JP2752199B2 - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JP2752199B2
JP2752199B2 JP28292489A JP28292489A JP2752199B2 JP 2752199 B2 JP2752199 B2 JP 2752199B2 JP 28292489 A JP28292489 A JP 28292489A JP 28292489 A JP28292489 A JP 28292489A JP 2752199 B2 JP2752199 B2 JP 2752199B2
Authority
JP
Japan
Prior art keywords
film
magnetic
concentration
magnetic head
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28292489A
Other languages
Japanese (ja)
Other versions
JPH03130909A (en
Inventor
仁志 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to US07/547,028 priority Critical patent/US5287239A/en
Priority to DE4021376A priority patent/DE4021376C2/en
Publication of JPH03130909A publication Critical patent/JPH03130909A/en
Application granted granted Critical
Publication of JP2752199B2 publication Critical patent/JP2752199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は磁気ヘッドに関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a magnetic head.

(従来の技術) 最近、将来の磁気ヘッド用磁性膜として、約20kGにも
達する高い飽和磁束密度(Bs)を有するFe系の合金膜の
研究が盛んになりつつある。一方、CoFe合金膜も約10%
以上の高いBsを示す。Coを多く含むCoFe合金膜はFe系の
合金膜に比べて耐蝕性に優れる利点を有する。ヘッド用
磁性膜には、高Bs以外に、保磁力(Hc)と磁気歪(λ
s)が小さいことも必要であるが、メッキにより作製し
たCo−10%Fe合金膜はFe系の合金膜に匹敵する低Hcと低
λsを示すことが報告されている(IEEE Trans.Magn.,M
AG−23(1987)2981)。ここで、磁気ヘッドの各種薄膜
パターンの製造プロセスにおいては、半導体の分野と同
様に、湿式プロセスであるメッキに代わり、将来はスパ
ッタや蒸着等のドライプロセスが望ましいと考えられ
る。さらに、高転送レートの記録再生を行う場合には、
渦電流を低減するために絶縁層(SiO2等)を中間に挟ん
だ多層構造の磁性膜が望ましいが、メッキではこのよう
な多層膜を作製することが困難である。従って、スパッ
タや蒸着により低Hc、低λsのCoFe合金膜が作製できる
ことが望ましい。この点に鑑みて、我々は、スパッタに
よるCoFe合金膜作製の研究を鋭意進めてきた結果、従来
は低Hcを示さないと思われていたCoFe合金膜でも(J.Ap
pl.Phys.,43(1972)3542)、18%近傍のFe濃度を有す
るCoFe合金膜は前記メッキ膜と同様な低Hcを示すことを
明らかにしてきた(第12回日本応用磁気学会学術講演概
要集2pD−4)。しかし、Co−18%Fe合金膜のλsは1
×10-5以上の大きな値であり、磁気ヘッドへの応用に際
して、λsを低減することが望ましい。
(Prior Art) Recently, as a magnetic film for a magnetic head in the future, research on an Fe-based alloy film having a high saturation magnetic flux density (Bs) of about 20 kG has been actively conducted. On the other hand, about 10% of CoFe alloy film
It shows the above high Bs. A CoFe alloy film containing a large amount of Co has an advantage of being superior in corrosion resistance as compared with an Fe-based alloy film. In addition to high Bs, the magnetic film for the head has a coercive force (Hc) and magnetostriction (λ
s) is required to be small, but it has been reported that a Co-10% Fe alloy film produced by plating exhibits low Hc and low λs comparable to Fe-based alloy films (IEEE Trans. Magn. , M
AG-23 (1987) 2981). Here, in the manufacturing process of various thin film patterns of the magnetic head, a dry process such as sputtering or vapor deposition is considered to be desirable in the future instead of the wet process of plating as in the semiconductor field. Furthermore, when performing recording and playback at a high transfer rate,
To reduce the eddy current, a magnetic film having a multilayer structure with an insulating layer (SiO 2 or the like) interposed therebetween is desirable, but it is difficult to produce such a multilayer film by plating. Therefore, it is desirable that a CoFe alloy film of low Hc and low λs can be produced by sputtering or vapor deposition. In view of this point, as a result of our intensive research on the production of CoFe alloy films by sputtering, even CoFe alloy films that were not considered to exhibit low Hc (J. Ap
pl.Phys., 43 (1972) 3542), it has been shown that a CoFe alloy film having an Fe concentration of around 18% exhibits the same low Hc as the above-mentioned plating film. Summary 2pD-4). However, the λs of the Co-18% Fe alloy film is 1
It is a large value of × 10 −5 or more, and it is desirable to reduce λs when applied to a magnetic head.

(発明が解決しようとする課題) 上記の説明で明らかなようにCoFe合金膜は約20kGの高
い飽和磁束密度を有するものの、スパッタリング法や蒸
着法では、ヘッド磁極性膜に必要な低Hc且つ低磁気歪の
膜が作製できない現状にある。このため従来のCoFe合金
膜を用いた磁気ヘッドでは高密度記録ができなかった。
(Problems to be Solved by the Invention) As is apparent from the above description, although the CoFe alloy film has a high saturation magnetic flux density of about 20 kG, the sputtering method and the vapor deposition method require low Hc and low Hc required for the head magnetic polar film. At present, a magnetostrictive film cannot be produced. For this reason, high-density recording was not possible with a conventional magnetic head using a CoFe alloy film.

本発明はこのような問題点に鑑みなされたものであ
り、飽和磁束密度が高く、保磁力及び磁気歪が低いCoFe
合金を磁性膜として用い、高密度記録が可能な磁気ヘッ
ドを提供することを目的とする。
The present invention has been made in view of such problems, and has a high saturation magnetic flux density, low coercive force and low magnetostriction.
It is an object of the present invention to provide a magnetic head capable of performing high-density recording by using an alloy as a magnetic film.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明は、基板と、該基板上に形成された磁性膜と、
該磁性膜上に絶縁膜を介して形成されるコイルを具備し
た磁気ヘッドにおいて、前記磁性膜として主成分がCoと
Feからなり、Fe濃度が15at%以上24at%以下、(100)
面が膜面垂直方向に優先成長したfcc(面心立方格子)
相を最も多く含むCoFe合金を用いたことを特徴とする磁
気ヘッドである。
(Means for Solving the Problems) The present invention provides a substrate, a magnetic film formed on the substrate,
In a magnetic head having a coil formed on the magnetic film via an insulating film, the main component of the magnetic film is Co.
Made of Fe, Fe concentration is 15at% or more and 24at% or less, (100)
Fcc (face-centered cubic lattice) with preferential growth in the direction perpendicular to the film surface
A magnetic head using a CoFe alloy containing the largest number of phases.

上記構造は、窒素を含む雰囲気でスパッタすること
(但し、膜中の窒素混入量は2at%未満に抑える)、ま
たは、酸化マグネシウム基板上にスパッタすることによ
り実現できる。
The above structure can be realized by sputtering in an atmosphere containing nitrogen (however, the amount of nitrogen mixed into the film is kept at less than 2 at%) or by sputtering on a magnesium oxide substrate.

(作用) 本発明で用いられる強磁性膜は、19kGの高Bsを示し、
さらに2−3Oeの低Hcと1×10-6の低磁気歪を示す。そ
の結果、このようなCoFe合金膜を磁気ヘッド用磁性膜と
して使用すれば、高密度記録再生に極めて有利な磁気ヘ
ッドが期待できる。
(Function) The ferromagnetic film used in the present invention exhibits a high Bs of 19 kG,
Further, it shows low Hc of 2-3 Oe and low magnetostriction of 1 × 10 -6 . As a result, if such a CoFe alloy film is used as a magnetic film for a magnetic head, a magnetic head that is extremely advantageous for high-density recording and reproduction can be expected.

(実施例) 以下に本発明の実施例を挙げ、図面を参照しながらさ
らに具体的に説明する。
(Example) An example of the present invention will be described below in more detail with reference to the drawings.

CoFe合金膜は、アルゴンガスに窒素ガスを混入させた
雰囲気で、窒素ガスの含有量およびFe濃度をパラメータ
として2極RFスパッタにより、ガラス基板(コーニング
社製0211基板)上に作製した。ターゲットはCo円板上に
複数のFeチップを配置した複合ターゲットとした。Fe濃
度は、FeチップのCoプレートに占める割合を変えて制御
した。膜面内に一軸磁気異方性を付与するために、膜作
製中基板近傍に配置した永久磁石により、膜面内の一方
向に外部磁界を加えた。なお、スパッタリングは以下の
条件で行った。
The CoFe alloy film was formed on a glass substrate (0211 substrate manufactured by Corning Incorporated) by two-pole RF sputtering in an atmosphere in which nitrogen gas was mixed with argon gas, using the nitrogen gas content and the Fe concentration as parameters. The target was a composite target in which a plurality of Fe chips were arranged on a Co disk. The Fe concentration was controlled by changing the ratio of the Fe chip to the Co plate. In order to impart uniaxial magnetic anisotropy in the film plane, an external magnetic field was applied in one direction in the film plane by a permanent magnet arranged near the substrate during film formation. The sputtering was performed under the following conditions.

高周波電力密度 :5W/cm2 全スパッタガス圧力:9×10-3Torr 窒素ガス分圧 :0−1.35×10-3Torr 電極間距離 :40mm 予備排気 :1×10-6Torr以下 Coに対するFe濃度 :9.5−31at% 膜厚は約0.3μmとした。保磁力は最大250Oeの磁界を
困難軸方向に加えて測定した。結晶構造はX線ディフラ
クトメータ法(CuKα線使用)により調べた。膜中の窒
素濃度は、水蒸気蒸溜・ネスラー吸光光度法により測定
した。
High frequency power density: 5 W / cm 2 Total sputtering gas pressure: 9 × 10 -3 Torr Nitrogen gas partial pressure: 0-1.35 × 10 -3 Torr Distance between electrodes: 40 mm Preliminary evacuation: 1 × 10 -6 Torr or less Fe for Co Concentration: 9.5-31 at% The film thickness was about 0.3 μm. The coercive force was measured by applying a maximum magnetic field of 250 Oe in the hard axis direction. The crystal structure was examined by the X-ray diffractometer method (using CuKα rays). The nitrogen concentration in the film was measured by steam distillation / Nessler absorption photometry.

上記条件により作製したCoFe合金膜における保磁力Hc
の窒素分圧依存性をFe濃度をパラメータとして測定した
ところ第1図に示す結果を得た。
Coercive force Hc in CoFe alloy film prepared under the above conditions
Was measured using the Fe concentration as a parameter, and the results shown in FIG. 1 were obtained.

窒素を含まない純アルゴンガス雰囲気中でスパッタに
より作製した場合は、15−24at%Fe膜のみが5Oe以下の
低Hcを示し、12at%以下または31at%のFe濃度の膜では
10Oe以上の比較的高いHcを示した。一方、窒素ガスを添
加したスパッタにより作製した場合は、Fe濃度が12at%
以下の膜では、純アルゴンスパッタ膜に比べてHcの低下
する窒素分圧が存在したものの、それでも10Oe以上の比
較的高いHcを示した。しかし、Fe濃度が15at%以上の膜
では、窒素分圧が約7.2−9×10-4Torrまで増加するとH
cは3Oe以下にまで低下した。以上の結果から、窒素を添
加したスパッタにより、Fe濃度が15at%以上の膜で低Hc
膜が作製できることが判る。
When produced by sputtering in a pure argon gas atmosphere containing no nitrogen, only the 15-24 at% Fe film shows a low Hc of 5 Oe or less, and the film of 12 at% or less or 31 at% Fe concentration has a low Hc.
It showed a relatively high Hc of more than 10 Oe. On the other hand, when the sputtering was performed by adding nitrogen gas, the Fe concentration was 12 at%.
In the following films, although there was a nitrogen partial pressure in which Hc was lower than that of the pure argon sputtered film, relatively high Hc of 10 Oe or more was shown. However, in a film having an Fe concentration of 15 at% or more, when the nitrogen partial pressure increases to about 7.2-9 × 10 -4 Torr, H
c fell below 3 Oe. From the above results, it was found that the film with a Fe concentration of 15 at% or more has a low Hc
It turns out that a film can be produced.

次に、低Hcを示した、Fe濃度が15at%以上の膜につい
て、λsの窒素分圧依存性を調べたところ、第2図に示
す結果を得た。Fe濃度が15−24at%の膜は、純Arスパッ
タリングにより作製した場合は1×10-5以上の高λsを
示したが、3.8×10-4Torr近傍の窒素分圧で作製した場
合は約3×10-6以下の低λsを示した。なお、低λsを
示したこの窒素分圧の範囲では19kGの高Bsを示した。一
方、Fe濃度が31at%の膜のλsは、やはり3.8×10-4Tor
r近傍の窒素分圧で最小となったものの、その値は1×1
0-5以上の大きな値であった。
Next, when the dependency of λs on the nitrogen partial pressure was examined for a film having a low Hc and an Fe concentration of 15 at% or more, the results shown in FIG. 2 were obtained. The film having an Fe concentration of 15 to 24 at% showed a high λs of 1 × 10 −5 or more when produced by pure Ar sputtering, but when the film was produced at a nitrogen partial pressure near 3.8 × 10 −4 Torr, Low λs of 3 × 10 −6 or less was exhibited. In this range of nitrogen partial pressure showing a low λs, a high Bs of 19 kG was shown. On the other hand, λs of the film having the Fe concentration of 31 at% is still 3.8 × 10 -4 Tor
Although it became the minimum at the nitrogen partial pressure near r, its value was 1 × 1
0 was a great value of -5 or more.

以上の結果から、Fe濃度を15−24at%に設定し、さら
に窒素ガスを加えたスパッタリングを行うことにより、
19kGの高Bsを保ち、低Hc且つ低λsの良好な軟磁気特性
の磁性膜が得られることが理解できる。
From the above results, by setting the Fe concentration to 15 to 24 at%, and further performing sputtering by adding nitrogen gas,
It can be understood that a magnetic film having good Bs of 19 kG, low Hc and low λs and excellent soft magnetic properties can be obtained.

ところで、Fe系の膜では、λsは結晶配向に依存する
ことが知られている。そこで、15−24at%のFe濃度で低
λsが得られた理由を明らかにするために、結晶配向性
を調べたところ以下に示す結果を得た。
By the way, in Fe-based films, λs is known to depend on the crystal orientation. Then, in order to clarify the reason why the low λs was obtained at the Fe concentration of 15 to 24 at%, the crystal orientation was examined, and the following results were obtained.

第3図に、通常の純アルゴンスパッタにより作製した
膜のX線回折曲線の一例を示す。9.5at%Fe膜では、bcc
相のピークは認められず、高強度のfcc相(111)ピーク
を示した。この膜は(111)面が膜面垂直方向に優先成
長した膜、すなわち(111)配向膜と考えられる。Fe濃
度が増加するにつれて、この(111)ピーク強度は低下
し、新たに出現したbcc相(110)ピーク強度が増大し
た。31%Fe膜では、fcc相のピークは認められず、高強
度のbcc相(110)ピークを示した。この膜は、(110)
配向膜と考えられる。以上の結果から、通常のアルゴン
ガススパッタでは、fcc相(111)配向膜またはbcc相(1
10)配向膜が得られることが理解できる。
FIG. 3 shows an example of an X-ray diffraction curve of a film produced by ordinary pure argon sputtering. For 9.5at% Fe film, bcc
No phase peak was observed, indicating a high intensity fcc phase (111) peak. This film is considered to be a film in which the (111) plane is preferentially grown in the direction perpendicular to the film surface, that is, a (111) oriented film. As the Fe concentration increased, the (111) peak intensity decreased, and the newly emerged bcc phase (110) peak intensity increased. In the case of the 31% Fe film, no peak of the fcc phase was recognized, and a high intensity bcc phase (110) peak was exhibited. This film is (110)
It is considered an alignment film. From the above results, in the ordinary argon gas sputtering, the fcc phase (111) oriented film or the bcc phase (1
10) It can be understood that an alignment film is obtained.

次に、3.8×10-4Torrの窒素分圧で作製した膜におけ
る、X線回折曲線のFe濃度依存性を第4図に示す。Fe濃
度が24at%以下の膜では、主に高強度のfcc相(200)ピ
ークから成る回折曲線を呈した。一方、Fe濃度が31at%
の膜では、fcc相(200)ピークが認められるものの、純
アルゴンガススパッタにより作製した場合と同様に、bc
c相(110)ピーク強度が最大の回折曲線を呈した。以上
の結果から、bcc相(110)配向膜では高λsを、fcc相
(100)配向膜では低λsを示すとが理解できる。な
お、fcc相(200)ピークのロッキングカーブの半値幅と
Fe濃度の関係を第5図に示す。Fe濃度が18at%の膜で半
値幅は最小(約6゜)となった。すなわち、18at%Fe膜
で最も(100)配向の良い膜が得られた。
Next, FIG. 4 shows the dependence of the X-ray diffraction curve on the Fe concentration in the film formed at a nitrogen partial pressure of 3.8 × 10 −4 Torr. The film having an Fe concentration of 24 at% or less exhibited a diffraction curve mainly composed of a high-intensity fcc phase (200) peak. On the other hand, the Fe concentration is 31at%
Although the fcc phase (200) peak was observed in the film of, the bc was similar to that produced by pure argon gas sputtering.
The c-phase (110) peak intensity exhibited the maximum diffraction curve. From the above results, it can be understood that the bcc phase (110) oriented film shows a high λs and the fcc phase (100) oriented film shows a low λs. Note that the half width of the rocking curve of the fcc phase (200) peak
FIG. 5 shows the relationship between the Fe concentrations. The half-width became minimum (about 6 °) in the film having the Fe concentration of 18 at%. That is, a film with the best (100) orientation was obtained with an 18 at% Fe film.

ところで、18at%Fe膜について、X線回折曲線の窒素
分圧依存性を詳しく調べたところ、第6図に示す結果を
得た。3.8×10-4Torr以下の窒素分圧では、窒素分圧が
増加するとfcc相(200)ピーク強度の増大すなわち(10
0)配向度の向上が認められた。この場合は、λsの低
下は(100)配向度の向上と関連していた。一方、窒素
分圧を5.2×10-4Torr以上に増加すると、fcc相(100)
ピーク強度には変化がみられず、(100)配向を維持し
た。しかし、この場合は、λsが増加しており、(10
0)配向度とλsに関連は見られなかった。この理由を
解明するために、格子定数、比抵抗の窒素分圧依存性を
調べた結果を、それぞれ、第7図,第8図に示す。初め
に格子定数に着目すると、窒素分圧を増やした場合、bc
c相の格子定数は、僅かに低下傾向にあるものの、その
変化は僅かであった。一方、fcc相の格子定数は、窒素
分圧を3.8×10-4Torrにまで増やしてもほとんど変化し
なかったが、さらに窒素分圧を5.2×10-4Torr以上に増
やすと0.361nm以上に増加した。次に、比抵抗に着目す
ると、窒素分圧を3.8×10-4Torrまで増やした場合、比
抵抗は、僅かながら増加傾向にあるものの、純アルゴン
ガススパッタ膜とあまり変わらない値を示した。しか
し、5.2×10-4Torr以上に窒素分圧を増やすと、比抵抗
は急俊に増加して40μΩcm以上の値を示した。ここで、
以上述べた格子定数と比抵抗の増加は膜中への窒素混入
によると考えられる。そこで、膜中の窒素含有量を測定
した結果を第9図に示す。この図から、3.8×10-4Torr
以下の窒素分圧では2at%未満の窒素濃度であったが、
5.2×10-4Torr以上の窒素分圧では2at%以上の窒素濃度
であった。以上の結果から、膜中の窒素濃度は2at%未
満に抑制しないと低λsを示さないことが判る。
By the way, when the dependency of the X-ray diffraction curve on the nitrogen partial pressure of the 18 at% Fe film was examined in detail, the results shown in FIG. 6 were obtained. At a nitrogen partial pressure of 3.8 × 10 −4 Torr or less, as the nitrogen partial pressure increases, the peak intensity of the fcc phase (200) increases, ie, (10
0) An improvement in the degree of orientation was observed. In this case, the decrease in λs was associated with an increase in the degree of (100) orientation. On the other hand, when the nitrogen partial pressure is increased to 5.2 × 10 -4 Torr or more, the fcc phase (100)
No change was observed in the peak intensity, and the (100) orientation was maintained. However, in this case, λs has increased and (10
0) No relation was found between the degree of orientation and λs. In order to clarify the reason, the results of examining the dependence of the lattice constant and the specific resistance on the nitrogen partial pressure are shown in FIGS. 7 and 8, respectively. Focusing on the lattice constant first, when the nitrogen partial pressure is increased, bc
Although the lattice constant of the c-phase tended to decrease slightly, the change was slight. On the other hand, the lattice constant of the fcc phase hardly changed even when the nitrogen partial pressure was increased to 3.8 × 10 -4 Torr, but when the nitrogen partial pressure was further increased to 5.2 × 10 -4 Torr or more, it increased to 0.361 nm or more. Increased. Next, paying attention to the specific resistance, when the nitrogen partial pressure was increased to 3.8 × 10 −4 Torr, the specific resistance showed a value that was slightly different from that of the pure argon gas sputtered film, though slightly increased. However, when the nitrogen partial pressure was increased to 5.2 × 10 −4 Torr or more, the specific resistance increased rapidly and showed a value of 40 μΩcm or more. here,
It is considered that the increase in the lattice constant and the specific resistance described above is due to nitrogen contamination in the film. Then, the result of measuring the nitrogen content in the film is shown in FIG. From this figure, 3.8 × 10 -4 Torr
At the following nitrogen partial pressure, the nitrogen concentration was less than 2 at%,
At a nitrogen partial pressure of 5.2 × 10 −4 Torr or more, the nitrogen concentration was 2 at% or more. From the above results, it can be seen that low λs is not exhibited unless the nitrogen concentration in the film is controlled to less than 2 at%.

以上、詳しく説明してきたように、窒素を添加したス
パッタにより、さらにFe濃度を24at%以下に抑えること
により、通常のアルゴンガススパッタでは作製困難なfc
c相(100)配向膜が実現でき、その結果、低λs膜を得
ることができる。さらに、低Hcが得られる組成も考慮す
ると、磁気ヘッドへの応用上不可欠な低Hc且つ低λsの
磁気特性は、Fe濃度が15−24at%のfcc相(100)配向Co
Fe膜で得られる。この磁性膜を使用した磁気ヘッドの実
施例の幾つかを第10図に示す。第10図(a)は長手記録
のハードディスクに対応したヘッドを示す(断面図)。
このヘッドは、基板10−1上に作製した上述したCoFe磁
性膜10−2、ギャップ層10−3と断縁層10−4を介して
磁性膜10−2上に形成したコイル10−5、絶縁層10−4
を介してコイル10−5上に作製した上述したCoFe磁性膜
10−6、保護膜10−7から成る。磁性膜10−2と10−6
に使用されていた従来の磁性膜(NiFe膜やCo系アモルフ
ァス膜等)に比べて上述したCoFe磁性膜の飽和磁束密度
は高いので、高保磁力媒体に対しても十分な記録が可能
になり、その結果、高密度記録が可能となる。一方、第
10図(b)は垂直記録に対応したヘッドの一例を示す
(断面図)。このヘッドは、基板10−8上に上述したCo
Fe磁性膜を用いた主磁極10−9を形成し、この上に絶縁
層10−10を介してコイル10−11を形成し、さらにこの上
に、絶縁層10−10を介してリターンパス磁性体10−12を
形成し、最後に保護膜10−13を形成した構造から成る。
主磁極10−9に使用されていた従来磁性膜(Co系アモル
ファス膜等)に比べて上述したCoFe磁性膜の飽和磁束密
度は高いので、主磁極厚みをさらに薄くすることが可能
になり、その結果線記録密度の高い高密度垂直磁気記録
が可能となる。酸化マグネシウムの(100)面上に、純
アルゴンガスを用いて、実施例1と同様なスパッタ条件
でCoFe膜を作製した。その結果、実施例1と同様に、Bs
=19kG、Hc=3Oe、λs=1×10-6の磁気特性と、fcc相
(100)面が膜面垂直方向に配向した結晶構造を示した
(X線回折曲線はfcc相(200)反射のみを示した)。こ
の結果から、窒素を添加したスパッタ法だけでなく、他
の方法でも、fcc相(100)面が膜面垂直方向に配向した
結晶構造を実現することにより、磁気ヘッドへ応用する
のに望ましい、高Bs、低Hc、低λsを実現することが判
る。
As described in detail above, by controlling the Fe concentration to 24 at% or less by sputtering with addition of nitrogen, it is difficult to fabricate by normal argon gas sputtering.
A c-phase (100) oriented film can be realized, and as a result, a low λs film can be obtained. Further, taking into account the composition for obtaining low Hc, the magnetic properties of low Hc and low λs, which are indispensable for application to a magnetic head, are considered to be fcc phase (100) oriented Co with Fe concentration of 15 to 24 at%.
Obtained with Fe film. Some examples of magnetic heads using this magnetic film are shown in FIG. FIG. 10 (a) shows a head corresponding to a longitudinal recording hard disk (cross-sectional view).
This head includes the above-described CoFe magnetic film 10-2 formed on the substrate 10-1, the coil 10-5 formed on the magnetic film 10-2 via the gap layer 10-3 and the insulating layer 10-4, Insulation layer 10-4
CoFe magnetic film fabricated on coil 10-5 via
10-6 and a protective film 10-7. Magnetic films 10-2 and 10-6
Since the saturation magnetic flux density of the CoFe magnetic film described above is higher than that of the conventional magnetic film (NiFe film, Co-based amorphous film, etc.) used in the above, sufficient recording is possible even on a high coercive force medium, As a result, high density recording becomes possible. On the other hand,
FIG. 10B shows an example of a head corresponding to perpendicular recording (cross-sectional view). This head has the above-described Co on the substrate 10-8.
A main magnetic pole 10-9 using a Fe magnetic film is formed, a coil 10-11 is formed thereon with an insulating layer 10-10 interposed, and a return pass magnetic layer is formed thereon further with an insulating layer 10-10 interposed. It has a structure in which a body 10-12 is formed and finally a protective film 10-13 is formed.
Since the saturation magnetic flux density of the CoFe magnetic film described above is higher than that of the conventional magnetic film (Co-based amorphous film, etc.) used for the main pole 10-9, the thickness of the main pole can be further reduced. As a result, high-density perpendicular magnetic recording with a high linear recording density becomes possible. A CoFe film was formed on the (100) plane of magnesium oxide using pure argon gas under the same sputtering conditions as in Example 1. As a result, similarly to Example 1, Bs
= 19 kG, Hc = 3Oe, λs = 1 × 10 −6 , and a crystal structure in which the fcc phase (100) plane is oriented in the direction perpendicular to the film surface (the X-ray diffraction curve shows the fcc phase (200) reflection). Only shown). From these results, it is desirable to apply the present invention to a magnetic head by realizing a crystal structure in which the fcc phase (100) plane is oriented in the direction perpendicular to the film surface by not only the sputtering method using nitrogen addition but also other methods. It can be seen that high Bs, low Hc, and low λs are realized.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したごとく、本発明によれば高い飽和
磁束密度を有し、且つ、低保磁力と低磁気歪を有する強
磁性膜を用い、高密度記録が可能な磁気ヘッドを提供す
ることができる。
As described in detail above, according to the present invention, it is possible to provide a magnetic head capable of high-density recording by using a ferromagnetic film having a high saturation magnetic flux density, a low coercive force and a low magnetostriction. it can.

【図面の簡単な説明】[Brief description of the drawings]

第1図はFe濃度をパラメータとした、保磁力Hcの窒素分
圧依存性を示す図、第2図はFe濃度をパラメータとした
磁気歪λsの窒素分圧依存性を示す図、第3図は純アル
ゴンガスを用いた場合におけるX線回折曲線のFe濃度依
存性を示す図、第4図は3.8×10-4Torrの窒素分圧で作
製した場合におけるX線回折曲線のFe濃度依存性を示す
図、第5図はfcc相(200)ピークに対するロッキングカ
ーブ半幅値のFe濃度依存性を示す図、第6図はFe濃度が
18at%の膜におけるX線回折曲線の窒素分圧依存性を示
す図、第7図はFe濃度が18at%の膜における格子定数の
窒素分圧依存性を示す図、第8図はFe濃度が18at%の膜
における比抵抗の窒素分圧依存性を示す図、第9図はFe
濃度が18at%の膜における膜中の窒素濃度と窒素分圧の
関係を示す図、第10図は本発明の一実施例を示す図であ
る。
FIG. 1 is a diagram showing the nitrogen partial pressure dependency of coercive force Hc using Fe concentration as a parameter. FIG. 2 is a diagram showing nitrogen partial pressure dependency of magnetostriction λs using Fe concentration as a parameter. Fig. 4 shows the dependence of the X-ray diffraction curve on the Fe concentration when pure argon gas was used. Fig. 4 shows the dependence of the X-ray diffraction curve on the Fe concentration when produced at a nitrogen partial pressure of 3.8 × 10 -4 Torr. FIG. 5 is a diagram showing the dependence of the half-width value of the rocking curve on the fcc phase (200) peak by the Fe concentration, and FIG.
FIG. 7 shows the nitrogen partial pressure dependency of the X-ray diffraction curve in the 18 at% film, FIG. 7 shows the nitrogen partial pressure dependency of the lattice constant in the Fe concentration 18 at% film, and FIG. FIG. 9 shows the nitrogen partial pressure dependence of the specific resistance of the 18 at% film.
FIG. 10 is a diagram showing the relationship between the nitrogen concentration in the film and the nitrogen partial pressure in a film having a concentration of 18 at%, and FIG. 10 is a diagram showing an embodiment of the present invention.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板と、該基板上に形成された磁性膜と、
該磁性膜状に絶縁膜を介して形成されたコイルを具備し
た磁気ヘッドにおいて、前記磁性膜として主成分がCoと
Feとからなり、Fe濃度が15at%以上24at%以下、(10
0)面が膜面垂直方向に優先成長したfcc相を最も多く含
むCoFe合金を用いたことを特徴とする磁気ヘッド。
A substrate, a magnetic film formed on the substrate,
In a magnetic head having a coil formed in the form of a magnetic film via an insulating film, the main component of the magnetic film is Co.
Fe and Fe concentration of 15at% or more and 24at% or less, (10
0) A magnetic head characterized in that a CoFe alloy containing the largest amount of the fcc phase whose surface is preferentially grown in the direction perpendicular to the film surface is used.
【請求項2】前記CoFe合金はNを含むことを特徴とする
請求項1記載の磁気ヘッド。
2. The magnetic head according to claim 1, wherein the CoFe alloy contains N.
【請求項3】前記CoFe合金はNを2at%未満含むことを
特徴とする請求項2記載の磁気ヘッド。
3. The magnetic head according to claim 2, wherein the CoFe alloy contains less than 2 at% of N.
【請求項4】前記CoFe合金は酸化マグネシウム上に形成
されていることを特徴とする請求項1記載の磁気ヘッ
ド。
4. The magnetic head according to claim 1, wherein said CoFe alloy is formed on magnesium oxide.
【請求項5】前記CoFe合金はbcc相を一部に含むことを
特徴とする請求項1記載の磁気ヘッド。
5. The magnetic head according to claim 1, wherein said CoFe alloy includes a part of a bcc phase.
【請求項6】前記bcc相は膜面垂直方向に(110)面を有
することを特徴とする請求項5記載の磁気ヘッド。
6. The magnetic head according to claim 5, wherein the bcc phase has a (110) plane in a direction perpendicular to the film surface.
JP28292489A 1989-07-05 1989-11-01 Magnetic head Expired - Fee Related JP2752199B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/547,028 US5287239A (en) 1989-07-05 1990-07-02 Magnetic head using high saturated magnetic flux density film and manufacturing method thereof
DE4021376A DE4021376C2 (en) 1989-07-05 1990-07-05 Magnetic head and process for its manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17196789 1989-07-05
JP1-171967 1989-07-05

Publications (2)

Publication Number Publication Date
JPH03130909A JPH03130909A (en) 1991-06-04
JP2752199B2 true JP2752199B2 (en) 1998-05-18

Family

ID=15933078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28292489A Expired - Fee Related JP2752199B2 (en) 1989-07-05 1989-11-01 Magnetic head

Country Status (1)

Country Link
JP (1) JP2752199B2 (en)

Also Published As

Publication number Publication date
JPH03130909A (en) 1991-06-04

Similar Documents

Publication Publication Date Title
EP0584768B1 (en) Method for making soft magnetic film
US5439754A (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
Katada et al. Soft magnetic properties and microstructure of NiFe (Cr)/FeCo/NiFe (Cr) films with large saturation magnetization
JPH0426105A (en) Soft magnetic thin film
US5503686A (en) Heat treatment method for thin film magnetic head
US5601904A (en) Magnetic recording medium and process for producing the same
JP3382084B2 (en) Magnetic thin film for magnetic head, method of manufacturing the same, and magnetic head using the magnetic thin film
JPS59193235A (en) Co-nb-zr type amorphous magnetic alloy and magnetic head using the same
JP2752199B2 (en) Magnetic head
JPH06168822A (en) Vertical magnetized film, multilayer film for vertical magnetizing and manufacture of vertical magnetizing film
JPH05114530A (en) Manufacture of soft magnetic alloy film and manufacture of magnetic head
JP2925257B2 (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
Katori et al. Soft magnetic properties for Fe-Al-Nb-NO films
JPH0669032A (en) Laminated magnetic thin film and magnetic head using same
JPH0269906A (en) Ferromagnetic film
JPS63311613A (en) Thin film magnetic head
JPH11329882A (en) Manufacture of exchange coupling film and magnetoresistive effect device
JP2001015339A (en) Soft magnetic laminate film and thin-film magnetic head
JPH01119005A (en) Magnetic film and manufacture thereof
JPH0483313A (en) Soft magnetic thin film and magnetic head
JPH01143312A (en) Amorphous soft magnetic laminated film
JPH04359501A (en) Multilayer ferromagnetic substance
JPH01283319A (en) Production of magnetic material for magnetic head
JPH0376102A (en) Multilayer magnetic thin film and magnetic head using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees