JPH05114530A - Manufacture of soft magnetic alloy film and manufacture of magnetic head - Google Patents

Manufacture of soft magnetic alloy film and manufacture of magnetic head

Info

Publication number
JPH05114530A
JPH05114530A JP27516391A JP27516391A JPH05114530A JP H05114530 A JPH05114530 A JP H05114530A JP 27516391 A JP27516391 A JP 27516391A JP 27516391 A JP27516391 A JP 27516391A JP H05114530 A JPH05114530 A JP H05114530A
Authority
JP
Japan
Prior art keywords
magnetic
alloy film
soft magnetic
film
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27516391A
Other languages
Japanese (ja)
Inventor
Keita Ihara
慶太 井原
Hiroshi Sakakima
博 榊間
Kumio Nako
久美男 名古
Akihiro Ashida
晶弘 芦田
Takeshi Takahashi
高橋  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27516391A priority Critical patent/JPH05114530A/en
Publication of JPH05114530A publication Critical patent/JPH05114530A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • H01F10/147Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel with lattice under strain, e.g. expanded by interstitial nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the manufacturing method of a soft magnetic alloy film wherein magnetic anisotropy is imparted to an iron based nitride alloy film at the time of film formation, and high permeability is obtained in the hard direction of magnetization, and the manufacturing method of a magnetic head using said film. CONSTITUTION:The manufacturing method of a soft magnetic alloy film 2 is as follows; vapor-deposited particles 3 are made to enter a substrate 1 averagely obliquely, a film is formed, heat treatment is performed, and anisotropic magnetic field in the direction of hard magnetization is made 300-1500A/m. The manufacturing method of a magnetic head is as follows; the average incidence direction of the vapor-deposited particles 3 to the substrate 1 is adjusted, a film is formed, heat treatment is performed, and magnetic anisotropy wherein the track width direction of the soft magnetic alloy film 2 turns to the direction of easy magnetization is imparted to the film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、少なくとも熱処理後に
は微結晶集合体となる鉄基の軟磁性窒化合金膜、即ち微
結晶化鉄基窒化合金膜の成膜方法と、これを用いた磁気
ヘッドの製造方法に関するものであり、特にハードディ
スクやVTR用の磁気ヘッドの製造に適した軟磁性合金
膜および磁気ヘッドの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an iron-based soft magnetic nitride alloy film which becomes a microcrystalline aggregate at least after heat treatment, that is, a microcrystallized iron-based nitride alloy film, and a magnetic method using the same. The present invention relates to a head manufacturing method, and more particularly to a soft magnetic alloy film and a magnetic head manufacturing method suitable for manufacturing a magnetic head for a hard disk or a VTR.

【0002】[0002]

【従来の技術】磁気記録媒体の高保磁力化や磁気ヘッド
の狭ギャップ化に対応するため、高飽和磁化を有し軟質
磁気特性に優れた軟磁性合金膜を用いた磁気ヘッドが実
用化されている。軟磁性合金膜を用いた磁気ヘッドの代
表的な構造としては、フェライトよりなるヘッドコアの
磁気ギャップ近傍等に非晶質合金膜等の高飽和磁化軟磁
性合金膜を配したメタルインギャップ型磁気ヘッド(以
降MIGヘッド)や、磁路全体が非晶質合金膜等の軟磁
性合金膜で構成されておりフォトリソグラフィー技術等
を用いて形成される薄膜型磁気ヘッド(以降薄膜ヘッ
ド)等がある。MIGヘッドの作製においては、スパッ
タ蒸着法等によりフェライト基板上に高飽和磁化を有す
る磁性合金膜が、1〜100μm程度の膜厚で成膜さ
れ、その後に接着ガラス等を用いて熱処理による磁気ギ
ャップの形成が行われる。また薄膜ヘッドの作製におい
ては、非磁性基板上に磁性合金膜、非磁性絶縁膜および
コイル用の非磁性金属膜等が順次形成され、フォトリソ
グラフィー技術等を用いて所望の形状に加工される。
2. Description of the Related Art In order to cope with a high coercive force of a magnetic recording medium and a narrow gap of a magnetic head, a magnetic head using a soft magnetic alloy film having high saturation magnetization and excellent soft magnetic characteristics has been put into practical use. There is. A typical structure of a magnetic head using a soft magnetic alloy film is a metal-in-gap type magnetic head in which a highly saturated magnetization soft magnetic alloy film such as an amorphous alloy film is arranged near the magnetic gap of a head core made of ferrite. (Hereinafter referred to as MIG head), and a thin film magnetic head (hereinafter referred to as thin film head) in which the entire magnetic path is formed of a soft magnetic alloy film such as an amorphous alloy film and is formed by using a photolithography technique or the like. In the manufacture of the MIG head, a magnetic alloy film having a high saturation magnetization is formed on a ferrite substrate by a sputtering deposition method or the like to a film thickness of about 1 to 100 μm, and then a magnetic gap is formed by heat treatment using an adhesive glass or the like. Is formed. Further, in the manufacture of the thin film head, a magnetic alloy film, a nonmagnetic insulating film, a nonmagnetic metal film for a coil, and the like are sequentially formed on a nonmagnetic substrate and processed into a desired shape by using a photolithography technique or the like.

【0003】このような磁気ヘッドでは、磁路を通る磁
束の流れが磁化容易軸と略垂直方向となるようにすれば
リングヘッドとして必要な方向に高透磁率が得られ、良
好な電磁変換特性を有する磁気ヘッドが得られることが
知られている。このためには軟磁性合金膜に対してトラ
ック幅方向に磁化容易軸を有する適当な強さの磁気異方
性を付与すればよい。例えば薄膜ヘッドでは、トラック
幅方向に磁化容易軸を有し、500〜1500A/m程
度の異方性磁界を有する非晶質合金膜等を用いて、トラ
ック幅が50μm以下の狭トラックヘッドで良好な電磁
変換特性が得られている。同様にMIGヘッドにおいて
も、トラック幅方向に磁化容易軸を有する軟磁性合金膜
を用いることによって良好な電磁変換特性が得られる。
In such a magnetic head, if the flow of the magnetic flux through the magnetic path is in a direction substantially perpendicular to the easy axis of magnetization, high magnetic permeability can be obtained in the direction required for the ring head, and good electromagnetic conversion characteristics can be obtained. It is known that a magnetic head having For this purpose, magnetic anisotropy of an appropriate strength having an easy axis of magnetization in the track width direction may be given to the soft magnetic alloy film. For example, in a thin film head, an amorphous alloy film having an easy axis of magnetization in the track width direction and an anisotropic magnetic field of about 500 to 1500 A / m is used, and a narrow track head having a track width of 50 μm or less is good. Excellent electromagnetic conversion characteristics are obtained. Similarly, also in the MIG head, good electromagnetic conversion characteristics can be obtained by using a soft magnetic alloy film having an easy axis of magnetization in the track width direction.

【0004】[0004]

【発明が解決しようとする課題】非晶質合金等の軟磁性
合金膜を用いた従来の磁気ヘッドに対して、さらに高性
能な磁気ヘッドを得るためには飽和磁化が高い軟磁性合
金膜を用いた磁気ヘッドが必要となる。非晶質合金以上
の高飽和磁化を有し、軟質磁気特性に優れた磁性合金膜
としては、本発明者らによる窒素を含有する鉄基の軟磁
性合金膜(例えば特願昭和61−54054号、特願平
1−262406号、特願平1−300506号、特願
平2−113882号)を始めとして、窒素と酸素や、
窒素と炭素を同時に含有する鉄基の磁性合金膜等が報告
されている。このような鉄基の磁性合金膜では窒素に対
する化学的親和性が鉄よりも強い元素、例えばNb、T
a、Zr、B、Si等を含有している。これらの窒化物
が熱処理後に生じる体心立方格子を有する鉄等の結晶粒
成長を抑制し、磁性合金膜中において微結晶集合体を形
成するようになると考えられる。このような窒素を含有
する鉄基の磁性合金膜、即ち微結晶化鉄基窒化合金膜は
いずれも高飽和磁化と良好な軟質磁気特性を示すのであ
る。
In order to obtain a magnetic head with higher performance, a soft magnetic alloy film having a high saturation magnetization is used in comparison with a conventional magnetic head using a soft magnetic alloy film such as an amorphous alloy. The magnetic head used is required. As a magnetic alloy film having a higher saturation magnetization than that of an amorphous alloy and excellent in soft magnetic characteristics, an iron-based soft magnetic alloy film containing nitrogen by the present inventors (for example, Japanese Patent Application No. 61-54054). , Japanese Patent Application No. 1-262406, Japanese Patent Application No. 1-300506, Japanese Patent Application No. 2-113882), nitrogen and oxygen,
An iron-based magnetic alloy film containing nitrogen and carbon at the same time has been reported. In such an iron-based magnetic alloy film, an element having a stronger chemical affinity for nitrogen than iron, such as Nb or T, is used.
It contains a, Zr, B, Si and the like. It is considered that these nitrides suppress the crystal grain growth of iron or the like having a body-centered cubic lattice that occurs after heat treatment and form microcrystalline aggregates in the magnetic alloy film. Each of the iron-based magnetic alloy films containing nitrogen, that is, the microcrystallized iron-based nitride alloy film exhibits high saturation magnetization and good soft magnetic characteristics.

【0005】微結晶化鉄基窒化合金膜は高飽和磁化を有
しており、磁気ヘッドに用いる場合に良好な電磁変換特
性が期待できる。ただし磁気ヘッドの記録効率や再生効
率を考慮した場合、リングヘッドとして必要な方向、即
ち磁路方向に高透磁率が得られることが必要である。し
かし低磁歪および高透磁率の微結晶化鉄基窒化合金膜
は、磁界中熱処理だけで誘導される異方性磁界の値が3
00A/m程度しかなく、狭トラックヘッドにおける磁
区構造の制御等を行うには磁気異方性が不十分となって
いる。本発明者らはこれらの点を考慮して異方性磁界が
小さくても磁区構造の制御を可能とする磁性合金膜の製
造方法(特願平3−10619号)を開発したが、さら
に低磁歪および高透磁率の微結晶化鉄基窒化合金膜にお
いて直接的に異方性磁界を強くする方法を検討してい
た。
The microcrystallized iron-based nitride alloy film has a high saturation magnetization and can be expected to have good electromagnetic conversion characteristics when used in a magnetic head. However, in consideration of the recording efficiency and the reproducing efficiency of the magnetic head, it is necessary to obtain a high magnetic permeability in the direction required for the ring head, that is, the magnetic path direction. However, a low-magnetostriction and high-permeability microcrystalline iron-based nitride alloy film has an anisotropic magnetic field value of 3 which is induced only by heat treatment in a magnetic field.
The magnetic anisotropy is insufficient to control the magnetic domain structure in the narrow track head. In consideration of these points, the present inventors have developed a method for producing a magnetic alloy film (Japanese Patent Application No. 3-10619) that enables control of the magnetic domain structure even when the anisotropic magnetic field is small, but it is still lower. A method for directly increasing the anisotropy field in a microcrystalline iron-based nitride alloy film with magnetostriction and high magnetic permeability has been investigated.

【0006】本発明は、磁界中熱処理だけでは得られる
異方性磁界が小さい微結晶化鉄基窒化合金膜に対し、成
膜時の作製条件により磁気異方性を付与して磁化困難軸
方向に高透磁率を得る軟磁性合金膜の製造方法を提供す
る。また本発明は、これと同様な方法でMIGヘッドお
よび薄膜ヘッドにおいて良好な電磁変換特性が得られる
磁気ヘッドの製造方法を提供する。
According to the present invention, a microcrystalline iron-based nitride alloy film having a small anisotropic magnetic field obtained only by heat treatment in a magnetic field is provided with magnetic anisotropy depending on the manufacturing conditions at the time of film formation, so that the direction of the hard axis of magnetization is increased. Also provided is a method of manufacturing a soft magnetic alloy film having a high magnetic permeability. The present invention also provides a method of manufacturing a magnetic head in which good electromagnetic conversion characteristics can be obtained in a MIG head and a thin film head by the same method.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、熱処理後に微結晶集合体となる鉄基の軟磁性窒化合
金膜をスパッタ蒸着法により基板上に形成する際に、前
記基板の合金膜形成面の法線方向に対して蒸着粒子の平
均的入射方向を傾けて前記蒸着粒子が前記基板に対して
平均的に斜め入射するようにして成膜し、その後に熱処
理を施して前記軟磁性窒化合金膜に磁気異方性を付与す
る軟磁性合金膜の製造方法を用いる。
In order to achieve the above object, when an iron-based soft magnetic nitride alloy film which becomes a microcrystalline aggregate after heat treatment is formed on a substrate by a sputter deposition method, the alloy of the substrate is used. A film is formed by inclining the average incident direction of the vapor deposition particles with respect to the normal direction of the film formation surface so that the vapor deposition particles are obliquely incident on the substrate evenly, and then performing a heat treatment to soften the film. A method of manufacturing a soft magnetic alloy film that imparts magnetic anisotropy to a magnetic nitride alloy film is used.

【0008】この場合、磁気異方性として磁化困難軸方
向の異方性磁界が300〜1500A/mとなる磁気異
方性を用いることにより特に透磁率が高い軟磁性合金膜
が得られる。また以上の軟磁性合金膜の製造方法では、
熱処理後に微結晶集合体となる鉄基の軟磁性窒化合金膜
として、Feを主成分としてNb、Ta、Zr、Ti、
Hf、V、Cr、Al、B、Si、Geを一種類以上含
有する窒化合金膜を用いた場合は特に効果が高い。
In this case, a soft magnetic alloy film having a particularly high magnetic permeability can be obtained by using the magnetic anisotropy in which the anisotropic magnetic field in the hard axis direction is 300 to 1500 A / m as the magnetic anisotropy. In the method for manufacturing the soft magnetic alloy film described above,
As an iron-based soft magnetic nitride alloy film that becomes a microcrystalline aggregate after heat treatment, Fe as a main component is Nb, Ta, Zr, Ti,
The effect is particularly high when a nitride alloy film containing one or more of Hf, V, Cr, Al, B, Si and Ge is used.

【0009】これと同様にして磁気ヘッドを製造する場
合は、熱処理後に微結晶集合体となる鉄基の軟磁性窒化
合金膜をスパッタ蒸着法によりフェライト基板もしくは
非磁性基板上に直接的もしくは間接的に形成する際に、
トラック幅方向が磁化容易軸となるように前記フェライ
ト基板もしくは前記非磁性基板の合金膜形成面の法線方
向に対して蒸着粒子の平均的な入射方向を傾けて前記蒸
着粒子が前記フェライト基板に対して平均的に斜め入射
するようにして成膜し、その後に熱処理を施して前記軟
磁性窒化合金膜のトラック幅方向を磁化容易軸とする磁
気異方性を付与する磁気ヘッドの製造方法を用いる。
When a magnetic head is manufactured in the same manner as described above, an iron-based soft magnetic nitride alloy film which becomes a microcrystalline aggregate after heat treatment is directly or indirectly formed on a ferrite substrate or a non-magnetic substrate by a sputter deposition method. When forming into
The vapor deposition particles are deposited on the ferrite substrate by inclining the average incident direction of the vapor deposition particles with respect to the normal direction of the alloy film forming surface of the ferrite substrate or the non-magnetic substrate so that the track width direction becomes the easy axis of magnetization. On the other hand, a method of manufacturing a magnetic head in which a film is formed so as to be obliquely incident on average, and then a heat treatment is performed to impart magnetic anisotropy with the track width direction of the soft magnetic nitride alloy film as an easy axis of magnetization. To use.

【0010】この場合、磁気異方性として磁化困難軸方
向の異方性磁界が300〜1500A/mとなる磁気異
方性を用いることにより特に電磁変換特性に優れた磁気
ヘッドが得られる。また以上の磁気ヘッドの製造方法で
は、熱処理後に微結晶集合体となる鉄基の軟磁性窒化合
金膜として、Feを主成分として少なくともNb、T
a、Zr、Ti、Hf、V、Cr、Al、B、Si、G
eを一種類以上含有する窒化合金膜を用いた場合は特に
効果が高い。
In this case, by using the magnetic anisotropy in which the anisotropic magnetic field in the hard axis direction is 300 to 1500 A / m as the magnetic anisotropy, a magnetic head having excellent electromagnetic conversion characteristics can be obtained. Further, in the above-described magnetic head manufacturing method, the iron-based soft magnetic nitride alloy film that becomes a microcrystalline aggregate after heat treatment has Fe as the main component and contains at least Nb and T.
a, Zr, Ti, Hf, V, Cr, Al, B, Si, G
The effect is particularly high when a nitride alloy film containing one or more kinds of e is used.

【0011】[0011]

【作用】本発明の磁性合金膜の製造方法および磁気ヘッ
ドの製造方法は、磁界中熱処理だけでは得られる異方性
磁界が小さい微結晶化鉄基窒化合金膜に関するものであ
り、その異方性磁界を大きくすることができるのであ
る。
The method for producing a magnetic alloy film and the method for producing a magnetic head according to the present invention relates to a microcrystalline iron-based nitride alloy film having a small anisotropic magnetic field which can be obtained only by heat treatment in a magnetic field. The magnetic field can be increased.

【0012】ストライプ形状と呼ばれる細線形状の軟磁
性合金膜においては、膜厚や線幅方向に対して反磁界が
小さい長軸方向に磁化容易軸が配向しやすくなり、この
長軸方向の初透磁率は低くなる。細線形状で長軸方向の
初透磁率を高くするためには線幅方向等に適当な大きさ
の磁気異方性を付与しておくことが必要であるが、低磁
歪で高透磁率となる微結晶化鉄基窒化合金膜では磁界中
熱処理によって得られる異方性磁界が小さく、反磁界等
の形状効果を打ち消すことができない。これを改善し異
方性磁界を大きくする方法が成膜時に蒸着粒子の斜め入
射を用いる方法である。斜め入射を用いる方法とは、ス
パッタ蒸着法により熱処理後に微結晶集合体となる鉄基
の軟磁性窒化合金膜を基板上に形成する際に、基板の合
金膜形成面の法線方向に対して蒸着粒子の平均的な入射
方向を傾け、蒸着粒子が基板に対して平均的に斜め入射
するようにして成膜するのである。このような斜め入射
を行った場合、成膜された膜面内においては、蒸着粒子
の平均的な基板に対する入射方向に対して略垂直な方向
に磁化容易磁区を有する磁気異方性が付与される。この
磁化容易軸に対して膜面内において垂直な方向が磁化困
難軸となり、高い初透磁率を得ることができるのであ
る。ただし、斜め入射により付与された磁化容易軸およ
び磁化困難軸は、熱処理前の状態では不明確であり、熱
処理を施すことによって明確になる。この際の熱処理温
度は、少なくとも300℃以上で700℃程度までの熱
処理であれば斜め入射の異方性磁界は維持されている。
またこの磁気異方性は長時間の無磁界中熱処理を行って
も安定であり、少なくとも550℃で4時間熱処理まで
は磁化困難軸方向の異方性磁界および透磁率等が維持さ
れていた。以上のような成膜時に蒸着粒子の斜め入射に
より誘導される磁気異方性は、純鉄のように比較的結晶
粒が大きく柱状構造を形成し易い結晶質合金膜等では知
られていたが、このような微結晶集合体と考えられる鉄
基窒化合金膜でも生じることは容易に推察されておら
ず、しかも熱処理後でなければその磁化容易軸等が明確
に表われないこと等は知られていなかった。
In a thin line-shaped soft magnetic alloy film called a stripe shape, the easy axis of magnetization tends to be oriented in the major axis direction in which the demagnetizing field is small with respect to the film thickness and line width direction, and the initial permeability in this major axis direction is increased. Magnetic susceptibility becomes low. In order to increase the initial magnetic permeability in the long axis direction with a thin wire shape, it is necessary to give an appropriate amount of magnetic anisotropy in the line width direction etc., but low magnetic strain results in high magnetic permeability. In the case of the microcrystallized iron-based nitride alloy film, the anisotropic magnetic field obtained by the heat treatment in the magnetic field is small, and the shape effect such as the demagnetizing field cannot be canceled. A method of improving this and increasing the anisotropic magnetic field is a method of using oblique incidence of vapor deposition particles during film formation. The method using oblique incidence means that when an iron-based soft magnetic nitride alloy film, which becomes a microcrystalline aggregate after heat treatment by a sputter deposition method, is formed on a substrate, the direction normal to the alloy film formation surface of the substrate The film is formed so that the average incident direction of the vapor deposition particles is inclined so that the vapor deposition particles are incident on the substrate at an average angle. When such oblique incidence is performed, magnetic anisotropy having easy magnetic domains is imparted in a direction substantially perpendicular to the incident direction of vapor-deposited particles with respect to the average substrate in the formed film surface. It The direction perpendicular to the easy axis of magnetization in the film plane becomes the hard axis of magnetization, and a high initial permeability can be obtained. However, the easy magnetization axis and the hard magnetization axis given by oblique incidence are unclear in the state before the heat treatment, and become clear by the heat treatment. If the heat treatment temperature at this time is at least 300 ° C. and up to about 700 ° C., the obliquely incident anisotropic magnetic field is maintained.
Further, this magnetic anisotropy was stable even after a heat treatment in a magnetic field for a long time, and the anisotropic magnetic field and the magnetic permeability in the hard axis direction were maintained until at least 550 ° C. for 4 hours. The magnetic anisotropy induced by the oblique incidence of vapor deposition particles during film formation as described above has been known in crystalline alloy films, such as pure iron, in which crystal grains are relatively large and columnar structures are easily formed. However, it is not easily inferred that the iron-based nitride alloy film, which is considered to be such a microcrystalline aggregate, also occurs, and it is known that the easy axis of magnetization and the like cannot be clearly shown until after the heat treatment. I didn't.

【0013】このようにして適度な大きさの磁気異方性
を付与すると微結晶化鉄基窒化合金膜であっても磁化困
難軸方向を用いることによって細線形状の長軸方向に高
透磁率が得られる。斜め入射を行わずに静磁界中熱処理
のみを用いた場合、反磁界の小さい形状では高透磁率が
得られるが、異方性磁界が200〜300A/m程度と
小さいために細線形状に加工した後は長軸方向に高透磁
率が得られない。つまり細線形状の長軸方向に高透磁率
得るためには、300A/m以上の異方性磁界が必要と
されるのである。逆に飽和磁化が1.3〜1.7T程度の
軟磁性合金膜において、磁化困難軸方向に異方性磁界が
1500A/m以下であれば少なくとも800程度以上
の高い比初透磁率が得られる。したがって、適当な大き
さの磁気異方性として磁化困難軸方向の異方性磁界が3
00〜1500A/mとなる磁気異方性を用いることに
より特に透磁率が高い軟磁性合金膜が得られるのであ
る。
When magnetic anisotropy of an appropriate size is imparted in this way, even in the case of a microcrystallized iron-based nitride alloy film, by using the direction of the hard axis of magnetization, a high magnetic permeability can be obtained in the long axis direction of the thin wire shape. can get. When only heat treatment in a static magnetic field is used without oblique incidence, a high magnetic permeability can be obtained in a shape having a small demagnetizing field, but the anisotropic magnetic field is as small as about 200 to 300 A / m, and thus it is processed into a thin line shape. After that, high magnetic permeability cannot be obtained in the long axis direction. That is, an anisotropic magnetic field of 300 A / m or more is required to obtain a high magnetic permeability in the direction of the long axis of the thin wire shape. On the contrary, in a soft magnetic alloy film having a saturation magnetization of about 1.3 to 1.7 T, if the anisotropic magnetic field is 1500 A / m or less in the hard axis direction, a high relative magnetic permeability of at least about 800 or more can be obtained. .. Therefore, as the magnetic anisotropy of an appropriate size, the anisotropic magnetic field in the direction of the hard axis is 3
By using the magnetic anisotropy of 00 to 1500 A / m, a soft magnetic alloy film having a particularly high magnetic permeability can be obtained.

【0014】以上の軟磁性合金膜において、微結晶化鉄
基窒化合金膜は窒素に対する化学的親和性が強い元素を
含有する鉄基の合金ターゲットを用い、アルゴン等のス
パッタガス中に窒素ガスを混合する反応性スパッタ蒸着
法により形成されるが、スパッタ中に微量の酸素ガスや
メタンガスを加えても問題ない。この微結晶化鉄基窒化
合金膜において、特に高飽和磁化および熱的に安定で良
好な軟質磁気特性が得られる軟磁性合金膜は、スパッタ
法による合金膜形成時にFeを主成分として少なくとも
Nb、Ta、Zr、Ti、Hf、V、Cr、Al、B、
Si、Geを一種類以上含有する合金を合金ターゲット
として用いることによって得られるのである。
In the above soft magnetic alloy film, the microcrystallized iron-based nitride alloy film uses an iron-based alloy target containing an element having a strong chemical affinity for nitrogen, and nitrogen gas is added to the sputtering gas such as argon. It is formed by the reactive sputter deposition method of mixing, but there is no problem even if a small amount of oxygen gas or methane gas is added during sputtering. In this microcrystallized iron-based nitride alloy film, a soft magnetic alloy film having particularly high saturation magnetization and thermally stable and good soft magnetic properties can be obtained by forming at least Nb with Fe as a main component at the time of forming the alloy film by the sputtering method. Ta, Zr, Ti, Hf, V, Cr, Al, B,
It is obtained by using an alloy containing one or more kinds of Si and Ge as an alloy target.

【0015】軟磁性合金膜を用いた磁気ヘッドを作製す
る場合、MIGヘッドや薄膜ヘッドではトラック幅方向
に磁化容易軸を有する軟磁性合金膜を用いることにより
良好な電磁変換特性が得られる。しかしこのような磁気
ヘッドのギャップ近傍における軟磁性合金膜は上述の細
線形状と同様になっており、微結晶化鉄基窒化合金膜を
用いた場合は磁界中熱処理だけで得られる磁気異方性が
小さいため形状効果によりトラック幅方向に磁化容易軸
を維持できなくなる。これを改善する手段として磁気ヘ
ッドを製造する際に上述の斜め入射による軟磁性合金膜
の成膜を用いることができる。即ち、熱処理後には微結
晶集合体となる鉄基の軟磁性窒化合金膜、即ち微結晶化
鉄基窒化合金膜を、成膜時に蒸着粒子が基板に対して斜
め入射するように形成し、トラック幅方向を磁化容易軸
とする磁気ヘッドを得ることによって良好な電磁変換特
性が達成されるのである。この磁気ヘッドの製造方法は
MIGヘッドや薄膜ヘッドの作製に適用できる。MIG
ヘッドの場合、フェライト基板上に磁性合金膜が形成さ
れるが、磁性合金膜はフェライト基板上に直接形成して
あってもよいし、フェライト基板上に数nm程度の非磁
性拡散防止層を形成した後に間接的に形成してあっても
よい。また薄膜ヘッドの場合、磁性合金膜、絶縁膜およ
び導電性金属膜等を順次積み上げて作製されるが、少な
くとも磁性層に関しては上記の工程を適用できるのであ
る。
When manufacturing a magnetic head using a soft magnetic alloy film, good electromagnetic conversion characteristics can be obtained by using a soft magnetic alloy film having an easy axis of magnetization in the track width direction in a MIG head or a thin film head. However, the soft magnetic alloy film in the vicinity of the gap of such a magnetic head has the same shape as the above-mentioned thin line shape, and when the microcrystallized iron-based nitride alloy film is used, the magnetic anisotropy obtained only by heat treatment in a magnetic field is obtained. Is smaller, the easy axis cannot be maintained in the track width direction due to the shape effect. As a means for improving this, the film formation of the soft magnetic alloy film by oblique incidence described above can be used when manufacturing a magnetic head. That is, an iron-based soft magnetic nitride alloy film that becomes a microcrystalline aggregate after heat treatment, that is, a microcrystallized iron-based nitride alloy film is formed so that vapor deposition particles obliquely enter the substrate during film formation, Good magnetic conversion characteristics can be achieved by obtaining a magnetic head whose axis of easy magnetization is in the width direction. This magnetic head manufacturing method can be applied to the manufacture of MIG heads and thin film heads. MIG
In the case of the head, the magnetic alloy film is formed on the ferrite substrate, but the magnetic alloy film may be directly formed on the ferrite substrate, or a non-magnetic diffusion prevention layer of about several nm is formed on the ferrite substrate. It may be formed indirectly after the process. In the case of a thin film head, a magnetic alloy film, an insulating film, a conductive metal film, and the like are sequentially stacked, and the above steps can be applied to at least the magnetic layer.

【0016】[0016]

【実施例】(実施例1)本発明の軟磁性合金膜の製造方
法による実施例を説明する。
EXAMPLES Example 1 An example of the method for manufacturing a soft magnetic alloy film of the present invention will be described.

【0017】(図1)は、本発明の軟磁性合金膜の製造
方法を示す斜視図であり、概念的な図ではあるが非磁性
基板1上に形成された軟磁性合金膜2とこれを形成する
ための蒸着粒子3、およびそれらの平均入射方向4等を
示している。(図1)において反応性スパッタ法により
スパッタ蒸着された蒸着粒子3の平均入射方向4は、非
磁性基板1の表面における法線方向5とθの角度をなし
ている。θ>0゜の状態が蒸着粒子3の斜め入射であ
り、θがほぼ0゜となる状態を垂直入射と呼ぶ。このθ
は0゜でなければ斜め入射となるのであるが、適当な磁
気異方性を誘起させるために望ましくは5゜以上がよ
い。このような斜め入射による成膜を行うと、Fe系の
単層窒化合金膜や組成変調窒化合金膜であっても、(図
1)のY方向で示されるような軟磁性合金膜2面内で蒸
着粒子3と垂直な方向に一軸磁気異方性が誘起される。
磁化容易軸がY方向になれば軟磁性合金膜2面内ではY
方向に垂直なX方向が磁化困難軸となり、X方向に高い
初透磁率が得られるようになる。これらの一軸磁気異方
性の場合、磁化容易軸および磁化困難軸は軸対称であっ
て、角度で180゜向きを変えても同様となっている。
FIG. 1 is a perspective view showing a method of manufacturing a soft magnetic alloy film according to the present invention. Although it is a conceptual view, the soft magnetic alloy film 2 formed on a non-magnetic substrate 1 and the soft magnetic alloy film 2 are shown. The vapor deposition particles 3 for forming, and their average incident directions 4 and the like are shown. In FIG. 1, the average incidence direction 4 of the vapor deposition particles 3 sputter-deposited by the reactive sputtering method forms an angle θ with the normal direction 5 on the surface of the nonmagnetic substrate 1. The state where θ> 0 ° is the oblique incidence of the vapor-deposited particles 3, and the state where θ is substantially 0 ° is called the normal incidence. This θ
If it is not 0 °, the light is obliquely incident, but it is preferably 5 ° or more in order to induce appropriate magnetic anisotropy. When the film is formed by such oblique incidence, even in the case of a Fe-based single-layer nitride alloy film or a composition-modulated nitride alloy film, the soft magnetic alloy film 2 within the plane as shown in the Y direction of FIG. The uniaxial magnetic anisotropy is induced in the direction perpendicular to the vapor deposition particles 3.
If the easy axis of magnetization is in the Y direction, it will be Y in the plane of the soft magnetic alloy film 2.
The X direction perpendicular to the direction becomes the hard axis of magnetization, and a high initial permeability can be obtained in the X direction. In the case of these uniaxial magnetic anisotropies, the easy magnetization axis and the hard magnetization axis are axisymmetric, and the same is true even if the direction is changed by 180 °.

【0018】以上のような軟磁性合金膜の形成過程は
(図2)のスパッタ装置の斜視図で示されるような合金
ターゲット6と非磁性基板1の配置により実現される。
(図2)はスパッタ装置において円板状の合金ターゲッ
ト6と非磁性基板1のみを示しているが、合金ターゲッ
ト6に高電圧が印加されてスパッタ現象が生じるのであ
る。この場合、合金ターゲット6表面は均一にスパッタ
され、局所的なスパッタ等によって生じるエロージョン
はない状態になっており、合金ターゲット6の中心付近
から非磁性基板1の中央部に入射するものが蒸着粒子3
の平均入射方向4となっている。一例として、図2にお
いてAに相当する位置に非磁性基板を固定して、200
mmの直径でFe86.9Nb4.5Zr8.6なる組成の合金タ
ーゲット6を用い、0.5Paのアルゴンガス中に窒素
ガスを混合しながらスパッタ蒸着を行い、斜め入射角度
θを約60゜にして膜厚1.7μmのFe系の窒化膜を
形成した。この際、0.05Paの窒素ガス(N2)を周
期的に混合して作製した軟磁性合金膜、即ち組成変調窒
化合金膜においては550℃熱処理後で磁化困難軸方向
に680A/mの異方性磁界と1400の高い初透磁率
が得られた。また0.025Paの窒素ガス(N2)を定
常的に混合して作製した軟磁性合金膜、即ち単層窒化合
金膜においては550℃熱処理後で磁化困難軸方向に5
60A/mの異方性磁界と1800の高透磁率が得られ
た。これらの軟磁性合金膜は600℃熱処理後において
も550℃熱処理後と同等な磁気特性を示し、熱処理後
にはα−Fe、Nb−N、Zr−N等の微結晶粒からな
る微結晶集合体となっており、1.6Tの高飽和磁化と
絶対値が2×10ー6以下の低磁歪を有する軟磁性合金膜
となっていた。同じスパッタ装置を用いて、Fe85.2
3.4Zr11.4やFe88. 5Nb4Zr7.5等の各種組成の
合金ターゲットを用いた際も、A位置に非磁性基板1が
固定された場合は磁化困難軸方向に300〜1500A
/m程度の比較的強い異方性磁界と800以上の高い比
初透磁率を有する軟磁性合金膜を得ることができた。
The process of forming the soft magnetic alloy film as described above is realized by the arrangement of the alloy target 6 and the non-magnetic substrate 1 as shown in the perspective view of the sputtering apparatus (FIG. 2).
Although FIG. 2 shows only the disc-shaped alloy target 6 and the non-magnetic substrate 1 in the sputtering apparatus, a high voltage is applied to the alloy target 6 to cause the sputtering phenomenon. In this case, the surface of the alloy target 6 is uniformly sputtered, and there is no erosion caused by local spattering or the like. What is incident from the vicinity of the center of the alloy target 6 onto the central portion of the non-magnetic substrate 1 is the vapor deposition particles. Three
The average incident direction of 4 is 4. As an example, a non-magnetic substrate is fixed at a position corresponding to A in FIG.
Using an alloy target 6 having a composition of Fe 86.9 Nb 4.5 Zr 8.6 and a diameter of mm, sputter deposition was performed while mixing nitrogen gas into argon gas of 0.5 Pa, and the oblique incident angle θ was set to about 60 °. A 1.7 μm Fe-based nitride film was formed. At this time, a soft magnetic alloy film produced by periodically mixing nitrogen gas (N 2 ) of 0.05 Pa, that is, a composition-modulated nitrided alloy film, has a difference of 680 A / m in the hard axis direction after heat treatment at 550 ° C. An isotropic magnetic field and a high initial permeability of 1400 were obtained. Further, in a soft magnetic alloy film produced by constantly mixing 0.025 Pa of nitrogen gas (N 2 ), that is, in a single-layer nitrided alloy film, after heat treatment at 550 ° C.
An anisotropic magnetic field of 60 A / m and a high magnetic permeability of 1800 were obtained. These soft magnetic alloy films show magnetic characteristics similar to those after heat treatment at 550 ° C. even after heat treatment at 600 ° C., and after heat treatment, microcrystalline aggregates composed of fine crystal grains of α-Fe, Nb-N, Zr-N, etc. The soft magnetic alloy film has a high saturation magnetization of 1.6 T and a low magnetostriction of 2 × 10 −6 or less in absolute value. Fe 85.2 T using the same sputtering equipment
a 3.4 Zr 11.4 and Fe 88. 5 Nb 4 when using an alloy target of various compositions of Zr 7.5 etc. Also, if the non-magnetic substrate 1 is fixed to the A position 300~1500A hard magnetization axis direction
It was possible to obtain a soft magnetic alloy film having a relatively strong anisotropic magnetic field of about / m and a high relative initial magnetic permeability of 800 or more.

【0019】(図2)のスパッタ装置の場合、合金ター
ゲットの中心線上のB位置付近では蒸着粒子の略垂直入
射が生じてあまり強い異方性磁界が得られないが、A位
置で得られる斜め入射の磁気異方性は合金ターゲットの
中心線上に関して対称なC位置でも同様に得られた。ま
た基板がA位置からB位置、C位置へと順次移動する場
合も、A位置に基板を固定した時と同じ方向を磁化容易
軸とする磁気異方性が得られた。これは基板位置がAか
らCへと移動する時に蒸着粒子3の入射角θは変化して
一時的にθ=0゜になるものの、平均的にはθ>0゜で
あって角度が変化しても磁気異方性が誘導される方向が
同一方向となっているためであると考えられる。この場
合、組成変調窒化合金膜では550℃熱処理後に520
A/mの異方性磁界と2000の高い比初透磁率が得ら
れ、また単層窒化合金膜では550℃熱処理後に440
A/mの異方性磁界と2200の高い初透磁率が得られ
た。以上は合金ターゲットのエロージョンがない場合で
あったが、エロージョンが生じる場合であっても同様で
あり、平均的入射方向は全エロージョンからの入射角を
積分した平均的なものとなるのである。
In the case of the sputtering apparatus of FIG. 2, near the position B on the center line of the alloy target, substantially vertical incidence of vapor deposition particles occurs and a strong anisotropic magnetic field cannot be obtained. The incident magnetic anisotropy was similarly obtained at the C position which was symmetric with respect to the center line of the alloy target. Also, when the substrate was sequentially moved from the A position to the B position and then to the C position, magnetic anisotropy was obtained with the easy magnetization axis in the same direction as when the substrate was fixed at the A position. This means that when the substrate position moves from A to C, the incident angle θ of the vapor deposition particles 3 changes to temporarily become θ = 0 °, but on average θ> 0 ° and the angle changes. However, it is considered that the directions in which the magnetic anisotropy is induced are the same. In this case, in the composition-modulated nitrided alloy film, after heat treatment at 550 ° C., 520
An anisotropic magnetic field of A / m and a high specific initial magnetic permeability of 2000 are obtained, and in the case of a single-layer nitride alloy film, it is 440 after heat treatment at 550.
An anisotropic magnetic field of A / m and a high initial permeability of 2200 were obtained. The above is the case where there is no erosion of the alloy target, but the same is true when erosion occurs, and the average incident direction is the average of the incident angles from all the erosion.

【0020】次に合金ターゲットを2個用いた場合の実
施例を示す。(図3)は、本発明の軟磁性合金膜の製造
方法を示すスパッタ装置の概略図であり、スパッタ装置
において対向し合う2個の長方形状の合金ターゲット6
と非磁性基板1のみを示している。合金ターゲット6に
高電圧が印加されてスパッタ現象が生じ、エロージョン
はない状態になっている点は上記の実施例と同様であ
る。(図3)に示すような装置で長さが160mm、幅
が100mmでFe90Nb3.4Zr6.6の組成よりなる合
金ターゲット6を2枚用い、0.13Paのアルゴンガ
ス中に窒素ガスを混合しながらスパッタ蒸着を行い、斜
め入射角度θを約40゜にして膜厚2μmのFe系窒化
膜を形成した。この際、0.014Paの窒素ガス
(N2)を周期的に混合して作製した軟磁性合金膜、即
ち組成変調窒化合金膜においては550℃熱処理後で磁
化困難軸方向に460A/mの異方性磁界と2100の
高い初透磁率が得られた。また0.007Paの窒素ガ
ス(N2)を定常的に混合して作製した単層窒化合金膜
においては550℃熱処理後で磁化困難軸方向に500
A/mの異方性磁界と1900の高透磁率が得られた。
これらの軟磁性合金膜は600℃熱処理後においても5
50℃熱処理後と同等な磁気特性を示し、熱処理後には
α−Fe、Nb−N、Zr−N等の微結晶粒からなる微
結晶集合体となっており、1.65Tの高飽和磁化と絶
対値が1×10ー6以下の低磁歪を有する軟磁性合金膜で
あった。同じスパッタ装置を用いてFe89Nb7Zr4
の各種組成の合金ターゲットを用いた際も磁化困難軸方
向に300〜1500A/m程度の強い異方性磁界と8
00以上の高い比初透磁率を有する軟磁性合金膜を得る
ことができた。
Next, an example in which two alloy targets are used will be described. (FIG. 3) is a schematic view of a sputtering apparatus showing a method for producing a soft magnetic alloy film of the present invention. Two rectangular alloy targets 6 facing each other in the sputtering apparatus.
And only the non-magnetic substrate 1 is shown. The high voltage is applied to the alloy target 6 to cause the spattering phenomenon, and there is no erosion, which is the same as the above-described embodiment. Using an apparatus as shown in FIG. 3, two alloy targets 6 each having a length of 160 mm, a width of 100 mm and a composition of Fe 90 Nb 3.4 Zr 6.6 were used, and nitrogen gas was mixed in 0.13 Pa of argon gas. While carrying out sputter deposition, an oblique incident angle θ was set to about 40 ° to form a Fe-based nitride film having a film thickness of 2 μm. At this time, a soft magnetic alloy film produced by periodically mixing nitrogen gas (N 2 ) of 0.014 Pa, that is, a composition-modulated nitrided alloy film, has a difference of 460 A / m in the direction of the hard axis after the heat treatment at 550 ° C. An isotropic magnetic field and a high initial permeability of 2100 were obtained. Further, in a single-layer nitrided alloy film produced by constantly mixing nitrogen gas (N 2 ) of 0.007 Pa, after heat treatment at 550 ° C., 500 in the hard axis direction.
An anisotropic magnetic field of A / m and a high magnetic permeability of 1900 were obtained.
These soft magnetic alloy films remain 5 even after heat treatment at 600 ° C.
It shows magnetic properties equivalent to those after heat treatment at 50 ° C., and after heat treatment, it becomes a fine crystal aggregate consisting of fine crystal grains such as α-Fe, Nb-N, Zr-N, and has a high saturation magnetization of 1.65T. The soft magnetic alloy film had a low magnetostriction with an absolute value of 1 × 10 −6 or less. Even when alloy targets of various compositions such as Fe 89 Nb 7 Zr 4 were used in the same sputtering apparatus, a strong anisotropic magnetic field of about 300 to 1500 A / m was applied in the hard magnetization axis direction.
It was possible to obtain a soft magnetic alloy film having a high relative magnetic permeability of 00 or more.

【0021】以上のようにして作製された異方性磁界が
500A/mの組成変調窒化合金膜をフォトリソグラフ
ィー技術を用いて細線形状に加工した。得られた細線形
状は、長さが25mmで厚みが2μm、幅が30μmで
あり、長手方向を磁化困難軸とすることによりこの方向
に1700の高い初透磁率が得られた。これに対して比
較例として垂直入射で成膜した軟磁性合金膜に磁界中熱
処理だけを施した試料の透磁率は200程度であった。
したがって、本発明の製造方法によって作製された軟磁
性合金膜は反磁界が強い細線形状でも高い透磁率を得る
ことができ、細線形状で高透磁率を必要とする薄膜イン
ダクタや磁気ヘッド等への応用ができる。
The composition-modulated nitrided alloy film having an anisotropic magnetic field of 500 A / m produced as described above was processed into a fine line shape by the photolithography technique. The obtained fine line shape had a length of 25 mm, a thickness of 2 μm, and a width of 30 μm, and when the longitudinal direction was set as the hard axis of magnetization, a high initial magnetic permeability of 1700 was obtained in this direction. On the other hand, as a comparative example, the magnetic permeability of the sample in which the soft magnetic alloy film formed at normal incidence was only heat-treated in a magnetic field was about 200.
Therefore, the soft magnetic alloy film produced by the manufacturing method of the present invention can obtain a high magnetic permeability even in a thin wire shape having a strong demagnetizing field, and can be applied to a thin film inductor or a magnetic head that requires a high magnetic permeability in the thin wire shape. Can be applied.

【0022】同様に、Fe88Nb12、Fe93Zr7、F
87Ta13、Fe85Ti15、Fe85Hf15、Fe88Cr
5Zr7、Fe885Zr7、Fe8812、Fe80Nb8
12、Fe79Al3Ge315等の組成の合金ターゲット
を用いて、アルゴンガス中に窒素ガスを混合し、斜め入
射により微結晶化鉄基窒化合金膜を成膜した場合におい
ても、磁界中熱処理で得られるよりも大きな異方性磁界
が得られた。本発明の製造方法が適用できる微結晶化鉄
基窒化合金膜は、低磁歪の状態で磁界中熱処理によって
得られる異方性磁界が小さいため特に本発明による効果
が顕著なのである。ここで述べた微結晶化鉄基窒化合金
膜は、単層膜もしくは多層膜のいずれでもよく、窒素等
に対する化学的親和性が鉄よりも強い元素を含有し、こ
れらの窒化物等が体心立方格子を有する鉄等の結晶粒成
長を抑制している系であればよい。したがって熱処理後
に微結晶集合体となる鉄基の軟磁性窒化合金膜として、
Feを主成分として少なくともNb、Ta、Zr、T
i、Hf、V、Cr、Al、B、Si、Geを一種類以
上含有する軟磁性合金膜等に対しては本発明の適用が有
効なのである。
Similarly, Fe 88 Nb 12 , Fe 93 Zr 7 , F
e 87 Ta 13 , Fe 85 Ti 15 , Fe 85 Hf 15 , Fe 88 Cr
5 Zr 7 , Fe 88 V 5 Zr 7 , Fe 88 B 12 , Fe 80 Nb 8 S
Even when a microcrystalline iron-based nitrided alloy film is formed by mixing nitrogen gas into argon gas using an alloy target having a composition of i 12 , Fe 79 Al 3 Ge 3 B 15, etc. An anisotropic magnetic field larger than that obtained by heat treatment in a magnetic field was obtained. The microcrystallized iron-based nitride alloy film to which the manufacturing method of the present invention can be applied is particularly effective because the anisotropic magnetic field obtained by heat treatment in a magnetic field in a low magnetostriction state is small. The microcrystallized iron-based nitride alloy film described here may be either a single-layer film or a multi-layer film, contains an element having a chemical affinity for nitrogen etc. which is stronger than iron, and these nitrides etc. Any system that suppresses crystal grain growth of iron or the like having a cubic lattice may be used. Therefore, as an iron-based soft magnetic nitride alloy film that becomes a microcrystalline aggregate after heat treatment,
Fe as a main component and at least Nb, Ta, Zr, T
The application of the present invention is effective for a soft magnetic alloy film containing one or more kinds of i, Hf, V, Cr, Al, B, Si and Ge.

【0023】(実施例2)本発明の第2の実施例として
磁気ヘッドの製造方法を説明する。
(Embodiment 2) As a second embodiment of the present invention, a method of manufacturing a magnetic head will be described.

【0024】メタルインギャップ型磁気ヘッド(MIG
ヘッド)の製造方法を説明する。(図4)はMIGヘッ
ドを作製するためのコア半体のI形状コアの斜視図を、
(図5)はC形状コアの斜視図を示す。C形状コアは、
磁気ヘッド作製時に磁気ギャップ面となる面に巻線用の
巻線穴が形成されている。(図4)および(図5)にお
いてバルク状のMn−ZnフェライトよりなるI形状フ
ェライト基板7およびC形状フェライト基板8上に、1
0nmの酸化アルミニウムによる拡散防止層を形成し、
その上に反応性スパッタ法により窒素を含有し熱処理後
には微結晶集合体となる鉄基の軟磁性合金膜2を斜め入
射により形成した。成膜に際しては第1の実施例中の
(図3)に示したスパッタ装置でFe90Nb3.4Zr6.6
なる合金ターゲットを2枚用い、平均的入射角度θを約
40゜にし、0.13Paのアルゴンガス中に0.014
Paの窒素ガス(N2)を周期的に混合してスパッタ蒸
着を行って膜厚4μmのFe系組成変調窒化合金膜を形
成した。このようにして作製された軟磁性合金膜2は、
磁気ヘッドのトラック幅方向、即ち(図4)および(図
5)におけるY方向を磁化容易軸とする一軸磁気異方性
を有しており、少なくともX方向に高透磁率が得られ
る。
Metal-in-gap type magnetic head (MIG
A method of manufacturing the head will be described. (FIG. 4) is a perspective view of the I-shaped core of the core half body for manufacturing the MIG head,
(FIG. 5) shows a perspective view of a C-shaped core. The C-shaped core is
A winding hole for winding is formed on a surface which becomes a magnetic gap surface when a magnetic head is manufactured. 1 and 2 on the I-shaped ferrite substrate 7 and the C-shaped ferrite substrate 8 made of bulk Mn—Zn ferrite in FIGS.
Forming a diffusion prevention layer of 0 nm aluminum oxide,
An iron-based soft magnetic alloy film 2 containing nitrogen and forming a microcrystalline aggregate after heat treatment by reactive sputtering was formed by oblique incidence thereon. At the time of film formation, Fe 90 Nb 3.4 Zr 6.6 was formed using the sputtering apparatus shown in (FIG. 3) of the first embodiment.
Two alloy targets are used, the average incident angle θ is set to about 40 °, and the average incident angle θ is set to 0.014 in an argon gas of 0.13 Pa.
Nitrogen gas (N 2 ) of Pa was periodically mixed and sputter deposition was performed to form a Fe-based composition-modulated nitride alloy film having a film thickness of 4 μm. The soft magnetic alloy film 2 thus produced is
It has uniaxial magnetic anisotropy with the easy axis of magnetization in the track width direction of the magnetic head, that is, the Y direction in (FIG. 4) and (FIG. 5), and high magnetic permeability can be obtained at least in the X direction.

【0025】このようにして軟磁性合金膜2が成膜され
た2種類の半体コアを接着ガラスにより一体化せしめ、
複数のヘッドチップを得ることができるヘッドコアブロ
ックを形成した。これに際してはI形状コアおよびC形
状コアの軟磁性合金膜2上に酸化珪素等のギャップ材を
形成し、この面をギャップ面として突き合せ、接着ガラ
スによる接着を550℃60分の無磁界中熱処理により
行った。ここで無磁界中熱処理の間に20A/m程度の
地磁気は加わっているが、微弱であるため問題とはなら
ない。この後、機械的な切削により上記ヘッドコアブロ
ックからヘッドチップを切りだしてMIGヘッドを形成
した。
The two kinds of half cores on which the soft magnetic alloy film 2 is formed in this manner are integrated with adhesive glass,
A head core block capable of obtaining a plurality of head chips was formed. At this time, a gap material such as silicon oxide is formed on the soft magnetic alloy film 2 having the I-shaped core and the C-shaped core, and the surfaces are butted against each other and bonded by the adhesive glass in a magnetic field of 550 ° C. for 60 minutes. It was performed by heat treatment. Here, the geomagnetism of about 20 A / m is applied during the heat treatment in the absence of magnetic field, but it is not a problem because it is weak. Then, a head chip was cut out from the head core block by mechanical cutting to form an MIG head.

【0026】以上のようにして作製されたMIGヘッド
は、トラック幅方向を磁化容易軸とし、それに垂直な磁
化困難軸方向には460A/mの異方性磁界と2100
の高い比初透磁率を有する軟磁性合金膜を用いたMIG
ヘッドとなっており、高周波側でCo系非晶質合金膜を
用いたMIGヘッドと同等の良好なヘッド出力を示して
いた。さらに本実施例の微結晶化鉄基窒化合金膜は1.
65Tの高飽和磁化を有しているために高保磁力媒体に
対する低周波側の記録特性が特に優れており、低周波側
でCo系非晶質合金膜を用いたMIGヘッドよりも3d
Bの出力向上が図られた。このような良好な電磁変換特
性は、蒸着粒子がフェライト基板に対して平均的に斜め
入射するようにして成膜し、MIGヘッドのトラック幅
方向に磁化容易軸を有する適度な大きさの磁気異方性を
微結晶化鉄基窒化合金膜で得られたため達成されたので
ある。この適度な大きさの磁気異方性は磁界中熱処理だ
けでは得られないものであり、成膜時の斜め入射により
生じるのである。
The MIG head manufactured as described above has the easy axis of magnetization in the track width direction, and the anisotropic magnetic field of 460 A / m and 2100 in the direction of the hard axis perpendicular thereto.
MIG using a soft magnetic alloy film having a high relative initial permeability
It was a head, and showed a good head output equivalent to that of the MIG head using the Co-based amorphous alloy film on the high frequency side. Further, the microcrystallized iron-based nitride alloy film of this example is 1.
Since it has a high saturation magnetization of 65T, the recording characteristics on the low frequency side with respect to the high coercive force medium are particularly excellent, and it is 3d more than the MIG head using the Co-based amorphous alloy film on the low frequency side.
The output of B was improved. Such a good electromagnetic conversion characteristic is obtained by forming a film so that the vapor deposition particles are obliquely incident on the ferrite substrate evenly, and having a magnetic anisotropy of an appropriate size having an easy axis of magnetization in the track width direction of the MIG head. This was achieved because the toughness was obtained with the microcrystallized iron-based nitride alloy film. This moderately large magnetic anisotropy cannot be obtained only by heat treatment in a magnetic field, and is caused by oblique incidence during film formation.

【0027】以上のMIGヘッドの製造方法において
は、軟磁性合金膜がフェライト基板との間に反応防止層
を介して間接的に形成されたが、軟磁性合金膜の磁気特
性的にはフェライト基板上に直接的に形成されてもよ
い。また拡散防止層としては酸化アルミニウム以外にも
酸化珪素等の層を設けても問題ない。
In the above MIG head manufacturing method, the soft magnetic alloy film is indirectly formed between the ferrite substrate and the ferrite substrate. It may be formed directly on top. In addition to aluminum oxide, a layer of silicon oxide or the like may be provided as the diffusion prevention layer without causing any problem.

【0028】次に薄膜型の磁気ヘッド(薄膜ヘッド)の
製造方法を説明する。(図6)は薄膜ヘッドを作製する
ための下部磁性層の斜視図を示す。(図6)の作製にお
いては、結晶化ガラスよりなる非磁性基板1上に、反応
性スパッタ法により窒素を含有し熱処理後には微結晶集
合体となる鉄基の軟磁性合金膜2を斜め入射により成膜
し、フォトリソグラフィ−技術を用いて加工した。成膜
に際しては第1の実施例中の(図2)に示したスパッタ
装置でFe86.9Nb4.5Zr8.6なる組成の合金ターゲッ
トを用い、Aに相当する位置に非磁性基板を固定して平
均的入射角度θを約60゜にして0.5Paのアルゴン
ガス中に0.05Paの窒素ガス(N2)を周期的に混合
してスパッタ蒸着を行って膜厚5μmのFe系組成変調
窒化合金膜を形成した。このようにして作製された軟磁
性合金膜2は、磁気ヘッドのトラック幅方向、即ち(図
6)におけるY方向を磁化容易軸とする一軸磁気異方性
を有しており、少なくともX方向に高透磁率が得られて
いる。この軟磁性合金膜の成膜後にレジストを塗布し所
望の形状に現像した後イオンエッチングにより加工し
た。(図6)の軟磁性合金膜2の形状は薄膜ヘッドに用
いられる下部磁性層の形状となっており、細線形状のフ
ロント部10が薄膜ヘッドに加工後のヘッド正面側とな
る。以降も同様にして、この下部磁性層の上に磁気ギャ
ップ用非磁性ガラス層、非磁性金属膜よりなるコイル
層、電気的絶縁層、上部磁性層および保護用絶縁層等が
形成され、薄膜ヘッドが得られる。このような薄膜ヘッ
ドの作製過程では、基本的には下部磁性層側から上部磁
性層側へ積み上げて行く方向に作製されるのであるが、
上記の本発明の製造方法を各磁性層に用いることによ
り、フロント部10における細線形状の長軸方向に高透
磁率が得られるため、良好な電磁変換特性を有する薄膜
磁気ヘッドが得られるのである。
Next, a method of manufacturing a thin film magnetic head (thin film head) will be described. FIG. 6 shows a perspective view of a lower magnetic layer for producing a thin film head. In the production of (FIG. 6), an iron-based soft magnetic alloy film 2 containing nitrogen by a reactive sputtering method and becoming a fine crystal aggregate after heat treatment is obliquely incident on a non-magnetic substrate 1 made of crystallized glass. Then, a film was formed by the method described above, and processed by using a photolithography technique. At the time of film formation, an alloy target having a composition of Fe 86.9 Nb 4.5 Zr 8.6 was used in the sputtering apparatus shown in (FIG. 2) of the first embodiment, and a non-magnetic substrate was fixed at a position corresponding to A and averaged. A Fe-based composition-modulated nitrided alloy film having a thickness of 5 μm was formed by periodically mixing 0.05 Pa of nitrogen gas (N 2 ) into 0.5 Pa of argon gas with an incident angle θ of about 60 °. Formed. The soft magnetic alloy film 2 thus manufactured has uniaxial magnetic anisotropy with the easy axis of magnetization in the track width direction of the magnetic head, that is, the Y direction in (FIG. 6), and at least in the X direction. High magnetic permeability is obtained. After the formation of this soft magnetic alloy film, a resist was applied, the resist was developed into a desired shape, and then processed by ion etching. The shape of the soft magnetic alloy film 2 in FIG. 6 is the shape of the lower magnetic layer used in the thin film head, and the thin wire-shaped front portion 10 is the head front side after being processed into the thin film head. Similarly, a nonmagnetic glass layer for a magnetic gap, a coil layer made of a nonmagnetic metal film, an electrical insulating layer, an upper magnetic layer and a protective insulating layer are formed on the lower magnetic layer in the same manner thereafter. Is obtained. In the manufacturing process of such a thin film head, basically, it is manufactured in the direction of stacking from the lower magnetic layer side to the upper magnetic layer side.
By using the above-described manufacturing method of the present invention for each magnetic layer, a high magnetic permeability can be obtained in the long axis direction of the fine wire shape in the front portion 10, so that a thin film magnetic head having good electromagnetic conversion characteristics can be obtained. ..

【0029】このような良好な電磁変換特性は、蒸着粒
子がフェライト基板に対して平均的に斜め入射するよう
にして成膜し、MIGヘッドのトラック幅方向に磁化容
易軸を有する適度な大きさの磁気異方性を微結晶化鉄基
窒化合金膜で得られたため達成されたのである。この適
度な大きさの磁気異方性は磁界中熱処理だけでは得られ
ないものであり、成膜時の斜め入射により生じるのであ
る。
Such a good electromagnetic conversion characteristic is obtained by depositing vapor-deposited particles so that they are obliquely incident on the ferrite substrate evenly, and having an appropriate size having an easy axis of magnetization in the track width direction of the MIG head. This was achieved because the magnetic anisotropy of was obtained with the microcrystalline iron-based nitride alloy film. This moderately large magnetic anisotropy cannot be obtained only by heat treatment in a magnetic field, and is caused by oblique incidence during film formation.

【0030】以上述べてきたMIGヘッドや薄膜ヘッド
の製造方法に適用する軟磁性合金膜としては、磁界中熱
処理によって得られる異方性磁界が小さい微結晶化鉄基
窒化合金膜において効果が顕著なのである。微結晶化鉄
基窒化合金膜は、第1の実施例で述べたように、単層膜
もしくは多層膜のいずれでもよく、窒素等に対する化学
的親和性が鉄よりも強い元素を含有し、これらの窒化物
等が体心立方格子を有する鉄等の結晶粒成長を抑制して
いる系であればよい。したがって熱処理後に微結晶集合
体となる鉄基の軟磁性窒化合金膜として、Feを主成分
として少なくともNb、Ta、Zr、Ti、Hf、V、
Cr、Al、B、Si、Geを一種類以上含有する窒化
合金膜等に対しては本発明の適用が有効であり、特に優
れた電磁変換特性を有する磁気ヘッドが得られるのであ
る。
As the soft magnetic alloy film applied to the manufacturing method of the MIG head and the thin film head described above, the microcrystalline iron-based nitride alloy film having a small anisotropic magnetic field obtained by the heat treatment in the magnetic field is remarkably effective. is there. As described in the first embodiment, the microcrystallized iron-based nitride alloy film may be either a single-layer film or a multi-layer film, and contains an element having a stronger chemical affinity for nitrogen etc. than iron. It is sufficient that the nitride or the like is a system that suppresses crystal grain growth of iron or the like having a body-centered cubic lattice. Therefore, as an iron-based soft magnetic nitride alloy film that becomes a microcrystalline aggregate after heat treatment, at least Nb, Ta, Zr, Ti, Hf, V
The application of the present invention is effective for a nitride alloy film containing one or more kinds of Cr, Al, B, Si and Ge, and a magnetic head having particularly excellent electromagnetic conversion characteristics can be obtained.

【0031】[0031]

【発明の効果】本発明の軟磁性合金膜の製造方法は、磁
界中熱処理によって得られる異方性磁界が小さい微結晶
化鉄基窒化合金膜に対して、成膜時の作製条件により大
きな磁気異方性を付与することができ、これにより反磁
界の強い形状の軟磁性合金膜であっても磁化困難軸方向
に高透磁率を得ることができる軟磁性合金膜の製造方法
となっている。また本発明の磁気ヘッドの製造方法は、
このような本発明の軟磁性合金膜の製造方法を用い、M
IGヘッドや薄膜ヘッド等の磁気ヘッドにおいて良好な
電磁変換特性を得ることができる磁気ヘッドの製造方法
となっている。
The method of manufacturing a soft magnetic alloy film according to the present invention has a large magnetic field depending on manufacturing conditions at the time of film formation for a microcrystalline iron-based nitride alloy film having a small anisotropic magnetic field obtained by heat treatment in a magnetic field. Anisotropy can be imparted, which makes it possible to obtain a soft magnetic alloy film having high magnetic permeability in the hard axis direction even in the case of a soft magnetic alloy film having a strong demagnetizing field. . The method of manufacturing a magnetic head of the present invention is
Using such a method for manufacturing a soft magnetic alloy film of the present invention, M
This is a method of manufacturing a magnetic head such as an IG head or a thin film head that can obtain good electromagnetic conversion characteristics.

【0032】したがって本発明の磁性合金膜の製造方法
および磁気ヘッドの製造方法は産業上の利用価値が高い
ものである。
Therefore, the method for producing the magnetic alloy film and the method for producing the magnetic head according to the present invention have high industrial utility value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の軟磁性合金膜の製造方法を示す基板と
軟磁性合金膜の斜視図
FIG. 1 is a perspective view of a substrate and a soft magnetic alloy film showing a method for manufacturing a soft magnetic alloy film of the present invention.

【図2】本発明の軟磁性合金膜の製造方法を示すスパッ
タ装置の斜視図
FIG. 2 is a perspective view of a sputtering apparatus showing a method for manufacturing a soft magnetic alloy film of the present invention.

【図3】本発明の軟磁性合金膜の製造方法を示すスパッ
タ装置の正面図
FIG. 3 is a front view of a sputtering apparatus showing a method for manufacturing a soft magnetic alloy film of the present invention.

【図4】本発明の磁気ヘッドの製造方法を示すI形状コ
アの斜視図
FIG. 4 is a perspective view of an I-shaped core showing a method of manufacturing a magnetic head of the present invention.

【図5】本発明の磁気ヘッドの製造方法を示すC形状コ
アの斜視図
FIG. 5 is a perspective view of a C-shaped core showing a method of manufacturing a magnetic head of the present invention.

【図6】本発明の磁気ヘッドの製造方法を示す薄膜ヘッ
ドの下部磁性層の斜視図
FIG. 6 is a perspective view of a lower magnetic layer of a thin film head showing a method of manufacturing a magnetic head of the present invention.

【符号の説明】[Explanation of symbols]

1 非磁性基板 2 軟磁性合金膜 3 蒸着粒子 4 平均的入射方向 5 基板法線 6 合金ターゲット 7 I形状フェライト基板 8 C形状フェライト基板 9 巻線溝 10 フロント部 1 Non-Magnetic Substrate 2 Soft Magnetic Alloy Film 3 Evaporated Particles 4 Average Incident Direction 5 Substrate Normal Line 6 Alloy Target 7 I-Shaped Ferrite Substrate 8 C-Shaped Ferrite Substrate 9 Winding Groove 10 Front Part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芦田 晶弘 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 高橋 健 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Akihiro Ashida 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Ken Ken Takahashi, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 熱処理後に微結晶集合体となる鉄基の軟
磁性窒化合金膜をスパッタ蒸着法により基板上に形成す
る際に、前記基板の合金膜形成面の法線方向に対して蒸
着粒子の平均的入射方向を傾けて前記蒸着粒子が前記基
板に対して平均的に斜め入射するようにして成膜し、そ
の後に熱処理を施して前記軟磁性窒化合金膜に磁気異方
性を付与する軟磁性合金膜の製造方法。
1. When forming an iron-based soft magnetic nitride alloy film, which becomes a microcrystalline aggregate after heat treatment, on a substrate by a sputter deposition method, vapor-deposited particles are formed in a direction normal to an alloy film formation surface of the substrate. Of the vapor-deposited particles so that the vapor-deposited particles are obliquely incident on the substrate on average, and then subjected to heat treatment to impart magnetic anisotropy to the soft magnetic nitride alloy film. Method for manufacturing soft magnetic alloy film.
【請求項2】 磁気異方性として磁化困難軸方向の異方
性磁界が300〜1500A/mとなる磁気異方性を用
いた請求項1記載の軟磁性合金膜の製造方法。
2. The method for producing a soft magnetic alloy film according to claim 1, wherein the magnetic anisotropy is such that an anisotropic magnetic field in the hard axis direction is 300 to 1500 A / m.
【請求項3】 熱処理後に微結晶集合体となる鉄基の軟
磁性窒化合金膜として、Feを主成分としてNb、T
a、Zr、Ti、Hf、V、Cr、Al、B、Si、G
eを一種類以上含有する窒化合金膜を用いたことを特徴
とする請求項1もしくは請求項2のいずれかに記載の軟
磁性合金膜の製造方法。
3. An iron-based soft magnetic nitride alloy film that becomes a microcrystalline aggregate after heat treatment, containing Fe as a main component and Nb, T
a, Zr, Ti, Hf, V, Cr, Al, B, Si, G
The method for producing a soft magnetic alloy film according to claim 1, wherein a nitride alloy film containing one or more kinds of e is used.
【請求項4】 熱処理後に微結晶集合体となる鉄基の軟
磁性窒化合金膜をスパッタ蒸着法によりフェライト基板
もしくは非磁性基板上に直接的もしくは間接的に形成す
る際に、トラック幅方向が磁化容易軸となるように前記
フェライト基板もしくは前記非磁性基板の合金膜形成面
の法線方向に対して蒸着粒子の平均的な入射方向を傾け
て前記蒸着粒子が前記フェライト基板に対して平均的に
斜め入射するようにして成膜し、その後に熱処理を施し
て前記軟磁性窒化合金膜のトラック幅方向を磁化容易軸
とする磁気異方性を付与する磁気ヘッドの製造方法。
4. When the iron-based soft magnetic nitride alloy film, which becomes a microcrystalline aggregate after heat treatment, is formed directly or indirectly on a ferrite substrate or a non-magnetic substrate by a sputter deposition method, the track width direction is magnetized. The vapor-deposited particles are averaged with respect to the ferrite substrate by inclining the average incident direction of the vapor-deposited particles with respect to the normal direction of the alloy film formation surface of the ferrite substrate or the non-magnetic substrate so as to be the easy axis. A method of manufacturing a magnetic head, wherein a film is formed so as to be obliquely incident, and then a heat treatment is performed to impart magnetic anisotropy with the easy axis of magnetization in the track width direction of the soft magnetic nitride alloy film.
【請求項5】 磁気異方性として磁化困難軸方向の異方
性磁界が300〜1500A/mとなる磁気異方性を用
いた請求項4記載の磁気ヘッドの製造方法。
5. The method of manufacturing a magnetic head according to claim 4, wherein the magnetic anisotropy is such that an anisotropic magnetic field in the hard axis direction is 300 to 1500 A / m.
【請求項6】 熱処理後に微結晶集合体となる鉄基の軟
磁性窒化合金膜として、Feを主成分として少なくとも
Nb、Ta、Zr、Ti、Hf、V、Cr、Al、B、
Si、Geを一種類以上含有する窒化合金膜を用いたこ
とを特徴とする請求項4もしくは請求項5のいずれかに
記載の磁気ヘッドの製造方法。
6. An iron-based soft magnetic nitride alloy film, which becomes a microcrystalline aggregate after heat treatment, containing Fe as a main component and containing at least Nb, Ta, Zr, Ti, Hf, V, Cr, Al, and B.
6. The method of manufacturing a magnetic head according to claim 4, wherein a nitride alloy film containing one or more kinds of Si and Ge is used.
JP27516391A 1991-10-23 1991-10-23 Manufacture of soft magnetic alloy film and manufacture of magnetic head Pending JPH05114530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27516391A JPH05114530A (en) 1991-10-23 1991-10-23 Manufacture of soft magnetic alloy film and manufacture of magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27516391A JPH05114530A (en) 1991-10-23 1991-10-23 Manufacture of soft magnetic alloy film and manufacture of magnetic head

Publications (1)

Publication Number Publication Date
JPH05114530A true JPH05114530A (en) 1993-05-07

Family

ID=17551555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27516391A Pending JPH05114530A (en) 1991-10-23 1991-10-23 Manufacture of soft magnetic alloy film and manufacture of magnetic head

Country Status (1)

Country Link
JP (1) JPH05114530A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902445A1 (en) * 1997-09-02 1999-03-17 Matsushita Electric Industrial Co., Ltd. Magnetic thin film and magnetic head using the same
JP2006156855A (en) * 2004-11-30 2006-06-15 Tdk Corp Magnetic element and inductor, and process for manufacturing magnetic element
US7588840B2 (en) 2004-11-30 2009-09-15 Tdk Corporation Magnetic thin film and method of forming the same, magnetic device and inductor, and method of manufacturing magnetic device
JP2016536799A (en) * 2013-09-05 2016-11-24 ドイチェス エレクトローネン ジンクロトロン デズイ Method for manufacturing multi-layered magnetic electronic device and magnetic electronic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902445A1 (en) * 1997-09-02 1999-03-17 Matsushita Electric Industrial Co., Ltd. Magnetic thin film and magnetic head using the same
US6110609A (en) * 1997-09-02 2000-08-29 Matsushita Electric Industrial Co., Ltd. Magnetic thin film and magnetic head using the same
JP2006156855A (en) * 2004-11-30 2006-06-15 Tdk Corp Magnetic element and inductor, and process for manufacturing magnetic element
US7588840B2 (en) 2004-11-30 2009-09-15 Tdk Corporation Magnetic thin film and method of forming the same, magnetic device and inductor, and method of manufacturing magnetic device
JP4645178B2 (en) * 2004-11-30 2011-03-09 Tdk株式会社 Magnetic element and inductor
JP2016536799A (en) * 2013-09-05 2016-11-24 ドイチェス エレクトローネン ジンクロトロン デズイ Method for manufacturing multi-layered magnetic electronic device and magnetic electronic device

Similar Documents

Publication Publication Date Title
US6410170B1 (en) High resistivity FeXN sputtered films for magnetic storage devices and method of fabrication
JPH0426105A (en) Soft magnetic thin film
JP2586367B2 (en) Soft magnetic material, method of manufacturing the same, and magnetic head
JPH07302711A (en) Soft magnetic alloy thin film and its manufacture
JPH05114530A (en) Manufacture of soft magnetic alloy film and manufacture of magnetic head
JP2950917B2 (en) Soft magnetic thin film
JPH06215325A (en) Laminate type core of magnetic head
JPH0484403A (en) Soft magnetic thin film
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JP2866911B2 (en) Magnetic head
JP2508479B2 (en) Soft magnetic ferrite thin film
JP2925257B2 (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JPH03265105A (en) Soft magnetic laminate film
JP2752199B2 (en) Magnetic head
JP2893706B2 (en) Iron-based soft magnetic film
JP2808547B2 (en) Composite magnetic head
JPH04162505A (en) Magnetically soft thin film
KR100193703B1 (en) Manufacturing method of soft magnetic alloy film, magnetic head and soft magnetic alloy film
JPH03129707A (en) Soft-magnetic thin film and magnetic head using same
JPH08162355A (en) Manufacture of soft magnetic film and magnetic head
JPH04245610A (en) Manufacture of magnetic alloy film and manufacture of magnetic head
JPH02152209A (en) Soft magnetic film
JPH097874A (en) Manufacture of soft magnetic film and magnetic head formed thereof
JPH0645146A (en) Manufacture of soft magnetic film
JPH05217746A (en) Ferromagnetic film