ta濃度を4
at%以上に増加すると熱処理の有無にかかわらず20
0[A/m]以下の低Hcを示した。特に、6.5〜9
at%のTa濃度では50[A/m]以下の低Hcを示
した。このときのX線回折曲線は、図2に示した曲線と
同様に、hcp(001)高配向を呈した。また、Bs
は、1.3[T]以上の高い値を示した。12at%に
Ta濃度を増やすと、熱処理前のHcは30[A/m]
以下の低Hcを示したが、熱処理後にHcが急増した。
このときのX線回折曲線は、熱処理前ではアモルファス
状の著しくブロードなピーク(2θ=40〜50度)が
確認できた。熱処理後にはアモルファスが結晶化する場
合に特有のシャープなCoTa金属間化合物のピーク等
が検出された。12at%にTa濃度を増やすと、高配
向膜は得られず、従来報告されているようなHcの耐熱
性が不十分なアモルファス状の膜構造となった。
Heating temperature: 500 [° C.] Heating time: About 1 hour Heating atmosphere: In vacuum (2 to 3 × 10 −3 [Pa]) Applied magnetic field: 20 [kA / m] Sample rotation speed: 100 [rpm] H at a Ta concentration of 2 at% regardless of the presence or absence of heat treatment.
It showed a high Hc of c> 500 [A / m]. In addition, the X-ray diffraction curve at this time could not obtain a highly oriented film in the case of the CoFe film to which Ta was not added. Ta concentration of 4
If it is increased to at% or more, it is 20 with or without heat treatment.
It exhibited a low Hc of 0 [A / m] or less. In particular, 6.5-9
At Ta concentration of at%, low Hc of 50 [A / m] or less was exhibited. The X-ray diffraction curve at this time exhibited a high hcp (001) orientation, similar to the curve shown in FIG. Also, Bs
Shows a high value of 1.3 [T] or more. When Ta concentration is increased to 12 at%, Hc before heat treatment is 30 [A / m].
Although the following low Hc was shown, Hc increased rapidly after the heat treatment.
In the X-ray diffraction curve at this time, an amorphous broad peak (2θ = 40 to 50 °) was confirmed before the heat treatment. After the heat treatment, a sharp peak of the CoTa intermetallic compound, which is peculiar to the amorphous crystallization, was detected. When the Ta concentration was increased to 12 at%, a highly oriented film could not be obtained, resulting in an amorphous film structure with insufficient heat resistance of Hc as previously reported.

【0042】次に、Fe濃度を変えた場合の実施例を示
す。図6は、Ta濃度が約8at%のサンプルにおける
Fe濃度を変化させた場合のCoFeTa膜のHcとF
e濃度の関係を示す図である。なお、0〜15at%ま
でのFe濃度では、X線回折曲線を調べたところ全てh
cp(001)配向を示し、配向度に明確な差は見られ
なかったが、17.5at%以上のFe濃度ではbcc
相が混入して配向度が劣化した。
Next, examples in which the Fe concentration was changed will be described. FIG. 6 shows Hc and F of the CoFeTa film when the Fe concentration was changed in the sample having a Ta concentration of about 8 at%.
It is a figure which shows the relationship of e density | concentration. In addition, in the Fe concentration of 0 to 15 at%, when the X-ray diffraction curve was examined, it was found that all h
cp (001) orientation was shown, and no clear difference in orientation degree was observed, but at a Fe concentration of 17.5 at% or higher, bcc
The phases were mixed and the degree of orientation deteriorated.

【0043】Feを含まないCoTa膜ではHcは9
[kA/m]程度の高Hcを示した。このとき、図7に
示すように、磁化曲線は垂直磁気異方性特有の形状を示
した。c軸が磁化容易軸(Kuが正)であるため、垂直
磁気異方性が発生して高Hcを示したものと考えられ
る。Fe濃度が増加するとHcは急激に低下して、Fe
濃度が7.5〜15at%ではHcは100[A/m]
以下の低い値を示し、また、垂直磁気異方性も消失し
た。Fe濃度が増加すると、Kuが減少して零近傍又は
負になったため、すなわち、(001)面が磁化容易面
になったために、Hcが低下したものと考えられる。し
かし、Fe濃度が15at%を越えるとbcc相の混入
により配向が劣化するのに対応してHcは増加した。 (実施例2)添加元素としてAlを含有する磁性膜につ
いて、Al濃度とHcとの関係を図8に示す。
In a CoTa film containing no Fe, Hc is 9
A high Hc of about [kA / m] was exhibited. At this time, as shown in FIG. 7, the magnetization curve showed a shape peculiar to the perpendicular magnetic anisotropy. Since the c-axis is the easy axis of magnetization (Ku is positive), it is considered that perpendicular magnetic anisotropy occurred and high Hc was exhibited. When the Fe concentration increases, Hc decreases sharply,
Hc is 100 [A / m] when the concentration is 7.5 to 15 at%.
The following low values were exhibited, and the perpendicular magnetic anisotropy disappeared. It is considered that when Fe concentration was increased, Ku was decreased and became close to zero or became negative, that is, (001) plane became an easy magnetization plane, and thus Hc was lowered. However, when the Fe concentration exceeds 15 at%, the Hc increases corresponding to the deterioration of the orientation due to the inclusion of the bcc phase. (Example 2) FIG. 8 shows the relationship between Al concentration and Hc for a magnetic film containing Al as an additional element.

【0044】Alの場合は、ごく僅かの添加でもHcは
大きく減少する。すなわち、Al濃度が約1at%でH
cは100[A/m]程度まで減少する。3〜10at
%程度でHcは約10[A/m]の極めて良好な低Hc
を示す。10at%を越えると、Hcは増加し始める。
In the case of Al, Hc is greatly reduced even if it is added in a very small amount. That is, when the Al concentration is about 1 at%, H
c decreases to about 100 [A / m]. 3-10 at
%, Hc is about 10 [A / m], which is extremely low Hc.
Indicates. When it exceeds 10 at%, Hc starts to increase.

【0045】結晶構造のAl濃度依存性も、Taの場合
と同様な傾向を示す。すなわち、低Al濃度・高Hc領
域ではhcp(100)ピークが僅かにみられ、配向度
が良好でない。適正Al濃度・低Hc領域ではfcc相
(111)面配向が強く、hcp相配向を含んでいな
い。高Al・高Hc領域では、CoAlの金属間化合物
が生成し、Alの相分離も認められる。 (実施例3)添加元素として他の元素(Ti,Nb,M
o,Zr,Hf,W)を含有する磁性膜について、添加
元素濃度とHcとの関係を図9に示す。これらの添加元
素を用いた場合、3〜8at%程度の濃度で低Hcを示
すことがわかる。膜のX線回折は、適正濃度の領域で
は、2θ=20〜44度の高強度のピークを示してい
る。なお、これらの添加元素の場合でも、組成とHcと
の関係は成膜条件等により変化すると考えられる。
The Al concentration dependence of the crystal structure shows the same tendency as in the case of Ta. That is, the hcp (100) peak is slightly observed in the low Al concentration / high Hc region, and the degree of orientation is not good. In the proper Al concentration / low Hc region, the fcc phase (111) plane orientation is strong, and the hcp phase orientation is not included. In the high Al / high Hc region, an intermetallic compound of CoAl is generated and Al phase separation is also observed. (Example 3) Other elements (Ti, Nb, M) as additional elements
FIG. 9 shows the relationship between the additive element concentration and Hc for the magnetic film containing O, Zr, Hf, W). It can be seen that when these additive elements are used, low Hc is exhibited at a concentration of about 3 to 8 at%. The X-ray diffraction of the film shows a high-intensity peak of 2θ = 20 to 44 degrees in the proper concentration region. Even in the case of these additive elements, it is considered that the relationship between the composition and Hc changes depending on the film forming conditions and the like.

【0046】ところが、Pd,Ru,Cr,Siを添加
した場合は、どのような濃度でも良好な低Hc膜は得ら
れない。これらの膜の結晶構造を評価すると、hcp相
(100)ピークが認められる。以上のように、CoF
e膜においてはfcc相(111)又はhcp相(00
1)面配向を促進する添加元素と、これら配向を抑制す
る添加元素とがあることがわかる。 [第2発明] (実施例1)Co90Fe10又はCo90Fe10にAlを含
有量を変化させて添加した合金ターゲットとTaペレッ
トからなる複合型ターゲットを用い、アルゴンと窒素と
の混合ガス雰囲気中でRFマグネトロンスパッタ法によ
り、結晶化ガラス基板上に膜厚1μmの磁性膜を形成し
た。なお、磁性膜中のTaとAlとの合計の濃度は8〜
10at%になるように調整した。また、スパッタリン
グは以下の条件で行った。
However, when Pd, Ru, Cr and Si are added, a good low Hc film cannot be obtained at any concentration. When the crystal structures of these films are evaluated, the hcp phase (100) peak is observed. As described above, CoF
In the e film, the fcc phase (111) or the hcp phase (00
1) It can be seen that there are additional elements that promote plane orientation and additional elements that suppress these orientations. [Second Invention] (Example 1) A mixed gas of argon and nitrogen is used, using a composite target composed of Co 90 Fe 10 or an alloy target in which Al content is changed and added to Co 90 Fe 10 and Ta pellets. A magnetic film having a thickness of 1 μm was formed on a crystallized glass substrate by an RF magnetron sputtering method in an atmosphere. The total concentration of Ta and Al in the magnetic film is 8 to
It was adjusted to be 10 at%. The sputtering was performed under the following conditions.

【0047】 高周波電力密度 :0.05[W/mm2 ] 全スパッタガス圧力:0.3[Pa] 窒素ガス濃度 :25at% 電極間距離 :60[mm] 予備排気 :2×10-4[Pa]以下 基板温度 :約100[℃] 成膜後の熱処理は、磁性膜を所定温度において、2×1
0-3[Pa]の減圧下、16[kA/m]、100[r
pm]の回転磁界中に1時間保持して行った。
High frequency power density: 0.05 [W / mm 2 ] Total sputter gas pressure: 0.3 [Pa] Nitrogen gas concentration: 25 at% Electrode distance: 60 [mm] Pre-evacuation: 2 × 10 -4 [ Pa] or less Substrate temperature: Approximately 100 [° C.] The heat treatment after film formation is 2 × 1 at a predetermined temperature for the magnetic film.
Under reduced pressure of 0-3 [Pa], 16 [kA / m], 100 [r
It was held for 1 hour in a rotating magnetic field of [pm].

【0048】得られた磁性膜について各種特性を以下の
ようにして測定した。保持力は、磁性膜の困難軸方向に
最大250[Oe]の磁界を加えて測定した。Bsは、
磁性膜に10kOeの磁界を加えて振動型磁力計により
測定した。膜の結晶構造は、θ−2θスキャンのX線回
折法(CuKα線使用)により調べた。膜中の窒素濃度
は、水蒸気蒸留・ネスラー吸光光度法とオージェ光電子
分光法との併用により調べた。膜中のCo,Fe,Ta
及びAlの濃度は、蛍光X線分析により調べた。
Various characteristics of the obtained magnetic film were measured as follows. The coercive force was measured by applying a maximum magnetic field of 250 [Oe] in the hard axis direction of the magnetic film. Bs is
A magnetic field of 10 kOe was applied to the magnetic film, and measurement was performed using a vibration type magnetometer. The crystal structure of the film was examined by an X-ray diffraction method using a θ-2θ scan (using CuKα ray). The nitrogen concentration in the film was investigated by using steam distillation / Nessler absorption spectrophotometry and Auger photoelectron spectroscopy in combination. Co, Fe, Ta in the film
The concentrations of Al and Al were examined by fluorescent X-ray analysis.

【0049】前記の条件により作成された各磁性膜につ
いて、Hcの熱処理温度依存性を、T成分中のAlの含
有率(以下、「Taに対するAl置換量」という)をパ
ラメータとして図10に示す。
FIG. 10 shows the heat treatment temperature dependency of Hc for each magnetic film produced under the above conditions, with the content ratio of Al in the T component (hereinafter, referred to as "Al substitution amount for Ta") as a parameter. ..

【0050】まず、熱処理が施されていない磁性膜につ
いて検討する。Alが添加されていない膜は、800
[A/m]以上の高Hcを示す。また、この膜は弱い垂
直磁気異方性を示唆する磁化曲線を示す。この結果は、
これまで報告されているCo系窒化膜についての結果と
一致する。Al置換量が25〜50at%では、Hcは
10[A/m]以下に低下する。ただし、Al置換量が
75at%以上に増加すると、Hcは40[A/m]以
下に微増する。これらの結果から、Alの添加により有
害な垂直磁気異方性を抑制でき、熱処理を施さなくとも
低Hcを実現できることがわかる。
First, a magnetic film that has not been heat treated will be examined. The film without Al added is 800
A high Hc of [A / m] or more is shown. This film also exhibits a magnetization curve that suggests weak perpendicular magnetic anisotropy. This result is
This agrees with the results of Co-based nitride films that have been reported so far. When the Al substitution amount is 25 to 50 at%, Hc decreases to 10 [A / m] or less. However, when the Al substitution amount increases to 75 at% or more, Hc slightly increases to 40 [A / m] or less. From these results, it is understood that the harmful perpendicular magnetic anisotropy can be suppressed by adding Al, and low Hc can be realized without performing heat treatment.

【0051】次に、350〜550[℃]での熱処理の
影響について検討する。熱処理を施さない場合には高H
cを示すAlが添加されていない膜では、この温度での
熱処理によりHcは約10[A/m]に低下する。Al
置換量が10at%以上の膜では、この温度範囲の熱処
理によるHcの変化はほとんどない。
Next, the influence of the heat treatment at 350 to 550 [° C.] will be examined. High H without heat treatment
In the film in which Al showing c is not added, Hc is lowered to about 10 [A / m] by the heat treatment at this temperature. Al
In the film having a substitution amount of 10 at% or more, there is almost no change in Hc due to the heat treatment in this temperature range.

【0052】さらに、550[℃]以上での熱処理の影
響について検討する。Alが添加されていない膜とAl
置換量が75at%以上の膜ではHcが急激に増加す
る。一方、Al置換量が10at%の膜では600
[℃]での熱処理でHcが急激に減少する。そして、A
l置換量が10〜50at%膜では約650[℃]まで
の熱処理で10[A/m]以下の低Hcを示す。
Further, the effect of heat treatment at 550 [° C.] or higher will be examined. Al-free film and Al
Hc rapidly increases in a film having a substitution amount of 75 at% or more. On the other hand, when the Al substitution amount is 10 at%, it is 600
Hc sharply decreases by heat treatment at [° C]. And A
A film having a substitution amount of 10 to 50 at% exhibits a low Hc of 10 [A / m] or less by heat treatment up to about 650 [° C].

【0053】これらの結果から、Alの置換量が75a
t%未満であれば、ラミネート型ヘッドの製造プロセス
に耐え得る600[℃]以上の耐熱性を実現できる。
From these results, the substitution amount of Al is 75a.
When it is less than t%, heat resistance of 600 [° C.] or more, which can withstand the manufacturing process of the laminated head, can be realized.

【0054】ここで、Taの一部をAlで置換すること
により高Bsの特徴が損なわれることが懸念される。そ
こで、600[℃]で熱処理した磁性膜について、Al
置換量とBsとの関係を図11に示す。Al置換量が変
化しても、Bsは僅かに変化するだけであり、1.4〜
1.5[T]の高Bsが得られることがわかる。
Here, there is a concern that the characteristics of high Bs may be impaired by substituting part of Ta with Al. Therefore, regarding the magnetic film heat-treated at 600 [° C.],
FIG. 11 shows the relationship between the substitution amount and Bs. Even if the Al substitution amount changes, Bs changes only slightly, and
It can be seen that a high Bs of 1.5 [T] can be obtained.

【0055】Alの添加により軟磁性の耐熱性が向上す
るのは、膜の結晶構造が変化するためであると考えられ
る。そこで、X線回折曲線のAl置換量依存性を調べた
結果を図12に示す。
It is considered that the addition of Al improves the heat resistance of soft magnetism because the crystal structure of the film changes. Then, the result of examining the Al substitution amount dependency of the X-ray diffraction curve is shown in FIG.

【0056】まず、熱処理が施されていない磁性膜につ
いて検討する。Alが添加されていない膜では、2θ=
約45度にCo系アモルファス合金膜特有の著しく広が
った、いわゆるブロードピークが認められる。Al置換
量が50at%の膜では、このブロードピークの広角側
が膨らむ。さらに、Al置換量が75at%の膜では、
2θ=約50度に明確なピークが出現する。これらの変
化は、Al添加によりアモルファス状の相から微結晶を
含む構造に変化することによると推測される。
First, a magnetic film that has not been heat treated will be examined. For a film to which Al is not added, 2θ =
At about 45 degrees, a so-called broad peak characteristic of the Co-based amorphous alloy film, which is remarkably widened, is recognized. In the film in which the Al substitution amount is 50 at%, the wide-angle side of this broad peak swells. Furthermore, in the film in which the Al substitution amount is 75 at%,
A clear peak appears at 2θ = about 50 degrees. It is presumed that these changes are due to a change from an amorphous phase to a structure containing fine crystals due to the addition of Al.

【0057】次に、450[℃]での熱処理の影響につ
いて検討する。Al置換量が50at%以下の膜では2
θ=約35度に著しくブロードなTaNx と思われるピ
ークが認められる。同時に2θ=約45度のピークが幅
が狭くなる。これは窒化相と非窒化相との相分離に対応
した結晶化が進行しているためであると推定される。A
l置換量が75at%以上の膜では窒化物に対応する明
確なピークは出現せず、2θ=約45度と約50度とに
ピークが明確になる。この場合も、結晶成長が進行して
いると考えられる。
Next, the influence of heat treatment at 450 [° C.] will be examined. 2 if the Al substitution amount is 50 at% or less
At θ = about 35 degrees, a remarkably broad peak that is considered to be TaN x is observed. At the same time, the width of the peak at 2θ = about 45 degrees becomes narrow. It is presumed that this is because crystallization corresponding to the phase separation between the nitrided phase and the non-nitrided phase is progressing. A
No clear peak corresponding to the nitride appears in the film having the l substitution amount of 75 at% or more, and the peak becomes clear at 2θ = about 45 degrees and about 50 degrees. Also in this case, it is considered that crystal growth is progressing.

【0058】さらに、600度での熱処理の影響につい
て検討する。Alが添加されていない膜とAl置換量が
75at%以上の膜では、メインピーク(2θ=約45
度)の半値幅が減少し、結晶粒成長が明確である。Al
置換量が50at%の膜では結晶粒成長は比較的僅かで
ある。
Further, the effect of heat treatment at 600 degrees will be examined. In the film to which Al is not added and the film in which the amount of Al substitution is 75 at% or more, the main peak (2θ = approximately 45
The full width at half maximum (.degree.) Decreases, and the crystal grain growth is clear. Al
In the film with the substitution amount of 50 at%, the crystal grain growth is relatively small.

【0059】Alの添加により、結晶粒の成長が抑制さ
れる効果をより明確にするために、Alが添加されてい
ない膜とAl置換量が50at%の膜について、熱処理
温度と2θ=44〜45度のメインピークの半値幅(F
WHM)との関係を図13に示す。図13から、Alを
添加することにより、熱処理による半値幅の低下、すな
わち結晶粒の成長を抑制できることが明らかである。
In order to further clarify the effect of suppressing the growth of crystal grains by the addition of Al, the heat treatment temperature and 2θ = 44 to 40 ° C. for the film not added with Al and the film with the Al substitution amount of 50 at%. Full width at half maximum (F of 45 degrees)
FIG. 13 shows the relationship with WHM). From FIG. 13, it is clear that the addition of Al can suppress the decrease in the half-value width due to the heat treatment, that is, the growth of crystal grains.

【0060】図12及び図13の結果から、Taの一部
をAlで50at%まで置換すると、比較的低い温度
(400[℃])で窒化物を含む結晶化が起こるが、そ
の後の結晶粒成長を抑制できることがわかる。その結
果、Hcの耐熱性が向上すると考えられる。
From the results of FIG. 12 and FIG. 13, when a part of Ta is replaced with Al up to 50 at%, crystallization including a nitride occurs at a relatively low temperature (400 [° C.]). It turns out that growth can be suppressed. As a result, it is considered that the heat resistance of Hc is improved.

【0061】以上では、Alの添加によりHcの耐熱性
が向上する効果について説明したが、さらに、Alの添
加により、抵抗率が増加する効果も同時に得られる。
Although the effect of improving the heat resistance of Hc by adding Al has been described above, the effect of increasing the resistivity can also be obtained by adding Al.

【0062】図14に600[℃]で熱処理した膜の抵
抗率のAl置換量依存性を示す。抵抗率は、Al置換な
しの膜では0.55[μΩm]、Al置換量が50at
%の膜では0.7[μΩm]である。しかし、Al置換
量が75at%以上に増加すると抵抗率は急激に低下す
る。Al置換量が50at%の膜で抵抗率が増加するの
は、結晶粒成長の抑制によるものと考えられる。このよ
うに抵抗率の増大により渦電流を抑制できるので、良好
な高周波透磁率が期待できる。
FIG. 14 shows the Al substitution amount dependency of the resistivity of the film heat-treated at 600 [° C.]. The resistivity is 0.55 [μΩm] for the film without Al substitution, and the Al substitution amount is 50 at.
% Is 0.7 [μΩm]. However, when the Al substitution amount increases to 75 at% or more, the resistivity drops sharply. It is considered that the increase in the resistivity in the film in which the Al substitution amount is 50 at% is due to the suppression of crystal grain growth. Since the eddy current can be suppressed by increasing the resistivity in this way, good high frequency magnetic permeability can be expected.

【0063】ここで、Taに対するAlの置換量を増や
すと、耐食性に悪影響が認められる。その結果を表1に
示す。なお、耐食性は、磁性膜を室温でpH6.0の水
中に100時間放置した後、光学顕微鏡により表面状態
を観察することにより評価した。Al置換量が50at
%までの膜では、膜表面に全く変化が認められない。し
かし、Al置換量をさらに増やすと、錆による顕著な表
面変化が認められる。この結果から、Alを多量に添加
すると、磁性膜の耐食性を劣化させるという問題がある
ことがわかる。
Here, if the substitution amount of Al for Ta is increased, the corrosion resistance is adversely affected. The results are shown in Table 1. The corrosion resistance was evaluated by leaving the magnetic film in water having a pH of 6.0 at room temperature for 100 hours and then observing the surface condition with an optical microscope. Al substitution amount is 50 at
%, No change was observed on the surface of the film. However, when the Al substitution amount is further increased, a remarkable surface change due to rust is observed. From this result, it can be seen that when a large amount of Al is added, there is a problem that the corrosion resistance of the magnetic film is deteriorated.

【0064】[0064]

【表1】 (実施例2)窒素ガス濃度を0〜50at%の範囲で変
化させた以外は、実施例1の条件で磁性膜を形成した。
Taに対するAl置換量は10at%である。
[Table 1] Example 2 A magnetic film was formed under the conditions of Example 1 except that the nitrogen gas concentration was changed within the range of 0 to 50 at%.
The Al substitution amount with respect to Ta is 10 at%.

【0065】図15に、窒素ガス濃度と600[℃]で
熱処理を施した磁性膜のHcとの関係を示す。窒素ガス
濃度が5at%以下(膜中の窒素濃度は2at%以
下)、又は50at%以上(膜中の窒素濃度は20at
%以上)で作製された膜は、400[A/m]以上の高
Hcを示す。一方、窒素ガス濃度5〜50at%で作製
された膜は、30[A/m]以下の低Hcを示す。この
ことから、膜中の窒素濃度を2〜20at%とすること
により、耐熱性に優れた低Hc膜が得られることがわか
る。 (実施例3)合金ターゲット中のAl含有量とTaチッ
プの数を調整し、Taに対するAlの置換量をほぼ一定
(約50at%)とし、T成分(Ta及びAl)の濃度
bを変化させて実施例1の条件で磁性膜を形成した。
FIG. 15 shows the relationship between the nitrogen gas concentration and Hc of the magnetic film heat-treated at 600 [° C.]. Nitrogen gas concentration is 5 at% or less (nitrogen concentration in the film is 2 at% or less), or 50 at% or more (nitrogen concentration in the film is 20 at%
% Or more), the high Hc of 400 [A / m] or more. On the other hand, the film produced with a nitrogen gas concentration of 5 to 50 at% exhibits a low Hc of 30 [A / m] or less. From this, it is understood that the low Hc film excellent in heat resistance can be obtained by setting the nitrogen concentration in the film to 2 to 20 at%. (Example 3) The Al content in the alloy target and the number of Ta chips were adjusted so that the substitution amount of Al with Ta was almost constant (about 50 at%), and the concentration b of the T component (Ta and Al) was changed. A magnetic film was formed under the conditions of Example 1.

【0066】図16に550[℃]で熱処理した膜のH
cの濃度b依存性を示す。濃度bが4at%の膜では約
300[A/m]の比較的高いHcを示す。濃度bが5
〜13at%の膜では30[A/m]以下の低Hcを示
す。濃度bが15at%以上の膜では30[A/m]以
下の低Hcを示す。4<b<15の範囲で30[A/
m]以下の低Hcが得られることがわかる。
In FIG. 16, H of the film heat-treated at 550 [° C.]
The dependence of c on concentration b is shown. A film having a concentration b of 4 at% exhibits a relatively high Hc of about 300 [A / m]. Concentration b is 5
A film of ˜13 at% exhibits a low Hc of 30 [A / m] or less. A film having a concentration b of 15 at% or more shows a low Hc of 30 [A / m] or less. Within the range of 4 <b <15, 30 [A /
It can be seen that a low Hc of m] or less can be obtained.

【0067】図17に濃度bとBsとの関係を示す。濃
度bの増加によりBsは緩やかに低下するが、b=15
at%でも、従来のNiFe合金やFeAlSi合金を
上回るBs=1.25[T]の高Bsが得られる。 (実施例4)以上の実施例では、T成分としてTa及び
Alを含有する場合について説明したが、T成分中の遷
移金属としてTaの代わりにZr、Nb、Hf、Ti、
Cr、Mo、Wを用いた場合でも同様な結果が得られ
る。その結果を一例を表2に示す。表2には各磁性膜を
600[℃]熱処理後のHcと、Bsの値を示す。いず
れの磁性膜でも、Hcが30[A/m]以下、Bsが
1.2[T]以上の良好な磁気特性を示す。
FIG. 17 shows the relationship between the concentration b and Bs. Bs gradually decreases due to an increase in the concentration b, but b = 15
Even at at%, a high Bs of Bs = 1.25 [T], which is higher than that of a conventional NiFe alloy or FeAlSi alloy, can be obtained. (Embodiment 4) In the above embodiment, the case where Ta and Al are contained as the T component has been described. However, Zr, Nb, Hf, Ti, or Tr instead of Ta is used as the transition metal in the T component.
Similar results are obtained when Cr, Mo or W is used. An example of the result is shown in Table 2. Table 2 shows the values of Hc and Bs after each magnetic film was heat-treated at 600 [° C.]. Any of the magnetic films exhibits good magnetic properties such that Hc is 30 [A / m] or less and Bs is 1.2 [T] or more.

【0068】[0068]

【表2】 次に、本発明に係る磁性膜が適用される磁気ヘッドの例
を図18〜図21を参照して説明する。
[Table 2] Next, an example of a magnetic head to which the magnetic film according to the present invention is applied will be described with reference to FIGS.

【0069】図18は長手記録のハードディスクに対応
した薄膜磁気ヘッドの断面図である。基板1上に強磁性
膜2、及びヘッド先端側で所定のギャップ3が形成され
るように第1絶縁層4が積層され、この第1絶縁層4に
コイル5がまかれ、さらにコイル5を覆うように第2絶
縁層6が積層されている。絶縁層表面に強磁性膜7が、
その一部が強磁性膜2と接触するように形成され、ヘッ
ド先端側で強磁性膜2と強磁性膜7との間にギャップ3
が形成される。強磁性膜7上には保護膜8が形成されて
いる。
FIG. 18 is a sectional view of a thin film magnetic head corresponding to a longitudinal recording hard disk. The first insulating layer 4 is laminated on the substrate 1 so as to form the ferromagnetic film 2 and the predetermined gap 3 on the head tip side, the coil 5 is wound on the first insulating layer 4, and the coil 5 is further attached. The second insulating layer 6 is laminated so as to cover it. The ferromagnetic film 7 is formed on the surface of the insulating layer.
A part of it is formed so as to contact the ferromagnetic film 2, and a gap 3 is formed between the ferromagnetic film 2 and the ferromagnetic film 7 on the head tip side.
Is formed. A protective film 8 is formed on the ferromagnetic film 7.

【0070】本発明の強磁性膜は、従来のNiFe膜や
Co系アモルファス膜等に比べてBsが高いので、高保
持力媒体に対しても十分な記録が可能となる。また、従
来のAlが添加されていないCo系窒化膜に比べて抵抗
率が高いので、高周波特性に優れた記録再生が可能にな
る。さらに、熱処理を施さなくても低Hcを示すので、
余り耐熱性がよくない有機材料でも絶縁層として利用で
き、低コストの磁界ヘッドを製造することができる。
Since the ferromagnetic film of the present invention has a higher Bs than the conventional NiFe film, Co-based amorphous film, etc., sufficient recording is possible even on a high coercive force medium. In addition, since the resistivity is higher than that of a conventional Co-based nitride film to which Al is not added, recording / reproduction with excellent high frequency characteristics becomes possible. Furthermore, since it shows low Hc even without heat treatment,
Even an organic material having poor heat resistance can be used as an insulating layer, and a low-cost magnetic field head can be manufactured.

【0071】図19は垂直記録に対応した薄膜磁気ヘッ
ドの断面図である。基板11上に本発明に係る強磁性膜
からなる主磁極12、第1絶縁層13が順次積層され、
この第1絶縁層13にコイル14が巻かれ、さらにコイ
ル14を覆うように第2絶縁層15が積層されている。
絶縁層表面にリターンパス磁性体16が、その一部が主
磁極12と接触するように形成されている。リターンパ
ス磁性体16上には保護膜17が形成されている。
FIG. 19 is a sectional view of a thin film magnetic head compatible with perpendicular recording. A main pole 12 made of a ferromagnetic film according to the present invention and a first insulating layer 13 are sequentially stacked on a substrate 11,
The coil 14 is wound around the first insulating layer 13, and the second insulating layer 15 is further laminated so as to cover the coil 14.
A return path magnetic body 16 is formed on the surface of the insulating layer so that a part of the return path magnetic body 16 contacts the main magnetic pole 12. A protective film 17 is formed on the return path magnetic body 16.

【0072】主磁極12に使用される本発明の強磁性膜
は、従来のCo系アモルファス膜等に比べて、飽和磁極
厚みをさらに薄くすることができ、その結果線記録密度
の高い高密度垂直磁気記録が可能になる。
The ferromagnetic film of the present invention used for the main magnetic pole 12 can further reduce the thickness of the saturated magnetic pole as compared with the conventional Co-based amorphous film, and as a result, it has a high linear recording density and a high density perpendicular magnetic recording layer. Magnetic recording becomes possible.

【0073】図20はMIGヘッドの斜視図である。1
対のフェライトコア21、22には、それぞれその対向
面側に、中間層23、23を介して本発明に係る強磁性
膜24、24が形成されている。中間層23は、付着力
を強化するため、及びフェライトコアと強磁性膜との間
の相互拡散を防止するために用いられ、Cr、Si
2 、NiFe等が適している。これらフェライトコア
21、22は、強磁性膜24、24間にギャップ25が
形成されるように、ガラス26により溶着されている。
そして、フェライトコア21にはコイル27が巻かれて
いる。
FIG. 20 is a perspective view of the MIG head. 1
Ferromagnetic films 24 and 24 according to the present invention are formed on the opposing surfaces of the pair of ferrite cores 21 and 22 via intermediate layers 23 and 23, respectively. The intermediate layer 23 is used for strengthening the adhesive force and for preventing mutual diffusion between the ferrite core and the ferromagnetic film, and is made of Cr, Si.
O 2 , NiFe, etc. are suitable. These ferrite cores 21 and 22 are fused by glass 26 so that a gap 25 is formed between the ferromagnetic films 24 and 24.
A coil 27 is wound around the ferrite core 21.

【0074】このようなヘッドを作製する際には、約5
5[℃]の高温でガラス溶着工程が行われるが、本発明
の強磁性膜は600[℃]の耐熱性を有するので、この
ヘッドに適用することができる。また、Alが添加され
ていないCo系窒化膜に比べて、熱処理後の抵抗率が高
いので、高周波特性も良好である。メタルインギャップ
型のヘッドでは膜厚が厚いので、特に抵抗率の高い磁性
膜が要求される。
When manufacturing such a head, about 5
Although the glass welding step is performed at a high temperature of 5 [° C.], the ferromagnetic film of the present invention has a heat resistance of 600 [° C.] and can be applied to this head. Further, since the resistivity after the heat treatment is higher than that of the Co-based nitride film to which Al is not added, the high frequency characteristic is also good. Since the metal-in-gap type head has a large film thickness, a magnetic film having a high resistivity is particularly required.

【0075】図21はラミネート型ヘッドの斜視図であ
る。1対の非磁性基板31、31上には、付着力強化用
の中間層32、32を介して、本発明に係る強磁性膜3
3、33と絶縁層34、34とを交互に積層したラミネ
ート層が形成されている。この上に第1の溶着用ガラス
35、35を介して基板36、36が形成されている。
以上のような構成を有する1対のブロック37、38
は、基板断面で第2の溶着用ガラス39により接合さ
れ、所定のギャップが形成される。一方の、ブロック3
7には、コイル40が巻かれている。
FIG. 21 is a perspective view of a laminate type head. The ferromagnetic film 3 according to the present invention is formed on the pair of non-magnetic substrates 31 and 31 with the intermediate layers 32 and 32 for enhancing the adhesive force interposed therebetween.
A laminate layer is formed by alternately laminating 3, 33 and insulating layers 34, 34. Substrates 36, 36 are formed on this via the first welding glass 35, 35.
A pair of blocks 37, 38 having the above configuration
Are bonded by the second glass 39 for welding on the substrate cross section to form a predetermined gap. One, block 3
A coil 40 is wound around 7.

【0076】このようなラミネート型ヘッドを作製する
際には、第2のガラス39の溶着中に、第1のガラス3
5が安定であることが要求される。このため、第1のガ
ラス35の溶着温度は、第2のガラス39の溶着温度よ
りも高い、600[℃]以上の高温が望ましい。本発明
の強磁性膜はこのような高温プロセスにも十分耐え得る
ので、ラミネート型ヘッドにも適用できる。 (実施例5)本実施例は、Co90Fe10合金とTaペレ
ットによる複合型のタ−ゲットを用いて、RFマグネト
ロンスパッタにより、結晶化ガラス基板上に作製した。
なお、基板との付着力を保つために、基板と本発明に係
る磁性膜の中間に膜厚10[nm]程度のCr膜を介し
た。スパッタリングは、以下の条件で行った。
When manufacturing such a laminated head, the first glass 3 is melted during the welding of the second glass 39.
5 is required to be stable. Therefore, it is desirable that the welding temperature of the first glass 35 is higher than the welding temperature of the second glass 39, that is, a high temperature of 600 ° C. or higher. Since the ferromagnetic film of the present invention can sufficiently withstand such a high temperature process, it can be applied to a laminated head. (Embodiment 5) In this embodiment, a composite type target made of a Co 90 Fe 10 alloy and Ta pellets is used to form a crystallized glass substrate by RF magnetron sputtering.
A Cr film having a thickness of about 10 [nm] was interposed between the substrate and the magnetic film according to the present invention in order to maintain the adhesive force with the substrate. Sputtering was performed under the following conditions.

【0077】 高周波電力密度 :0.05[W/mm2 ] 全スパッタガス圧力:0.3[Pa] 窒素ガス濃度 :25at% 電極間距離 :60[mm] 予備排気 :1×10-4[Pa]以下 膜厚 :3[μm] 基板温度 :100 [℃] 保磁力は最大20[kA/m]の磁界を困難軸方向に加
えて振動型磁力計により測定した。実効透磁率は8字コ
イル法により求めた。なお、このときの周波数は1[M
Hz]であった。Bsは、10[kOe]の磁界を加え
て振動型磁力計により測定した。面内一軸磁気異方性に
よる異方性磁界Hkは困難軸方向の直線状マイナ−ル−
プ磁化曲線を飽和点まで延長する方法により求めた。飽
和磁気歪λsは膜に一方向性の応力を加えた場合のHk
変化から求めた。なお、膜のヤング率とポアソン比はC
oの値を代用した。結晶構造は、CuKα線を用いたθ
−2θスキャンのX線ディフラクトメ−タ法により調べ
た。膜中の窒素濃度は、水蒸気蒸留・ネスラ−吸光光度
法とオ−ジェ光電子分光法の併用により調べたところ、
熱処理前で12at%であり、700[℃]、1時間の
熱処理後では約10at%に減少した。Co,Fe及び
Taの膜中濃度は蛍光X線分析により調べたところ、C
83Fe9 Ta8 であった。
High frequency power density: 0.05 [W / mm 2 ] Total sputtering gas pressure: 0.3 [Pa] Nitrogen gas concentration: 25 at% Electrode distance: 60 [mm] Pre-evacuation: 1 × 10 -4 [ Pa] or less Film thickness: 3 [μm] Substrate temperature: 100 [° C.] Coercive force was measured with a vibrating magnetometer by applying a magnetic field with a maximum of 20 [kA / m] in the difficult axis direction. The effective magnetic permeability was obtained by the 8-shaped coil method. The frequency at this time is 1 [M
Hz]. Bs was measured with a vibrating magnetometer by applying a magnetic field of 10 [kOe]. The anisotropic magnetic field Hk due to the in-plane uniaxial magnetic anisotropy is a linear minor in the hard axis direction.
It was obtained by the method of extending the magnetization curve to the saturation point. Saturation magnetostriction λs is Hk when unidirectional stress is applied to the film.
Obtained from the change. The Young's modulus and Poisson's ratio of the film are C
The value of o was substituted. The crystal structure is θ using CuKα ray.
It was examined by the X-ray diffractometry method of -2 theta scan. The nitrogen concentration in the film was examined by a combination of steam distillation / Nesla-absorption photometry and Auger photoelectron spectroscopy.
It was 12 at% before the heat treatment and decreased to about 10 at% after the heat treatment at 700 [° C.] for 1 hour. When the concentrations of Co, Fe and Ta in the film were examined by X-ray fluorescence analysis, C
It was o 83 Fe 9 Ta 8 .

【0078】図22は、上記条件により作製した磁性膜
における実効透磁率μとHcの熱処理温度(Tan)依存
性を示す図である。熱処理は回転磁界中(16[kA/
m]、100[rpm])で各温度で1時間行った。膜
中には若干の異方性(異方性磁界Hk=100〜300
[A/m])が存在したので、透磁率が膜面内磁界印加
方向に応じて変化したが、図22には最大の透磁率の値
を示し、Hcの差はほとんど見られなかった。また、エ
ラ−バ−は複数の試料における変動を表す。熱処理前で
は、約200[A/m]の高Hc、約180の低透磁率
を示したが、熱処理温度が増加するとHcは低下、透磁
率は増加した。550[℃]〜700[℃]の熱処理範
囲で30[A/m]程度の低Hc、1000以上の高透
磁率が得られることがわかる。
FIG. 22 is a diagram showing the heat treatment temperature (Tan) dependence of the effective magnetic permeability μ and Hc in the magnetic film produced under the above conditions. The heat treatment is performed in a rotating magnetic field (16 [kA /
m], 100 [rpm]) at each temperature for 1 hour. Some anisotropy (anisotropic magnetic field Hk = 100-300 in the film)
[A / m]), the magnetic permeability changed according to the in-plane magnetic field application direction, but the maximum magnetic permeability value was shown in FIG. 22, and the difference in Hc was hardly seen. In addition, the error represents the variation in a plurality of samples. Before the heat treatment, the high Hc of about 200 [A / m] and the low magnetic permeability of about 180 were shown, but when the heat treatment temperature was increased, the Hc was decreased and the magnetic permeability was increased. It can be seen that a low Hc of about 30 [A / m] and a high magnetic permeability of 1000 or more can be obtained in the heat treatment range of 550 [° C.] to 700 [° C.].

【0079】図23は、Bsとλsの熱処理温度依存性
を示す図である。熱処理温度が増加すると、Bsは1.
4[T]から1.7[T]まで増加した。一方、λs
は、熱処理前には軟磁性が良くないため測定不能であっ
たが、450[℃]以上に熱処理温度が増加すると+1
×10-5から+2×10-6に低下した。約700[℃]
の熱処理のより1.7[T]の高Bs、+2×10-6
低磁気歪が得られることがわかる。以上は、回転磁界中
熱処理を施しているので一軸磁気異方性が小さい場合の
結果であるが、ヘッド構造によっては、磁区の安定化を
計るために適度の一軸磁気異方性を付与した磁性膜が好
ましい場合がある。
FIG. 23 is a diagram showing the heat treatment temperature dependence of Bs and λs. When the heat treatment temperature was increased, Bs was 1.
It increased from 4 [T] to 1.7 [T]. On the other hand, λs
Was not measurable before the heat treatment because the soft magnetism was not good, but +1 when the heat treatment temperature increased above 450 [° C].
It decreased from × 10 -5 to + 2 × 10 -6 . About 700 [℃]
It can be seen that a high Bs of 1.7 [T] and a low magnetostriction of + 2 × 10 −6 can be obtained by the heat treatment of (1). The above is the result when the uniaxial magnetic anisotropy is small because it is subjected to heat treatment in a rotating magnetic field. However, depending on the head structure, the magnetic property with an appropriate uniaxial magnetic anisotropy is added to stabilize the magnetic domains. Membranes may be preferred.

【0080】そこで、次に一軸磁気異方性を制御する方
法の一例を示す。まず始めに、固定磁界中で所定の温度
で熱処理を行い所定のHkを膜に付与する。図24は、
このときのHk、透磁率と熱処理温度の関係を示す図で
ある。Hcは回転磁界中熱処理を施した場合と同様な低
い値を示した。Hkは、450[℃]の熱処理では28
00[A/m]の大きな値を示したが、熱処理温度が7
00[℃]まで増加すると1350[A/m]に低下し
た。このHkの低下に対応して、透磁率は350から7
50まで増加した。図24における破線は、Hkから予
想される理想的な磁化回転における透磁率を示すもので
あり、実測した透磁率と一致することがわかる。次に、
この熱処理よりも低い温度(400〜600[℃])
で、前の熱処理磁界方向と直交する方向に固定磁界を加
えて所定の時間熱処理することにより所定のHkが付与
することができる。
Therefore, an example of a method for controlling the uniaxial magnetic anisotropy will be described next. First, heat treatment is performed at a predetermined temperature in a fixed magnetic field to apply a predetermined Hk to the film. Figure 24 shows
It is a figure which shows the relationship between Hk at this time, magnetic permeability, and heat processing temperature. Hc showed a low value similar to that when heat treatment was performed in a rotating magnetic field. Hk is 28 in heat treatment at 450 [° C]
Although a large value of 00 [A / m] was shown, the heat treatment temperature was 7
When it increased to 00 [° C], it decreased to 1350 [A / m]. Corresponding to this decrease in Hk, the magnetic permeability is 350 to 7
Increased to 50. The broken line in FIG. 24 shows the magnetic permeability in the ideal magnetization rotation expected from Hk, and it can be seen that it coincides with the actually measured magnetic permeability. next,
Temperature lower than this heat treatment (400-600 [° C])
Then, a predetermined Hk can be imparted by applying a fixed magnetic field in a direction orthogonal to the previous heat treatment magnetic field direction and performing heat treatment for a predetermined time.

【0081】その一例を次に示す。図25は、700
[℃]又は550[℃]、1時間の固定磁界中予備熱処
理後、その磁界方向と直交する方向に固定磁界を加えて
525[℃]の温度で熱処理した場合における、熱処理
時間とHkの関係を示す図である。図25において、正
のHkは予備熱処理での磁界付与方向に容易軸がある場
合を意味し、負のHkはそれと直交する方法に容易軸が
ある場合を意味する。熱処理時間を制御することによ
り、700[℃]の予備熱処理膜では0〜960[A/
m]の範囲で、550[℃]の予備熱処理膜では0〜1
420[A/m]の範囲でHkが制御できることがわか
る。ここで、700[℃]の予備熱処理膜では、これ以
上の長時間熱処理を施してもHkはほとんど変化しなか
ったが、このHkは、予備熱処理直後のHkに比べて4
00[A/m]程度小さい値を示した。なお、Hkの制
御は、2回目の熱処理の時間ではなく温度を制御しても
行なうことができる。さらに、まず始めに回転磁界中で
熱処理を施した後、固定磁界中で熱処理を行い、この固
定磁界中熱処理の条件(温度や時間等)を変数としても
よい。
An example thereof is shown below. FIG. 25 shows 700
The relationship between the heat treatment time and Hk when the heat treatment is performed at a temperature of 525 [° C.] by applying a fixed magnetic field in a direction orthogonal to the magnetic field direction after preliminary heat treatment in a fixed magnetic field for 1 hour at [° C.] or 550 [° C.] FIG. In FIG. 25, positive Hk means that the direction of applying a magnetic field in the preliminary heat treatment has an easy axis, and negative Hk means that the method orthogonal to it has an easy axis. By controlling the heat treatment time, 0-960 [A /
m] in the range of 550 [° C.] preheated film, 0 to 1
It can be seen that Hk can be controlled in the range of 420 [A / m]. Here, in the preheat-treated film at 700 [° C.], Hk hardly changed even after the heat treatment for a longer time than this, but this Hk was 4 times that of Hk immediately after the preheat treatment.
The value was as small as about 00 [A / m]. The Hk can be controlled by controlling the temperature instead of the time of the second heat treatment. Furthermore, first, heat treatment may be performed in a rotating magnetic field, and then heat treatment may be performed in a fixed magnetic field, and the conditions (temperature, time, etc.) of the heat treatment in the fixed magnetic field may be used as variables.

【0082】ところで、上述した磁気特性の熱処理依存
性は、結晶構造との間に強い相関があることがわかった
ので、その結果を次に示す。図26は、X線回折曲線の
熱処理温度依存性を示す図であり、図27は、X線回折
曲線での2θ=44〜45度におけるメインピ−クの半
値幅FWHMと面間隔dの熱処理温度依存性を示す図で
ある。成膜直後では、Co系のアモルファス膜と同様な
ブロ−ドしたピ−ク(2θ〜44度)のみが検出され
た。400[℃]の熱処理を施すと、このピ−クはbc
c相(110)ピ−クの位置とおよそ一致するところに
シフトして、ピ−ク強度の増大および半値幅の減少が認
められた。この他に、微弱ではあるがbcc相の(20
0)と(211)ピ−クが検出された。400[℃]熱
処理膜はbcc微結晶を呈することがわかる。550
[℃]から700[℃]に熱処理温度が増加すると、b
cc相(110)ピ−クは2θ=約44度のfcc相
(111)ピ−クの位置にシフトして、さらにfcc相
の(200)ピ−ク、(220)ピ−ク、(311)ピ
−クが認められた。また、TaNのピ−クも認められ
た。従って、、700[℃]まで熱処理を進めるとbc
c相からfcc相+TaNの2相に相変態することがわ
かる。なお、この相変態で、ピ−ク半値幅が減少してお
り、結晶粒径が増加したと推察される。しかし、透過電
子顕微鏡観察により結晶状態を観察したところ、550
[℃]の熱処理膜では平均結晶粒径が約5nmであり、
700[℃]の熱処理でもなお平均結晶粒径が約10n
mの微細粒を保っていた。その結果、700[℃]の高
温でも軟磁性が良好であったともの考えられる。
By the way, since it has been found that the above-mentioned dependence of the magnetic characteristics on the heat treatment has a strong correlation with the crystal structure, the results are shown below. FIG. 26 is a diagram showing the heat treatment temperature dependence of the X-ray diffraction curve, and FIG. 27 is a half-width FWHM of the main peak and the heat treatment temperature of the surface spacing d at 2θ = 44 to 45 degrees in the X-ray diffraction curve. It is a figure which shows a dependency. Immediately after the film formation, only the peak (2θ to 44 °) that was blown, similar to the Co-based amorphous film, was detected. When subjected to heat treatment at 400 ° C, this peak is bc
An increase in peak intensity and a decrease in full width at half maximum were observed, shifting to a position approximately coincident with the position of the c-phase (110) peak. In addition, (20) of bcc phase
0) and (211) peaks were detected. It can be seen that the 400 [° C.] heat-treated film exhibits bcc microcrystals. 550
When the heat treatment temperature is increased from [° C] to 700 [° C], b
The cc phase (110) peak is shifted to the position of the fcc phase (111) peak of 2θ = about 44 degrees, and further, the (200) peak, (220) peak, (311) of the fcc phase. ) A peak was recognized. A peak of TaN was also recognized. Therefore, when the heat treatment is advanced to 700 [° C.], bc
It can be seen that the phase is transformed from the c phase to the fcc phase + TaN two phases. It is assumed that the peak half-width was reduced and the crystal grain size was increased by this phase transformation. However, when the crystalline state was observed by transmission electron microscopy, it was found to be 550
In the heat treatment film at [° C.], the average crystal grain size is about 5 nm,
The average grain size is about 10n even after heat treatment at 700 ° C.
It kept fine particles of m. As a result, it is considered that the soft magnetism was good even at a high temperature of 700 [° C.].

【0083】ここで、この相変態と磁気特性との関係を
考えると、bcc相が高λsの相に、fcc相が低λs
の相に対応することがわかる。今まで知られているアモ
ルファスCoFeTa膜では、λsは大きな値(約+1
×10-5)であるので磁気ヘッドへの応用が困難であっ
たが、TaやNの固溶が少ないfcc相を安定化させる
ことで低λsが得られることがわかる。
Considering the relationship between this phase transformation and the magnetic characteristics, the bcc phase has a high λs phase and the fcc phase has a low λs phase.
It turns out that it corresponds to the phase of. In the amorphous CoFeTa film known so far, λs has a large value (about +1).
It was difficult to apply it to the magnetic head because it was × 10 −5 ), but it can be seen that low λs can be obtained by stabilizing the fcc phase in which Ta or N is less solid-dissolved.

【0084】なお、以上の特性は、TaをNbに置き換
えても同様であった。 (実施例6)次に、Fe濃度をCoFe合金タ−ゲット
のFe濃度により調整することで変化させた場合の実施
例を示す。なお、Ta濃度は実施例1の膜と同様であっ
た。
The above characteristics were the same even when Ta was replaced with Nb. (Embodiment 6) Next, an embodiment will be described in which the Fe concentration is changed by adjusting the Fe concentration of the CoFe alloy target. The Ta concentration was similar to that of the film of Example 1.

【0085】図28は、550[℃]で1時間の熱処理
後(回転磁界中)におけるHcのFe濃度依存性をPN
2 =15at%及び25at%の場合について示す図で
ある。Fe濃度はCoに対する置換量(Fe/(Co+
Fe))として表した。PN2 =15at%の場合は、
Feを添加しない膜では、80[A/m]以上の高Hc
を示したが、Fe濃度を2.5at%以上に設定するこ
とで80[A/m]以下の低Hcが得られた。一方、P
2 =25at%膜では、Fe濃度が5at%以下では
80[A/m]以上の高Hcを示したが、7.5at%
以上で80[A/m]以下の低Hcを示した。Fe濃度
の減少やPN2 の増加によりHcの増加する傾向にある
ことがわかる。しかし、PN2 =15at%膜ではさら
に高温で熱処理するとすべてのFe濃度の膜でHcが増
加した。図29は、650[℃]で1時間の熱処理後
(回転磁界中)におけるHcのFe濃度依存性を示す図
である。PN2 =15at%膜では、すべてのFe濃度
で240[A/m]以上の磁気ヘッドに適用困難な高H
cを示した。一方、PN2 =25at%膜では、7.5
〜12.5at%にFe濃度を設定することで依然とし
て80[A/m]以下の低Hcを示し、さらに、この低
Hcは700[℃]の熱処理でも安定であった。従っ
て、Fe濃度を増せば耐熱性に優れた低Hcが得られる
ことがわかる。しかし、Fe濃度を増やし過ぎるとλs
が増加する悪影響がある。
FIG. 28 shows the Fe concentration dependence of Hc after the heat treatment (in a rotating magnetic field) at 550 [° C.] for 1 hour as PN.
It is a figure shown about the case of 2 = 15at% and 25at%. The Fe concentration is the substitution amount of Co (Fe / (Co +
Fe)). When PN 2 = 15at%,
A film without Fe added has a high Hc of 80 [A / m] or more.
However, by setting the Fe concentration to 2.5 at% or more, a low Hc of 80 [A / m] or less was obtained. On the other hand, P
The N 2 = 25 at% film showed a high Hc of 80 [A / m] or more when the Fe concentration was 5 at% or less, but it was 7.5 at%.
As described above, low Hc of 80 [A / m] or less was exhibited. It can be seen that Hc tends to increase due to the decrease in Fe concentration and the increase in PN 2 . However, when the PN 2 = 15 at% film was heat-treated at a higher temperature, Hc increased in all Fe concentration films. FIG. 29 is a diagram showing the Fe concentration dependence of Hc after heat treatment at 650 ° C. for 1 hour (in a rotating magnetic field). With a PN 2 = 15 at% film, high H which is difficult to apply to a magnetic head of 240 [A / m] or more at all Fe concentrations.
c was shown. On the other hand, with a PN 2 = 25 at% film, 7.5
By setting the Fe concentration to ˜12.5 at%, a low Hc of 80 [A / m] or lower was still exhibited, and this low Hc was stable even at a heat treatment of 700 [° C.]. Therefore, it can be seen that low Hc having excellent heat resistance can be obtained by increasing the Fe concentration. However, if the Fe concentration is increased too much, λs
Has the adverse effect of increasing.

【0086】図30は、PN2 =12.5at%で作製
した場合の、550[℃]と700[℃]とで熱処理し
た膜におけるλsのFe濃度依存性を示す図である。1
2.5at%以下のFe濃度の膜では700[℃]の熱
処理でλsの絶対値は3×10-6以下の低い値を示した
が、それに比べて、15at%Fe膜ではλsは700
[℃]の熱処理を行っても1×10-5以上の大きな値を
示した。
FIG. 30 is a diagram showing the dependence of λs on the Fe concentration in a film heat-treated at 550 [° C.] and 700 [° C.] when manufactured with PN 2 = 12.5 at%. 1
In the Fe concentration film of 2.5 at% or less, the absolute value of λs showed a low value of 3 × 10 −6 or less after the heat treatment at 700 [° C.], but in comparison with the 15 at% Fe film, λs was 700.
Even after the heat treatment at [° C.], it showed a large value of 1 × 10 −5 or more.

【0087】以上の結果から、約550[℃]の熱処理
を必要とするMIGヘッドに適用する場合にはFe濃度
を2.5〜12.5at%の範囲に規定することで、8
0[A/m]以下の低Hc、3×10-6以下の低λsを
示すことがわかる。また、約650[℃]のガラス溶着
温度が望ましいラミネ−ト型ヘッドに適用する場合に
は、Fe濃度を7.5at%以上12.5at%以下に
設定することが必要である。
From the above results, when applied to the MIG head which requires heat treatment at about 550 [° C.], the Fe concentration is regulated within the range of 2.5 to 12.5 at%.
It can be seen that low Hc of 0 [A / m] or less and low λs of 3 × 10 −6 or less are exhibited. Further, when applied to a laminate type head in which a glass welding temperature of about 650 [° C.] is desirable, it is necessary to set the Fe concentration to 7.5 at% or more and 12.5 at% or less.

【0088】ここで、Fe濃度が低下するとHcが増加
する原因を考えてみる。Feを含まないCo系の窒化膜
では、柱状的な膜成長を生じるので垂直磁気異方性が発
生し易く、その結果低Hcを示さないことが報告されて
いる。そこで、磁化曲線の形状および膜成長挙動を調べ
た。図31は、典型的な高Hc膜(PN2 =25at
%、Fe無添加)の磁化曲線を示す図であり、垂直磁気
異方性を示唆する磁化曲線が得られる。
Now, let us consider the reason why Hc increases as the Fe concentration decreases. It has been reported that, in a Co-based nitride film containing no Fe, columnar film growth occurs, so that perpendicular magnetic anisotropy easily occurs, and as a result, low Hc is not exhibited. Therefore, the shape of the magnetization curve and the film growth behavior were investigated. FIG. 31 shows a typical high Hc film (PN 2 = 25 at).
%, Fe is not added), and a magnetization curve suggesting perpendicular magnetic anisotropy is obtained.

【0089】そこで、概ね垂直磁気異方性の指標となる
飽和磁界HsとFe濃度の関係を図32に示す。2.5
at%以下にFe濃度が低下するとHsが増加して、垂
直磁気異方性が顕著になった。5at%Fe膜では明確
ではないが、垂直磁気異方性とHcの増加に相関のある
ことがわかる。また、FESEMにより膜断面の構造を
調べた結果を模式的に図33に示す。10at%Fe膜
では滑らかな組織であるが、5at%以下のFe濃度膜
では、球状の明確な組織が認められた。5at%以下の
Fe濃度膜では、粗な構造を呈しているため磁気的な相
互作用が遮断されてHcが増加したと予想される。これ
が5at%Fe膜での高Hcの一因と言える。従って、
Feを混入することで膜成長が均一になり、その結果、
低Hcが得られることがわかる。
Therefore, FIG. 32 shows the relationship between the saturation magnetic field Hs and the Fe concentration, which are indexes of the perpendicular magnetic anisotropy. 2.5
When the Fe concentration decreased to at% or less, Hs increased and the perpendicular magnetic anisotropy became remarkable. Although it is not clear in the 5 at% Fe film, it can be seen that there is a correlation between the perpendicular magnetic anisotropy and the increase of Hc. Further, the result of examining the structure of the film cross section by FESEM is schematically shown in FIG. The 10at% Fe film has a smooth structure, but the Fe concentration film of 5at% or less has a clear spherical structure. The Fe concentration film of 5 at% or less has a rough structure, so it is expected that the magnetic interaction is blocked and the Hc is increased. It can be said that this is one of the causes of the high Hc in the 5 at% Fe film. Therefore,
By mixing Fe, the film growth becomes uniform, and as a result,
It can be seen that low Hc is obtained.

【0090】さらに、相変態挙動とHcの耐熱性、すな
わち、結晶粒径には強い相関がある。このことを以下に
詳しく説明する。図34は、PN2 =25at%膜にお
ける各熱処理温度でのX線回析曲線とFe濃度の関係を
示す図である。また、図35はPN2 =25at%膜に
おける650[℃]熱処理での回析ピ−ク強度(fcc
相(111)又はbcc相(110))と半値幅のFe
濃度依存性を示す図である。どのFe濃度の膜でも熱処
理前には著しくブロ−ドなアモルファス状の回析曲線を
示した。550[℃]の熱処理を行うと、0〜5at%
Fe膜ではfcc相微結晶であり、Feが下がるとピ−
ク強度の増加と半値幅の減少が認められた。また、Ta
窒化物が明確であった。一方、10at%Fe膜では5
50[℃]の熱処理ではbcc相が認められ、fcc相
は認められなかった。5at%以下のFe濃度膜に比べ
てより回析ピ−クがブロ−ドしていることすなわち結晶
粒が微細であることがわかる。さらに700[℃]の熱
処理を施すと10at%Fe膜でもfcc相とTa窒化
物に相変態するが、5at%以下のFe膜に比べて結晶
成長が起こりにくいことが明白である。すなわち、熱処
理の途中でbcc相と介してfcc相とTa窒化物に相
分離する場合、結晶粒の耐熱性が良好であり、その結
果、耐熱性に優れた軟磁性が実現できることがわかる。
なお、PN2 =15at%膜の耐熱性が悪い理由につい
ては、後述する。
Furthermore, there is a strong correlation between the phase transformation behavior and the heat resistance of Hc, that is, the crystal grain size. This will be described in detail below. FIG. 34 is a diagram showing the relationship between the X-ray diffraction curve and the Fe concentration at each heat treatment temperature in the PN 2 = 25 at% film. Further, FIG. 35 shows the diffraction peak strength (fcc) of the PN 2 = 25 at% film in the heat treatment of 650 [° C.].
Phase (111) or bcc phase (110)) and half width Fe
It is a figure which shows a density dependence. Before any heat treatment, any Fe concentration film showed a markedly broad amorphous diffraction curve. When heat treatment is performed at 550 [° C.], 0 to 5 at%
In the Fe film, fcc phase crystallites are formed, and when Fe falls,
An increase in the strength of the black wire and a decrease in the full width at half maximum were observed. Also, Ta
The nitride was clear. On the other hand, 5 at 10 at% Fe film
The bcc phase was observed and the fcc phase was not observed in the heat treatment at 50 [° C.]. It can be seen that the diffraction peak is blown more, that is, the crystal grains are finer than the Fe concentration film of 5 at% or less. Further, when heat treatment is performed at 700 [° C.], even the 10 at% Fe film undergoes phase transformation into the fcc phase and Ta nitride, but it is clear that crystal growth is less likely to occur as compared with the Fe film at 5 at% or less. That is, it is understood that when the fcc phase and the Ta nitride are phase-separated through the bcc phase during the heat treatment, the heat resistance of the crystal grains is good, and as a result, soft magnetism excellent in heat resistance can be realized.
The reason why the heat resistance of the PN 2 = 15 at% film is poor will be described later.

【0091】なお、λsは結晶構造と関連していること
を既に述べたが、Fe濃度が増加すると700[℃]の
熱処理を施しても、bccを主とする結晶構造のままで
ありfcc相の出現は僅かであった。すなわち、Fe濃
度が増加するとbcc相が安定化されるために低λsが
得られなくなる問題点を有する。
Although it has already been described that λs is related to the crystal structure, when the Fe concentration increases, even if the heat treatment is performed at 700 [° C.], the crystal structure mainly composed of bcc remains and the fcc phase remains. The appearance of was small. That is, when the Fe concentration is increased, the bcc phase is stabilized, so that a low λs cannot be obtained.

【0092】なお、以上の特性はTaをNbに置き換え
ても同様であった。 (実施例7)次に、Ta濃度(Co90Fe10合金タ−ゲ
ット上のTaチップの数で制御)を変えた場合の実施例
を示す。なお、Coに占めるFeの膜中濃度はタ−ゲッ
トと同様10at%であった。PN2 は25at%とし
た。
The above characteristics were the same even if Ta was replaced with Nb. (Embodiment 7) Next, an embodiment in which the Ta concentration (controlled by the number of Ta chips on the Co 90 Fe 10 alloy target) is changed will be described. The concentration of Fe in Co was 10 at% as in the target. PN 2 was set to 25 at%.

【0093】図36は、熱処理温度が550[℃]と6
50[℃]におけるHcのTa濃度依存性を示す図であ
る。熱処理温度が550[℃]の場合、5at%Ta膜
では80[A/m]以上の高Hcを示したが、Ta濃度
が5.7at%になると80[A/m]以下の低Hcを
示した。しかし、15at%にまでTa濃度が増える
と、図31と同様な垂直磁気異方性を示唆する磁化曲線
を示してHcは80[A/m]以上に増加した。一方、
熱処理温度が650[℃]の場合には低Hcの得られる
Ta濃度の範囲はより狭まり、7.2at%以上および
15at%未満のTa濃度では高Hcを示し、この中間
で80[A/m]以下の低Hcを示した。550[℃]
以上の耐熱性が要求されるMIGヘッドに本発明の磁性
膜を適用する場合には、Ta濃度は5at%を越えて1
5at%未満であることが、また650[℃]以上の耐
熱性が要求されるラミネ−ト型ヘッドに本発明の磁性膜
を適用する場合には、Ta濃度は7.2at%以上15
at%未満であることが必要である。
FIG. 36 shows that the heat treatment temperatures are 550 [° C.] and 6
It is a figure which shows Ta concentration dependence of Hc in 50 [degreeC]. When the heat treatment temperature was 550 [° C.], the 5 at% Ta film showed a high Hc of 80 [A / m] or more, but when the Ta concentration became 5.7 at%, a low Hc of 80 [A / m] or less was obtained. Indicated. However, when the Ta concentration increased to 15 at%, Hc increased to 80 [A / m] or more, showing a magnetization curve suggesting perpendicular magnetic anisotropy similar to FIG. on the other hand,
When the heat treatment temperature is 650 [° C.], the range of Ta concentration at which low Hc can be obtained becomes narrower, and high Hc is shown at Ta concentrations of 7.2 at% or more and less than 15 at%, and 80 [A / m ] The following low Hc was shown. 550 [℃]
When the magnetic film of the present invention is applied to the MIG head which is required to have the above heat resistance, the Ta concentration exceeds 5 at% and is 1
When the magnetic film of the present invention is applied to a laminar type head which is required to have a heat resistance of 650 [° C.] or more, the Ta concentration is 7.2 at% or more and 15 at% or more.
It must be less than at%.

【0094】次に、Taに応じてHcおよびその耐熱性
が変化する理由について述べる。図37は、代表的なT
a濃度膜におけるX線回折曲線の熱処理温度依存性を示
す図である。4at%Ta膜では、Ta≧5.7at%
膜におけるアモルファス又はそれに近い微結晶構造とは
異なり、熱処理前にすでにfcc相の(200)ピ−ク
と(111)ピ−クが明確であった。さらに、熱処理後
にそのピ−ク強度の増加が顕著であり、また、TaNの
検出可能なピ−クは認められなかった。Ta濃度が4a
t%以下では微結晶が得られないために低Hcが得られ
ないことがわかる。一方、Ta≧5.7at%膜では、
熱処理前にアモルファス状の結晶構造を呈し、550
[℃]の熱処理を施しても4at%Ta濃度膜に比べて
回折ピ−クの顕著な増大や半値幅の顕著な低下は見られ
なかった。しかし、650[℃]以上の熱処理を施す
と、5.7at%Ta濃度膜では回分ピ−クの成長が明
確であり、また半値幅も減少した。すなわち、結晶成長
が顕著であった。この結果、650[℃]以上の熱処理
ではHcが増加したと考えられる。これに反して、Ta
>5.7at%膜では、5.7at%Ta膜に比べて回
折ピ−クの増大や半値幅の減少は僅かであった(図26
参照)。なお、Ta濃度を15at%にまで増やすと、
主にCoとFeからなる母相(bcc相)の(110)
回折ピ−ク強度は弱いものの、明確なTa窒化物やCo
Ta化合物のピ−クが認められた。すなわち、非磁性介
在物の成長が明らかであり、これがHcの増加を引き起
こした一因と考えられる。高濃度Ta膜ではPN2 =2
5at%の成膜条件では窒素濃度が低すぎるために、f
ccへ相変態することなくbcc相とTa窒化物又はC
oTa化合物の混相に相変態した可能性がある。そこ
で、PN2 を35at%にまで増やした成膜をTa濃度
が15at%の膜について行ったが、図31と同様な1
200[A/m]の高Hcを垂直磁気異方性を示す磁化
曲線が得られた。高濃度Ta膜では、Fe濃度を高めて
もPN2 を高めると垂直磁気異方性の発生することがわ
かる。さらに、この高PN2 膜では付着力も不十分であ
った。
Next, the reason why Hc and its heat resistance change depending on Ta will be described. FIG. 37 shows a typical T
It is a figure which shows the heat processing temperature dependence of the X-ray-diffraction curve in a concentration film. For a 4 at% Ta film, Ta ≧ 5.7 at%
Unlike the amorphous or microcrystalline structure close to that in the film, the (200) peak and the (111) peak of the fcc phase were already clear before the heat treatment. Furthermore, the peak intensity was remarkably increased after the heat treatment, and no detectable peak of TaN was observed. Ta concentration is 4a
It can be seen that when t% or less, low Hc cannot be obtained because fine crystals cannot be obtained. On the other hand, in the case of Ta ≧ 5.7 at% film,
It exhibits an amorphous crystal structure before heat treatment and is 550
Even after the heat treatment at [° C.], no significant increase in the diffraction peak or no significant decrease in the half width was observed as compared with the 4 at% Ta concentration film. However, when the heat treatment was performed at 650 [° C.] or higher, the growth of batch peaks was clear in the 5.7 at% Ta concentration film, and the full width at half maximum was also reduced. That is, crystal growth was remarkable. As a result, it is considered that Hc increased in the heat treatment at 650 [° C.] or higher. Contrary to this, Ta
In the> 5.7 at% film, the increase in the diffraction peak and the decrease in the half value width were slight as compared with the 5.7 at% Ta film (FIG. 26).
reference). In addition, if the Ta concentration is increased to 15 at%,
(110) of the mother phase (bcc phase) mainly composed of Co and Fe
Diffraction peak intensity is weak, but clear Ta nitride and Co
A peak of Ta compound was observed. That is, the growth of non-magnetic inclusions is obvious, and this is considered to be one of the causes of the increase in Hc. PN 2 = 2 for high concentration Ta film
Since the nitrogen concentration is too low under the film forming conditions of 5 at%, f
bcc phase and Ta nitride or C without phase transformation to cc
It may have undergone phase transformation into a mixed phase of the oTa compound. Therefore, a film having a Ta concentration of 15 at% was formed by increasing PN 2 to 35 at%.
A magnetization curve showing a perpendicular magnetic anisotropy at a high Hc of 200 [A / m] was obtained. It can be seen that in the high-concentration Ta film, perpendicular magnetic anisotropy occurs when PN 2 is increased even if the Fe concentration is increased. Further, the high PN 2 film also had insufficient adhesion.

【0095】なお、以上の特性はTaをNbに置き換え
ても同様であった。 (実施例8)次に、膜中窒素濃度を変えた磁性膜の実施
例を示す。タ−ゲットには、Co90Fe10合金タ−ゲッ
ト上にTa濃度が約8at%となるようにTaチップを
加えた複合タ−ゲットを用いた。膜中窒素濃度はPN2
により調整した。
The above characteristics were the same even when Ta was replaced with Nb. (Embodiment 8) Next, an embodiment of the magnetic film in which the nitrogen concentration in the film is changed will be described. As the target, a composite target in which a Ta chip was added to a Co 90 Fe 10 alloy target so that the Ta concentration was about 8 at% was used. Nitrogen concentration in the film is PN 2
It was adjusted by.

【0096】まず、図38は、PN2 と膜中窒素濃度の
関係を示す図である。PN2 が増加すると膜中窒素濃度
がおよそ直線的に増加する様子がわかる。図39は、5
50[℃]と650[℃]熱処理後におけるHcのPN
2 依存性を示す図である。熱処理温度が550[℃]の
場合、PN2 =7.5at%(膜中窒素濃度:2at
%)では80[A/m]以上の高Hcを示すが、PN2
=12.5〜35at%(膜中窒素濃度:4.8〜14
at%)では80[A/m]以下の低Hcを示した。し
かし、PN2 が40at%にまで増加すると(膜中窒素
濃度:18at%)、膜剥離を生じてHcも80[A/
m]以上に増加した。一方、熱処理温度が650[℃]
の場合は、PN2 ≦15at%(膜中窒素濃度4.5a
t%)では80[A/m]以上の高Hcを示したが、P
2 =17.5〜30at%(膜中窒素濃度:7〜13
at%)の範囲では80[A/m]以下の低Hcを示し
た。しかし、PN2 が35at%(膜中窒素濃度:14
at%以上)にまで増加すると80[A/m]以上の高
Hcを示し、膜剥離が発生した。以上結果から、550
[℃]以上の耐熱性が必要なMIGヘッドに本発明の磁
性膜を適用するにはPN2 を7.5at%を越えて40
at%未満(膜中窒素濃度は2at%を越えて18at
%以下)に設定することで、また、650[℃]以上の
耐熱性が必要なラミネ−ト型ヘッドに本発明の磁性膜を
適用するにはPN2 を15at%を越えて35at%未
満(膜中窒素濃度は4.5at%を越えて13at%未
満)に設定することが必要であることがわかる。
First, FIG. 38 is a diagram showing the relationship between PN 2 and the nitrogen concentration in the film. It can be seen that the nitrogen concentration in the film increases approximately linearly as PN 2 increases. FIG. 39 shows 5
PN of Hc after heat treatment at 50 [℃] and 650 [℃]
It is a figure which shows 2 dependence. When the heat treatment temperature is 550 [° C.], PN 2 = 7.5 at% (nitrogen concentration in the film: 2 at)
%) Shows a high Hc of 80 [A / m] or more, but PN 2
= 12.5 to 35 at% (nitrogen concentration in the film: 4.8 to 14)
At%), low Hc of 80 [A / m] or less was exhibited. However, when PN 2 was increased to 40 at% (nitrogen concentration in the film: 18 at%), film peeling occurred and Hc was 80 [A / A].
m] or more. On the other hand, the heat treatment temperature is 650 [° C]
In the case of, PN 2 ≦ 15 at% (film nitrogen concentration 4.5a
t%) showed a high Hc of 80 [A / m] or more, but P
N 2 = 17.5 to 30 at% (Nitrogen concentration in the film: 7 to 13)
In the range of at%), low Hc of 80 [A / m] or less was shown. However, PN 2 was 35 at% (nitrogen concentration in the film: 14
When it was increased to at% or more), a high Hc of 80 [A / m] or more was exhibited, and film peeling occurred. From the above results, 550
In order to apply the magnetic film of the present invention to a MIG head which requires heat resistance of [° C.] or higher, PN 2 is more than 7.5 at% and 40
Less than at% (Nitrogen concentration in the film exceeds 2 at% and 18 at
% Or less), and in order to apply the magnetic film of the present invention to a laminar type head that requires heat resistance of 650 [° C.] or higher, PN 2 exceeds 15 at% and less than 35 at% ( It can be seen that it is necessary to set the nitrogen concentration in the film to more than 4.5 at% and less than 13 at%).

【0097】次に、低PN2 膜と高PN2 膜でHcが増
加した理由について述べる。図40は、80[A/m]
以上の高Hcを示した低PN2 膜、すなわち、膜中窒素
濃度が少ない膜と高PN2 膜におけるX線回折曲線の熱
処理温度依存性の典型例を示す図である。低PN2
(PN2 =15at%)では、350[℃]の熱処理で
は低Hcを示す最適窒素濃度膜と同様なbcc相からな
る。しかし、熱処理温度が550[℃]に増加してHc
が増加すると、bcc相のCoとFeを主とする母相以
外にTa窒化物とCoTa金属間化合物の析出物が明確
になった。この析出物ピ−クの一部は半値幅が狭く結晶
の成長が明らかである。すなわち、窒素濃度が少ない膜
におけるHcの耐熱性が良くない理由は、fccに相変
態することなくbcc相から窒化物等の析出が容易に起
こることに起因することがわかる。一方、高PN2
(PN2 =40at%)膜でも、熱処理温度が350
[℃]では低Hcを示す最適窒素濃度膜と同様なbcc
相からなるが、熱処理温度が550[℃]に増加する
と、fcc相への相変態が完了して、またかなりの量の
Ta窒化物のピ−クが明確に認められた。すなわち、窒
素濃度が高い膜でにおけるHcの耐熱性が良くない理由
は、bcc相からfcc相への相変態が起こり易く、そ
の結果結晶粒成長が起こり易いことに起因することがわ
かる。Ta濃度に近い膜中窒素濃度が高耐熱性の実現の
ために必要であることがわかる。
Next, the reason why Hc is increased in the low PN 2 film and the high PN 2 film will be described. FIG. 40 shows 80 [A / m]
More low PN2 film exhibited high Hc, i.e., a diagram illustrating a typical example of the heat treatment temperature dependence of the X-ray diffraction curve in the film nitrogen concentration is less film and a high PN 2 film. The low PN 2 film (PN 2 = 15 at%) has the same bcc phase as the optimum nitrogen concentration film showing low Hc by heat treatment at 350 ° C. However, the heat treatment temperature increased to 550 [° C.] and Hc
As a result, the precipitation of Ta nitride and CoTa intermetallic compound became clear in addition to the mother phase mainly composed of Co and Fe in the bcc phase. Part of this precipitate peak has a narrow half-width and crystal growth is apparent. That is, it is understood that the reason why the heat resistance of Hc in a film having a low nitrogen concentration is not good is that nitrides and the like are easily precipitated from the bcc phase without phase transformation into fcc. On the other hand, even with a high PN 2 film (PN 2 = 40 at%), the heat treatment temperature is 350
At [° C], the same bcc as the optimum nitrogen concentration film showing low Hc
When the heat treatment temperature was increased to 550 [° C.], the phase transformation to the fcc phase was completed, and a considerable amount of Ta nitride peak was clearly observed. That is, it is understood that the reason why the heat resistance of Hc is not good in the film having a high nitrogen concentration is that the phase transformation from the bcc phase to the fcc phase is likely to occur, and as a result, the crystal grain growth is likely to occur. It can be seen that the nitrogen concentration in the film close to the Ta concentration is necessary for realizing high heat resistance.

【0098】なお、以上の特性はTaをNbに置き換え
ても同様であった。 (実施例9)以上示した膜では、Fe濃度を高めるとλ
sが+1×10-6を越える場合があった。磁気ヘッドへ
の応用を考えるとλsはできる限り小さい事が望まし
い。そこで、実施例5の膜に各種添加元素を加えて実験
を進めたところ、Pd又はReを添加した場合、FeA
lSiを越える高Bs(1.1[T]以上)を維持し、
かつ、軟磁性を損うことなく、λs=0がほぼ実現でき
ることがわかった。その一例として、図41は、550
[℃]熱処理後のBs、Hc及びλsのPd濃度依存性
を示す図である。ただし、PN2 だけは、実施例5の場
合と異なり、各Pd濃度に適した値とした。この最適P
2 はPd濃度が0から15at%まで増加すると25
at%から10at%にまで低下した。図41から、P
d濃度の増加により、Hcが増加することなくλsが負
の方向にシフトして、Pd濃度が約10at%でλs=
0がほぼ実現できることがわかる。なお、λsがほぼ零
となるPd濃度は、Fe濃度が増加すると増加して、熱
処理温度が550[℃]以上に増加すると低下した。さ
らに、Bsは、Pd濃度が15at%にまで増加すると
FeAlSi膜と同程度の値(1.1[T])にまで低
下したが、15at%未満のPd濃度ではFeAlSi
膜を越える高Bsを示した。
The above characteristics were the same even when Ta was replaced with Nb. (Example 9) In the film shown above, when the Fe concentration is increased, λ
In some cases, s exceeded + 1 × 10 -6 . Considering the application to a magnetic head, it is desirable that λs be as small as possible. Therefore, when various kinds of additional elements were added to the film of Example 5 and experiments were carried out, when Pd or Re was added, FeA
Maintaining high Bs (1.1 [T] or more) exceeding 1Si,
Moreover, it has been found that λs = 0 can be almost realized without deteriorating the soft magnetism. As an example, FIG. 41 shows 550.
It is a figure which shows the Pd density | concentration dependence of Bs, Hc, and (lambda) s after [degreeC] heat processing. However, only PN 2 was set to a value suitable for each Pd concentration, unlike the case of Example 5. This optimum P
N 2 is 25 when the Pd concentration increases from 0 to 15 at%.
It fell from at% to 10 at%. From FIG. 41, P
As d concentration increases, λs shifts in the negative direction without increasing Hc, and λs = about 10 at% at Pd concentration.
It can be seen that 0 can be almost achieved. The Pd concentration at which λs became almost zero increased as the Fe concentration increased, and decreased when the heat treatment temperature increased to 550 ° C or higher. Further, Bs decreased to a value (1.1 [T]) similar to that of the FeAlSi film when the Pd concentration increased to 15 at%, but FeAlSi decreased at a Pd concentration of less than 15 at%.
It showed high Bs across the membrane.

【0099】[0099]

【発明の効果】以上詳述したように第1発明の強磁性膜
は、1.3[T]を越える高Bsを保ちながら、80
[A/m]以下の低Hcを実現できる。従って、本発明
の強磁性膜を用いることにより、記録能力に優れた磁気
ヘッドを作製できる。
As described in detail above, the ferromagnetic film of the first aspect of the present invention maintains a high Bs of more than 1.3 [T] while maintaining a high Bs of 80%.
A low Hc of [A / m] or less can be realized. Therefore, by using the ferromagnetic film of the present invention, a magnetic head having excellent recording ability can be manufactured.

【0100】また、第2発明の強磁性膜は、600
[℃]以上の良好な耐熱性を有する軟磁性を示し、高い
抵抗率を有するため良好な高周波特性が期待でき、良好
な耐食性を有し、さらに通常のRFマグネトロンスパッ
タにより広い製造マージンで製造できる。この結果、本
発明の強磁性膜を用いることにより、記録能力に優れた
磁気ヘッドを作製できる。特に、本発明の強磁性膜は6
00[℃]以上の耐熱性を有するので、ガラス溶着工程
を必要とするMIGヘッドやラミネート型ヘッドを含む
広範囲の磁気ヘッドに適用できる。
The ferromagnetic film of the second invention is 600
It exhibits soft magnetism with good heat resistance above [° C], and it can be expected to have good high-frequency characteristics due to its high resistivity, has good corrosion resistance, and can be manufactured with a wide manufacturing margin by ordinary RF magnetron sputtering. .. As a result, by using the ferromagnetic film of the present invention, a magnetic head having excellent recording ability can be manufactured. In particular, the ferromagnetic film of the present invention has 6
Since it has a heat resistance of not less than 00 [° C.], it can be applied to a wide range of magnetic heads including a MIG head and a laminated head that require a glass welding process.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る強磁性膜について、保持力Hc
の主回折ピーク強度依存性を示す図。
FIG. 1 shows a coercive force Hc of a ferromagnetic film according to the present invention.
The figure which shows the main diffraction peak intensity dependence of.

【図2】 (a)はCoFePd膜について、(b)は
CoFeTa膜について、2θ=45度近傍のX線回折
曲線を示す図。
FIG. 2A is a diagram showing an X-ray diffraction curve in the vicinity of 2θ = 45 degrees for a CoFePd film and FIG. 2B for a CoFeTa film.

【図3】 本発明に係る強磁性膜について、as−ma
de状態での飽和磁束密度Bsの添加元素濃度依存性を
示す図。
FIG. 3 shows the as-ma of the ferromagnetic film according to the present invention.
The figure which shows the additive element concentration dependence of the saturation magnetic flux density Bs in a de state.

【図4】 回折面を膜面に平行な状態から所定の角度だ
け傾けた場合のX線回折曲線を示す図。
FIG. 4 is a diagram showing an X-ray diffraction curve when the diffraction surface is tilted by a predetermined angle from a state parallel to the film surface.

【図5】 本発明に係る強磁性膜について、Hc及びB
sのTa濃度依存性を示す図。
FIG. 5 shows Hc and B for the ferromagnetic film according to the present invention.
The figure which shows Ta concentration dependence of s.

【図6】 本発明に係る強磁性膜について、HcのFe
濃度依存性を示す図。
FIG. 6 shows Hc of Fe in the ferromagnetic film according to the present invention.
The figure which shows a density dependence.

【図7】 Feを含まない膜の磁化曲線の一例を示す
図。
FIG. 7 is a diagram showing an example of a magnetization curve of a film containing no Fe.

【図8】 本発明に係る強磁性膜について、HcのAl
濃度依存性を示す図。
FIG. 8 is a schematic diagram of a ferromagnetic film according to the present invention.
The figure which shows a density dependence.

【図9】 本発明に係る強磁性膜について、Hcの他の
添加元素の濃度依存性を示す図。
FIG. 9 is a diagram showing the concentration dependence of other additive elements of Hc in the ferromagnetic film according to the present invention.

【図10】 本発明に係る磁性膜について、Hcの熱処
理温度依存性を、Taに対するAl置換量をパラメータ
として示す図。
FIG. 10 is a diagram showing the heat treatment temperature dependency of Hc for the magnetic film according to the present invention, using the amount of Al substitution for Ta as a parameter.

【図11】 600℃で熱処理した本発明に係る磁性膜
について、Al置換量とBsとの関係を示す図。
FIG. 11 is a diagram showing a relationship between Al substitution amount and Bs for a magnetic film according to the present invention which is heat-treated at 600 ° C.

【図12】 本発明に係る磁性膜について、X線回折曲
線のAl置換量依存性を、熱処理温度をパラメータとし
て示す図。
FIG. 12 is a diagram showing the Al substitution amount dependency of the X-ray diffraction curve for the magnetic film according to the present invention, using the heat treatment temperature as a parameter.

【図13】 Alが添加されていない膜とAl置換量が
50%の磁性膜について、熱処理温度とメインピークの
半値幅(FWHM)との関係を示す図。
FIG. 13 is a diagram showing a relationship between a heat treatment temperature and a full width at half maximum (FWHM) of a main peak of a film to which Al is not added and a magnetic film having an Al substitution amount of 50%.

【図14】 600℃で熱処理した本発明に係る磁性膜
について、抵抗率のAl置換量依存性を示す図。
FIG. 14 is a diagram showing the Al substitution amount dependency of the resistivity of the magnetic film according to the present invention which is heat-treated at 600 ° C.

【図15】 窒素ガス濃度と600℃で熱処理した本発
明に係る磁性膜のHcとの関係を示す図。
FIG. 15 is a diagram showing the relationship between the nitrogen gas concentration and Hc of the magnetic film according to the present invention which is heat-treated at 600 ° C.

【図16】 600℃で熱処理した本発明に係る磁性膜
のHcの濃度b依存性を示す図。
FIG. 16 is a diagram showing the dependency of Hc on the concentration b of the magnetic film according to the present invention which was heat-treated at 600 ° C.

【図17】 本発明に係る磁性膜について、濃度bとB
sとの関係を示す図。
FIG. 17 shows concentrations b and B of the magnetic film according to the present invention.
The figure which shows the relationship with s.

【図18】 長手記録のハードディスクに対応した薄膜
磁気ヘッドの断面図。
FIG. 18 is a sectional view of a thin film magnetic head corresponding to a longitudinal recording hard disk.

【図19】 垂直記録に対応した薄膜磁気ヘッドの断面
図。
FIG. 19 is a cross-sectional view of a thin film magnetic head compatible with perpendicular recording.

【図20】 メタルインギャップヘッドの断面図。FIG. 20 is a sectional view of a metal in-gap head.

【図21】 ラミネート型ヘッドの斜視図。FIG. 21 is a perspective view of a laminated head.

【図22】 PN2 =25at%成膜したCo83Fe9
Ta8 膜における透磁率とHcの熱処理温度依存性を示
す図。
FIG. 22: PN 2 = 25 at% deposited Co 83 Fe 9 film
Shows a thermal treatment temperature dependence of the magnetic permeability and Hc in ta 8 film.

【図23】 PN2 =25at%成膜したCo83Fe9
Ta8 膜における回転磁界中熱処理でのBsとλsの熱
処理温度依存性を示す図。
FIG. 23: PN 2 = 25 at% deposited Co 83 Fe 9 film
Shows a thermal treatment temperature dependence of Bs and λs in a rotating magnetic field heat treatment in ta 8 film.

【図24】 PN2 =25at%成膜したCo83Fe9
Ta8 膜における固定磁界中熱処理でのHkと透磁率の
熱処理温度依存性を示す図。
FIG. 24: PN 2 = 25 at% deposited Co 83 Fe 9 film
Shows a thermal treatment temperature dependence of Hk and permeability in a fixed magnetic field heat treatment in ta 8 film.

【図25】 PN2 =25at%成膜したCo83Fe9
Ta8 膜におけるHkと透磁率の熱処理時間依存性を示
す図。
FIG. 25: PN 2 = 25 at% deposited Co 83 Fe 9 film
Shows a heat treatment time dependence of Hk and permeability at ta 8 film.

【図26】 PN2 =25at%成膜したCo83Fe9
Ta8 膜におけるX線回折曲線の熱処理温度依存性を示
す図。
FIG. 26: PN 2 = 25 at% deposited Co 83 Fe 9 film
Shows a thermal treatment temperature dependence of the X-ray diffraction curve at ta 8 film.

【図27】 PN2 =25at%成膜したCo83Fe9
Ta8 膜におけるX線回折主ピークの半値幅と面間隔の
熱処理温度依存性を示す図。
FIG. 27: PN 2 = 25 at% deposited Co 83 Fe 9 film
Shows a thermal treatment temperature dependence of the half width and spacing of the X-ray diffraction main peak in ta 8 film.

【図28】 550℃で熱処理した膜のHcの濃度依存
性を示す図。
FIG. 28 is a diagram showing Hc concentration dependence of a film heat-treated at 550 ° C.

【図29】 650℃熱処理での8at%Ta膜におけ
るHcのFe濃度依存性を示す図。
FIG. 29 is a diagram showing the Fe concentration dependence of Hc in an 8 at% Ta film after heat treatment at 650 ° C.

【図30】 磁気歪のFe濃度依存性を示す図。FIG. 30 is a diagram showing the Fe concentration dependence of magnetostriction.

【図31】 CoTaN膜における高Hc膜を示す磁化
曲線の一例を示す図。
FIG. 31 is a diagram showing an example of a magnetization curve showing a high Hc film in a CoTaN film.

【図32】 飽和磁界のFe濃度依存性を示す図。FIG. 32 is a diagram showing the Fe concentration dependence of a saturation magnetic field.

【図33】 FESEMにより膜破断面を測定した結果
を示す図。
FIG. 33 is a diagram showing a result of measurement of a film fracture surface by FESEM.

【図34】 X線回折主ピークの半値幅と面間隔のFe
濃度依存性を示す図。
FIG. 34 is a graph showing the full width at half maximum of the X-ray diffraction main peak and the Fe spacing.
The figure which shows a density dependence.

【図35】 X線回折曲線のFe濃度依存性を示す図。FIG. 35 is a diagram showing the Fe concentration dependence of an X-ray diffraction curve.

【図36】 HcのTa濃度依存性を示す図。FIG. 36 is a diagram showing Ta concentration dependence of Hc.

【図37】 X線回折曲線のTa濃度依存性を示す図。FIG. 37 is a diagram showing Ta concentration dependence of an X-ray diffraction curve.

【図38】 窒素濃度のPN2 依存性を示す図。FIG. 38 is a diagram showing PN 2 dependence of nitrogen concentration.

【図39】 HcのPN2 依存性を示す図。FIG. 39 is a diagram showing PN 2 dependence of Hc.

【図40】 X線回折曲線のPN2 依存性を示す図。FIG. 40 is a diagram showing PN 2 dependence of an X-ray diffraction curve.

【図41】 Bs,Hc,λsのPd濃度依存性を示す
図。
FIG. 41 is a diagram showing Pd concentration dependence of Bs, Hc, and λs.

【符号の説明】[Explanation of symbols]

1 基板 2 強磁性膜 3 ギャップ 4 第1絶縁層 5 コイル 6 第2絶縁層 7 強磁性膜 8 保護膜 基板11 主磁極12 第1絶縁層13 コイル14 第2絶縁層15 リターンパス磁性体16 保護膜17 フェライトコア21、22 中間層23、23 強磁性膜24、24 ギャップ25 ガラス26 コイル27 非磁性基板31、31 中間層32、32 強磁性膜33、33 絶縁層34、34 溶着用ガラス35、35 基板36、36 ブロック37、38 溶着用ガラス39 コイル40 1 Substrate 2 Ferromagnetic film 3 Gap 4 First insulating layer 5 Coil 6 Second insulating layer 7 Ferromagnetic film 8 Protective film Substrate 11 Main pole 12 First insulating layer 13 Coil 14 Second insulating layer 15 Return path magnetic substance 16 Protection Film 17 Ferrite core 21, 22 Intermediate layer 23, 23 Ferromagnetic film 24, 24 Gap 25 Glass 26 Coil 27 Non-magnetic substrate 31, 31 Intermediate layer 32, 32 Ferromagnetic film 33, 33 Insulating layer 34, 34 Welding glass 35 , 35 substrate 36, 36 block 37, 38 glass for welding 39 coil 40

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式Cox Fey z (ただし、TはAl,Ta,Ti,Zr,Nb,Hf,
Mo,Wからなる群より選択される少なくとも1種の原
子であり、x,y,zはそれぞれ組成比をat%で示
し、 73<x<94 5<y≦15 1<z<12 x+y+z=100) 表される合金からなることを特徴とする強磁性膜。
1. A general formula Co x Fe y T z (where T is Al, Ta, Ti, Zr, Nb, Hf,
It is at least one atom selected from the group consisting of Mo and W, and x, y, and z each represent a composition ratio in at%, and 73 <x <945 5 <y ≦ 151 <z <12 x + y + z = 100) A ferromagnetic film comprising an alloy represented by the above.
【請求項2】 一般式(Ma b x y (ただし、MはCo又はCo及びFeであり、TはT
a,Nb,Zr,Hf,Ti,Cr,Mo,Wからなる
遷移金属の群より選択される少なくとも1種の原子及び
Al、Nは窒素であり、a,b,x,yはそれぞれ組成
比をat%で示し、 85<a<96 4<b<15 a+b=100 80<x<98 2<y<20 x+y=100 M中のFeの含有率は0≦Fe≦15at% T中のAlの含有率は4<Al≦50at%) で表される合金からなることを特徴とする強磁性膜。
2. The general formula (M a T b ) x N y (where M is Co or Co and Fe, and T is T
at least one atom selected from the group of transition metals consisting of a, Nb, Zr, Hf, Ti, Cr, Mo and W and Al and N are nitrogen, and a, b, x and y are composition ratios, respectively. Is expressed as at% and 85 <a <96 4 <b <15 a + b = 100 80 <x <98 2 <y <20 x + y = 100 The content of Fe in M is 0 ≦ Fe ≦ 15 at% Al in T The ferromagnetic film is characterized by comprising an alloy represented by a content ratio of 4 <Al ≦ 50 at%).
【請求項3】 一般式(Ma b x y (ただし、MはCoとFeであり、TはTa又はNbか
ら選択された少なくとも1種の原子であり、Nは窒素で
あり、a,b,x,yはそれぞれ組成比をat%で示
し、 85<a<95 5<b<15 a+b=100 82<x<97.5 2.5<y<18 x+y=100) で表わされる合金からなる磁性膜において、Mにおける
Feの含有率は 2.5≦Fe≦12.5at% であることを特徴とする強磁性膜。
3. A compound represented by the general formula (M a T b ) x N y (wherein M is Co and Fe, T is at least one atom selected from Ta or Nb, and N is nitrogen, Each of a, b, x, and y represents a composition ratio in at% and is expressed by 85 <a <95 5 <b <15 a + b = 100 82 <x <97.5 2.5 <y <18 x + y = 100). In the magnetic film made of the alloy described above, the content ratio of Fe in M is 2.5 ≦ Fe ≦ 12.5 at%.
【請求項4】 請求項3の磁性膜にPd又はReの中か
ら選択された少なくとも1種の原子の含有率が15at
%未満であることを特徴とする強磁性膜。
4. The magnetic film according to claim 3, wherein the content of at least one atom selected from Pd and Re is 15 at.
%, The ferromagnetic film.
JP4250435A 1991-09-30 1992-08-27 Ferromagnetic film Pending JPH05217746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4250435A JPH05217746A (en) 1991-09-30 1992-08-27 Ferromagnetic film

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP3-252448 1991-09-30
JP3-250674 1991-09-30
JP25067491 1991-09-30
JP25244891 1991-09-30
JP4250435A JPH05217746A (en) 1991-09-30 1992-08-27 Ferromagnetic film

Publications (1)

Publication Number Publication Date
JPH05217746A true JPH05217746A (en) 1993-08-27

Family

ID=27333935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4250435A Pending JPH05217746A (en) 1991-09-30 1992-08-27 Ferromagnetic film

Country Status (1)

Country Link
JP (1) JPH05217746A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909344A (en) * 1995-11-30 1999-06-01 International Business Machines Corporation Magnetoresistive sensor with high resistivity flux guide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909344A (en) * 1995-11-30 1999-06-01 International Business Machines Corporation Magnetoresistive sensor with high resistivity flux guide

Similar Documents

Publication Publication Date Title
KR960002611B1 (en) Magnetic film
JP3981732B2 (en) FePt magnetic thin film having perpendicular magnetic anisotropy and method for producing the same
JPH0744110B2 (en) High saturation magnetic flux density soft magnetic film and magnetic head
US5439754A (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JP3318204B2 (en) Perpendicular magnetic film, method of manufacturing the same, and perpendicular magnetic recording medium
Katada et al. Soft magnetic properties and microstructure of NiFe (Cr)/FeCo/NiFe (Cr) films with large saturation magnetization
US5750251A (en) Multilayered soft magnetic film and magnetic head using the same
JP3382084B2 (en) Magnetic thin film for magnetic head, method of manufacturing the same, and magnetic head using the magnetic thin film
JPH0320444A (en) Soft magnetic alloy film
JPH05217746A (en) Ferromagnetic film
JP2925257B2 (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JP2710453B2 (en) Soft magnetic alloy film
JP2508479B2 (en) Soft magnetic ferrite thin film
JPH03263306A (en) Magnetic film and magnetic head
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JPH03265105A (en) Soft magnetic laminate film
JPH05114530A (en) Manufacture of soft magnetic alloy film and manufacture of magnetic head
JPH0316203A (en) Heat-resistant high saturation magnetic flux density film
JP2752199B2 (en) Magnetic head
KR100193703B1 (en) Manufacturing method of soft magnetic alloy film, magnetic head and soft magnetic alloy film
JP3194578B2 (en) Multilayer ferromagnetic material
JPH04252006A (en) Corrosion-resistant magnetically soft film and magnetic head using the same
JP2508489C (en)
JPH0439905A (en) Magnetically soft alloy film